113,024 research outputs found

    Manufacturing processes

    Get PDF
    The following issues are covered: process development frequently lags behind material development, high fabrication costs, flex joints (bellows) - a continuing program, SRM fabrication-induced defects, and in-space assembly will require simplified design

    Manufacturing Processes Management with Usage of Simulation Tools

    Get PDF
    Simulace výrobních procesů pomáhá optimalizovat výrobu, logistiku a další systémy, díky čemuž dochází ke snižování nákladů a racionalizaci vnitropodnikových procesů. Využitím diskrétní simulace programu Witness Power with Ease se v diplomové práci optimalizuje logistický tok materiálu ve společnosti Hella Autotechnik, s.r.o. Práce přibližuje metody a jednotlivé fáze tvorby modelu včetně jeho validace a navrhuje vylepšení, díky kterému by mělo dojít ke snížení nákladů na dopravní služby o 24 400 Kč měsíčně.By optimizing the logistics, production and other systems the simulation can reduce costs and rationalise business processes. By use of discrete simulation in software Witness Power with Ease is in this diploma thesis optimised logistical flow of material in the company Hella Autotechnik, s.r.o. The thesis introduces methods and particular phases of creating the model including its validation. The proposal in the diploma work suggests the improvement to lower the costs for the transportation services by 24,400 CZK per month.

    Strider: Manufacturing Processes

    Get PDF
    The goal of the Strider Project is to create a mobility device that can support a person with weakened leg strength and enable them to be supported and maintain a standing position. A prototype of the Strider was created by three Mechanical Engineering students as their senior project. The topic of this senior project was to analyze and create a manufacturing process for the manufacture of the Strider that will be ergonomic and cost effective. There were many things that needed to be accomplished in order to create the manufacturing process. The first step was to verify that the prototype design was the best it could be. After verifying the design the next step was to create the Bill of Materials for the Strider. This helped to determine the different sub assemblies, and which parts go into each. It also enabled the documentation of each part cost, shipping costs, and lead times, which was needed to find the total cost for the product. The next step was to get price quotes from manufacturers, which helped to create the Bill of Materials and compare prices for each part. It was also very important to create a forecast demand. This is because I needed to know how many of each part was needed for the manufacturing process, and when they would be arriving. The final step was to create the manufacturing process. After all of the above steps were created the following was concluded. The process would run as a kanban or pull system due to different constraints. The total cost for creating the product including inventory, labor, part, shipping, and other miscellaneous costs came out to thirteen hundred and forty five dollars. Also, each product would take approximately one point eight hours to create

    A Review of Layer Based Manufacturing Processes for Metals

    Get PDF
    The metal layered manufacturing processes have provided industries with a fast method to build functional parts directly from CAD models. This paper compares current metal layered manufacturing technologies from including powder based metal deposition, selective laser sinstering (SLS), wire feed deposition etc. The characteristics of each process, including its industrial applications, advantages/disadvantages, costs etc are discussed. In addition, the comparison between each process in terms of build rate, suitable metal etc. is presented in this paper.Mechanical Engineerin

    Textile Manufacturing Processes

    Get PDF
    Textile manufacturing is an important subject in textile programs and processing industries. The introduction of manmade and synthetic fibers, such as polyester, nylon, acrylic, cellulose, and Kevlar, among others, has greatly expanded the variety of textile products available today. In addition, new fiber development has brought about new machines for producing yarns, fabrics, and garments. Textile Manufacturing Processes is a collection of academic and research work in the field of textile manufacturing. Written by experts, chapters cover topics such as yarn manufacturing, fabric manufacturing, and garment and technical textiles. This book is useful for students, industry workers, and anyone interested in learning the fundamentals of textile manufacturing

    Designing heterogeneous porous tissue scaffolds for additive manufacturing processes

    Get PDF
    A novel tissue scaffold design technique has been proposed with controllable heterogeneous architecture design suitable for additive manufacturing processes. The proposed layer-based design uses a bi-layer pattern of radial and spiral layers consecutively to generate functionally gradient porosity, which follows the geometry of the scaffold. The proposed approach constructs the medial region from the medial axis of each corresponding layer, which represents the geometric internal feature or the spine. The radial layers of the scaffold are then generated by connecting the boundaries of the medial region and the layer's outer contour. To avoid the twisting of the internal channels, reorientation and relaxation techniques are introduced to establish the point matching of ruling lines. An optimization algorithm is developed to construct sub-regions from these ruling lines. Gradient porosity is changed between the medial region and the layer's outer contour. Iso-porosity regions are determined by dividing the subregions peripherally into pore cells and consecutive iso-porosity curves are generated using the isopoints from those pore cells. The combination of consecutive layers generates the pore cells with desired pore sizes. To ensure the fabrication of the designed scaffolds, the generated contours are optimized for a continuous, interconnected, and smooth deposition path-planning. A continuous zig-zag pattern deposition path crossing through the medial region is used for the initial layer and a biarc fitted isoporosity curve is generated for the consecutive layer with C-1 continuity. The proposed methodologies can generate the structure with gradient (linear or non-linear), variational or constant porosity that can provide localized control of variational porosity along the scaffold architecture. The designed porous structures can be fabricated using additive manufacturing processes

    Design of experiments for non-manufacturing processes : benefits, challenges and some examples

    Get PDF
    Design of Experiments (DoE) is a powerful technique for process optimization that has been widely deployed in almost all types of manufacturing processes and is used extensively in product and process design and development. There have not been as many efforts to apply powerful quality improvement techniques such as DoE to improve non-manufacturing processes. Factor levels often involve changing the way people work and so have to be handled carefully. It is even more important to get everyone working as a team. This paper explores the benefits and challenges in the application of DoE in non-manufacturing contexts. The viewpoints regarding the benefits and challenges of DoE in the non-manufacturing arena are gathered from a number of leading academics and practitioners in the field. The paper also makes an attempt to demystify the fact that DoE is not just applicable to manufacturing industries; rather it is equally applicable to non-manufacturing processes within manufacturing companies. The last part of the paper illustrates some case examples showing the power of the technique in non-manufacturing environments
    corecore