2,545 research outputs found

    Shingle 2.0: generalising self-consistent and automated domain discretisation for multi-scale geophysical models

    Full text link
    The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model or application specific and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain their full description. As a consequence, it can be difficult to reproduce simulations, ensure a provenance in model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously. This paper takes a novel approach to spatial discretisation, considering it much like a numerical simulation model problem of its own. It introduces a generalised, extensible, self-documenting approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space that determine how a domain is spatially discretised. This additionally provides a method to accurately record these constraints, using high-level natural language based abstractions, that enables full accounts of provenance, sharing and distribution. Together with this description, a generalised consistent approach to unstructured mesh generation for geophysical models is developed, that is automated, robust and repeatable, quick-to-draft, rigorously verified and consistent to the source data throughout. This interprets the description above to execute a self-consistent spatial discretisation process, which is automatically validated to expected discrete characteristics and metrics.Comment: 18 pages, 10 figures, 1 table. Submitted for publication and under revie

    Models of Interaction as a Grounding for Peer to Peer Knowledge Sharing

    Get PDF
    Most current attempts to achieve reliable knowledge sharing on a large scale have relied on pre-engineering of content and supply services. This, like traditional knowledge engineering, does not by itself scale to large, open, peer to peer systems because the cost of being precise about the absolute semantics of services and their knowledge rises rapidly as more services participate. We describe how to break out of this deadlock by focusing on semantics related to interaction and using this to avoid dependency on a priori semantic agreement; instead making semantic commitments incrementally at run time. Our method is based on interaction models that are mobile in the sense that they may be transferred to other components, this being a mechanism for service composition and for coalition formation. By shifting the emphasis to interaction (the details of which may be hidden from users) we can obtain knowledge sharing of sufficient quality for sustainable communities of practice without the barrier of complex meta-data provision prior to community formation

    A Study of Concurrency Bugs and Advanced Development Support for Actor-based Programs

    Full text link
    The actor model is an attractive foundation for developing concurrent applications because actors are isolated concurrent entities that communicate through asynchronous messages and do not share state. Thereby, they avoid concurrency bugs such as data races, but are not immune to concurrency bugs in general. This study taxonomizes concurrency bugs in actor-based programs reported in literature. Furthermore, it analyzes the bugs to identify the patterns causing them as well as their observable behavior. Based on this taxonomy, we further analyze the literature and find that current approaches to static analysis and testing focus on communication deadlocks and message protocol violations. However, they do not provide solutions to identify livelocks and behavioral deadlocks. The insights obtained in this study can be used to improve debugging support for actor-based programs with new debugging techniques to identify the root cause of complex concurrency bugs.Comment: - Submitted for review - Removed section 6 "Research Roadmap for Debuggers", its content was summarized in the Future Work section - Added references for section 1, section 3, section 4.3 and section 5.1 - Updated citation

    Trusted product lines

    Get PDF
    This thesis describes research undertaken into the application of software product line approaches to the development of high-integrity, embedded real-time software systems that are subject to regulatory approval/certification. The motivation for the research arose from a real business need to reduce cost and lead time of aerospace software development projects. The thesis hypothesis can be summarised as follows: It is feasible to construct product line models that allow the specification of required behaviour within a reference architecture that can be transformed into an effective product implementation, whilst enabling suitable supporting evidence for certification to be produced. The research concentrates on the following four main areas: 1. Construction of an argument framework in which the application of product line techniques to high-integrity software development can be assessed and critically reviewed. 2. Definition of a product-line reference architecture that can host components containing variation. 3. Design of model transformations that can automatically instantiate products from a set of components hosted within the reference architecture. 4. Identification of verification approaches that may provide evidence that the transformations designed in step 3 above preserve properties of interest from the product line model into the product instantiations. Together, these areas form the basis of an approach we term “Trusted Product Lines”. The approach has been evaluated and validated by deployment on a real aerospace project; the approach has been used to produce DO-178B/ED-12B Level A applications of over 300 KSLOC in size. The effect of this approach on the software development process has been critically evaluated in this thesis, both quantitatively (in terms of cost and relative size of process phases) and qualitatively (in terms of software quality). The “Trusted Product Lines” approach, as described within the thesis, shows how product line approaches can be applied to high-integrity software development, and how certification evidence created and arguments constructed for products instantiated from the product line. To the best of our knowledge, the development and effective application of product line techniques in a certification environment is novel and unique

    Proceedings of Monterey Workshop 2001 Engineering Automation for Sofware Intensive System Integration

    Get PDF
    The 2001 Monterey Workshop on Engineering Automation for Software Intensive System Integration was sponsored by the Office of Naval Research, Air Force Office of Scientific Research, Army Research Office and the Defense Advance Research Projects Agency. It is our pleasure to thank the workshop advisory and sponsors for their vision of a principled engineering solution for software and for their many-year tireless effort in supporting a series of workshops to bring everyone together.This workshop is the 8 in a series of International workshops. The workshop was held in Monterey Beach Hotel, Monterey, California during June 18-22, 2001. The general theme of the workshop has been to present and discuss research works that aims at increasing the practical impact of formal methods for software and systems engineering. The particular focus of this workshop was "Engineering Automation for Software Intensive System Integration". Previous workshops have been focused on issues including, "Real-time & Concurrent Systems", "Software Merging and Slicing", "Software Evolution", "Software Architecture", "Requirements Targeting Software" and "Modeling Software System Structures in a fastly moving scenario".Office of Naval ResearchAir Force Office of Scientific Research Army Research OfficeDefense Advanced Research Projects AgencyApproved for public release, distribution unlimite

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Visual language representation for use case evolution and traceability

    Get PDF
    The primary goal of this research is to assist non-technical stakeholders involved in requirements engineering with a comprehensible method for managing changing requirements within a specific domain. An important part of managing evolving requirements over time is to maintain a temporal ordering of the changes and to support traceability of the modifications. This research defines a semi-formal syntactical and semantic definition of such a method using a visual language, RE/TRAC (Requirements Evolution with Traceability), and a supporting formal semantic notation RE/TRAC-SEM. RE/TRAC-SEM is an ontological specification employing a combination of models, including verbal definitions, set theory and a string language specification RE/TRAC-CF. The language RE/TRAC-CF enables the separation of the syntactical description of the visual language from the semantic meaning of the model, permitting varying target representations and taking advantage of existing efficient parsing algorithms for context-free grammars. As an application of the RE/TRAC representation, this research depicts the hierarchical step-wise refinement of UML use case diagrams to demonstrate evolving system requirements. In the current arena of software development, where systems are described using platform independent models (PIMs) which emphasize the front-end design process, requirements and design documents, including the use cases, have become the primary artifacts of the system. Therefore the management of requirements’ evolution has become even more critical in the creation and maintenance of systems

    A Domain Specific Model for Generating ETL Workflows from Business Intents

    Get PDF
    Extract-Transform-Load (ETL) tools have provided organizations with the ability to build and maintain workflows (consisting of graphs of data transformation tasks) that can process the flood of digital data. Currently, however, the specification of ETL workflows is largely manual, human time intensive, and error prone. As these workflows become increasingly complex, the users that build and maintain them must retain an increasing amount of knowledge specific to how to produce solutions to business objectives using their domain\u27s ETL workflow system. A program that can reduce the human time and expertise required to define such workflows, producing accurate ETL solutions with fewer errors would therefore be valuable. This dissertation presents a means to automate the specification of ETL workflows using a domain-specific modeling language. To provide such a solution, the knowledge relevant to the construction of ETL workflows for the operations and objectives of a given domain is identified and captured. The approach provides a rich model of ETL workflow capable of representing such knowledge. This knowledge representation is leveraged by a domain-specific modeling language which maps declarative statements into workflow requirements. Users are then provided with the ability to assertionally express the intents that describe a desired ETL solution at a high-level of abstraction, from which procedural workflows satisfying the intent specification are automatically generated using a planner

    Using Answer Set Programming in the Development of Verified Software

    Get PDF
    Software forms a key component of many modern safety and security critical systems. One approach to achieving the required levels of assurance is to prove that the software is free from bugs and meets its specification. If a proof cannot be constructed it is important to identify the root cause as it may be a flaw in the specification or a bug. Novice users often find this process frustrating and discouraging, and it can be time-consuming for experienced users. The paper describes a commercial application based on Answer Set Programming called Riposte. It generates simple counter-examples for false and unprovable verification conditions (VCs). These help users to understand why problematic VC are false and makes the development of verified software easier and faster
    • 

    corecore