559 research outputs found

    Facilitating Internet of Things on the Edge

    Get PDF
    The evolution of electronics and wireless technologies has entered a new era, the Internet of Things (IoT). Presently, IoT technologies influence the global market, bringing benefits in many areas, including healthcare, manufacturing, transportation, and entertainment. Modern IoT devices serve as a thin client with data processing performed in a remote computing node, such as a cloud server or a mobile edge compute unit. These computing units own significant resources that allow prompt data processing. The user experience for such an approach relies drastically on the availability and quality of the internet connection. In this case, if the internet connection is unavailable, the resulting operations of IoT applications can be completely disrupted. It is worth noting that emerging IoT applications are even more throughput demanding and latency-sensitive which makes communication networks a practical bottleneck for the service provisioning. This thesis aims to eliminate the limitations of wireless access, via the improvement of connectivity and throughput between the devices on the edge, as well as their network identification, which is fundamentally important for IoT service management. The introduction begins with a discussion on the emerging IoT applications and their demands. Subsequent chapters introduce scenarios of interest, describe the proposed solutions and provide selected performance evaluation results. Specifically, we start with research on the use of degraded memory chips for network identification of IoT devices as an alternative to conventional methods, such as IMEI; these methods are not vulnerable to tampering and cloning. Further, we introduce our contributions for improving connectivity and throughput among IoT devices on the edge in a case where the mobile network infrastructure is limited or totally unavailable. Finally, we conclude the introduction with a summary of the results achieved

    Wireless Patient Monitoring over 4G Network

    Get PDF
    The purpose of this thesis is to explain how remote patient monitoring systems work over the 4G network using wearable sensors and corresponding interface devices. Gathered data from the sensing devices are carried over the Monitoring Wireless Sensor Network to the more elaborate 4G Network where the data is then relayed to the interface devices for reading, storage, interpretation and effective utilization. This thesis describes the underlying technologies and principles of sensors and sensor net-works, the concept of the 4G Network and how it integrates with the sensor network. The goal of Wireless Patient Monitoring over the 4G Network is link the spatial gap that exist between Healthcare and ICT, this will in turn enhance patients care efficiency while cutting costs, maximising profits and increase security while monitoring patients. This thesis is important in that it gives the reader an overview and basic idea of how a wireless patient monitoring system works over the 4G Network. An increasing number of ICT firms, healthcare and medical institutions are investing heavily on remote patient monitoring systems technologies and this thesis provides the reader the insight of how such systems work and how they can be implemented

    Handover management strategies in LTE-advanced heterogeneous networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Meeting the increasing demand for data due to the proliferation of high-specification mobile devices in the cellular systems has led to the improvement of the Long Term Evolution (LTE) framework to the LTE-Advanced systems. Different aspects such as Massive Multiple-Input Multiple Output (MIMO), Orthogonal Frequency Division Multiple Access (OFDMA), heterogeneous networks and Carrier Aggregation have been considered in the LTE-Advanced to improve the performance of the system. The small cells like the femtocells and the relays play a significant role in increasing the coverage and the capacity of the mobile cellular networks in LTE-Advanced (LTE-A) heterogeneous network. However, the user equipment (UE) are faced with the frequent handover problems in the heterogeneous systems than the homogeneous systems due to the users‟ mobility and densely populated cells. The objective of this research work is to analyse the handover performance in the current LTE/LTE-A network and to propose various handover management strategies to handle the frequent handover problems in the LTE-Advance heterogeneous networks. To achieve this, an event driven simulator using C# was developed based on the 3GPP LTE/LTE-A standard to evaluate the proposed strategies. To start with, admission control which is a major requirement during the handover initiation stage is discussed and this research work has therefore proposed a channel borrowing admission control scheme for the LTE-A networks. With this scheme in place, resources are better utilized and more calls are accepted than in the conventional schemes where the channel borrowing is not applied. Also proposed is an enhanced strategy for the handover management in two-tier femtocell-macrocell networks. The proposed strategy takes into consideration the speed of user and other parameters in other to effectively reduce the frequent and unnecessary handovers, and as well as the ratio of target femtocells in the system. We also consider scenarios such as the one that dominate the future networks where femtocells will be densely populated to handle very heavy traffic. To achieve this, a Call Admission Control (CAC)-based handover management strategy is proposed to manage the handover in dense femtocell-macrocell integration in the LTE-A network. The handover probability, the handover call dropping probability and the call blocking probability are reduced considerably with the proposed strategy. Finally, the handover management for the mobile relays in a moving vehicle is considered (using train as a case study). We propose a group handover strategy where the Mobile Relay Node (MRN) is integrated with a special mobile device called “mdev” to prepare the group information prior to the handover time. This is done to prepare the UE‟s group information and services for timely handover due to the speed of the train. This strategy reduces the number of handovers and the call dropping probability in the moving vehicle.Publications and conferences listed on page iv-v

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A
    corecore