140,535 research outputs found

    An improvement of a cellular manufacturing system design using simulation analysis

    Get PDF
    Cell Formation (CF) problem involves grouping the parts into part families and machines into manufacturing cells, so that parts with similar processing requirements are manufactured within the same cell. Many researches have suggested methods for CF. Few of these methods; have addressed the possible existence of exceptional elements (EE) in the solution and the effect of correspondent intercellular movement, which cause lack of segregation among the cells. This paper presents a simulation-based methodology, which takes into consideration the stochastic aspect in the cellular manufacturing (CM) system, to create better cell configurations. An initial solution is developed using any of the numerous CF procedures. The objective of the proposed method which provides performances ratings and cost-effective consist in determine how best to deal with the remaining EE. It considers and compares two strategies (1) permitting intercellular transfer and (2) exceptional machine duplication. The process is demonstrated with a numerical exampleCell Formation; Exceptional Elements; Simulation; Alternative costs; Improvement

    Simulation Modeling in Manufacturing Cell Design

    Get PDF
    The interwoven phases of the manufacturing process in Computer Integrated Manufacturing (CIM) require a carefully designed facility. Simulation modeling can be combined with other techniques to provide a rigorous methodology for CIM system design. This paper describes CIM, simulation ana their relationship. A case study demonstrates the described methodology in the design of a flexible manufacturing cell

    digital factory technologies for robotic automation and enhanced manufacturing cell design

    Get PDF
    The fourth industrial revolution is characterised by the increased use of digital tools, allowing for the virtual representation of a real production environment at different levels, from the entire production plant to a single machine or a specific process or operation. In this framework, Digital Factory technologies, based on the employment of digital modelling and simulation tools, can be used for short-term analysis and validation of production control strategies or for medium term production planning or production system design/redesign. In this research work, a Digital Factory methodology is proposed to support the enhancement of an existing manufacturing cell for the fabrication of aircraft engine turbine vanes via robotic automation of its deburring station. To configure and verify the correct layout of the upgraded manufacturing cell with the aim to increase its performance in terms of resource utilization and throughput time, 3D Motion Simulation and Discrete Event Simulation are jointly employed for the modeling and simulation of different cell settings for proper layout configuration, safe motion planning and resource utilization improvement. Validation of the simulation model is carried out by collecting actual data from the physical reconfigured manufacturing cell and comparing these data to the model forecast with the aim to adapt the digital model accordingly to closely represent the physical manufacturing system

    Estimation of cellular manufacturing cost components using simulation and activity-based costing

    Get PDF
    It can be difficult estimating all of the cost components that are attributed to a machined part. This problem is more pronounced when a factory uses group technology manufacturing cells as opposed to a functional or process layout of a job shop. This paper describes how activity-based costing (ABC) concepts can be integrated into a discrete-event simulation model of a U-shaped manufacturing cell producing a part family with four members. The simulation model generates detailed Bills of Activity for each part type and includes specific information about the cost drivers and cost pools. The enhanced model output can be used for cost estimation and analysis, manufacturing cell design, part scheduling and other manufacturing decision processes that involve economic considerations. Although the scope of this effort is restricted to a small scale manufacturing cell, the costing concepts have general applicability to manufacturing operations at all levels

    A Collision Detection Algorithm For Virtual Robot-Centered Flexible Manufacturing Cell

    Get PDF
    Collision detection is crucial in virtual manufacturing applications such as virtual prototyping, virtual assembly and virtual robot path planning. For accurate simulation of manufacturing systems and processes in virtual environment, physical interaction with the objects in the scene are triggered by collision detection. This thesis presents a collision detection algorithm for accurate simulation of a virtual flexible manufacturing cell. The technique utilizes the narrow phase approach in detecting collision detection of non-convex object by testing collision between basic primitive and polygon. This algorithm is implemented in a virtual flexible manufacturing cell for the loading and unloading process performed by the robot. The robot’s gripper is treated as non-convex object and the exact point of collision is represented with a virtual sphere and collision is tested between the virtual sphere and the polygon. To verify the collision detection algorithm, it is tested with different positions and heights of the storage system during simulation of the virtual flexible manufacturing cell. The results showed that the collision detection algorithm can be used to support the concept of hardware reconfigurablility of FMC which can be achieved by changing, removing, recombining or rearranging its manufacturing elements in order to meet new demands such as introduction of new product or change
    corecore