3 research outputs found

    Studying the Effect and Treatment of Misspelled Queries in Cross-Language Information Retrieval

    Get PDF
    [Abstract] The performance of Information Retrieval systems is limited by the linguistic variation present in natural language texts. Word-level Natural Language Processing techniques have been shown to be useful in reducing this variation. In this article, we summarize our work on the extension of these techniques for dealing with phrase-level variation in European languages, taking Spanish as a case in point. We propose the use of syntactic dependencies as complex index terms in an attempt to solve the problems deriving from both syntactic and morpho-syntactic variation and, in this way, to obtain more precise index terms. Such dependencies are obtained through a shallow parser based on cascades of finite-state transducers in order to reduce as far as possible the overhead due to this parsing process. The use of different sources of syntactic information, queries or documents, has been also studied, as has the restriction of the dependencies applied to those obtained from noun phrases. Our approaches have been tested using the CLEF corpus, obtaining consistent improvements with regard to classical word-level non-linguistic techniques. Results show, on the one hand, that syntactic information extracted from documents is more useful than that from queries. On the other hand, it has been demonstrated that by restricting dependencies to those corresponding to noun phrases, important reductions of storage and management costs can be achieved, albeit at the expense of a slight reduction in performance.Ministerio de Economía y Competitividad; FFI2014-51978-C2-1-RRede Galega de Procesamento da Linguaxe e Recuperación de Información; CN2014/034Ministerio de Economía y Competitividad; BES-2015-073768Ministerio de Economía y Competitividad; FFI2014-51978-C2-2-

    Supervised Training on Synthetic Languages: A Novel Framework for Unsupervised Parsing

    Get PDF
    This thesis focuses on unsupervised dependency parsing—parsing sentences of a language into dependency trees without accessing the training data of that language. Different from most prior work that uses unsupervised learning to estimate the parsing parameters, we estimate the parameters by supervised training on synthetic languages. Our parsing framework has three major components: Synthetic language generation gives a rich set of training languages by mix-and-match over the real languages; surface-form feature extraction maps an unparsed corpus of a language into a fixed-length vector as the syntactic signature of that language; and, finally, language-agnostic parsing incorporates the syntactic signature during parsing so that the decision on each word token is reliant upon the general syntax of the target language. The fundamental question we are trying to answer is whether some useful information about the syntax of a language could be inferred from its surface-form evidence (unparsed corpus). This is the same question that has been implicitly asked by previous papers on unsupervised parsing, which only assumes an unparsed corpus to be available for the target language. We show that, indeed, useful features of the target language can be extracted automatically from an unparsed corpus, which consists only of gold part-of-speech (POS) sequences. Providing these features to our neural parser enables it to parse sequences like those in the corpus. Strikingly, our system has no supervision in the target language. Rather, it is a multilingual system that is trained end-to-end on a variety of other languages, so it learns a feature extractor that works well. This thesis contains several large-scale experiments requiring hundreds of thousands of CPU-hours. To our knowledge, this is the largest study of unsupervised parsing yet attempted. We show experimentally across multiple languages: (1) Features computed from the unparsed corpus improve parsing accuracy. (2) Including thousands of synthetic languages in the training yields further improvement. (3) Despite being computed from unparsed corpora, our learned task-specific features beat previous works’ interpretable typological features that require parsed corpora or expert categorization of the language
    corecore