
SUPERVISED TRAINING ON SYNTHETIC
LANGUAGES: A NOVEL FRAMEWORK

FOR UNSUPERVISED PARSING

by

Dingquan Wang

A dissertation submitted to The Johns Hopkins University

in conformity with the requirements for the degree of

Doctor of Philosophy

Baltimore, Maryland

October, 2019

© Dingquan Wang 2019

All rights reserved

Abstract

This thesis focuses on unsupervised dependency parsing—parsing sentences of a

language into dependency trees without accessing the training data of that language.

Different from most prior work that uses unsupervised learning to estimate the parsing

parameters, we estimate the parameters by supervised training on synthetic lan-

guages. Our parsing framework has three major components: Synthetic language

generation gives a rich set of training languages by mix-and-match over the real

languages; surface-form feature extraction maps an unparsed corpus of a language

into a fixed-length vector as the syntactic signature of that language; and, finally,

language-agnostic parsing incorporates the syntactic signature during parsing so

that the decision on each word token is reliant upon the general syntax of the target

language.

The fundamental question we are trying to answer is whether some useful informa-

tion about the syntax of a language could be inferred from its surface-form evidence

(unparsed corpus). This is the same question that has been implicitly asked by previ-

ous papers on unsupervised parsing, which only assumes an unparsed corpus to be

available for the target language. We show that, indeed, useful features of the target

language can be extracted automatically from an unparsed corpus, which consists only

of gold part-of-speech (POS) sequences. Providing these features to our neural parser

ii

enables it to parse sequences like those in the corpus. Strikingly, our system has no

supervision in the target language. Rather, it is a multilingual system that is trained

end-to-end on a variety of other languages, so it learns a feature extractor that works

well.

This thesis contains several large-scale experiments requiring hundreds of thou-

sands of CPU-hours. To our knowledge, this is the largest study of unsupervised

parsing yet attempted. We show experimentally across multiple languages: (1) Fea-

tures computed from the unparsed corpus improve parsing accuracy. (2) Including

thousands of synthetic languages in the training yields further improvement. (3)

Despite being computed from unparsed corpora, our learned task-specific features

beat previous works’ interpretable typological features that require parsed corpora or

expert categorization of the language.

iii

Thesis Committee

Primary Readers

Jason Eisner (Primary Advisor)
Professor
Department of Computer Science
Johns Hopkins University

Tal Linzen
Assistant Professor
Department of Cognitive Science and Computer Science
Johns Hopkins University

Joakim Nivre
Professor of Computational Linguistics
Department of Linguistics and Philology
Uppsala University

Slav Petrov
Principal Scientist / Research Director
Google AI

Matt Post
Research Scientist
Human Language Technology Center of Excellence
Department of Computer Science
Johns Hopkins University

iv

For Y.Z.

Acknowledgments

Portions of this thesis include four peer-reviewed papers (Wang and Eisner, 2016;

Wang and Eisner, 2017; Wang and Eisner, 2018a; Wang and Eisner, 2018b). I would

like to thank my adviser Jason Eisner, who contributed substantial edits on all of these

papers as well as the rest chapters in this thesis (expecially Chapter 2). Jason is the

most incredible advisor I have ever worked with. He is known for his long technical

emails to collaborators. But when I first got one of his legendary emails, I was still

blown away by its depth and vision.1 When I was writing a paper in 2018, I still went

back to his emails from 2014 for reference. Jason’s extraordinarily high standards on

papers make him the worst enemy before submission deadlines, and the best ally after

submission deadlines, when it is time to improve the written and talk presentations

further. His attitude towards research goes beyond the research itself, rather, he views

our research as a means to serve the community, and I would like to emulated him in

the future.

In addition to Jason, I’m grateful to the people who have served as committee

members who went beyond the call of duty to support me on my journey toward this

degree. Thanks to my Graduate Board Oral (GBO) exam committee, consisting of

Kevin Duh, Sanjeev Khudanpur, Benjamin Van Durme, Gèraldine Legendre (alternate),

1Also the length—I printed out my first one, which took 15 A4 pages.

vi

Colin Wilson, and David Yarowsky (alternate), for their insightful comments on the

proposal. Thanks to my dissertation committee, consisting of Tal Linzen, Joakim

Nivre, Slav Petrov, and Matt Post, for their patience in reading through this document

and suggesting improvements to hold this work to a higher standard.

Most of this work is funded by the U.S. National Science Foundation under Grant

No. 1423276 and 1718846. The state of Maryland provides indispensable computing

resources via the Maryland Advanced Research Computing Center (MARCC), which

makes the massive experiments possible. Early discussions and code prototypes of

Wang and Eisner (2016) are provided by Raman Arora, Matt Gormley and Sharon Li.

Lillian Lee, who serves as the co-editor-in-chief of the TACL, gave careful corrections

on Wang and Eisner (2016), Wang and Eisner (2017), and Wang and Eisner (2018a).

Denise Link-Farajali and Anne Colgan from the Center for Leadership Education

gave thorough and detailed writing suggestions, where Denise helped on the abstract,

Chapters 1 and 2; and Anne helped on the acknowledgments and Chapter 7. Outside

the JHU, this work benefited from productive discussions with Regina Barzilay, Emily

Bender, Michael Collins, Adam Fisch, Jiang Guo, Mitch Marcus, Graham Neubig,

Mohammad Sadegh Rasooli, Lyle Ungar, Wenpeng Yin, and Mo Yu.

Of course, as an Argonaut,2 I’m fortunate to have worked closely with other

Argonauts, including Nicholas Andrews, Jacob Buckman, Ryan Cotterell, Nathaniel

(Wes) Filardo, Matthew Francis-Landau, Juneki Hong, Xiang (Lisa) Li, Xiaochen

Li, Chu-Cheng Lin, Chenxi Liu, Becky Marvin, Hongyuan Mei, Sebastian Mielke,

Guanghui Qin, Pushpendre Rastogi, Nanyun (Violet) Peng, Adi Renduchintala, Darcey

Riley, Tim Vieira, Shijie Wu, Akshay Srivatsan, Adam Teichert, and Mozhi (Miles)

2https://www.cs.jhu.edu/~jason/Argo/

vii

https://www.cs.jhu.edu/~jason/Argo/

Zhang, who are incredibly smart problem solvers and generous helpers. I want to thank

to them for brainstorming ideas, and giving feedback on paper drafts and practice

talks.

Beyond Argo, I’m a proud member of the CLSP and CS community at JHU and

grateful to my colleagues there for fostering a relaxed, creative and collaborative

atmosphere. They are: Tongfei Chen, Shuoyang Ding, Seth Ebner, Dongji Gao, Lv

Hang, Huda Khayrallah, Rebecca Knowles, Keith Levin, Ke Li, Chunxi Liu, Xutai

Ma, Arya McCarthy, Poorya Mianjy, Adam Poliak, Pamela Shapiro, Suzanna Sia,

Shuo Sun, Yiming Wang, Zachary Wood-Doughty, Winston Wu, Patrick Xia, Hainan

Xu, Sheng Zhang, and Xiaohui Zhang. Thanks to Zachary Burwell, Ruth Scally, and

Cathy Thornton for managing the administrative stuff so smoothly that it freed me

from the distractions outside the research.

I thank my mom and dad for their endless and unconditional support so that I

could pursue the degree this far. I owe you so much especially for not being able to

come back and spend Chinese New Years with you since 2013.

Finally, thanks to Yuehan, who is the motivator, the encourager, the morale booster,

the problem solver, the complaint listeneer, the happiness sharer, the best friend, the

love of my life, and the true author of this work.

viii

Table of Contents

Abstract ii

Thesis Committee iv

Acknowledgments vi

Table of Contents ix

List of Tables xvi

List of Figures xviii

1 Introduction 1

1.1 Parse Trees in the Era of Neural Networks 2

1.1.1 Making neural models linguistically informed 3

1.1.2 Understanding neural models 5

1.1.3 Guiding model transfer across domains 5

1.2 Dependency Structure . 6

1.2.1 Reason for using dependency structure 7

ix

1.3 Unsupervised Dependency Parsing 10

1.4 Our Approach: An Artificial Linguist 13

1.4.1 The importance of the synthetic training languages 15

1.5 Key Limitation . 16

2 Formal Approach 18

2.1 Bayesian Estimation and Inference 20

2.1.1 Maximum a posteriori estimation 22

2.1.2 Bayes estimator . 23

2.1.3 Posterior mean estimator 24

2.2 Amortized Bayes Estimator (our proposal) 25

2.3 An Analogy: Statistical Estimation as Function Inversion 27

2.4 From Grammar Induction to Other Tasks 29

2.4.1 Grammar induction as Bayesian estimation 29

2.4.2 Limitations of grammar induction 29

2.4.3 Unsupervised parsing as (amortized) Bayesian inference . . . 31

2.4.4 Typology prediction as (amortized) Bayesian inference . . . 33

2.4.5 Eliminating explicit grammars altogether 34

2.5 Discussion . 35

3 Resolving the Challenge of Data Sparsity—the Galactic Dependencies 37

3.1 Motivation . 38

3.2 Related Work . 40

x

3.3 Synthetic Language Generation . 41

3.3.1 Method . 42

3.3.2 Discussion . 43

3.4 Modeling Dependent Order . 45

3.4.1 Efficient sampling . 46

3.4.2 Training parameters on a real language 46

3.4.3 Setting parameters of a synthetic language 47

3.4.4 Feature templates . 48

3.5 The Resource . 50

3.6 Exploratory Data Analysis . 51

3.7 An Experiment . 55

3.7.1 Single-source selection . 57

3.7.2 Experimental setup . 57

3.7.3 Results . 59

3.7.4 Experiment with Noisy Tags 62

3.7.5 Discussion . 65

3.8 Conclusions and Future Work . 66

4 Fine-Grained Prediction of Syntactic Typology 70

4.1 Introduction . 71

4.2 Approach . 74

4.3 Task Formulation . 75

xi

4.4 Simple “Expected Count” Baseline 77

4.5 Proposed Model Architecture . 79

4.5.1 Directionality predictions from scores 79

4.5.2 Design of the scoring function ψ(x) 79

4.5.3 Design of the featurization function π(x) 80

4.5.4 Training procedure . 85

4.6 Experiments . 86

4.6.1 Data splits . 86

4.6.2 Comparison of architectures 88

4.6.3 Contribution of different feature classes 89

4.6.4 Robustness to noisy input 90

4.6.5 Hyperparameter settings . 91

4.6.6 Comparison with grammar induction 91

4.6.7 Fine-grained analysis . 93

4.6.8 Binary classification accuracy 96

4.6.9 Final evaluation on test data 97

4.7 Related Work . 99

4.8 Conclusions and Future Work . 102

5 Unsupervised Dependency Parsing 104

5.1 Task Formulation . 105

5.2 Related Work . 106

xii

5.2.1 Per-language learning . 106

5.2.2 Multi-language learning 108

5.2.3 Exploiting parallel data . 110

5.2.4 Situating our work . 111

5.3 The Typology Component . 112

5.3.1 Design of the surface features π(u) 112

5.4 The Parsing Architecture . 113

5.5 Training the System . 115

5.5.1 Training objective . 115

5.5.2 Training algorithm . 117

5.6 Experiments . 118

5.6.1 Basic setup . 118

5.6.2 Comparison among architectures 118

5.6.3 Comparison to SST . 122

5.6.4 Oracle typology vs. our learned T(u) 122

5.6.5 Selected hyperparameter settings 124

5.6.6 Performance on noisy tag sequences 125

5.6.7 Analysis by dependency relation type 126

5.6.8 Final evaluation on test data 127

5.7 Conclusion and Future Work . 129

6 Synthetic Data Made to Order 132

xiii

6.1 Introduction . 132

6.1.1 Chapter 3: Universal and reusable synthetic data 134

6.1.2 This chapter: Tailored synthetic data 134

6.1.3 Key limitations . 135

6.2 Modeling Surface Realization . 135

6.2.1 Realization is systematic 136

6.2.2 A parametric realization model 137

6.2.3 Generating training data 138

6.2.4 Choosing parameters θ . 139

6.2.4.1 Estimation of bigram models 139

6.2.4.2 Divergence of bigram models 140

6.3 Algorithms . 141

6.3.1 Efficiently computing expected counts 141

6.3.2 Efficient enumeration over permutations 144

6.4 Heuristics . 146

6.4.1 Pruning high-degree trees 146

6.4.2 Minibatch estimation of cp 146

6.4.3 Informed initialization . 147

6.5 Experiments . 148

6.5.1 Data and setup . 148

6.5.2 Exploratory analysis . 150

6.5.3 Parsability . 152

xiv

6.5.4 Sensitivity to initializer . 153

6.5.5 Final evaluation on the test languages 156

6.6 Related Work . 156

6.7 Conclusion and Future Work . 160

7 Conclusion 163

References 166

Vita 196

xv

List of Tables

2.1 A snippet of a PCFG for constituency structure. 30

3.1 Features that fire in the two subtrees 49

3.2 Statistics on the treebanks of 10 real training languages. 51

3.3 Split, langauge, and (sub-)family information of the 37 UD treebanks. 53

3.4 Final comparison on all languages. 64

3.5 Tagging accuracy on the 8 dev languages. 65

4.1 Three typological properties in the World Atlas of Language Struc-

tures (WALS). 73

4.2 Data split of the 37 real treebanks. 87

4.3 Comparison over different architectures on 16 training languages. . 89

4.4 Comparison over different subsets of hand-engineered features on 16

training languages. 90

4.5 Comparison over grammar induction methods on 16 training languages. 92

4.6 Accuracy on the simpler task of binary classification of relation direc-

tionality brokedown by relation types. 97

xvi

4.7 Accuracy on the simpler task of binary classification of relation direc-

tionality brokedown by languages. 98

4.8 Our final comparison on 51 training+testing languages. 99

5.1 Average parsing results over 16 languages. 119

5.2 The WALS features used in our experiment. 123

5.3 Final evaluation table. 130

6.1 Full results on single-source transfer using the synthetic languages. . 157

xvii

List of Figures

1.1 An English dependency tree in the UD version 1 scheme. 7

1.2 An English constituency tree. 8

1.3 A non-projective dependency tree. 9

2.1 The setup of the traditional grammar induction approach. 21

2.2 The setup of the proposed unsupervised parsing framework. 32

3.1 The original UD tree for a short English sentence. 42

3.2 Parsability of real versus synthetic languages. 52

3.3 POS Perplexity of real versus synthetic languages. 54

3.4 2-D visualization of the language space. 56

3.5 Comprehensive results for single-source selection parsing using “kite

graph”. 61

3.6 Chance that selecting from synthetic languages achieves better UAS

than selecting from real languages. 62

3.7 UAS performance of different source parsers when applied to English

development sentences. 63

xviii

4.1 Basic predictive architecture. 80

4.2 Extracting and pooling the neural features. 83

4.3 Cross-validation loss broken down by relation. 93

4.4 Comparison between our approach against the baseline model that

ignores the input corpus. 94

4.5 Scatterplots of predicted vs. true directionalities. 95

5.1 A 2-layer typology component. 113

5.2 The architecture of the delexicalized graph-based BIST parser. . . . 116

5.3 Effect of β. 120

5.4 Effect of the size |u(ℓ)| of the unparsed corpus. 121

5.5 Performance on noisy input over 16 training languages. 126

5.6 Evaluation by dependency relation type, showing an equal-weighted

average of the 16 development languages. 127

5.7 The confusion matrix of our parser. 128

6.1 The correlation between the divergence and transfer parsing accuracy. 149

6.2 The scatterplot on the divergences between 376 pairs of development

treebanks. 150

6.3 The barplot on the divergences between 376 pairs of development

treebanks. 151

6.4 Parsability of 20 real treebanks vs. their many synthetic re-realizations 153

6.5 The parplot on the UAS from 376 pairs of development treebanks. . 154

6.6 The scatterplot on the UAS from 376 pairs of development treebanks. 155

xix

6.7 The scatterplot on the UAS from 376 pairs of development treebanks,

where the synthetic treebanks are generated using an oracle. 156

6.8 The scatterplot on the UAS under 5 random restarts. 158

6.9 UAS on 337 treebank pairs from the developments languages to the

test languages. 159

xx

Chapter 1

Introduction

Unsupervised learning aims to discover deep knowledge from surface-form data,

which has been a longstanding research question in the machine learning community.

In this thesis, we are working on one typical unsupervised learning problem in the

realm of natural language processing (NLP)—unsupervised parsing. Unsupervised

parsing tries to parse sentences of a language into trees by only accessing unparsed

data of that language, where the most important step is inferring parsing parameters

from unparsed data. This raises a more fundamental question that whether some useful

information about the syntax of a language could be inferred from its surface evidence,

which is the main research question this thesis is set to answer. In this opening chapter,

we carefully spell out our motivation by exploring three topics: 1) The importance

of unsupervised parsing, 2) main challenges of this task, and 3) the intuition of our

approach in response to these challenges.

Beyond this chapter, the rest of this thesis is organized as follows: Chapter 2

will formally introduce our framework by connecting to the unsupervised learning

literature, and, therefore, states the challenge of data sparsity. Chapter 3 delves into

this challenge and proposes to enrich the data by synthesizing “new languages” via

1

a mix-and-match procedure among the real languages. The two chapters following

Chapter 3 will apply our framework to two unsupervised learning tasks: Chapter 4

focuses on predicting the property of each dependency relation type, which we call

the fine-grained syntactic typology; and Chapter 5 is about unsupervised dependency

parsing, which is our main task. Finally, Chapter 6 will introduce a novel idea

departing from Chapter 3, where we generate synthetic languages that “look like” the

target language.

1.1 Parse Trees in the Era of Neural Networks

The output of unsupervised parsing (as well as supervised parsing) is a parse tree for

each sentence. Before this era of neural networks, the parse tree served as the main

device in encoding the meaning of a sentence. A number of tasks benefit from parse

trees as an intermediate representation. For example, Chiang (2005) used constituency

trees to control the granularity of reordering when translating between two languages

with different word orders. Mihalcea and Tarau (2004) applied the PageRank (Brin

and Page, 1998) algorithm over the dependency graph to rank words for keyword

extraction. Gildea and Palmer (2002) found parse trees are more effective than flat

chunk sequences for semantic rule identification. Culotta and Sorensen (2004) defined

a metric over the tree space to use kernel-based support vector machines (Collins and

Duffy, 2001) for relation classification. This kernel-based approach was also applied

to sentiment analysis (Agarwal et al., 2011). In the realm of question answering (QA),

parsing has been a standard step in transforming sentences into logical forms that

machines could interpret (Zettlemoyer and Collins, 2007).

2

A weakness of the tree-based approach is that the quality of parses heavily bot-

tlenecks the performance. In other words, the error in the parses will cascade to

those downstream tasks. Thus, researchers are seeking alternatives that directly model

the sentences, which becomes more favorable due to the recent advances in neural

networks for NLP. One notable example is the success of the neural sequence to se-

quence framework (Sutskever, Vinyals, and Le, 2014; Cho et al., 2014a) that extracts

sentence representations through some encoding architectures whose parameters are

tuned through end-to-end training. Typical encoding architectures include recurrent

neural networks (Sutskever, Vinyals, and Le, 2014; Cho et al., 2014a; Radford et al.,

2019), attention-based models (Bahdanau, Cho, and Bengio, 2015), stack-layered

models (Peters et al., 2018), and hybrid models such as the Transformer (Vaswani

et al., 2017; Devlin et al., 2019). In addition to eliminating the intermediate steps,

the success of neural networks relies on two other factors: 1) It is expressive enough

that doesn’t require expensive feature engineering, and 2) its end-to-end nature of

facilitates pre-training and fine-tuning, where trained models on cloze (Devlin et al.,

2019), language modeling (Peters et al., 2018), and translation (McCann et al., 2017)

have shown to be beneficial as initialization for other tasks and gain improvements by

further tuning on those task-specific objectives.

As a result, whether parsing is still useful becomes the question. The following

discussion will demonstrate that the answer is yes.

1.1.1 Making neural models linguistically informed

While neural networks have been the backbone of most modern NLP systems, ad-

ditional linguistic information such as parse trees has proven to be beneficial. The

3

recursive neural network (RecNN) (Goller and Kuchler, 1996; Socher, Manning, and

Ng, 2010) represents just such an example that explicitly uses parse trees to build up

sentence representations. Compared to recurrent neural networks (RNNs) that build

up sentence meaning through time, RecNN is a linguistically principled approach that

corresponds better to compositional semantics. On the other hand, RecNN is still a

neural network model where the composition at each tree node is formed by neural

gates that take vector representations as inputs. As the result, RecNN has taken its

place in the era of neural networks and has been actively studied. Early work by Socher

et al. (2013) demonstrates its effectiveness on sentiment classification, where they

employed constituency trees with the re-annotation of sentiment polarity at each node.

This architecture was later improved by borrowing the combining mechanism from

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997). Bowman,

Potts, and Manning (2015) examined RecNN-based meaning representations over

a range of natural language inference tasks and verified their effectiveness. From a

broader view, the popularity of RecNN reflects an increasing interest in representation

learning on structures. In addition to modeling sentiment, the RecNN-style approach

has been shown to be useful for semantic role labeling (Marcheggiani and Titov, 2017)

and word embedding induction (Levy and Goldberg, 2014). Moreover, techniques

have been generalized from trees to graph structures (Hamilton et al., 2018; Xu et al.,

2019), which has a wider range of applications in recommender systems, knowledge

graphs, and social networks. We won’t delve deeply into this topic in that it is less

relevant to this thesis; nonetheless, we have good faith in the future uses of parse trees.

As well as directly enforcing the tree structures into the network architecture, an

alternative is leveraging them as soft constraints. Roth and Lapata (2016) enrich token

4

representations by running RecNN over dependency trees in addition to the LSTM

features and gain state-of-the-art performance on semantic role labeling. Strubell

et al. (2018) later push the frontier by jointly training on POS tagging and dependency

parsing through multitask learning.

1.1.2 Understanding neural models

Despite the success in NLP tasks, neural networks are commonly acknowledged to

have low interpretability. Thus, in parallel to novel neural architectures, research has

been conducted to explain their underlying mechanism. A usual approach in this vein

is evaluating neural models on predicting some linguistic properties as probing tasks,

where parse trees are commonly used. Qian, Qiu, and Huang (2016) used the LSTM

vectors (cell, gate and output values) at each word to predict its depth in a dependency

tree, but didn’t find a definite correlation. Conneau et al. (2018) studied the sentence

representation produced by LSTMs and found it capable of predicting the depth of

the entire tree. Linzen, Dupoux, and Goldberg (2016) and Ravfogel, Goldberg, and

Linzen (2019) discovered that LSTMs are able to determine subject-verb agreement,

where they used an English treebank and its synthetic variations. Similar findings

(Lin, Tan, and Frank, 2019) later extend to the Transformer architecture (Devlin et al.,

2019).

1.1.3 Guiding model transfer across domains

Model transfer, or transfer learning, is a useful technique for applying NLP sys-

tems (trained on rich-resource domains) to low-resource domains which doesn’t

5

have enough training examples. As most tree schemes are based on some domain-

independent representations, they can serve as the media to carry information during

transfer. In machine translation, researchers (Chiang, 2005; Chiang, 2007; Huang,

Čmejrek, and Zhou, 2010) used parse trees generated from a synchronous context-free

grammar to model parallel sentences, where tree nodes on both sides shared the same

vocabulary of the syntactic categories. Moreover, this shared syntactic representation

has been shown to be useful for guiding the induction of bilingual word embeddings

(Duong et al., 2015a). The potential of parse trees for model transfer has motivated a

recent interest in building multi-domain treebanks using unified syntactic vocabulary

(McDonald et al., 2013; Nivre et al., 2016). The most well-known project is the

Universal Dependencies (Nivre et al., 2016)—a set of dependency treebanks that

covers multiple languages and genres.

1.2 Dependency Structure

In this thesis, we consider parsing sentences into dependency trees. As shown in

Figure 1.1, the dependency tree of a sentence is a directed graph of labeled binary

syntactic relations between words. The linguistic foundation of dependency structure

derives from a diverse set of grammar formalisms (Tesnière, 1959; Hudson, 1984;

Hellwig, 1986; Sgall et al., 1986; Mel’cuk, 1988) that share a central concept called

dependency.1 A dependency between two words could be represented by an “ar-

row” from one word called head to the other called dependent. In linguistics, this

dependency reflects grammatical function, where the dependent is the modifier or

1Nivre (2005) gives a nice survey on the literature of dependency grammar.

6

Papa ate the caviar with a spoon .

root

nsubj

dobj

det

nmod

case

det

punct

Figure 1.1: An English dependency tree in the UD version 1 scheme.

complement of the other. A variety of criteria (Zwicky, 1985; Hudson, 1984) deter-

mine the head; e.g., in the Stanford Dependencies (SD) scheme (Marneffe et al., 2014),

the head of a prepositional phrase (PP) is the preposition, which is the dependent in

the Universal Dependency (UD) scheme (Nivre et al., 2015).

1.2.1 Reason for using dependency structure

Our primary rationale for choosing dependency structure is rather practical—we want

our system to generalize well across many languages. Thus, the consideration is more

about the coverage of languages than formalism. Dependency structure is an ideal

candidate as it has treebanks over a wide range of languages, owing to the contributors

of the UD project (Nivre et al., 2016), who have thus far annotated dependency

treebanks for 83 languages (Nivre et al., 2019). On the other hand, as dependency

structure is usually flatter than X-bar structure, it allows more reorderings for synthetic

data generation, which is a crucial technique in this thesis (Chapters 3 and 6).

Indeed, dependency formalism is favorable to NLP literature. Therefore, it is

worth commenting on this popularity in general, where we compare it to constituency

structure—another popular syntactic formalism. For historical reasons, partially

because of the seminal work of Chomsky (1957) and the early attention to English

data, the constituency formalism has been the dominating syntactic theory applied

7

S

VP

PP

NP

N

spoon

DET

a

P

with

VP

NP

N

caviar

DET

the

V

ate

N

Papa

Figure 1.2: An English constituency tree on the same sentence as Figure 1.1.

to NLP research. To bring this to light, the influential Penn Treebank (Marcus,

Marcinkiewicz, and Santorini, 1993) is annotated by constituency trees. As shown

in Figure 1.2, one obvious distinction of a constituency tree from a dependency tree

(Figure 1.1) is that it characterizes the relationships among phrases, yet the latter

directly characterizes relationships among words. We depart from this difference and

summarize the advantages of the dependency formalism for the NLP community.

Dependency structure is minimal in that it has fewer nodes than the constituency

structure (Maxwell, 2013). This simplicity stands out from a computational perspec-

tive, where it is more efficient for parsing. Thus, a majority of the recent parsing

techniques (Nivre, 2003; McDonald et al., 2005; Chen and Manning, 2014; Dyer

et al., 2015; Kiperwasser and Goldberg, 2016) are developed for dependency struc-

tures, which results in a rich and rapidly growing inventory of dependency parsers.

On the other hand, the simplified representation eases the process of annotating and

interpreting the syntactic structure for people with less linguistic expertise.

A dependency structure gives an explicit description of the predicate-argument

relationships in the sentence, which has been widely used for modeling shallow

meaning representations. In contrast, a constituency structure requires augmentation

for this information (De Marneffe, 2012). Also, the link structure is suitable for

8

Papa saw a dog yesterday which was yellow

root

nsubj det

dobj

nmod

nsubj

cop

acl

Figure 1.3: A non-projective dependency tree on a sentence that has discontinuity phe-
nomenon.

characterizing the discontinuity phenomenon that is usually caused by syntactic

movements. Figure 1.3 gives such an example, which is called a non-projective

dependency tree. As we can see, it is difficult to annotate this sentence with a

constituency tree because the phrase structure is broken. Although the discontinuity

is rare in English, it is common for other languages that have free word orders. As

a result, the dependency formalism is more adaptable to the vast diversity of human

languages.

As a disclaimer, discussion thus far only rationalizes the popularity of dependency

structure from a practical point of view, but doesn’t conclude its supremacy over

constituency structure in general. Each of the two formalisms has a deep root in the

literature of linguistics (Chomsky, 1957; Tesnière, 1959).2 The argument over the

choice between them is not new (Mel’cuk, 1988; Kahane, 2012), where the debates

mainly center around the correspondence to the human mind and its expressive

power. On the other hand, work also exists on their equivalence (only for projective

dependency trees) that proposes some rule-based (Collins, 2003; Eisner and Satta,

1999; Eisner, 2000) or learning-based (Kong, Rush, and Smith, 2015) methods to

transform one to another. In that the debate is less relevant to this thesis, we will make
2The notion of dependency grammar may even be traced back to Pānini’s grammar of Sanskrit

centuries before the Common Era (Kruijff, 2002; Nivre, 2005).

9

no further attempt at reviewing this literature.

1.3 Unsupervised Dependency Parsing

When referring to dependency parsing, one usually refers to supervised dependency

parsing—parsers that are trained on a treebank of known parses in the target language.

The study of the supervised approach dominates the dependency parsing research,

and its progress has been so rapid (Nivre, 2003; McDonald et al., 2005; McDonald,

2006; Nivre, 2008; Chen and Manning, 2014; Dyer et al., 2015; Kiperwasser and

Goldberg, 2016; Dozat and Manning, 2017; Andor et al., 2016; Ma et al., 2018;

Fernández-González and Gómez-Rodríguez, 2019) that some supervised dependency

parsers have even approached human-level performance3 on some datasets due to

the boom of neural networks. In contrast, the progress of unsupervised dependency

parsers has been slow, and they have apparently not been used in any downstream

NLP systems (Mareček, 2016). An unsupervised parser does not have access to a

treebank, but only to a corpus of unparsed sentences in the target language. This is

the main task of this thesis.

The research on unsupervised dependency parsing origins from a general interest

in inducing deep structures from surface form representations. Most of the previous

work is on the induction of generative rules from a set of surface strings, which is a

task referred to as grammar induction (Fu and Booth, 1975; Angluin and Smith, 1983;

Carroll and Charniak, 1992). The notion of generative rules is of interest to commu-

nities beyond NLP, such as programming languages (Smith, 1982), bioinformatics

(Sakakibara et al., 1994), and computer vision (Zhu and Mumford, 2007; Tu, 2015).

3In the announcement of the SyntaxNet (Andor et al., 2016) project, they found the agreement score
of trained linguists on the Penn Treebank is 96-97%, where parsers achieved 95%+ since 2016.

10

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

In the literature of linguistics, grammar induction is driven by the curiosity about the

human language acquisition process, especially to Chomsky’s well-known Univer-

sal Grammar (UG) theory (Chomsky, 1965; Chomsky, 1981; Chomsky and Lasnik,

1993). The UG theory claims that human babies must use an innate estimator that

is statistically efficient on real human languages, enabling them to acquire language

accurately from a relatively small number of unsupervised examples, which is not

possible for domain-independent algorithms. This statement is famously referred to

as the Poverty of the Stimulus. In order to support or reject the UG theory, one direct

approach is to just find such a domain-independent algorithm (Clark, 2001), which

motivates grammar induction research. Admittedly, researchers have acknowledged

the weakness of the connection between grammar induction and UG, since the setup

of grammar induction is far from a real language learning device (Klein and Manning,

2005). On the one hand, grammar induction is easier because it usually takes some

grammatical sentences as input and generates a set of probabilistic rules. In contrast,

human babies are exposed to a complex environment that has numerous incomplete

and noisy utterances as input, and the output is the linguistic knowledge stored in

their brains. On the other hand, grammar induction is more difficult because babies

have access to a much richer and more interactive environment than pure grammatical

input.

For practical NLP applications, unsupervised parsing is useful for reducing the

human annotation cost. As the fuel of data-driven models, the amount and quality

of labeled data have become increasingly important. For dependency parsing, the

necessity of annotating new data is longstanding as a new domain or language always

comes onto the horizon. A successful unsupervised parser may lift the burden of

11

human annotation. Even if it has mediocre performance, the output may serve as a

starting point to reduce further manual efforts.

Throughout the decades, the most common unsupervised parsing approach has

been rule-based grammar induction. The basic idea is first inducing an explicit

probabilistic context-free grammar (PCFG) from the unparsed corpus by maximum

likelihood estimation and then using that PCFG to parse sentences by CKY algorithms.

This approach has encountered two major challenges:

• Search error: Most formulations of grammar induction involve optimizing

a highly non-convex objective function such as likelihood. The optimization

is typically NP-hard (Cohen and Smith, 2012), and approximate local search

methods tend to get stuck in local optima.

• Model error: Likelihood does not correlate well with parsing accuracy anyway

(Smith, 2006, Figure 3.2). Likelihood optimization seeks latent trees that

help to predict the observed sentences, but these unsupervised trees may use a

non-standard syntactic analysis or even be optimized to predict non-syntactic

properties such as topic. We seek a standard syntactic analysis—what Smith

(2006) calls the MATCHLINGUIST task.

Facing these challenges, study on unsupervised parsing has switched attention to

more practical directions that are less interested in deriving formal grammars than

directly obtaining parsers. One notable trend is cross-lingual transfer, which assumes

treebanks for some resource-rich languages to be available and transfers the trained

parser on those languages to the target languages. For a detailed literature review, see

Section 5.2.

12

1.4 Our Approach: An Artificial Linguist

In this thesis, we address both challenges above with a supervised learning framework,

whose objective function is easier to optimize and explicitly tries to match linguists’

standard syntactic analyses. Our inspiration comes from an intuition that this task—

like others that engineers, linguists, or human learners might face—may be solvable

with general knowledge about the distribution of human languages. An experienced

linguist can sometimes puzzle out the structure of a new language. The reader may be

willing to guess a parse for the gold POS sequence VERB DET NOUN ADJ DET

NOUN. After all, adjectives usually attach to nouns (Naseem et al., 2010), and the

adjective in this example seems to attach to the first noun—not to the second, insomuch

as determiners usually fall at the edge of a noun phrase. Meanwhile, the sequence’s

sole verb is apparently followed by two noun phrases, which suggests either VSO

(verb-subject-object) or VOS order—and VSO is a good guess as it is more common

(Dryer and Haspelmath, 2013). Observing a corpus of additional POS sequences

might help resolve the question of whether this language is primarily VSO or VOS, for

example, by guessing that short noun phrases in the corpus (for example, unmodified

pronouns) are more often subjects.

Thus, we propose to solve the task by training a kind of artificial linguist that

can do such analysis on corpora of new languages. This is a general approach to

developing an unsupervised method for a specific type of dataset: tune its structure and

hyperparameters so that it works well on actual datasets of that sort, and then apply

it to new datasets. In this thesis, this specific type of dataset refers to a dependency

treebank.

For example, consider clustering—the canonical unsupervised problem. What

13

constitutes a useful cluster depends on the type of data and the application. Basu,

Jacobs, and Vanderwende (2013) developed a text clustering system specifically to

aid teachers. Their “Powergrading” system can group all the student-written answers

to a novel question, having been trained on human judgments of answer similarity for

other questions. Their novel questions are analogous to our novel languages: their

unsupervised system is specifically tailored to match teachers’ semantic similarity

judgments within any corpus of student answers, just as ours is tailored to match

linguists’ syntactic judgments within any corpus of human-language POS sequences.

Other NLP work on supervised tuning of unsupervised learners includes strapping

(Eisner and Karakos, 2005; Karakos et al., 2007), which tunes with the help of both

real and synthetic datasets, just as we will (Chapter 3).

Are such systems really “unsupervised”? Yes, in the sense that they are able to

discover desirable structure in a new dataset. Unsupervised learners are normally

crafted using assumptions about the data domain. Their structure and hyperparameters

may have been manually tuned to produce pleasing results for typical datasets in

that domain. In the domain of POS corpora, we simply scale up this practice to

automatically tune a large set of parameters, which later guide our system’s search for

linguist-approved structure on each new human-language dataset. Our system should

be regarded as “supervised” if the examples are taken to be entire languages: after all,

we train it to map unlabeled corpora to usefully labeled corpora. But once trained, it is

“unsupervised” if the examples are taken to be the sentences within a given corpus: by

analyzing the corpus, our system figures out how to map sentences of that language to

parses, without any labeled examples in that language.

14

1.4.1 The importance of the synthetic training languages

We hope for our system to do well, on average, at matching real linguist-parsed corpora

of real human languages. We therefore tune its parameters Θ on such treebanks. UD

provides training examples actually drawn from that distribution D over treebanks—

but alas, rather few. Thus, to better estimate the expected performance of Θ under D,

we augment our training data with synthetic treebanks, which will be introduced in

Chapter 3.

Ideally we would have sampled these synthetic treebanks from a careful estimate

D̂ of D: for example, the mean of a Bayesian posterior for D, derived from prior

assumptions and UD evidence. However, such adventurous “extrapolation” of unseen

languages would have required actually constructing such an estimate D̂—which

would embody a distribution over semantic content and a full theory of universal

grammar! The synthetic treebanks were derived more simply and more conservatively

by “interpolation” among the actual UD corpora. They combine observed parse trees

(which provide attested semantic content) with stochastic word order models trained

on observed languages (which attempt to mimic attested patterns for presenting that

content). The sampling distribution D̂ still offers moderately varied synthetic datasets,

which remain moderately realistic, as they are limited to phenomena observed in UD.

As Chapters 3 and 6 will point out, synthetic examples have been used in many

other supervised machine learning settings. A common technique is to exploit invari-

ance: if real image z should be classified as a cat, then so should a rotated version of

image z. Our technique is the same! We assume that if real corpus u should be parsed

as having certain dependencies among the word tokens, then so should a version of

corpus u in which those tokens have been systematically permuted in a linguistically

15

plausible way. This is analogous to how rotation systematically transforms the image

(rotating all pixels through the same angle) in a physically plausible way (as real

objects do rotate relative to the camera). This systematicity is needed to ensure that

the task on synthetic data is feasible. In our case, the synthetic corpus then provides

many sentences that have been similarly permuted, which may jointly provide enough

clues to guess the word order of this synthetic language (for example, VSO vs. VOS in

Section 1.4) and thus recover the dependencies. See Section 6.2 for related discussion.

With enough good synthetic languages to use for training, even nearest-neighbor

could be an effective method. That is, one could obtain the parser for a test corpus

simply by copying the trained parser for the most similar training corpus (under

some metric). Section 3.7.1 explores this approach of “single-source transfer” from

synthetic languages. Yet with only thousands of synthetic languages, perhaps no

single training corpus is sufficiently similar.4 To draw on patterns in many training

corpora to figure out how to parse the test corpus, we will train a single parser that

can handle all of the training corpora (Ammar et al., 2016).

1.5 Key Limitation

Most of our experiments assume that gold POS tags of the target languages are

available, which requires extra supervision in practice. In other words, we do not aim

to build a practical system that should consider combining unsupervised techniques

with yet other distantly supervised resources. But to develop those unsupervised

techniques in the first place, we feel that it is a useful research strategy to study them

in isolation to avoid confounds. Thus, we follow the setup of the most unsupervised

4Chapter 6 does investigate synthesis “on demand” of a permuted training corpus that is as similar
as possible to the test corpus.

16

and cross-lingual transfer work (Naseem et al., 2010; McDonald, Petrov, and Hall,

2011; Täckström, McDonald, and Nivre, 2013; Zhang and Barzilay, 2015; Rosa and

Žabokrtský, 2015a), which assumes an unparsed corpus that has gold part-of-speech

(POS) sequences to be available for the language to be parsed. Under this assumption,

as we will show that the answer is yes, and information can be extracted and used to

obtain actual parses. Still, Sections 3.7.4, 4.6.4 and 5.6.6 depict experimental results

on more realistic scenario where POS tags have noise.

17

Chapter 2

Formal Approach

In this chapter, we present our high-level idea. We start by formulating grammar

induction as a statistical estimation problem. Given an observed dataset (corpus),

we would like to identify the parameters (grammar) that gave rise to that dataset.

In a Bayesian setting where we have a prior over the parameters, we could do this

by performing maximum a posteriori (MAP) estimation—or more generally, by

constructing a Bayes estimator. A Bayes estimator is an estimator that achieves

minimum expected loss (for some given loss function).

These estimators are well-defined in a Bayesian setting. However, while principled,

they tend to be computationally intractable, including in the settings of interest to

us. We therefore propose amortized Bayesian estimation: construct an estimator by

training a supervised prediction method on samples from the Bayesian generative

model. This is a general (and apparently novel) proposal for practical Bayesian

estimation. Rather than directly use the prior to separately analyze each dataset, we

amortize the work of analysis by “compiling” the prior into an potentially fast estimator

that is generally good at analyzing datasets that were generated from parameters

drawn from the prior. The estimator should then be similarly good at analyzing real

18

test datasets—granted our prior assumption that the test datasets were generated in

precisely this way.

In our grammar induction setting, amortized Bayesian estimation would train a

supervised system to accurately predict grammar from corpus on a set of synthetic

languages drawn from the prior. For these samples, the grammar is known because it

is drawn as part of the sampling process. We can then apply our trained estimator to

predict grammar from corpus on real languages where the grammar is not known.

Our amortized approach can also be used for other forms of Bayesian inference.

Estimation specifically tries to recover the parameter vector. In the more general case

of inference, we wish to recover properties of the parameter vector (e.g., typology in

Chapter 4) or other latent variables generated en route to the observations (e.g., parse

trees in Chapter 5). Again, we can use samples from the prior to train a supervised

predictor of these quantities.

In practice, it is difficult to write down an explicit Bayesian prior over natural

languages. Fortunately, our amortized method does not actually need an explicit

representation of the prior. It only needs a sample of languages from the prior. Thus,

we could train our supervised predictor on a random sample of naturally occurring

human languages—or a larger synthetic sample of “plausible” human languages as

we will describe in Chapter 3. This sample “stands in” for the prior. The insight is

that if we train our estimator to predict grammatical properties from the corpus on

many plausible languages, with low average loss and low generalization error, then it

should generalize to real languages.

19

2.1 Bayesian Estimation and Inference

We will use uppercase characters for random variables and their lowercase equivalents

for the corresponding instances.

The general setting for Bayesian estimation and inference is a generative probabil-

ity model of the form

p(G = g) · p(Y = y | G = g) · p(X = x | G = g, Y = y) (2.1)

where g is a parameter vector, y is an optional latent variable, and x is the observed

dataset. Given x, estimation tries to recover g, while inference tries to recover y or

some other function of g and y.

The methods of this chapter are applicable to any setting of the form in Equa-

tion (2.1). In the specific case of grammar induction,

• g is a probabilistic grammar in some family of possible grammars: it specifies a

distribution over derivation trees. For example, g might be a PCFG (Section 1.3).

• y is a treebank of derivations drawn from that distribution. They are said to be

“generated” by the grammar g.

• x is the observed corpus, which is deterministically obtained as the yield strings

of the trees in the treebank.1 In other words, p(X = x | G = g, Y = y) is 1 if

x is the fringe of y, and is 0 otherwise.

1In Section 2.4.3 and chapter 5, we will also observe the yield strings u of some additional latent
trees drawn from g. The only difference between x and u is that in our amortized inference approach,
our synthetic sample reveals the parses y for the sentences x, but does not reveal the parses for u. This
is because some ways of constructing synthetic samples might include some unparsed text u.

20

G Y X

ĝ

Figure 2.1: The setup of the grammar induction, where the shaded variable X is observed.
Grammar induction wants to discover the latent grammar G from the observation X through
an estimator ĝ in the dashed arrow.

In this setting, estimation of g corresponds to grammar induction, whereas infer-

ence of y corresponds to parsing (Chapter 5). Inferring aggregate syntactic properties

of the language (Chapter 4) is also a form of inference.

As will be discussed in Section 2.4, one distinction between our approach and

grammar induction is that the latter makes a strong assumption: G is a real-valued

vector, which characterizes a grammar. As shown in Figure 2.1, grammar induction

is a backward process to discover an estimate ĝ(x) from observed x in order to

approximate the true g. Function ĝ is called an estimator, and the estimate ĝ(x) is

used to parse any sentences in this language. Many types of estimator ĝ have been

proposed in the literature of grammar induction, and we will introduce a novel one

(Section 2.2) on the way to our final approach (Section 2.4). Before that, Section 2.1.1–

2.1.2 will review those previous estimators.

21

2.1.1 Maximum a posteriori estimation

The simplest and most common estimator is the maximum a posteriori (MAP) estima-

tor, which returns the parameters ĝ that are most probable a posteriori:

ĝMAP(x) def
= argmax

g
p(g | x)

= argmax
g

p(x, g)

= argmax
g

∑
y∈Y

p(x, y, g)

= argmax
g

p(g) ∑
y∈Y

p(y | g)p(x | y). (2.2)

In the special case where p(g) is constant in g (a uniform prior), this reduces to the

maximum likelihood estimator.

In the case of grammar induction, x is an observed corpus, and Y is the space

of all possible treebanks. For each g, Equation (2.2) requires a summation over

combinatorially many treebanks y that are consistent with the observed corpus. The

good news is that if g is a PCFG (Section 1.3), then this summation can be performed

in time that is polynomial in the length of the corpus, using the inside algorithm

(Baker, 1979). The bad news is that the sum is not convex in the parameters g, and

thus it is difficult to maximize Equation (2.2). In fact, even if we simplify ∑ to max

(the Viterbi approximation) and use the uniform prior, the max over g is NP-hard to

compute and inapproximable (Cohen and Smith, 2010).

In practice, it is common to compute a local maximum, using either gradient ascent

or the expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977;

22

Baker, 1979; Lari and Young, 1990). Recently, thanks to the development of auto-

differentiation libraries (Paszke et al., 2017; Abadi et al., 2015), it is straightforward

to enlist back-propagation to simplify both of these methods (Eisner, 2016), as long

as p(g | X) has an analytical form. Because maximization is only local, careful

initialization can be an effective way to inject prior knowledge, even when the actual

prior distribution is uniform (Klein and Manning, 2004).

For more sophisticated priors like Dirichlet (Smith, 2006; Naseem et al., 2010;

Kurihara and Sato, 2004) or logistic normal (Cohen, Gimpel, and Smith, 2009), the

summation needed to compute p(g | X) may no longer be efficiently computable.

In this case, one option is to instead locally maximize a variational lower bound on

Equation (2.2) (Kurihara and Sato, 2004; Cohen, Gimpel, and Smith, 2009).

2.1.2 Bayes estimator

A generalization is to use a Bayes estimator. Let Loss(g, g∗) be a given function that

should be used to evaluate the error in an estimate g relative to the true parameters g∗.

The Bayes risk R is the function defined by R(ĝ) def
= IE

X,G
[Loss(ĝ(X), G)] for each

estimator ĝ, where the expectation is taken under our Bayesian model Equation (2.1).

The Bayes estimator ĝBAY is defined by

ĝBAY
def
= argmin

ĝ
R(ĝ)

= argmin
ĝ

IE
X,G

[Loss(ĝ(X), G)]. (2.3)

In other words, ĝBAY minimizes the Bayes risk among all estimators, which is chal-

lenging to find because a brute-force search over all possible functions is obviously

intractable.

23

An equivalent definition (Lehmann and Casella, 2006) is to say that a Bayes

estimator is one that, given x, finds a minimum-risk estimate of g:

ĝBAY(x) = argmin
g

IE
G|x

[Loss(g, G)] (for any x) (2.4)

A special case is the 0-1 loss function where Loss(g, g∗) is 0 if g = g∗ and 1

otherwise. In this case, (2.4) reduces to the MAP estimator. Below, we discuss other

special cases.

2.1.3 Posterior mean estimator

As shown in Equation (2.4), in contrast to the MAP approach which is interested

in a distribution with the optimal posterior probability, ĝBAY(x) pays attention to

the expected loss over the entire posterior distribution p(G | x). While the general

form of ĝBAY includes an argmax operator that is computationally intractable (for

problems like grammar induction), a carefully designed loss function Loss(·, ·) may

circumvent this difficulty without optimization. The posterior mean (PM) estimator is

such a design where Loss(·, ·) is a squared error:

ĝPM(x) = argmin
ĝ′

IE
G|x

[(ĝ′ −G)2] (2.5)

= IE
G|x

[G]. (2.6)

Equation (2.6) is obtained by setting the derivative of ĝ′ in Equation (2.5) to be 0.

Compared to MAP, PM doesn’t require optimization, thereby avoiding the issue of

local optima (Cohen and Smith, 2012) during the local search. The standard technique

for approximating the expectation is the Monte Carlo integral, which averages over

sampled instances from the posterior distribution p(G | x). Cohen, Gimpel, and

24

Smith (2009) and Kurihara and Sato (2004) sample from a variational Bayes (VB)

approximation to the posterior, while Johnson, Griffiths, and Goldwater (2007) sample

approximately using a Markov chain Monte Carlo (MCMC) method.

2.2 Amortized Bayes Estimator (our proposal)

We propose to return to the formulation in Equation (2.3), but to limit the search

over estimators to a parametric family E = {eΘ}Θ∈Rd , which is parameterized by a

d-dimensional real-valued vector Θ. We can now (locally) minimize the Bayes risk

within this family by optimizing the parameter vector Θ. Using the methods of deep

learning, we can construct a highly expressive family E and find high-quality local

minima—so we have reason to hope that our estimator will perform nearly as well as

a Bayes estimator. This parameterization has also been used in other machine learning

methods like the Wasserstein GAN (Arjovsky, Chintala, and Bottou, 2017).

This gives us an estimator

ĝ = argmin
ĝ∈E

IE
X,G

[Loss(ĝ(X), G)] (2.7)

= eΘ∗ , (2.8)

where

Θ∗ = argmin
Θ∈Rd

IE
X,G

[Loss(eΘ(X), G)] (2.9)

≈ argmin
Θ∈Rd

1
N

N

∑
i=1

Loss(eΘ(xi), gi). (2.10)

25

Our proposed amortized Bayes (AB) estimator ĝAB arises from replacing Equa-

tion (2.9) with Equation (2.10), its empirical estimate based on a sample of N (x, g)

pairs drawn from the marginal joint distribution p(X, G). This formulation converts

our task of estimator construction to a “supervised” learning problem where Θ∗ is

learned from N training examples.2

Algorithm 1 gives a general procedure for ĝAB, with the comments phrased in

terms of the grammar induction setting. The procedure has 4 steps: (1) generate a

set L which contains many (corpus, distribution) pairs from sampled the prior, (2)

design a parametric prediction architecture eΘ such as a neural network, (3) find good

parameters Θ∗ by training on L, and (4) for any given corpus x, predict eΘ∗(x) as

the AB estimate. Note that once Θ∗ is trained, eΘ∗(·) is ready to evaluate any new x

by mere forward computing at test time.

Algorithm 1 The estimation process using the Amortized Bayes estimator.

Input: observed corpus x; sample size N; loss function Loss(g, g∗)
Output: ĝAB(x), which is the distribution estimated by the AB estimator

1: for i = 1 to N do
2: gi ∼ p(·) ▷ Sample a distribution gi from the prior
3: yi, xi ∼ p(· | gi) ▷ Sample a treebank yi from gi and extract the fringe xi

4: Θ∗ ← argmin
Θ∈Rd

1
N

N

∑
i=1

Loss(eΘ(xi), gi) ▷ Find Θ∗ by optimization

5: return eΘ∗(x)

ĝAB resembles an artificial linguist (Section 1.4) characterized by Θ, who gains

“experience” by annotating many (N) training languages, eventually arriving at an

approximation to Θ∗. This is different from the traditional estimators like ĝPM and

ĝMAP, which are stand-alone estimators (or per-example estimators) which evaluate

every new language independently. It is analogous to a real linguist who gains
2It is possible to add a regularization term on Θ, which is suppressed from Equation (2.10).

26

“experience” from the domain knowledge in textbooks.3 In our setting, the training

languages are sampled from the prior p(G) rather than from a textbook—but we will

change that below (Section 2.4.5).

We call ĝAB an amortized Bayes estimator in that Θ∗ is shared and auto-tuned to

perform well across training corpora. In other words, when analyzing a test corpus

x, Θ∗ encodes experience from analyzing training corpora. Our approach is in the

realm of amortized inference or stochastic inverse learning (Stuhlmüller, Taylor, and

Goodman, 2013; Gershman and Goodman, 2014; Pakman and Paninski, 2018; Lee et

al., 2019)—a technique of reusing parameters across datasets that has gained attention

in the machine learning community. Their notable difference from ours is that most of

them use Θ to parameterize the posterior distribution for variational inference, while

we directly parameterize the estimation method g.

2.3 An Analogy: Statistical Estimation as Function In-
version

Bayesian statistics may be regarded as inverse probability. We are given a known

probabilistic generative process that produced an observation x from an underlying

parameter g. We aim to invert that process to recover g.

A simplified case arises in the familiar setting where we wish to invert a determin-

istic function. For simplicity and concreteness, let us consider a simple scalar function.

Consider the equation x = sin(g), which deterministically computes an observable

3In linguistics, the contrast between ours and the previous estimators is loosely related to the
difference between Greenberg’s (Greenberg, 1963) and Chomsky’s (Chomsky, 1965) approaches
in research on language universals, where the former looks at a broad range of languages to gain
generalization (like ours), while the later puts emphasis on the detailed, abstract study of a small
number of languages (Comrie, 1989).

27

value x from an unknown value g. We would like to estimate the g that gave rise to

x. (More precisely, we would like to find a possible g, since there may be multiple

values g such that x = sin(g)—just as in grammar induction.)

For this problem, there exists an efficient algorithm based on determining the

Taylor series for the sin−1 (arcsine) function. This is analogous to statistical estimation

problems that have a closed-form solution (e.g., the variance of a Gaussian distribution)

or an algorithmically efficient solution (e.g., spectral estimation of hidden Markov

models).

However, if no such algorithm existed, we could start with an initial guess for g

and then optimize it by local search. Specifically, we could use the bisection method

or Newton’s method to seek a solution to sin(g)− x = 0, or use gradient descent to

seek a minimum of (sin(g)− x)2. This is analogous to the EM and gradient ascent

methods reviewed in Sections 2.1.1 and 2.1.3.

Alternatively, a timeworn approach is to consult a “trigonometric table” of (x, g)

pairs that records the result of precomputing x = sin(g) for many g values. We

look up our observed x in the first column, finding a single pair (x1, g1) such that

x ≈ x1, which implies that x ≈ sin(g1) as desired. For improved accuracy, we

can identify two or more pairs {(xi, gi)} such that x ≈ xi. We can then interpolate

linearly or polynomially among these pairs, giving us an interpolated value ĝ such

that x ≈ sin(ĝ). This method can be regarded as constructing an approximate sin−1

function from the table of pairs (by piecewise polynomial regression, which is a simple

example of a “local learning” algorithm in machine learning). Our AB estimator is

constructed analogously: we similarly precompute a table of (x, g) pairs and then we

use machine learning to fit a function ĝAB to them.

28

2.4 From Grammar Induction to Other Tasks

2.4.1 Grammar induction as Bayesian estimation

Grammar induction can be treated as a statistical estimation problem that can be

addressed by our novel estimator ĝAB. We must assume that we have been given

a general-purpose linguistic grammar: a collection of rules (or other elementary

structures) that can be used to generate any sentence in any language. In a given

language, some of these rules will have high weight, while some rules will be unused

and have weight≈ 0. We aim to estimate the vector g of weights for a given language,

given a corpus x of that language and a prior distribution p(G).

For decades, although linguists have proposed many grammar formalisms, the

NLP grammar induction community has focused on estimating weights for PCFGs

(Table 2.1). A PCFG is one type of grammar formalism. It uses a collection of context-

free rules to define a family of language models, parameterized by the rule probabilities

g. As Section 2.1.1 noted, one particular advantage of the PCFG formalism in practice

is that calculating the likelihood of PCFG parameters given a corpus can be done in

polynomial time via dynamic programming (the inside algorithm).

2.4.2 Limitations of grammar induction

As discussed in Section 1.3, PCFGs have some difficulty capturing complex lin-

guistic phenomena, in part because of their conditional independence assumptions.4

Spitkovsky, Alshawi, and Jurafsky (2013) showed that even when a dependency-and-

boundary (DBM) grammar (an extension of the DMV grammar) was estimated from

4Another issue is that PCFGs are designed to describe projective structures, whereas intuitive
theories of German, Dutch and Czech make use of non-projective structures (Figure 1.3).

29

CFG rules g
S→ NP VP 0.9
S→ VP NP 0.1
VP→ VP PP 0.6
VP→ V NP 0.4
NP→ DET N 0.4
PP→ P NP 0.000015
P→ with 0.05

Table 2.1: A fragment of a PCFG that defines traditional constituency structures. If we
preferred to use projective dependency structures, we could use a PCFG encoding of the
popular dependency model with valence (DMV) (Klein and Manning, 2004), as explained by
Klein and Manning (2004, Figure 4), Smith (2006, Figure 2.3) and Pate and Johnson (2016,
Figure 1).

supervised data, it reached a mere 76.3 unlabelled attachment score (UAS)—far be-

hind non-grammar-based parsers.5 This illuminates the potential failings of a grammar

estimation approach (at least for a relatively small grammar).

Since a more important goal for downstream tasks is to infer good parse structures

y, we do not wish to formulate our task as one of estimating grammar parameters g.

Estimating a grammar is unnecessary if it is only an indirect way of obtaining these

parses—and if the grammar formalism is not powerful enough (as above), then even

the best possible estimate of g may not lead to good parses.

Thus, our final parser (Chapter 5) is a discriminative, non-context-free parser that

predicts parses directly without making use of an explicit grammar. The actual parsing

architecture will be introduced in Chapter 5.

5The strong supervised parsers discussed in Section 1.3 are non-grammar-based parsers. Instead,
they rely on feature-rich or neural models.

30

2.4.3 Unsupervised parsing as (amortized) Bayesian inference

We now explain how to do amortized Bayesian inference of parses, instead of amor-

tized Bayesian estimation of the grammar.

The idea is simple. We sample training languages from the prior, just as in

Algorithm 1. However, where we used to train an amortized system to predict each

training language’s grammar g from its corpus x, we now train it to predict each

training language’s treebank y, as shown in Figure 2.2. The training loss function

Loss(g, g∗) is now replaced by a loss function on treebanks, Loss(y, y∗) .

Algorithm 2 Amortized Bayes parsing of a corpus.

Input: observed corpus x; sample size N; loss function Loss(y, y∗)
Output: ŷAB(x), which is the treebank estimated by the AB estimator

1: for i = 1 to N do
2: gi ∼ p(·) ▷ Sample a distribution gi from the prior
3: yi, xi ∼ p(· | gi) ▷ Sample a treebank yi from gi and extract the fringe xi

4: Θ∗ ← argmin
Θ∈Rd

1
N

N

∑
i=1

Loss(eΘ(xi), yi) ▷ Find Θ∗ by optimization

5: return eΘ∗(x)

This reduces our unsupervised parsing problem to a supervised training problem

on languages sampled from the prior.

Note that our trained parameter vector Θ∗ specifies a cross-linguistic or “universal”

parser. It is trained to be able to parse any corpus x (from any language) into a

treebank. It does this by examining x for surface cues to the deep structure of the

language.

For this to work, x must be large enough to contain all the necessary surface cues.

Our universal parser will not work properly on a single sentence x, or even on a small

corpus x. If we dislike this state of affairs, we can fix it with a simple extension of our

31

G Y X

eΘ

Figure 2.2: The setup of the proposed unsupervised parsing framework. Both corpus X is
sampled from G, and G is sampled from the prior p(G). Instead of discovering G, we want
to discover the latent treebank Y from the observation X through a parameterized map eΘ in
the dashed arrow.

setup. The input x can be as small as desired—even a single sentence—provided that

the parser is also given an additional unparsed corpus u of the same language, from

which to extract the surface cues.

In other words, we change our generative model from Equation (2.1) to also

generate “side information” u:

p(G = g) · p(Y = y | G = g) · p(X = x | G = g, Y = y) · p(U = u | G = g)  
new step

(2.11)

The generative story for u in the final step may involve latent parses y′ (see Footnote 1

on page 20), but this does not matter. In fact it is not even necessary for u to be a

text corpus—formally speaking, it could be any side information about the language

that is useful for extracting surface cues that are useful to the parser. (For example, a

collection of n-gram counts, or a Swadesh list.) In Chapter 5, however, we will take u

to be an unparsed text corpus of the language.

This gives rise to the following modified algorithm:

32

Algorithm 3 Amortized Bayes parsing of a corpus, with side information.

Input: observed corpus x; sample size N; loss function Loss(y, y∗); side informa-
tion u

Output: ŷAB(x), which is the treebank estimated by the AB estimator
1: for i = 1 to N do
2: gi ∼ p(·) ▷ Sample a distribution gi from the prior
3: yi, xi ∼ p(· | gi) ▷ Sample a treebank yi from gi and extract the fringe xi

4: ui ∼ p(· | gi) ▷ Sample the side information for the language

5: Θ∗ ← argmin
Θ∈Rd

1
N

N

∑
i=1

Loss(eΘ(xi, ui), yi) ▷ Find Θ∗ by optimization

6: return eΘ∗(x)

2.4.4 Typology prediction as (amortized) Bayesian inference

The unsupervised parser in the previous section presumably extracts some kind of

typological information from the given corpus to aid in parsing. For example, it must

determine whether the language uses a basic word order that is SOV (subject-object-

verb) or OSV (object-subject-verb) or something else. Typological information has

previously been shown to be useful for both generative parsers (Naseem, Barzilay,

and Globerson, 2012) and discriminative parsers (Täckström, McDonald, and Nivre,

2013; Zhang and Barzilay, 2015).

In Chapter 4, we will build a system for explicitly extracting fine-grained typo-

logical information from a text corpus. Again, this is not the grammar induction task

since our system does not produce a full formal grammar, merely typological features.

Our typological information is syntactic: we assume that it can be extracted from

a treebank y, so we write it as τ(y). Formally speaking, our problem is now just like

unsupervised parsing (Algorithm 2), but it faces an easier problem because it does not

have to predict y but only the summary information τ(y). We now use a loss function

Loss(τ, τ∗) on typological descriptions.

33

Algorithm 4 Amortized Bayes parsing of a corpus.

Input: observed corpus x; sample size N; loss function Loss(τ, τ∗)
Output: τ̂AB(x), which is the typological description estimated by the AB estimator

1: for i = 1 to N do
2: gi ∼ p(·) ▷ Sample a distribution gi from the prior
3: yi, xi ∼ p(· | gi) ▷ Sample a treebank yi from gi and extract the fringe xi

4: Θ∗ ← argmin
Θ∈Rd

1
N

N

∑
i=1

Loss(eΘ(xi), τ(yi)) ▷ Find Θ∗ by optimization

5: return eΘ∗(x)

2.4.5 Eliminating explicit grammars altogether

Notice that for the two tasks in Sections 2.4.3 and 2.4.4, the supervised training

algorithms made no use of the sampled grammars gi. The grammars are discarded

after being used to generate treebanks.

As a result, we do not actually need to sample grammars gi from a prior p(G). All

that supervised training actually needs is the treebanks yi (and any side information

ui). If we have some non-grammar-based way to sample treebanks, we can use that

method instead.

This move saves us from having to commit to any grammar formalism. The

distribution from which we sample treebanks may be regarded as having implicit

knowledge of some distribution over grammars, but the grammars are never formalized

or made explicit.

In short, a distribution over treebanks is an alternative way to encode prior knowl-

edge of the range of possible human languages that our typology predictors and

universal parsers may encounter. For this reason, Chapters 3 and 6 will explore

methods for sampling synthetic treebanks from possible human languages without

use of a grammar. The synthetic treebanks from Chapter 3 will be used to train our

34

typology predictor (Chapter 4) and our universal parser (Chapter 5).

2.5 Discussion

To sum up, the AB estimator has three advantages.

First, the family of parametric functions eΘ for performing estimation or inference

can be designed so that it is likely to contain a good function. We will adopt an

expressive family.

Second, that family can be designed to be easily trained (in conjunction with the

given task loss function Loss(·, ·)). For example, if we were to use log-linear models

and a log-loss function, then finding Θ∗ would be a convex optimization problem

with a single global maximum. In practice, we will use neural networks, which tend

to find good local optima because they have many parameters that they can adjust to

escape poor parameter settings.

Finally, eΘ∗ is a discriminative system. If the task is parsing or typology prediction,

it can bypass the problem of grammar induction—we simply train it end-to-end to

minimize expected task loss.

We close by reminding the reader why the AB estimator is necessary. Inasmuch as

eΘ∗ is supposed to generalize well to any real languages at test time, training examples

must reflect the true population of human languages. For our tasks in Chapters 4 and 5,

the most straightforward approach would be to train on existing annotated languages.

The most recent UD treebank (Nivre et al., 2019) which has 146 treebanks covering

83 languages. However, this only gives us 146 training examples—not enough for

supervised training of an AB estimator that could generalize well. That is why the

AB technique trains on a large sample of synthetic languages, which reflect prior

35

knowledge about the distribution of possible human languages.

Following the approach in Section 2.4.5, we now turn to the problem of con-

structing good synthetic training examples (xi, yi). In Chapter 3, we will introduce a

procedure for generating synthetic treebanks given a collection of real treebanks such

as the Universal Dependencies dataset. Our resulting set of synthetic treebanks, the

Galactic Dependencies dataset, will serve as the main working data in this thesis.

36

Chapter 3

Resolving the Challenge of Data
Sparsity—the Galactic Dependencies

This chapter focuses on the data sparsity problem referred to in Section 2.5. We

introduce the Galactic Dependencies 1.0—a large set of synthetic languages not

found on Earth, but annotated in Universal Dependencies format—to fill in the gaps

among real languages. More generally, this new resource aims to provide training and

development data for NLP methods that aim to adapt to unfamiliar languages. Each

synthetic treebank is produced from a real treebank by stochastically permuting the

dependents of nouns and/or verbs to match the word order of other real languages. We

discuss the usefulness, realism, parsability, perplexity, and diversity of the synthetic

languages. As a simple demonstration of the use of the Galactic Dependencies, we

consider the single-source selection parsing, which attempts to parse a real target

language using a parser trained on a “nearby” source language. We find that including

synthetic source languages somewhat increases the diversity of the source pool, which

significantly improves results for most target languages.

37

3.1 Motivation

As discussed in Section 2.5, we have formulated our framework on unsupervised

parsing as a supervised learning problem that has very sparse data by machine learning

standards—each of the IID training examples is an entire language. More broadly,

this setup is applicable to an extensive range of NLP tasks:

• typological classification of a language on various dimensions;

• adaptation of any existing NLP system to new, low-resource languages;

• induction of a syntactic grammar from text;

• discovery of a morphological lexicon from text;

• other types of unsupervised discovery of linguistic structure.

Given a corpus or other data about a language, we might aim to predict whether it

is an SVO language, or to learn to pick out its noun phrases. For such problems, a

single training or test example corresponds to an entire human language.

Unfortunately, we usually have only from 1 to 100 languages (Section 2.5) to work

with. In contrast, machine learning methods thrive on data, and recent AI successes

have mainly been on tasks where one can train richly parameterized predictors on a

huge set of IID (input, output) examples. Even 7,000 training examples—one for each

language or dialect on Earth—would be a small dataset by contemporary standards.

As a result, it is challenging to develop systems that will discover structure in new

languages in the same way that an image segmentation method, for example, will

discover structure in new images. The limited resources even make it challenging to

develop methods that handle new languages by unsupervised, semi-supervised, or

transfer learning. Some such projects evaluate their methods on new sentences of

38

the same languages that were used to develop the methods in the first place—which

leaves one worried that the methods may be inadvertently tuned to the development

languages and may not be able to discover correct structure in other languages. Other

projects take care to hold out languages for evaluation (Spitkovsky, 2013; Cotterell,

Peng, and Eisner, 2015), but then are left with only a few development languages on

which to experiment with different unsupervised methods and their hyperparameters.

If we had many languages, then we could develop better unsupervised language

learners. Even better, like our approach for unsupervised parsing formulated in

Algorithm 2, we could treat the general linguistic structure discovery as a supervised

learning problem. That is, we could train a system to extract features from the surface

of a language that are predictive of its deeper structure. Principles & Parameters

theory (Chomsky, 1981) conjectures that such features exist and that the juvenile

human brain is adapted to extract them.

Our goal in this chapter is to release a set of about 50,000 high-resource languages

that could be used to train supervised learners, or to evaluate less-supervised learners

during development. These “unearthly” languages are intended to be at least similar

to possible human languages. As such, they provide useful additional training and

development data that is slightly out of domain (reducing the variance of a system’s

learned parameters at the cost of introducing some bias). The release is available at

https://github.com/gdtreebank/gdtreebank.

In addition to releasing thousands of treebanks, we provide scripts that can be

used to “translate” other annotated resources into these synthetic languages. E.g.,

given a corpus of English sentences labeled with sentiment, a researcher could reorder

the words in each English sentence according to one of our English-based synthetic

39

https://github.com/gdtreebank/gdtreebank

languages, thereby obtaining labeled sentences in the synthetic language.

3.2 Related Work

Synthetic data generation is a well-known method for effectively training a large model

on a small dataset. Abu-Mostafa (1995) reviews early work that provided “hints” to a

learning system in the form of virtual training examples. While datasets have grown

in recent years, so have models: e.g., neural networks have many parameters to train.

Thus, it is still common to create synthetic training examples—often by adding noise

to real inputs or otherwise transforming them in ways that are expected to preserve

their labels. Domains where it is easy to exploit these invariances include image

recognition (Simard, Steinkraus, and Platt, 2003; Krizhevsky, Sutskever, and Hinton,

2012), speech recognition (Jaitly and Hinton, 2013; Cui, Goel, and Kingsbury, 2015),

information retrieval (Vilares, Vilares, and Otero, 2011), grammatical error correction

(Rozovskaya and Roth, 2010), and reduction of stereotypes (Zmigrod et al., 2019).

Synthetic datasets have also arisen recently for semantic tasks in natural language

processing. bAbI is a dataset of facts, questions, and answers, generated by random

simulation, for training machines to do simple logic (Weston et al., 2016). Hermann

et al. (2015) generate reading comprehension questions and their answers, based on a

large set of news-summarization pairs, for training machine readers. Wang, Berant,

and Liang (2015a) generate synthetic (logical-form, sentence) pairs as training data

for semantic parsers. Serban et al. (2016) used RNNs to generate 30 million factoid

questions about Freebase, with answers, for training question-answering systems.

Wang, Berant, and Liang (2015b) obtain data to train semantic parsers in a new

domain by first generating synthetic (utterance, logical form) pairs and then asking

40

human annotators to paraphrase the synthetic utterances into more natural human

language.

In speech recognition, morphology-based “vocabulary expansion” creates syn-

thetic word forms (Rasooli et al., 2014; Varjokallio and Klakow, 2016).

In machine translation, researchers have often tried to automatically preprocess

parse trees of a source language to more closely resemble those of the target language,

using either hand-crafted or automatically extracted rules (Dorr et al., 2002; Collins,

Koehn, and Kucerova, 2005, etc.; see review by Howlett and Dras (2011)). More

famously, the back-translation (Sennrich, Haddow, and Birch, 2016) trains foreign-to-

local systems using synthetic parallel data generated from the trained local-to-foreign

systems, which has become a well-received technique in neural machine translation

(NMT).

3.3 Synthetic Language Generation

A treebank is a corpus of parsed sentences of some language. We propose to derive

each synthetic treebank from some real treebank. By manipulating the existing parse

trees, we obtain a useful corpus for our synthetic language—a corpus that is already

tagged, parsed, and partitioned into training/development/test sets. Additional data in

the synthetic language can be obtained, if desired, by automatically parsing additional

real-language sentences and manipulating these trees in the same way.

41

∗ DET NOUN PROPN VERB VERB DET ADJ NOUN ADV PUNCT
ROOT Every move Google makes brings this particular future closer .

det

nsubj

nsubj

acl:rel

root

det

amod

dobj

advmod

punct

Language Sentence
English Every move Google makes brings this particular future closer.
English[French/N] Every move Google makes brings this future particular closer.
English[Hindi/V] Every move Google makes this particular future closer brings.
English[French/N, Hindi/V] Every move Google makes this future particular closer brings.

Figure 3.1: The original UD tree for a short English sentence, and its “translations” into three
synthetic languages, which are obtained by manipulating the tree. (Moved constituents are
underlined.) Each language has a different distribution over surface part-of-speech sequences.

3.3.1 Method

We begin with the Universal Dependencies collection version 1.2 (Nivre et al., 2015;

Nivre et al., 2016),1 or UD. This provides 37 manually edge-labeled dependency

treebanks in 33 real languages, in a consistent style and format—the Universal Depen-

dencies format. An example appears in Figure 3.1.

In this thesis, we select a substrate language S represented in the UD treebanks,

and systematically reorder the dependents of some nodes in the S trees, to obtain trees

of a synthetic language S′.

Specifically, we choose a superstrate language RV, and write S′ = S[RV/V] to

denote a (projective) synthetic language obtained from S by permuting the dependents

of verbs (V) to match the ordering statistics of the RV treebanks. We can similarly per-

mute the dependents of nouns (N).2 This permutes about 93% of S’s nodes (Table 3.2),

1http://universaldependencies.org
2In practice, this means applying a single permutation model to permute the dependents of every

word tagged as NOUN (common noun), PROPN (proper noun), or PRON (pronoun).

42

http://universaldependencies.org

as UD treats adpositions and conjunctions as childless dependents.

For example, English[French/N, Hindi/V] is a synthetic language based on an

English substrate, but which adopts subject-object-verb (SOV) word order from

the Hindi superstrate and noun-adjective word order from the French superstrate

(Figure 3.1). Note that it still uses English lexical items.

Our terms “substrate” and “superstrate” are borrowed from the terminology of

creoles, although our synthetic languages are unlike naturally occurring creoles.

Our substitution notation S′ = S[RN/N, RV/V] is borrowed from the logic and

programming languages communities.

3.3.2 Discussion

There may be more adventurous ways to manufacture synthetic languages (see Sec-

tion 3.8 for some options). However, we emphasize that our current method is designed

to produce fairly realistic languages.

First, we retain the immediate dominance structure and lexical items of the sub-

strate trees, altering only their linear precedence relations. Thus each sentence remains

topically coherent; nouns continue to be distinguished by case according to their role

in the clause structure; wh-words continue to c-command gaps; different verbs (e.g.,

transitive vs. intransitive) continue to be associated with different subcategorization

frames; and so on. For example, in Figure 3.1, “particular” in “English[French/N]”

continues to be the adjectival modifier of “future”, and “closer” in “English[French/N,

Hindi/V]” continues to be the adverbial modifier of “brings”. These important proper-

ties would not be captured by a simple context-free model of dependency trees, which

is why we modify real sentences rather than generating new sentences from such a

43

model. In addition, our method obviously preserves the basic context-free properties,

such as the fact that verbs typically subcategorize for one or two nominal arguments

(Naseem et al., 2010).

Second, by drawing on real superstrate languages, we ensure that our synthetic

languages use plausible word orders. For example, if RV is a V2 language that favors

SVO word order but also allows OVS, then S′ will match these proportions. Similarly,

S′ will place adverbs in reasonable positions with respect to the verb.

We note, however, that our synthetic languages might violate some typological

universals or typological tendencies. For example, RV might prescribe head-initial

verb orderings while RN prescribes head-final noun orderings, yielding an unusual

language. Worse, we could synthesize a language that uses free word order (from

RV) even though nouns (from S) are not marked for case. Such languages are rare,

presumably for the functionalist reason that sentences would be too ambiguous. One

could automatically filter out such an implausible language S′, or downweight it,

upon discovering that a parser for S′ was much less accurate on held-out data than a

comparable parser for S.

We also note that our reordering method (Section 3.4) does ignore some linguistic

structure. For example, we do not currently condition the order of the dependent

subtrees on their heaviness or on the length of resulting dependencies, and thus we will

not faithfully model phenomena like heavy-shift (Hawkins, 1994; Eisner and Smith,

2010). Nor will we model the relative order of adjectives. We also treat all verbs

interchangeably, and thus use the same word orders—drawn from RV—for both main

clauses and embedded clauses. This means that we will never produce a language like

German (which uses V2 order in main clauses and SOV order in embedded clauses),

44

even if RV = German. All of these problems could be addressed by enriching the

features (for example, using syntactically refined the tag set through parent annotation

or supertagging) that are described in the next section.

3.4 Modeling Dependent Order

Let A be a part-of-speech tag, such as VERB. To produce a dependency tree in

language S′ = S[RA/A], we start with a projective dependency tree in language

S.3 For each node a in the tree that is tagged with A, we stochastically select a new

ordering for its dependent nodes, including a position in this ordering for the head a

itself. Thus, if node a has n− 1 dependents, then we must sample from a probability

distribution over n! orderings.

Our job in this section is to define this probability distribution. Using o =

(o1, . . . , on) to denote an ordering of these n nodes, we define a log-linear model over

the possible values of o:

pθ(o | a) =
1

Z(a)
exp ∑

1≤i<j≤n
θ · f(o, i, j) (3.1)

Here Z(a) is the normalizing constant for node a. θ is the parameter vector of the

model. f extracts a sparse feature vector that describes the ordered pair of nodes oi, oj,

where the ordering o would place oi to the left of oj.

3Our method can only produce projective trees. This is because it recursively generates a node’s
dependent subtrees, one at a time, in some chosen order. Thus, to be safe, we only apply our method to
trees that were originally projective. See Section 3.8.

45

3.4.1 Efficient sampling

To sample exactly from the distribution pθ,4 we must explicitly compute all n! unnor-

malized probabilities and their sum Z(a).

Fortunately, we can compute each unnormalized probability in just O(1) amor-

tized time, if we enumerate the n! orderings o using the Steinhaus-Johnson-Trotter

algorithm (Sedgewick, 1977).5 This enumeration sequence has the property that

any two consecutive permutations o, o′ differ by only a single swap of some pair of

adjacent nodes. Thus their probabilities are closely related: the sum in equation Equa-

tion (3.1) can be updated in O(1) time by subtracting θ · f(o, i, i + 1) and adding

θ · f(o′, i, i + 1) for some i. The other O(n2) summands are unchanged.

In addition, if n ≥ 8, we avoid this computation by omitting the entire tree from

our treebank; so we have at most 7! = 5040 summands.

3.4.2 Training parameters on a real language

Our feature functions (Section 3.4.4) are fixed over all languages. They refer to the

17 node labels (POS tags) and 40 edge labels (dependency relations) that are used

consistently throughout the UD treebanks.

For each UD language ℓ and each POS tag A, we find parameters θℓA that globally

maximize the unregularized log-likelihood:

θℓA = argmax
θ

∑
a

log pθ(oa | a) (3.2)

4We could alternatively have used MCMC sampling.
5A clean Python implementation by David Eppstein could be found at www.

ics.uci.edu/~eppstein/PADS/Permutations.py. In addition, Brent
Yorgey gives a nice explanation at www.mathlesstraveled.com/2013/01/03/
the-steinhaus-johnson-trotter-algorithm/.

46

www.ics.uci.edu/~eppstein/PADS/Permutations.py
www.ics.uci.edu/~eppstein/PADS/Permutations.py
www.mathlesstraveled.com/2013/01/03/the-steinhaus-johnson-trotter-algorithm/
www.mathlesstraveled.com/2013/01/03/the-steinhaus-johnson-trotter-algorithm/

Here a ranges over all nodes tagged with A in the projective training trees of the ℓ

treebank, omitting nodes with n ≥ 8 for speed. oa is the ordering of a’s nodes, which

is observed in the treebank.

The expensive part of this computation is the gradient of log Z(a), which is an

expected feature vector. To compute this expectation efficiently, we again take care to

loop over the permutations in Steinhaus-Johnson-Trotter order.

A given language ℓ may not use all of the tags and relations. Universal features

that mention unused tags or relations do not affect Equation (3.2), and their weights

remain at 0 during training.

3.4.3 Setting parameters of a synthetic language

We use Equation (3.1) to permute the A nodes of substrate language S into an order

resembling superstrate language RA. In essence, this applies the RA ordering model

to out-of-domain data, since the A nodes may have rather different sets of dependents

in the S treebank than in the RA treebank. We mitigate this issue in two ways.

First, our ordering model Equation (3.1) is designed to be more robust to transfer

than, say, a Markov model. The position of each node is influenced by all n− 1 other

nodes, not just by the two adjacent nodes. As a result, the burden of explaining the

ordering is distributed over more features, and we hope some of these features will

transfer to S. For example, suppose RA lacks adverbs and yet we wish to use θRA
A to

permute a sequence of S that contains adverbs. Even though the resulting order must

disrupt some familiar non-adverb bigrams by inserting adverbs, other features—which

consider non-adjacent tags—will still favor an RA-like order for the non-adverbs.

47

Second, we actually sample the reordering from a distribution pθ with an interpo-

lated parameter vector

θ = θS′
A = (1− λ)θRA

A + λθS
A, (3.3)

where λ = 0.05. This gives a weighted product of experts, in which ties are weakly

broken in favor of the substrate ordering. (Ties arise when RA is unfamiliar with some

tags that appear in S, e.g., adverb.)

3.4.4 Feature templates

We write ti for the POS tag of node oi, and ri for the dependency relation of oi to the

head node. If oi is itself the head, then necessarily ti = A,6 and we specially define

ri = head.

In our feature vector f(o, i, j), the features with the following names have value 1,

while all others have value 0:

• L.ti.ri and L.ti and L.ri, provided that rj = head. For example, L.ADJ

will fire on each ADJ node to the left of the head.

• L.ti.ri.tj.rj and L.ti.tj and L.ri.rj, provided that ri ̸= head, rj ̸= head.

These features detect the relative order of two siblings.

• d.ti.ri.tj.rj, d.ti.tj, and d.ri.rj, where d is l (left), m (middle), or r (right)

according to whether the head position h satisfies i < j < h, i < h < j, or

h < i < j. For example, l.nsubj.dobj will fire on SOV clauses. This is a

specialization of the previous feature, and is skipped if i = h or j = h.

6Recall that for each head POS A of language ℓ, we learn a separate ordering model with parameter
vector θℓA.

48

• A.ti.ri.tj.rj and A.ti.tj and A.ri.rj, provided that j = i+ 1. These “bigram

features” detect two adjacent nodes. For this feature and the next one, we

extend the summation in Equation (3.1) to allow 0 ≤ i < j ≤ n + 1, taking

t0 = r0 = BOS (“beginning of sequence”) and tn+1 = rn+1 = EOS (“end of

sequence”). Thus, a bigram feature such as A.DET.EOS would fire on DET

when it falls at the end of the sequence.

• H.ti.ri.ti+1.ri+1.....tj.rj, provided that i + 2 ≤ j ≤ i + 4. Among

features of this form, we keep only the 10% that fire most frequently in the

training data. These “higher-order k-gram” features memorize sequences of

lengths 3 to 5 that are common in the language.

Notice that for each non-H feature that mentions both tags t and relations r, we also

defined two backoff features, omitting the t fields or r fields respectively.

To illuminate, Table 3.1 uses the examples in Figure 3.1 and compares the features

of the two subtrees.

Template

DET ADJ NOUN
this particular future

det

amod

DET NOUN ADJ
this future particular

det
amod

L.ti.ri L.DET.det, L.ADJ.amod L.DET.det
L.ti.ri.tj.rj L.DET.det.ADJ.amod -
d.ti.ri.tj.rj l.DET.det.ADJ.amod m.DET.det.ADJ.amod
A.t1.r1.t2.r2 A.BOS.BOS.DET.det,

A.DET.det.ADJ.amod,
A.ADJ.amod.NOUN.head,
A.NOUN.head.EOS.EOS

A.BOS.BOS.DET.det,
A.DET.det.NOUN.head,
A.NOUN.head.ADJ.amod,
A.ADJ.amod.EOS.EOS

Table 3.1: Features that fire in the two subtrees

49

plus backoff features and H features (not shown).

3.5 The Resource

In our current version (GD v1.0), we release real and synthetic treebanks based on UD

v1.2. Each synthetic treebank is a modified work that is freely licensed under the same

CC or GPL license as its substrate treebank. We provide all languages of the form S,

S[RV/N], S[RN/V], and S[RN/N, RV/V], where the substrate S and the superstrates

RN and RV each range over the 37 available treebanks that represent 33 languages.

(RN = S or RV = S gives “self-permutation”). This yields 37× 38× 38 = 53, 428

languages in total.

Each language is provided as a directory of 3 files: training, development, and test

treebanks. The directories are systematically named: for example, English[French/N,

Hindi/V] can be found in directory en∼fr@N∼hi@V. Our treebanks provide align-

ment information, to facilitate error analysis as well as work on machine translation.

Each word in a synthetic sentence is annotated with its original position in the sub-

strate sentence. Thus, all synthetic treebanks derived from the same substrate treebank

are node-to-node aligned to the substrate treebank and hence to one another.

In addition to the generated data, we also provide the parameters θℓA of our ordering

models; code for training new ordering models; and code for producing new synthetic

trees and synthetic languages. Our code should produce reproducible results across

platforms, thanks to Java’s portability and our standard random number seed of 0.

50

lang sents tokens T UAS R
ar 4K / 6K 119K / 226K 85% 72% / 69% 0.37
cs 5K / 7K 687K / 1173K 94% 81% / 78% 0.38
de 9K / 14K 136K / 270K 94% 84% / 80% 0.47
es 10K / 14K 211K / 382K 94% 85% / 82% 0.32
fr 8K / 15K 154K / 356K 95% 86% / 84% 0.27
hi 9K / 13K 160K / 281K 96% 82% / 82% 0.20
it 9K / 12K 144K / 249K 95% 87% / 84% 0.30

la_itt 7K / 15K 87K / 247K 90% 66% / 58% 0.72
no 11K / 16K 135K / 245K 93% 82% / 79% 0.31
pt 5K / 9K 87K / 202K 96% 86% / 84% 0.32

Table 3.2: Some statistics on the 10 real training languages. When two numbers are separated
by “/”, the second represents the full UD treebank, and the first comes from our GD version,
which discards non-projective trees and high-fanout trees (n ≥ 8). UAS is the language’s
parsability: the unlabeled attachment score on its dev sentences after training on its train
sentences. T is the percentage of GD tokens that are touched by reordering (namely N, V,
and their dependents). R ∈ [0, 1] measures the freeness of the language’s word order, as
the conditional cross-entropy of our trained ordering model pθ relative to that of a uniform
distribution: R = H(p̃,pθ)

H(p̃,punif)
=

meanx [− log2 pθ(o∗(a)|a)]
meanx [− log2 1/n(a)!] , where a ranges over all N and V tokens

in the dev sentences, n(a) is 1 + the number of dependents of a, and o∗(a) is the observed
ordering at a.

3.6 Exploratory Data Analysis

How do the synthetic languages compare to the real ones? For analysis and experimen-

tation, we partition the real UD languages into train/dev/test.7 Table 3.3 shows the split

information of the 37 UD treebanks, attached by the their corresponding languages and

the (sub-)family information according to http://universaldependencies.

org. Following the usual setting of rich-to-poor transfer, we take the 10 largest

non-English languages as our pool of real source languages, which we can combine

to synthesize new languages. The remaining languages are the low-resource target

languages, from which we randomly hold out 15 non-English languages as the test lan-

guages. During development, we studied and graphed performance on the remaining

7This is orthogonal to the train/dev/test split of each language’s treebank.

51

http://universaldependencies.org
http://universaldependencies.org

Figure 3.2: Parsability of real versus synthetic languages (defined as in Table 3.2). The upper
graphs are kernel density estimates. Each lower graph is a 1-dimensional scatterplot, showing
the parsability of some real language S (large dot) and all its permuted versions, including the
“self-permuted” languages S[S/N] (diamond), S[S/V] (square), and S[S/N, S/V] (medium
dot).

8 languages—including English for interpretability. Table 3.2 shows some properties

of the real training languages.

Throughout this chapter, we use the Yara parser (Rasooli and Tetreault, 2015), a

fast arc-eager transition-based projective dependency parser, with beam size of 8. We

train only delexicalized parsers, whose input is the sequence of POS tags. Following

most previous works on unsupervised parsing, we evaluate parsing accuracy by the

unlabeled attachment score (UAS), that is, the fraction of word tokens in held-out (dev)

data that are assigned their correct parent. For language modeling, we train simple

trigram backoff language models with add-1 smoothing, and we measure predictive

accuracy as the perplexity of held-out (dev) data.

Figure 3.2–3.3 show how the parsability and perplexity of a real training language

usually get worse when we permute it. We could have discarded low-parsability

52

Family Sub-Family Language (Treebank ID) Split

Indo-European

Germanic

German (de) Train
Norwegian (no) Train

Danish (da) Dev
Dutch (nl) Dev

English (en) Dev
Gothic (got) Dev
Swedish (sv) Test

Slavic

Czech (cs) Train
Bulgarian (bg) Dev
Croatian (hr) Test

Old_Church_Slavonic (cu) Test
Polish (pl) Test

Slovenian (sl) Test

Romance

French (fr) Train
Italian (it) Train

Portuguese (pt) Train
Spanish (es) Train

Romanian (ro) Test

Greek

Ancient_Greek (grc) Dev
Ancient_Greek (grc_proiel) Dev

Greek (el) Test

Latin
Latin (la_itt) Train

Latin (la_proiel) Dev
Latin (la) Test

Celtic Irish (ga) Test
Indic Hindi (hi) Train

Iranian Persian (fa) Test

Uralic Finnic
Estonian (et) Dev
Finnish (fi) Dev

Finnish (fi_ftb) Test
Ugric Hungarian (hu) Test

Afro-Asiatic Semitic Arabic (ar) Train
Hebrew (he) Test

Austronesian - Indonesian (id) Test
Basque - Basque (eu) Test

Dravidian Southern Tamil (ta) Test
Japanese - Japanese (ja_ktc) Test

Table 3.3: Information of the 37 UD treebanks. As we are interested in transfer to unseen
languages, in the following sections, any evaluation of Ancient_Greek as a language is
computed by averaging the individual scores of “grc” and “grc_proiel” in blue, which will be
referred as “grc” henceforth. Treebanks are marked in red are omitted for evaluation, because
their languages are among the “Train” split as well. fi_ftb is also omitted because fi is in “Dev”.
Note that this setting is different from the original paper (Wang and Eisner, 2016), where the
seen languages are also evaluated.

53

1 2 3 4 5 6 7 8

fr

pt
no

de

it
la_itt

ar
cs

hi

es

real pos
synthetic pos
real word
synthetic word

Figure 3.3: Perplexity of the POS sequence, as well as the word sequence, of real versus
synthetic languages. Words with count < 10 are mapped to an OOV symbol.

synthetic languages, on the functionalist grounds that they would be unlikely to

survive as natural languages anywhere in the galaxy. However, the curves in these

figures show that most synthetic languages have parsability and perplexity within the

plausible range of natural languages, so we elected to simply keep all of them in our

collection.

An interesting exception in Figure 3.2 is Latin (la_itt), whose poor parsability—at

least by a delexicalized parser that does not look at word endings—may be due to its

especially free word order (Table 3.2). When we impose another language’s more

consistent word order on Latin, it becomes more parsable. Elsewhere, permutation

generally hurts, perhaps because a real language’s word order is globally optimized to

enhance parsability. It even hurts slightly when we randomly “self-permute” S trees

to use other word orders that are common in S itself! Presumably this is because the

authors of the original S sentences chose, or were required, to order each constituent

54

in a way that would enhance its parsability in context: see the last paragraph of

Section 3.3.2.

Synthesizing languages is a balancing act. The synthetic languages are not useful

if all of them are too conservatively close to their real sources to add diversity—or too

radically different to belong in the galaxy of natural languages. Fortunately, we are

at neither extreme. Figure 3.4 visualizes a small sample of 110 languages from our

collection.8 For each ordered pair of languages (S, T), we defined the dissimilarity

d(S, T) as the decrease in UAS when we parse the dev data of T using a parser trained

on S instead of one trained on T. Small dissimilarity (i.e., good parsing transfer)

translates to small distance in the figure. The figure shows that the permutations

of a substrate language (which share its color) can be radically different from it,

as we already saw above. Some may be unnatural, but others are similar to other

real languages, including held-out dev languages. Thus Dutch (nl) and Estonian

(et) have close synthetic neighbors within this small sample, although they have no

close real neighbors. As future work, we want to quantitively compare the synthetic

languages with the real ones by measuring some precision and recall errors in the their

distibutions (for example, computing the inclusive and exlusice KL-divergeneces on

the language model trained on synthetic and real languages).

3.7 An Experiment

We now illustrate the use of GD by studying how expanding the set of available

treebanks can improve a simple NLP method, related to Figure 3.4.

8For each of the 10 real training languages, we sampled 9 synthetic languages: 3 N-permuted, 3
V-permuted and 3 {N,V}-permuted. We also included all 10 training + 8 dev languages.

55

de

daen

fr

et

got

bg

grc

cs

pt

hi

la_itt

it

ar

nl

no

es

fi

N-superstrate
V-superstrate
2 superstrates
real

Figure 3.4: Each point represents a language. The color of a synthetic language is the
same as its substrate language. Dev languages are shown in black. This 2-dimensional
embedding was constructed using metric multidimensional scaling (Borg and Groenen, 2005)
on a symmetrized version of our dissimilarity matrix (which is not itself a metric). The
embedded distances are reasonably faithful to the symmetrized dissimilarities: metric MDS
achieves a low value of 0.20 on its “stress” objective, and we find that Kendall’s tau = 0.76,
meaning that if one pair of languages is displayed as farther apart than another, then in over
7/8 of cases, that pair is in fact more dissimilar. Among the real languages, note the clustering
of Italic languages (pt, es, fr, it), Germanic languages (de, no, en, nl, da), Slavic languages
(cs, bg), and Uralic languages (et, fi). Outliers are Arabic (ar), the only Afroasiatic language
here, and Hindi (hi), the only SOV language, whose permutations are less outré than it is.

56

3.7.1 Single-source selection

We use a simple method called “single-source selection”: parsing a target language

T with a parser that was trained on a source language S, where the two languages

are syntactically similar. Such single-source selection parsers are not state-of-the-art

(Ganchev et al., 2010; McDonald, Petrov, and Hall, 2011; Ma and Xia, 2014; Rosa

and Žabokrtský, 2015a; Rosa and Žabokrtský, 2015b; Guo et al., 2015; Duong et al.,

2015b; Rasooli and Collins, 2015), but they have shown substantial improvements

over fully unsupervised grammar induction systems (Klein and Manning, 2004; Smith

and Eisner, 2006; Spitkovsky, Alshawi, and Jurafsky, 2013).

It is permitted for S and T to have different vocabularies. The S parser can

nonetheless parse T (as in Figure 3.4)—provided that it is a “delexicalized” parser

that only cares about the POS tags of the input words. In this case, we require only

that the target sentences have already been POS tagged using the same tagset as S: in

our case, the UD tagset.

3.7.2 Experimental setup

We evaluate single-source selection when the pool of m source languages consists of

n real UD languages, plus m− n synthetic GD languages derived by “remixing” just

these real languages.9 We try various values of n and m, where n can be as large as 10

(training languages from Table 3.3) and m can be as large as n× (n+ 1)× (n+ 1) ≤
1210 (see Section 3.5).

Given a real target language T from outside the pool, we select a single source

9The m− n GD treebanks are comparatively impoverished because—in the current GD release—
they include only projective sentences (Table 3.2). The n UD treebanks are unfiltered.

57

language S from the pool, and try to parse UD sentences of T with a parser trained on

S. We evaluate the results on T by measuring the unlabeled attachment score (UAS),

that is, the fraction of word tokens that were assigned their correct parent. In these

experiments (unlike those of Section 3.6), we always evaluate fairly on T’s full dev or

test set from UD—not just the sentences we kept for its GD version (cf. Table 3.2).10

The hope is that a large pool will contain at least one language—real or synthetic—

that is “close” to T. We have two ways of trying to select a source S with this

property:

Supervised selection selects the S whose parser achieves the highest UAS on 100

training sentences of language T. This requires 100 good trees for T, which could be

obtained with a modest investment—a single annotator attempting to follow the UD

annotation standards in a consistent way on 100 sentences of T, without writing out

formal T-specific guidelines. (There is no guarantee that selecting a parser on training

data will choose well for the test sentences of T. We are using a small amount of data

to select among many dubious parsers, many of which achieve similar results on the

training sentences of T. Furthermore, in the UD treebanks, the test sentences of T are

sometimes drawn from a different distribution than the training sentences.)

Unsupervised selection selects the S whose training sentences had the best “cover-

age” of the POS tag sequences in the actual data from T that we aim to parse. More

precisely, we choose the S that maximizes pS(tag sequences from T)—in other words,

the maximum-likelihood S—where pS is our trigram language model for the tag

sequences of S. This approach is similar to Rosa and Žabokrtský (2015a), except that

they select S based on the fractional counts of the trigrams instead.

10The Yara parser can only produce projective parses. It attempts to parse all test sentences of T
projectively, but sadly ignores non-projective training sentences of S (as can occur for real S).

58

Algorithm 5 The algorithm of data collection for one graph, the mean lines in the
“kite graph” (Figure 3.5) are actually obtained by averaging 10,000 graphs. Each of
these graphs is “smooth” because it incrementally adds new languages as n or m
increases. All random choices are made uniformly.

Input: Sets T (target languages), S (real source languages), S ′ (synthetic source
languages)

Output: Sets of data points Dsup, Dunsup
1: procedure COLLECTDATA

2: D ← ∅
3: Sample a target language T from T
4: L← random.shuffle(S − {T})
5: L′ ← random.shuffle(S ′)
6: for n = 1 to |L| do
7: L′′ ← a filtered version of L′ that excludes languages with substrates or superstrates

outside {L1, . . . , Ln}
8: for n′ = 1 to |L′′| do
9: P ← {L1, . . . , Ln, L′′1 , . . . , L′′n′}

10: m← |P|
11: Dsup ← Dsup ∪ {(n, m, UASsup(P , T))} ▷ Add the UAS using the

supervised selection from P
12: Dunsup ← Dunsup ∪ {(n, m, UASunsup(P , T))} ▷ Add the UAS using the

unsupervised selection from P
13: return (Dsup, Dunsup)

3.7.3 Results

Our most complete visualization is Figure 3.5, which we like to call the “kite graph”

for its appearance. We plot the UAS on the development treebank of T as a function

of n, m, and the selection method. As Algorithm 5 details, each point on this graph is

actually an average over 10,000 experiments that make random choices of T (from the

UD development languages), the n real languages (from the UD training languages),

and the m− n synthetic languages (from the GD languages derived from the n real

languages). We see from the black lines that increasing the number of real languages

n is most beneficial. But crucially, when n is fixed in practice, gradually increasing m

59

by remixing the real languages does lead to meaningful improvements. This is true

for both selection methods. As shown in Table 3.4, supervised selection is markedly

better than unsupervised.

The “selection graph” in Figure 3.6 visualizes the same experiments in a different

way. Here we ask about the fraction of experiments in which using the full pool of

m source languages was strictly better than using only the n real languages. We find

that when m has increased to its maximum, the full pool nearly always contains a

synthetic source language that gets better results than anything in the real pool. After

all, our generation of “random” languages is a scattershot attempt to hit the target:

the more languages we generate, the higher our chances of coming close. However,

our selection methods only manage to pick a better language in about 60% of those

experiments.

Figure 3.7 offers a fine-grained look at which real and synthetic source languages

S succeeded best when T = English. Each curve shows a different superstrate, with

the x-axis ranging over substrates. (The figure omits the hundreds of synthetic source

languages that use two distinct superstrates, RV ̸= RN.) Real languages are shown as

solid black dots, and are often beaten by synthetic languages. For comparison, this

graph also plots results that “cheat” by using English supervision.

The above graphs are evaluated on development sentences in development lan-

guages. For our final results, Table 3.4, we finally allow ourselves to try transferring to

the UD test languages, and we evaluate on test sentences. The comparison is similar to

the comparison in the selection graph: do the synthetic treebanks add value? We use

our largest source pools, n = 10 and m = 1210. With supervised selection, selecting

the source language from the full pool of m options (not just the n real languages)

60

Figure 3.5: Comprehensive results for single-source selection from a pool of m languages
(the horizontal axis) synthesized from n real languages. For each color 1, 2, . . . , n, the upper
dashed line shows the UAS achieved by supervised selection; the lower solid line shows
unsupervised selection; and the shaded area highlights the difference. The black dashed and
solid lines connect the points where m = n, showing how rapidly UAS increases with n when
only real languages are used.

Each point is the mean dev UAS over 10,000 experiments. We use paler lines in the same
color and style to show the considerable variance of these UAS scores. These essentially
delimit the interdecile range from the 10th to the 90th percentile of UAS score. However,
if the plot shows a mean of 57, an interdecile range from 53 to 61 actually means that the
middle 80% of experiments were within ±4 percentage points of the mean UAS for their
target language. (In other words, before computing this range, we adjust each UAS score for
target T by subtracting the mean UAS from the experiments with target T, and adding back
the mean UAS from all 10,000 experiments (e.g., 57).)

Notice that on the n = 10 curve, there is no variation among experiments either at the
minimum m (where the pool always consists of all 10 real languages) or at the maximum m
(where the pool always consists of all 1210 galactic languages).

61

23 24 25 26 27 28 29 210
0.0

0.2

0.4

0.6

0.8

1.0
n = 10 real languages

22 23 24 25 26

n = 4 real languages

21 22 23 24
0.0

0.2

0.4

0.6

0.8

1.0
n = 2 real languages

20 21 22

n = 1 real languages
oracle selection
supervised selection
unsupervised selection

m = number of source languages

C
ha

nc
e

of
 s

el
ec

tin
g

a
he

lp
fu

l s
yn

th
et

ic
 la

ng
ua

ge

Figure 3.6: Chance that selecting a source from m languages achieves strictly better dev
UAS than just selecting from the n real languages.

tends to achieve significantly better UAS on the target language, often dramatically so.

On average, the UAS on the test languages increases by 2.3 percentage points, and

this increase is statistically significant across these 15 data points. With unsupervised

selection, UAS increases by 0.74 points on average, but this difference could be a

chance effect.

3.7.4 Experiment with Noisy Tags

The results above use gold POS tag sequences for T. These may not be available if T

is a low-resource language. Table 3.5 repeats the single-source selection experiment

62

en no de es cs it fr

la
_i

tt pt hi ar

Substrate Language

35

40

45

50

55

60

65

70

75

80
U

A
S

 o
n

 e
n

superstrate language
fr

en

pt

no

de

it

la_itt

ar

cs

hi

es

Figure 3.7: UAS performance of different source parsers when applied to English development
sentences. The x axis shows the 10 real training languages S, in decreasing order of their UAS
performance (plotted as large black dots). For each superstrate R, we plot a curve showing—
for each substrate S—the best UAS of the languages S[R/N], S[R/V] and S[R/N, R/V]. The
points where R = S are specially colored in black; these are instances of self-permutation
(Section 3.5). We also add “cheating results” where English itself is used as the substrate (left
column) and/or the superstrate (solid black line at top). Thus, the large black dot at the upper
left is a supervised English parser.

using noisy automatic POS tags for T for both parser input and unsupervised selection.

We obtained the tags using RDRPOSTagger (Nguyen et al., 2014) trained on just 100

gold-tagged sentences (the same set used for supervised selection). The low tagging

accuracy does considerably degrade UAS and muddies the usefulness of the synthetic

sources.

63

unsupervised (weakly) supervised
target real +synthetic real +synthetic

Basque 47.12 48.97 45.35 52.90
Croatian 68.69 68.89 68.69 69.11

Greek 60.07 65.72 65.87 66.98
Hebrew 63.39 60.65 62.86 64.28

Hungarian 56.41 64.67 56.72 66.22
Indonesian 63.79 61.89 65.36 65.36

Irish 53.55 59.38 57.72 64.72
Japanese 62.51 54.04 62.51 62.49

Old Church Slavonic 54.11 57.89 54.11 59.28
Persian 53.41 58.37 53.41 60.18
Polish 75.69 74.63 75.69 73.05

Romanian 66.33 68.01 71.38 69.19
Slovenian 80.41 80.41 80.41 80.41
Swedish 74.96 74.96 74.96 74.96

Tamil 63.15 56.20 63.15 63.15
Test Avg. 62.91 63.65 63.88 66.15

Ancient Greek (Avg.) 46.68 46.94 49.10 50.95
Bulgarian 79.80 74.52 79.80 79.80

Danish 71.65 71.65 71.65 70.79
Dutch 58.44 57.94 58.44 57.85

Estonian 68.83 72.21 68.83 74.75
English 63.37 61.37 63.37 65.43
Finnish 51.28 55.21 54.46 55.21
Gothic 54.98 57.57 54.98 58.66

All Avg. 62.55 63.13 63.43 65.47

Table 3.4: Our final comparison on the 15 test languages appears in the upper part of this
table. We ask whether single-source selection to these 15 real target languages is improved
by augmenting the source pool of 10 real languages with 1200 synthetic languages. When
different languages are selected in these two settings, we boldface the setting with higher
test UAS, or both settings if they are not significantly different (paired permutation test
by sentence, p < 0.05). For completeness, we extend the table with the 10 development
languages. The “Avg.” lines report the average of 15 test or 23 test+dev languages. The two
supervised-selection averages are significantly different (paired permutation test by language,
p < 0.05).

64

tag unsupervised (weakly) superv.
Language real +synth real +synth

Ancient_Greek (Avg.) 70.87 37.31 36.77 38.51 39.28
Bulgarian 78.33 53.24 55.08 53.24 53.24

Danish 78.04 47.98 43.40 47.98 45.89
Dutch 71.70 39.40 38.99 42.42 42.75

Estonian 72.88 45.19 54.81 56.07 55.09
English 77.33 48.29 44.40 48.29 48.15
Finnish 65.65 29.59 28.81 36.85 36.90
Gothic 76.66 44.77 44.05 44.77 46.83
Avg. 73.93 43.22 43.29 46.02 46.02

Table 3.5: Tagging accuracy on the 8 dev languages, and UAS of the selected source parser
with these noisy target-language tag sequences. The results are formatted as in Table 3.4, but
here all results are on dev sentences.

3.7.5 Discussion

Many of the curves in Figure 3.5–3.6 still seem to be increasing steadily at maximum

m, which suggests that we would benefit from finding ways to generate even more

synthetic languages. Diversity of languages seems to be crucial, since adding new real

languages improves performance much faster than remixing existing languages. This

suggests that we should explore making more extensive changes to the UD treebanks

(see Section 3.8).

Surprisingly, Figure 3.5–3.6 show improvements even when n = 1. Evidently,

self-permutation of a single language introduces some useful variety, perhaps by

transporting specialized word orders (e.g., English still allows some limited V2

constructions) into contexts where the source language would not ordinarily allow

them but the target language does.

Figure 3.5 shows why unsupervised selection is considerably worse on average

65

than supervised selection. Its 90th percentile is comparable, but at the 10th percentile—

presumably representing experiments where no good sources are available—the

unsupervised heuristic has more trouble at choosing among the mediocre options. The

supervised method can actually test these options using the true loss function.

Figure 3.7 is interesting to inspect. English is essentially a Germanic language

with French influence due to the Norman conquest, so it is reassuring that German

and French substrates can each be improved by using the other as a superstrate. We

also see that Arabic and Hindi are the worst source languages for English, but that

Hindi[Arabic/V] is considerably better. This is because Hindi is reasonably similar to

English once we correct its SOV word order to SVO by interpolating (Equation (3.3))

with the parameter vector of Arabic, which is VSO.

3.8 Conclusions and Future Work

This work may unlock a wide variety of research opportunities (discussed in Sec-

tion 3.1). Our empirical studies show that the synthetic languages in this collection

remain somewhat natural while improving the diversity of the collection. As a simplis-

tic but illustrative use of the resource, we carefully evaluated its impact on the naive

technique of single-source selection parsing. We found that performance could consis-

tently be improved by adding synthetic languages to the pool of sources, assuming

gold POS tags.

There are several non-trivial opportunities for improving and extending our tree-

bank collection in future releases.

1. Our current method is fairly conservative, only synthesizing languages with

word orders already attested in our small collection of real languages. This does not

66

increase the diversity of the pool as much as when we add new real languages. Thus,

we are particularly interested in generating a wider range of synthetic languages. We

could condition reorderings on the surrounding tree structure, as noted in Section 3.3.2.

We could choose reordering parameters θA more adventurously than by drawing them

from a single known superstrate language. We could go beyond reordering, to system-

atically choose what function words (determiners, prepositions, particles), function

morphemes, or punctuation symbols11 should appear in the synthetic tree, or to other-

wise alter the structure of the tree (Dorr, 1993). In machine translation, researchers

(Yamada and Knight, 2001; Eisner, 2003; Galley et al., 2004) have found these addi-

tional operations to be crucial for transducing constituency trees or functional-heading

(UD’s design is content-heading) dependency trees from source languages to target

languages. Although these options may produce implausible languages, we could

mitigate this by filtering or reweighting our sample of synthetic languages—via re-

jection sampling or importance sampling—so that they are distributed more like real

languages, as measured by their parsabilities, dependency lengths, and estimated

WALS features (Dryer and Haspelmath, 2013).

2. Currently, our reordering method only generates projective dependency trees.

11Our current handling of punctuation produces unnatural results, and not merely because we treat
all tokens with tag PUNCT as interchangeable. Proper handling of punctuation and capitalization would
require more than just reordering. For example, “Jane loves her dog, Lexie.” should
reorder into “Her dog, Lexie, Jane loves.”, which has an extra comma and an extra capital.
Accomplishing this would require first recovering a richer tree for the original sentence, in which
the appositive Lexie is bracketed by a pair of commas and the name Jane is doubly capitalized.
These extra tokens were not apparent in the original sentence’s surface form because the final comma
was absorbed into the adjacent period, and the start-of-sentence capitalization was absorbed into the
intrinsic capitalization of Jane (Nunberg, 1990). The tokenization provided by the UD treebanks
unfortunately does not attempt to undo these orthographic processes, even though it undoes some
morphological processes such as contraction. Our later work (Li, Wang, and Eisner, 2019) proposes
a generative model which treats the punctuation as bindings of the dependency relations during the
permutation process.

67

We should extend it to allow non-projective trees as well—for example, by pseudo-

projectivizing the substrate treebank (Nivre and Nilsson, 2005) and then deprojectiviz-

ing it after reordering. One challenge about this approach is that the reordering model

should also refine some pseudo dependency labels along the permutation, which is

invariant for the projective reordering.

3. The treebanks of real languages can typically be augmented with larger unan-

notated corpora in those languages (Majliš, 2011), which can be used to train word

embeddings and language models, and can also be used for self-training and bootstrap-

ping methods. We plan to release comparable unannotated corpora for our synthetic

languages, by automatically parsing and permuting the unnanotated corpora of their

substrate languages.

4. At present, all languages derived from an English substrate use the English

vocabulary. In the future, we plan to encipher that vocabulary separately for each

synthetic language, perhaps choosing a cipher so that the result loosely conforms

to the realistic phonotactics and/or orthography of some superstrate language. This

would let multilingual methods exploit lexical features without danger of overfitting

to specific lexical items that appear in many synthetic training languages. Although

prefixing a language ID to each word could also do this, alphabetic ciphers can

preserve features of words that are potentially informative for linguistic structure

discovery: their cooccurrence statistics, their length and phonological shape, and the

sharing of substrings among morphologically related words.

5. Finally, this chapter has focused on generating a broadly reusable collection of

synthetic treebanks. For some applications (including single-source selection), one

might wish to tailor a synthetic language on demand, e.g., starting with one of our

68

treebanks but modifying it further to more closely match the surface statistics of a

given target language (Dorr et al., 2002). Chapter 6 will continue this discussion on

how to generate “targeted” synthetic languages.

We conclude by revisiting our opening point of this chapter (as well as Sec-

tions 1.4.1 and 2.5). Unsupervised discovery of linguistic structure is difficult. We

often do not know quite what function to maximize, or how to globally maximize

it. If we could make labeled languages as plentiful as labeled images, then we could

treat linguistic structure discovery as a problem of supervised prediction—one that

need not succeed on all formal languages, but which should generalize at least to the

domain of possible human languages.

69

Chapter 4

Fine-Grained Prediction of Syntactic
Typology

Chapter 3 introduces a large set of synthetic languages generated by mix-and-match

over some real languages. This chapter and the next (Chapter 5) will study how this

novel dataset could mitigate the data sparsity issue (Section 2.5) of training a good

amortized Bayes (AB) inference function (Section 2.4.4). While Chapter 5 focuses on

predicting unsupervised parsers—our final goal, this chapter shows how to predict the

basic word order facts known as the syntactic typology. Different from the parsing

task, which predicts dependency relations for each token, this chapter makes the

prediction at the dependency type level. For example, we predict how often direct

objects follow their verbs, how often adjectives follow their nouns, and in general the

directionalities of all dependency relations. Like unsupervised parsing, this problem

is usually regarded as unsupervised learning. We adopt the AB inference function by

treating it as supervised learning, using the large collection of Galactic Dependencies

(GD) languages (Chapter 3) as training data. The AB inference function must identify

surface features of a language’s POS sequence (hand-engineered or neural features)

that correlate with the language’s syntactic typology.

70

To some extent, this task could be considered as a preliminary to unsupervised

parsing because a good parser must know these word order facts in order to generate

good parses. In the experiment, we show: 1) Given a small set of real languages, it

helps to add many GD languages to the training data, 2) our inference function is

robust even when the POS sequences include noise, and 3) our inference function

outperforms a grammar induction baseline by a large margin.

4.1 Introduction

Descriptive linguists often characterize a human language by its typological properties.

For instance, English is an SVO-type language because its basic clause order is Subject-

Verb-Object (SVO), and also a prepositional-type language because its adpositions

normally precede the noun. Identifying basic word order must happen early in the

acquisition of syntax, and presumably guides the initial interpretation of sentences

and the acquisition of a finer-grained grammar. Our AB inference function is suitable

for doing this.

The problem is challenging because the language’s true word order statistics are

computed from syntax trees, whereas our method has access only to a POS-tagged

corpus. Based on these POS sequences alone, we predict the directionality of each

type of dependency relation. We define the directionality to be a real number in [0, 1]:

The fraction of tokens of this relation that are “right-directed,” in the sense that the

child (modifier) falls to the right of its parent (head). For example, the dobj relation

points from a verb to its direct object (if any), so a directionality of 0.9—meaning

that 90% of dobj dependencies are right-directed—indicates a dominant verb-object

order. (See Table 4.1 for more such examples.) As discussed in Section 2.4.4, we

71

denote τ(y) to be some typological information that AB inference function is trained

to predict. In this chapter, the form of τ(y) is a vector of directionalities of 57

dependency types in the UD project. We assume that all languages draw on the same

set of POS tags and dependency relations that is proposed by the UD project (see

Section 3.3.1), so that our predictor works across languages.

Why do this? Liu (2010) has argued for using these directionality numbers in

[0, 1] as fine-grained and robust typological descriptors. Besides the linguistic merit

on its own, we believe that the directionalities could also be used to help define

an initializer, prior, or regularizer for NLP tasks like grammar induction or syntax-

based machine translation. Finally, the τ(y) vector can be regarded as a language

embedding computed from the POS-tagged corpus. This language embedding may

be useful as an input to multilingual NLP systems, such as the cross-linguistic neural

dependency parser of Ammar et al. (2016). In fact, some multilingual NLP systems

already condition on typological properties looked up in the World Atlas of Language

Structures, or WALS (Dryer and Haspelmath, 2013), as we review in Section 4.7.

However, WALS does not list all properties of all languages, and may be somewhat

inconsistent since it collects work by many linguists. Also, WALS only gives discrete

categories such as SVO and VSO, not fractions. Our system provides an automatic

alternative as well as a methodology for generalizing to new properties.

More broadly, this task is motivated by the challenge of determining the structure

of a language from its superficial features. Principles & Parameters theory (Chomsky,

1981; Chomsky and Lasnik, 1993) famously—if controversially—hypothesized that

human babies are born with an evolutionarily tuned system that is specifically adapted

72

Typology Example

Verb-Object (English)

PRON VERB PRON DET NOUN

She gave me a raise

dobj

Object-Verb (Hindi)

PRON PRON DET NOUN VERB

She me a raise gave
vah mujhe ek uthaane diya

dobj

Prepositional (English)

PRON VERB ADP DET NOUN

She is in a car

case

Postpositional (Hindi)

PRON DET NOUN ADP VERB

She a car in is
vah ek kaar mein hai

case

Adjective-Noun (English)

DET VERB DET ADJ NOUN

This is a red car

amod

Noun-Adjective (French)

DET VERB DET NOUN ADJ

This is a car red
Ceci est une voiture rouge

amod

Table 4.1: Three typological properties in the World Atlas of Language Structures (Dryer
and Haspelmath, 2013), and how they affect the directionality of Universal Dependencies
relations.

to natural language, which can predict typological properties (“parameters”) by spot-

ting telltale configurations in purely linguistic input. Here we investigate whether

such a system can be tuned by gradient descent. It is at least plausible that useful

superficial features do exist: e.g., if nouns often precede verbs but rarely follow verbs,

then the language may be verb-final.

73

4.2 Approach

We depart by revisiting the discussion in Sections 1.3 and 2.5 on the difficulties of

the traditional approach to latent structure discovery, namely unsupervised learning.

Unsupervised syntax learners in NLP tend to be rather inaccurate—partly because

they are failing to maximize an objective that has many local optima (the search error),

and partly because that objective does not capture all the factors that linguists consider

when assigning syntactic structure (the model error).

The idea of AB inference function is a supervised approach, where the heuristic is

simply imitate how linguists have analyzed other languages. This meta-supervised

objective goes beyond the log-likelihood of a PCFG-like model given the corpus,

because linguists do not merely try to predict the surface corpus. Their dependency

annotations may reflect a cross-linguistic theory that considers semantic interpretabil-

ity and equivalence, rare but informative phenomena, consistency across languages, a

prior across languages, and linguistic conventions (including the choice of latent labels

such as dobj). Our learner does not consider these factors explicitly, but we hope it

will identify correlates (e.g., using deep learning) that can make similar predictions.

Being supervised, our objective should also suffer less from local optima. Indeed,

we could even set up our problem with a convex objective, such as (kernel) logistic

regression, to predict each directionality separately. As discussed in Section 2.5, our

setting presents unusually sparse data for supervised learning, since each training

example is an entire language. The world presumably does not offer enough natural

languages—particularly with machine-readable corpora—to train a good classifier to

detect, say, Object-Verb-Subject (OVS) languages, especially given the class imbal-

ance problem that OVS languages are empirically rare, and the non-IID problem that

74

the available OVS languages may be evolutionarily related.1 We mitigate this issue

by training on the Galactic Dependencies (GD) treebanks (Chapter 3), a collection

of more than 50,000 human-like synthetic languages. The treebank of each synthetic

language is generated by stochastically permuting the subtrees in a given real treebank

to match the word order of other real languages. Thus, we have many synthetic lan-

guages that are Object-Verb like Hindi but also Noun-Adjective like French. We know

the true directionality of each synthetic language and we would like our classifier to

predict that directionality, just as it would for a real language. We will show that our

system’s accuracy benefits from fleshing out the training set in this way, which can be

seen as a form of regularization.

A possible criticism of our work is that obtaining the input POS sequences requires

human annotators, and perhaps these annotators could have answered the typological

classification questions as well. Arguably, this criticism also applies to most work on

grammar induction. We will show that our system is at least robust to noise in the

input POS sequences (Section 4.6.4).

4.3 Task Formulation

We now formalize the setup of the fine-grained typological prediction task under the

framework of Section 2.4.4. LetR be the set of universal relation types.2 We use r→
to denote a rightward dependency token with label r ∈ R.

Input for language ℓ: A POS-tagged corpus x.

Output for language ℓ: Our system predicts p̂(→| r, ℓ), the probability that a

1Properties shared within an OVS language family may appear to be consistently predictive of OVS,
but are actually confounds that will not generalize to other families in test data.

2In our final evaluationR has 57 relation types. See Section 4.6.9 for a detailed discussion.

75

token in language ℓ of an r-labeled dependency will be right-oriented. It predicts this

for each dependency relation type r ∈ R, such as r = dobj. Thus, the output of

eΘ(x) is a vector of predicted probabilities τ̂(x) def
= p̂ ∈ [0, 1]|R|.

Training: Following Algorithm 4, we set the parameter Θ of our system using

a collection of training pairs (xi, τ(yi)), each of which corresponds to the ith UD

or GD training language ℓ. τ(yi) in is defined as the true vector of probabilities as

empirically estimated from ℓ’s treebank.

Evaluation: Over pairs (x, τ(y)) that correspond to held-out real languages, we

evaluate the expected loss of the prediction τ̂AB(x). We use ε-insensitive loss3 with

ε = 0.1, so our evaluation metric is

Loss(τ̂AB(x), τ(y)) = ∑
r∈R

p(r | ℓ) · lossε(p̂(→| r, ℓ), p(→| r, ℓ)) (4.1)

where

• lossε(p̂, p) def
= max(| p̂− p| − ε, 0)

• p(→| r, ℓ) = countℓ(
r→)

countℓ(r)
is the empirical estimate of the directionality of r in ℓ.

• p̂(→| r, ℓ) is the system’s prediction

The aggregate metric Equation (4.1) is an expected loss that is weighted by p(r | ℓ) =
countℓ(r)

∑r′∈R countℓ(r′)
, to emphasize relation types that are more frequent in ℓ.

Why this loss function? We chose an L1-style loss, rather than L2 loss or log-loss,

so that the aggregate metric is not dominated by outliers. We took ε > 0 in order to

forgive small errors: If some predicted directionality is already “in the ballpark,” we

prefer to focus on getting other predictions right, rather than fine-tuning this one. Our

3Proposed by Drucker et al. (1997), Smola and Schölkopf (2004), and Vapnik (2013) for support
vector regression.

76

intuition is that errors < ε in τ̂AB(x)’s elements will not greatly harm downstream

tasks that analyze individual sentences, and might even be easy to correct by grammar

reestimation (e.g., EM) that uses τ̂AB(x) as a starting point.

In short, we have the intuition that if our predicted τ̂AB(x) achieves small lossε

on the frequent relation types, then τ̂AB(x) will be helpful for downstream tasks,

although testing that intuition is beyond the scope of this work. One could tune ε on a

downstream task.

4.4 Simple “Expected Count” Baseline

Before launching into our full models, we warm up with a simple baseline heuristic

called expected count (EC), which is reminiscent of Principles & Parameters. This

baseline doesn’t have trainable parameters, thus doesn’t need training langauges. The

idea is that if ADJs tend to precede nearby NOUNs in the sentences of language ℓ, then

amod probably tends to point leftward in ℓ. After all, the training languages show

that when ADJ and NOUN are nearby, they are usually linked by amod.

Fleshing this out, EC estimates directionalities as

p̂(→| r, ℓ) =
ecountℓ(

r→)

ecountℓ(
r→) + ecountℓ(

r←)
(4.2)

where we estimate the expected r← and r→ counts by

ecountℓ(
r→) = ∑

x∈x
∑

1≤i<j≤|x|
j−i<w

p(r→| xi, xj) (4.3)

ecountℓ(
r←) = ∑

x∈x
∑

1≤i<j≤|x|
j−i<w

p(r←| xi, xj) (4.4)

77

Here x ranges over tag sequences (sentences) of x, and w is a window size that

characterizes “nearby.”4

In other words, we ask: given that xi and xj are nearby tag tokens in the test

corpus x, are they likely to be linked? Equation (4.3)–(4.4) count such a pair as a “soft

vote” for r→ if such pairs tended to be linked by r→ in the treebanks of the training

languages,5 and a “soft vote” for r← if they tended to be linked by r←.

Training: For any two tag types t, t′ in the universal POS tagset T , we simply

use the training treebanks to get empirical estimates of p(· | t, t′), taking

p(r→| t, t′) = ∑ℓ sℓ · countℓ(t
r→ t′)

∑ℓ sℓ · countℓ(t, t′)
(4.5)

and similarly for p(r←| t, t′). This can be interpreted as the (unsmoothed) fraction

of (t, t′) within a w-word window where t is the r-type parent of t′, computed by

micro-averaging over languages. To get a fair average over languages, Equation (4.5)

downweights the languages that have larger treebanks, yielding a weighted micro-

average in which we define the weight sℓ = 1/ ∑t∈T ,t′∈T countℓ(t, t′).

As we report later in Table 4.5, even this simple supervised heuristic performs

significantly better than state-of-the-art grammar induction systems. However, it is

not a trained heuristic: it has no free parameters that we can tune to optimize our

evaluation metric. For example, it can pay too much attention to tag pairs that are not

discriminative. We therefore proceed to build a trainable, feature-based system.

4In our experiment, we chose w = 8 by cross-validation over w = 2, 4, 8, 16, ∞.
5Thus, the EC heuristic examines the correlation between relations and tags in the training treebanks.

But our methods in the next section will follow the formalization of Section 4.3: they do not examine a
training treebank beyond its directionality vector τ(y).

78

4.5 Proposed Model Architecture

To train our model, we will try to minimize the evaluation objective Equation (4.1)

averaged over the training languages, plus a regularization term given in Section 4.5.4.6

4.5.1 Directionality predictions from scores

Our predicted directionality for relation r will be

p̂(→| r, ℓ) = 1/(1 + exp(−ψ(x)r)) (4.6)

ψ(x) is a parametric function (see Section 4.5.2 below) that maps x to a score vector

in R|R|. Relation type r should get positive or negative score according to whether it

usually points right or left. The formula above converts each score to a directionality—

a probability in (0, 1)—using a logistic transform.

4.5.2 Design of the scoring function ψ(x)

To score all dependency relation types given the corpus x, we use a feed-forward

neural network with one hidden layer (Figure Figure 4.1):

ψ(x) = V σ(Wπ(x) + bW) + bV (4.7)

π(x) extracts a d-dimensional feature vector from the corpus x (see Section 4.5.3

below). W is a h× d matrix that maps π(x) into a h-dimensional space and bW is a

h-dimensional bias vector. σ is an element-wise activation function. V is a |R| × h

matrix whose rows can be regarded as learned embeddings of the dependency relation

6We gave all training languages the same weight. In principle, we could have downweighted the
synthetic languages as out-of-domain, using cross-validation to tune the weighting.

79

logistic�
⌧̂

R|R| [0, 1]|R|Rh RhRd

p̂(!| r1, `)

p̂(!| r2, `)

p̂(!| r|R|�1, `)

p̂(!| r|R|, `)

`

x

⇡(x)

Figure 4.1: Basic predictive architecture from Equation (4.6)–(4.7). bW and bV are sup-
pressed for readability.

types. bV is a |R|-dimensional bias vector that determines the default rightwardness

of each relation type. We give details in Section 4.6.5.

The hidden layer σ(Wπ(x) + bW) can be regarded as a latent representation of

the language’s word order properties, from which potentially correlated predictions

τ̂AB(x) are extracted.

4.5.3 Design of the featurization function π(x)

Our current feature vector π(x) considers only the POS tag sequences for the sen-

tences in the unparsed corpus x. Each sentence is augmented with a special boundary

tag # at the start and end. We explore both hand-engineered features and neural

features.

Hand-engineered features. Recall that Section 4.4 considered which tags appeared

near one another in a given order. We now devise a slew of features to measure such

80

co-occurrences in a variety of ways. By training the weights of these many features,

our system will discover which ones are actually predictive.

Let g(t | j) ∈ [0, 1] be some measure (to be defined shortly) of the prevalence of

tag t near token j of corpus x. We can then measure the prevalence of t, both overall

and just near tokens of tag s:7

πt = mean
j

g(t | j) (4.8)

πt|s = mean
j: Tj=s

g(t | j) (4.9)

where Tj denotes the tag of token j. We now define versions of these quantities for

particular prevalence measures g.

Given w > 0, let the right window wj denote the sequence of tags Tj+1, . . . , Tj+w

(padding this sequence with additional # symbols if it runs past the end of j’s sentence).

We define quantities πw
t|s and πw

t via Equation (4.8)–(4.9), using a version of g(t | j)

that measures the fraction of tags in wj that equal t. Also, for b ∈ {1, 2}, we define

πw,b
t|s and πw,b

t using a version of g(t | j) that is 1 if wj contains at least b tokens of t,

and 0 otherwise.

For each of these quantities, we also define a corresponding mirror-image quantity

(denoted by negating w > 0) by computing the same feature on a reversed version of

the corpus.

We also define “truncated” versions of all quantities above, denoted by writing ˆ

over the w. In these, we use a truncated window ŵj, obtained from wj by removing

7In practice, we do backoff smoothing of these means. This avoids subsequent division-by-0 errors
if tag t or s has count 0 in the corpus, and it regularizes πt|s/πt toward 1 if t or s is rare. Specifically,
we augment the denominators by adding λ, while augmenting the numerator in Equation (4.8) by
adding λ ·meanj,t g(t | j) (unsmoothed) and the numerator in Equation (4.9) by adding λ times the
smoothed πt from Equation (4.8). λ > 0 is a hyperparameter (see Section 4.6.5).

81

any suffix that starts with # or with a copy of tag Tj (that is, s).8 As an example, π8̂,2
N|V

asks how often a verb is followed by at least 2 nouns, within the next 8 words of the

sentence and before the next verb. A high value of this is a plausible indicator of a

VSO-type or VOS-type language.

We include the following features for each tag pair s, t and each w ∈ {1, 3, 8, 100,

−1,−3,−8,−100, 1̂, 3̂, 8̂, ˆ100,−1̂,−3̂,−8̂,− ˆ100}:9

πw
t , πw

t|s, πw
t|s · πw

s , πw
t|s//πw

t , πw
t //πw

t|s, πw
t|s//π−w

t|s

where we define x//y = min(x/y, 1) to prevent unbounded feature values, which

can result in poor generalization. Notice that for w = 1, πw
t|s is bigram conditional

probability, πw
t|s · πw

s is bigram joint probability, the log of πw
t|s/πw

t is bigram point-

wise mutual information, and πw
t|s/π−w

t|s measures how much more prevalent t is to

the right of s than to the left. By also allowing other values of w, we generalize these

features. Finally, our model also uses versions of these features for each b ∈ 1, 2.

Neural features. As an alternative to the manually designed π function above, we

consider a neural approach to detect predictive configurations in the sentences of

x, potentially including complex long-distance configurations. Linguists working

with Principles & Parameters theory have supposed that a single telltale sentence—a

trigger—may be enough to determine a typological parameter, at least given the

settings of other parameters (Gibson and Wexler, 1994; Frank and Kapur, 1996).

We map each corpus sentence ui to a finite-dimensional real vector fi by using a

gated recurrent unit (GRU) network (Cho et al., 2014b), a type of recurrent neural

8In the “fraction of tags” features, g(t | j) is undefined (0
0) when ŵj is empty. We omit undefined

values from the means.
9The reason we don’t include π−w

t|s //πw
t|s is that it is included when computing features for −w.

82

.	.	.

.	.	.
f1

.	.	.

.	.	.

.	.	.

.	.	.

.	.	.
f2

.	.	.	

soft-pooling

.	.	.

x1

x2

xK

x

x1,0 x1,1 x1,2 x1,l1

x2,l2x2,2x2,1x2,0

xK,0xK,1xK,2 xK,lK

⇡�(x)

Figure 4.2: Extracting and pooling the neural features.

network that is a simplified variant of an LSTM network (Hochreiter and Schmidhuber,

1997). The GRU reads the sequence of one-hot embeddings of the tags in xi (including

the boundary symbols #). We omit the part of the GRU that computes an output

sequence, simply taking fi to be the final hidden state vector. The parameters are

trained jointly with the rest of our typology prediction system, so the training procedure

attempts to discover predictively useful configurations.

The various elements of fi attempt to detect various interesting configurations in

sentence xi. Some might be triggers (which call for max-pooling over sentences);

others might provide softer evidence (which calls for mean-pooling). For generality,

therefore, we define our feature vector π(x) by soft-pooling of the sentence vectors

83

fi (Figure 4.2). The tanh gate in the GRU implies fik ∈ (−1, 1) and we transform

this to the positive quantity f ′ik =
fik+1

2 ∈ (0, 1). Given an “inverse temperature” β,

define10

π
β
k =

(
mean

i
(f ′ik)

β

)1/β

(4.10)

This π
β
k is a pooled version of f ′ik, ranging from max-pooling as β→ −∞ (i.e., does

f ′ik fire strongly on any sentence i?) to min-pooling as β → −∞. It passes through

arithmetic mean at β = 1 (i.e., how strongly does f ′ik fire on the average sentence i?),

geometric mean as β→ 0 (this may be regarded as an arithmetic mean in log space),

and harmonic mean at β = −1 (an arithmetic mean in reciprocal space).

Our final π is a concatenation of the πβ vectors for β ∈ {−4,−2,−1, 0, 1, 2, 4}.
We chose these β values experimentally, using cross-validation.

Combined model. We also consider a model

ψ(x) = α ψH(x) + (1− α)ψN(x) (4.11)

where ψH(x) is the score assigned by the hand-feature system, ψN(x) is the score as-

signed by the neural-feature system, and α ∈ [0, 1] is a hyperparameter to balance the

two. ψH(x) and ψN(x) were trained separately. At test time, we use Equation (4.11)

to combine them linearly before the logistic transform Equation (4.6). This yields a

weighted-product-of-experts model.

10For efficiency, we restrict the mean to i ≤ 1e4 (the first 10,000 sentences).

84

4.5.4 Training procedure

Length thresholding. By default, our feature vector π(x) is extracted from those

sentences in x with length ≤ 40 tokens. In Section 4.6.3, however, we try concatenat-

ing this feature vector with one that is extracted in the same way from just sentences

with length ≤ 10. The intuition (Spitkovsky, Alshawi, and Jurafsky, 2010) is that

the basic word order of the language can be most easily discerned from short, simple

sentences.

Initialization. We initialize the model of Equation (4.6)–(4.7) so that the estimated

directionality p̂(→| r, ℓ), regardless of ℓ, is initially a weighted mean of r’s direction-

alities in the training languages, namely

p̄r
def
= ∑

ℓ

wℓ(r) p(→| r, ℓ) (4.12)

where wℓ(r)
def
= p(r|ℓ)

∑ℓ′ p(r|ℓ′) (4.13)

This is done by setting V = 0 and the bias (bV)r = log p̄r
1− p̄r

, clipped to the range

[−10, 10]. As a result, we make sensible initial predictions even for rare relations r,

which allows us to converge reasonably quickly even though we do not update the

parameters for rare relations as often.

We initialize the recurrent connections in the GRU to random orthogonal matrices.

All other weight matrices in Figure 4.1 and the GRU use “Xavier initialization” (Glorot

and Bengio, 2010). All other bias weight vectors are initialized to 0.

Regularization. We add an L2 regularizer to the objective. When training the neural

network, we use dropout as well. All hyperparameters (regularization coefficient,

dropout rate, etc.) are tuned via cross-validation; see Section 4.6.5.

85

Optimization. We use different algorithms in different feature settings. With scoring

functions that use only hand features, we adjust the feature weights by stochastic

gradient descent (SGD). With scoring functions that include neural features, we use

RMSProp (Tieleman and Hinton, 2012).

4.6 Experiments

Our controlled experiments are conducted by controlling the training languages

between the UD v1.2 dataset and its synthetic counterpart, which is the GD dataset.

4.6.1 Data splits

We conduct a larger scale experiment than Chapter 3 by combining their 20 “Train”

and “Dev” treebanks (18 distinct languages) in Table 3.3 as training data, and hold out

the remaining 15 languages for testing. We tune the hyperparameters on the training

languages with 5-fold cross-validation. That is, for each fold, we train the system on

4 folds and evaluate on the remaining 1. The split information is in Table 4.2. Similar

to Table 3.3, we exclude some treebanks for evaluation (see the caption of Table 4.2),

which is also slightly different from the set up in the original work (Wang and Eisner,

2017), where no treebanks are excluded. When augmenting the 16 real languages

with GD languages, we include only GD languages that are generated by “mixing-

and-matching” those 16 languages, which means that we add 16× 17× 17 = 4624

synthetic languages.11

11Why 16× 17× 17? As Section 3.5 explains, each GD treebank is obtained from the UD treebank
of some substrate language S by stochastically permuting the dependents of verbs and nouns to respect
typical orders in the superstrate languages RV and RN respectively. There are 16 choices for S. There
are 17 choices for RV (respectively RN), including RV = S (“self-permutation”) and RV = ∅ (“no
permutation”).

86

Split Family Sub-Family Language Treebank ID

Train1

Indo-European Germanic Danish da
Indo-European Germanic Norwegian no
Indo-European Greek Ancient Greek grc_proiel
Afro-Asiatic Semitic Arabic ar

Train2

Indo-European Greek Ancient Greek grc
Indo-European Romance Portuguese pt
Indo-European Slavic Czech cs

Uralic Finnic Estonian et

Train3

Indo-European Germanic German de
Indo-European Germanic Gothic got
Indo-European Latin Latin la_proiel
Indo-European Romance Italian it

Train4

Indo-European Latin Latin la_itt
Indo-European Romance French fr
Indo-European Slavic Bulgarian bg

Uralic Finnic Finnish fi

Train5

Indo-European Germanic Dutch nl
Indo-European Germanic English en
Indo-European Indic Hindi hi
Indo-European Romance Spanish es

Test

Indo-European Celtic Irish ga
Indo-European Germanic Swedish sv
Indo-European Greek Greek el
Indo-European Iranian Persian fa
Indo-European Latin Latin la
Indo-European Romance Romanian ro
Indo-European Slavic Croatian hr
Indo-European Slavic Old Church Slavonic cu
Indo-European Slavic Polish pl
Indo-European Slavic Slovenian sl

Uralic Finnic Finnish fi_ftb
Uralic Ugric Hungarian hu

Afro-Asiatic Semitic Hebrew he
Austronesian - Indonesian id

Basque - Basque eu
Dravidian Southern Tamil ta
Japanese - Japanese ja_ktc

Table 4.2: Data split of the 37 real treebanks. Different from Table 3.3, we group the treebanks
by their split information. (Our “Train,” on which we do 5-fold cross-validation, contains both
their (Table 3.3) “Train” and “Dev” languages.) We follow the principle of Table 3.3 and does
not test on the fi_ftb or Latin treebanks because other treebanks of those languages appeared
in training data. Specifically, la_proiel and la_itt fall in “Train3” and “Train4”, respectively.
For the same reason, Table 4.8 does not show cross-validation development results on these
Latin treebanks—nor on the grc_proiel and grc treebanks, which fall in “Train1” and “Train2”,
respectively. This results 16 training languages to be evaluated for cross-valuation. All the
excluded treebanks are marked in red. In the final test, we will use the model trained on all 20
“Train” treebanks.

87

Each GD treebank y provides a standard split into train/dev/test portions. We

primarily restrict ourselves to the train portions (saving the gold trees from the dev

and test portions to tune and evaluate some future grammar induction system that

consults our typological predictions). For example, we write xtrain for the POS-tagged

sentences in the “train” portion, and τ(ytrain) for the empirical probabilities derived

from their gold trees.

We always train the model to predict τ(ytrain) from xtrain on each training lan-

guage. To evaluate on a held-out language during cross-validation, we can measure

how well the model predicts τ(ytrain) given xtrain.12 For our final test, we evaluate on

the 15 test languages using a model trained on all training languages (20 treebanks

for UD, plus 20× 21× 21 = 8840 when adding GD) with the chosen hyperparame-

ters. To evaluate on a test language, we again measure how well the model predicts

τ(ytrain) from xtrain.

4.6.2 Comparison of architectures

Table 4.3 shows the cross-validation losses (Equation (4.1)) that are achieved by

different scoring architectures. We compare the results when the model is trained on

real languages (the “UD” column) versus on real languages plus synthetic languages

(the “+GD” column).

The ψH models here use a subset of the hand-engineered features, selected by the

experiments in Section 4.6.3 below and corresponding to Table 4.4 line 8.

12In actuality, we measured how well it predicts τ(ydev) given xdev. That was a slightly less sensible
choice. It may have harmed our choice of hyperparameters, since dev is smaller than train and therefore
τ(ydev) tends to have greater sampling error. Another concern is that our typology system, having been
specifically tuned to predict τ(ydev), might provide an unrealistically accurate estimate of τ(ydev) to
some future grammar induction system that is being cross-validated against the same dev set, harming
that system’s choice of hyperparameters as well.

88

Architecture ε-insensitive loss
Scoring Depth UD +GD

Expected count (EC) - 0.113 0.109
Hand-engineered features (ψH) 0 0.066 0.041*
Hand-engineered features (ψH) 1 0.058* 0.041*
Hand-engineered features (ψH) 3 0.067 0.054

Neural features (ψN) 1 0.069* 0.047
Combination 1 0.058* 0.035*

Table 4.3: Average expected loss over 16 training languages, computed by 5-fold cross-
validation. The first column indicates whether we score using hand-engineered features (ψH),
neural features (ψN), or a combination (see end of Section 4.5.3). As a baseline, the first
line evaluates the EC (expected count) heuristic from Section 4.4. Within each column, we
star the best (smallest) result as well as all results that are not significantly worse. For each
comparison between UD and +GD, we boldface the better (lower) result, or both if they are
not significantly different. All the statistical significance tests are under paired permutation
test over languages with p < 0.05.

Although Figure 4.1 and eq. (4.7) presented an “depth-1” scoring network with

one hidden layer, Table 4.3 also evaluates “depth-d” architectures with d hidden layers.

The depth-0 architecture simply predicts each directionality separately using logistic

regression (although our training objective is not the usual convex log-likelihood

objective).

Some architectures are better than others. We note that the hand-engineered

features outperform the neural features—though not significantly, since they make

complementary errors—and that combining them is best. However, the biggest benefit

comes from augmenting the training data with GD languages; this consistently helps

more than changing the architecture.

4.6.3 Contribution of different feature classes

To understand the contribution of different hand-engineered features, we performed

forward selection tests on the depth-1 system, including only some of the features. In

89

ID Features Length Loss (+GD)
0 ∅ — 0.085
1 conditional 40 0.065
2 joint 40 0.057
3 PMI 40 0.044
4 asymmetry 40 0.046
5 rows 3+4 40 0.043
6 row 5+b 40 0.042
7 row 5+t 40 0.043
8* row 5+b+t 40 0.041
9 row 8 10 0.048
10 row 8 10+40 0.041

Table 4.4: Cross-validation losses with different subsets of hand-engineered features from
Section 4.5.3. “∅” is a baseline with no features (bias feature only), so it makes the same
prediction for all languages. “conditional” = πw

t|s features, “joint” = πw
t|s · πw

s features, “PMI”
= πw

t|s//πw
t and πw

t //πw
t|s features, “asymmetry” = πw

t|s//π−w
t|s features, “b” are the features

superscripted by b, and “t” are the features with truncated window. “+” means concatenation.
The “Length” field refers to length thresholding (see Section 4.5.4). The system in the starred
row is the one that we selected for row 2 of Table 4.3.

all cases, we trained in the “+GD” condition. The results are shown in Table 4.4. Any

class of features is substantially better than baseline, but we observe that most of the

total benefit can be obtained with just PMI or asymmetry features. Those features

indicate, for example, whether a verb tends to attract nouns to its right or left. We did

not see a gain from length thresholding.

4.6.4 Robustness to noisy input

We also tested our directionality prediction system on noisy input (without retraining

it on noisy input). Specifically, we tested the depth-1 ψH system. This time, when

evaluating on the dev split of a held-out language, we provided a noisy version of

that input corpus that had been retagged by an automatic POS tagger (Nguyen et al.,

2014), which was trained on just 100 gold-tagged sentences from the train split of

90

that language. The average tagging accuracy over the 16 languages was only 77.91%.

Nonetheless, the “UD”-trained and “+GD”-trained systems got respective losses of

0.06 and 0.046—nearly as good as in Table 4.3, which used gold POS tags.

4.6.5 Hyperparameter settings

For each result in Table 4.3–4.4, the hyperparameters were chosen by grid search on

the cross-validation objective (and the table reports the best result). For the remaining

experiments, we select the depth-1 combined models (Equation (4.11)) for both “UD”

and “+GD,” as they are the best models according to Table 4.3.

The hyperparameters for the selected models are as follows: When training with

“UD,” we took α = 1 (which ignores ψN), with hidden layer size h = 256, σ =

sigmoid, L2_coeff = 0 (no L2 regularization), and dropout = 0.2. When training

with “+GD,” we took α = 0.6, with different hyperparameters for the two interpolated

models: ψH uses h = 128, σ = sigmoid, L2_coeff = 0, and dropout = 0.4, while

ψN uses h = 128, emb_size = 128, rnn_size = 32, σ = relu, L2_coeff = 0, and

dropout = 0.2. For both “UD” and “+GD”, we use λ = 1 for the smoothing in

Footnote 7.

4.6.6 Comparison with grammar induction

Grammar induction is an alternative way to predict word order typology. Given a

corpus of a language, we can first use grammar induction to parse it into dependency

trees, and then estimate the directionality of each dependency relation type based on

these (approximate) trees.

However, what are the dependency relation types? Current grammar induction

91

MS13 N10 EC ∅ UD +GD
loss 0.156 0.134 0.110 0.093 0.090 0.044

Table 4.5: Cross-validation average expected loss of the two grammar induction methods,
MS13 (Mareček and Straka, 2013) and N10 (Naseem et al., 2010), compared to the EC
heuristic of Section 4.4 and our architecture of Section 4.5 (the version from the last line
of Table 4.3). In these experiments, the dependency relation types are ordered POS pairs.
N10 harnesses prior linguistic knowledge, but its improvement upon MS13 is not statistically
significant. Both grammar induction systems are significantly worse than the rest of the
systems, including even our two baseline systems, namely EC (the “expected count” heuristic
from Section 4.4) and ∅ (the no-feature baseline system from Table 4.4 line 0). Like N10,
these baselines make use of some cross-linguistic knowledge, which they extract in different
ways from the training treebanks. Among our own 4 systems, EC is significantly worse than
all others, and +GD is significantly better than all others. (Note: When training the baselines,
we found that including the +GD languages—a bias-variance tradeoff— harmed EC but helped
∅. The table reports the better result in each case.)

systems produce unlabeled dependency edges. Rather than try to obtain a UD label

like r = amod for each edge, we label the edge deterministically with a POS pair

such as r = (parent = NOUN, child = ADJ). Thus, we will attempt to predict

the directionality of each POS-pair relation type. For comparison, we retrain our

supervised system to do the same thing.

For the grammar induction system, we try the implementation of DMV with stop-

probability estimation by Mareček and Straka (2013), which is a common baseline

for grammar induction (Le and Zuidema, 2015) because it is language-independent,

reasonably accurate, fast, and convenient to use. We also try the grammar induction

system of Naseem et al. (2010), which is the state-of-the-art system on UD (Noji,

Miyao, and Johnson, 2016). Naseem et al. (2010)’s method, like ours, has prior

knowledge of what typical human languages look like.

Table 4.5 shows the results. Compared to Mareček and Straka (2013), Naseem

et al. (2010) gets only a small (insignificant) improvement—whereas our “UD” system

92

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Average Proportion

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

-I
ns

en
si

tiv
e

Lo
ss

cc
det

emph

ccomp
prtremnant
nsubjpass

csubj

conj

foreign

vocative

neg

discourse

mark caseauxpass

mwe

advcl

aux

amod
reflex

parataxis

advmod
nsubj

nummod
reparandum

punct

relcl

tmod

compound
csubjpass

poss

goeswith

xcomp

cop

name

dep

appos

list

nmod
dobj

iobj

expl

predetpreconj

acl

Figure 4.3: Cross-validation loss broken down by relation. We plot each rela-
tion r with x coordinate = the proportion of r in the average training corpus =
meanℓ∈Train ptrain(r | ℓ) ∈ [0, 1], and with y coordinate = the weighted average
∑ℓ∈Heldout wℓ(r) lossε(p̂dev(→|r, ℓ), pdev(→|r, ℓ)) (see Equation (4.13)).

halves the loss, and the “+GD” system halves it again. Even our baseline systems

are significantly more accurate than the grammar induction systems, showing the

effectiveness of casting the problem as supervised prediction.

4.6.7 Fine-grained analysis

Beyond reporting the aggregate cross-validation loss over the 16 training languages,

we break down the cross-validation predictions by relation type. Figure 4.3 shows that

the frequent relations are all quite predictable. Figure 4.4 shows that our success is not

just because the task is easy—on relations whose directionality varies by language, so

that a baseline method does poorly, our system usually does well.

To show that our system is behaving well across languages and not just on average,

we zoom in on 5 relation types that are particularly common or of particular interest

93

0.0 0.1 0.2 0.3 0.4 0.5
-Insensitive Loss (baseline)

0.0

0.1

0.2

0.3

0.4

0.5

-I
ns

en
si

tiv
e

Lo
ss

 (f
ul

l m
od

el
)

cc
det

emph

ccomp
prtremnant

nsubjpass
csubj

conj

foreign

vocative

neg

discourse

mark case auxpass

mwe

advcl

aux

amod
reflex

parataxis

advmod
nsubj

nummod
reparandum

punct

relcl

tmod

compound
csubjpass

poss

goeswith

xcomp

cop

name

dep

appos

list

nmod
dobj

iobj

expl

predetpreconj

acl

Figure 4.4: The y coordinate is the average loss of our model (Table 4.4 line 8), just as in
Figure 4.3, whereas the x coordinate is the average loss of a simple baseline model ∅ that
ignores the input corpus (Table 4.4 line 0). Relations whose directionality varies more by
language have higher baseline loss. Relations that beat the baseline fall below the diagonal
line. The marker size for each relation is proportional to the x-axis in Figure 4.3.

to linguistic typologists. These 5 relations together account for 47% of all relation

tokens in the average language: nmod = noun-nominal modifier order, nsubj =

subject-verb order (feature 82A in the World Atlas of Language Structures), dobj =

object-verb order (83A), amod = adjective-noun order (87A), and case = placement

of both adpositions and case markers (85A).

As shown in Figure 4.5, most points in the first five plots fall in or quite near

the desired region. We are pleased to see that the predictions are robust when the

training data is unbalanced. For example, the case relation points leftward in most

real languages, yet our system can still predict the right directionality of hi, et and fi.

The credit goes to the diversity of our training set, which contains various synthetic

case-right languages: the system fails on these three languages if we train on real

languages only. That said, apparently our training set is still not diverse enough to do

94

0.0 0.2 0.4 0.6 0.8 1.0
True

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
tio

n
it

got

de

pt

et

cs no
ar

da
es

nl

hi

en
frbg

fi

nmod

0.0 0.2 0.4 0.6 0.8 1.0
True

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
tio

n

it

got

dept et cs
no arda
es
nlhienfr bg

fi

nsubj

0.0 0.2 0.4 0.6 0.8 1.0
True

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
tio

n

it

got

de

ptet

cs

no arda
es

nl

hi

enfr bg

fi

dobj

0.0 0.2 0.4 0.6 0.8 1.0
True

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
tio

n
it

got

de

pt

et
csno

ar

da

es

nl
hien

fr

bgfi

amod

0.0 0.2 0.4 0.6 0.8 1.0
True

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
tio

n

itgot

de

pt

et

cs
no
ar

da
es

nl

hi

en

fr
bg

fi

case

0.0 0.2 0.4 0.6 0.8 1.0
True

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
tio

n

noardapt etcsfr bg fiitgotde

esnl hien

case

Figure 4.5: Scatterplots of predicted vs. true directionalities (by cross-validation). In the plot
for relation type r, each language appears as a marker at (p∗, p̂) (see Section 4.3), with the
marker size proportional to wℓ(r) (see Equation (4.13)). Points that fall between the solid
lines (| p̂− p∗| ≤ ε) are considered “correct,” by the definition of ε-insensitive loss. The last
plot (bottom right) shows worse predictions for case when the model is trained on UD only.

95

well on the outlier ar (Arabic); see Figure 3.4.

4.6.8 Binary classification accuracy

Besides ε-insensitive loss, we also measured how the systems perform on the coarser

task of binary classification of relation direction. We say that relation r is dominantly

“rightward” in language ℓ iff p(→| r, ℓ) > 0.5. We say that a system predicts

“rightward” according to whether p̂(→| r, ℓ) > 0.5.

We evaluate whether this binary prediction is correct for each of the 20 most

frequent relations r, for each held-out language ℓ, using 5-fold cross-validation over

the 16 training languages as in the previous experiment. Tables 4.6 and 4.7 respec-

tively summarize these results by relation (equal average over languages) and by

language (equal average over relations). Keep in mind that these systems had not been

specifically trained to place relations on the correct side of the artificial 0.5 boundary.

Binary classification is an easier task. It is easy because, as the ∅ column in

Table 4.6 indicates, most relations have a clear directionality preference shared by

most of the UD languages. As a result, the better models with more features have

less opportunity to help. Nonetheless, they do perform better, and the EC heuristic

continues to perform worse.

In particular, EC fails significantly on dobj and iobj. This is because nsubj,

dobj, and iobj often have different directionalities (e.g., in SVO languages), but

the EC heuristic will tend to predict the same direction for all of them, according to

whether NOUNs tend to precede nearby VERBs.

96

Relation Rate EC ∅ UD +GD
nmod 0.16 0.94 0.94 0.94 0.94
punct 0.12 0.94 0.94 0.94 0.94
case 0.12 0.75 0.81 0.81 1.00
nsubj 0.08 0.94 0.94 0.94 0.94
det 0.07 0.81 0.94 0.94 0.94
amod 0.06 0.63 0.63 0.75 1.00
dobj 0.05 0.69 0.81 0.81 0.88
advmod 0.04 0.88 0.81 0.81 0.81
conj 0.04 1.00 1.00 1.00 1.00
cc 0.04 1.00 1.00 1.00 1.00
mark 0.03 0.94 0.94 0.94 0.94
aux 0.02 1.00 0.75 0.81 0.75
cop 0.02 0.81 0.81 0.75 0.81
advcl 0.01 0.94 0.94 0.94 0.94
nummod 0.01 0.94 0.94 0.94 0.94
acl 0.01 0.38 0.81 0.81 0.75

compound 0.01 0.44 0.44 0.44 0.38
xcomp 0.01 0.94 0.94 0.94 1.00
name 0.01 0.50 0.69 0.69 0.63
iobj 0.01 0.56 0.50 0.50 0.56

Average - 0.8 0.83 0.83 0.86

Table 4.6: Accuracy on the simpler task of binary classification of relation directionality.
The most common relations are shown first: the “Rate” column gives the average rate of the
relation across the 16 training languages (like the x coordinate in Figure 4.3).

4.6.9 Final evaluation on test data

All previous experiments were conducted by cross-validation on the 16 treebanks.

We now train the system on all 20 treebanks, and report results on the 15 blind test

languages (Table 4.8). In our evaluation metric (Equation (4.1)), R includes all 57

relation types that appear in training data, plus a special UNK type for relations that

appear only in test data. The results range from good to excellent, with synthetic data

providing consistent and often large improvements.

These results could potentially be boosted in the future by using an even larger

97

Language EC ∅ UD +GD
Arabic 0.75 0.7 0.65 0.75

Bulgarian 0.75 0.9 0.9 0.9
Czech 0.85 0.95 0.95 0.9
Danish 0.8 0.9 0.9 0.9
German 0.9 0.85 0.85 0.9
English 0.85 0.95 0.95 0.95
Spanish 0.9 0.9 0.95 0.95
Estonian 0.7 0.7 0.7 0.7
Finnish 0.7 0.85 0.85 0.8
French 0.85 0.9 0.9 0.9
Gothic 0.7 0.75 0.8 0.8
Hindi 0.6 0.45 0.45 0.7
Italian 0.85 0.85 0.85 0.9
Dutch 0.9 0.8 0.8 0.85

Norwegian 0.9 0.95 0.95 0.9
Portuguese 0.8 0.85 0.9 0.9

Average 0.8 0.83 0.83 0.86

Table 4.7: Accuracy on the simpler task of binary classification of relation directionality
for each training language. A detailed comparison shows that EC is significantly worse than
+GD (paired permutation test over the 16 languages, p < 0.05). The difference among ∅, UD
and +GD is insignificant, which suggests that this is an easier task where weak models might
suffice.

and more diverse training set. In principle, when evaluating on any one of our real

languages, one could train a system on all of the rest (plus the galactic languages

derived from them), not just 20. Moreover, the Universal Dependencies collection

has continued to grow beyond the 37 treebanks used here. Finally, our current setup

extracts only one training example from each (real or synthetic) language. One could

easily generate a variant of this example each time the language is visited during

stochastic optimization, by bootstrap-resampling its training corpus (to add “natural”

variation) or subsampling it (to train the predictor to work on smaller corpora). In the

case of a synthetic language, one could also generate a corpus of new trees each time

98

Test Train
Language UD +GD Language UD +GD
Basque 0.25 0.077 Arabic 0.116 0.056

Croatian 0.062 0.012 Danish 0.024 0.017
Greek 0.056 0.01 Norwegian 0.008 0.011

Hebrew 0.079 0.034 Czech 0.025 0.014
Hungarian 0.119 0.101 Estonian 0.055 0.015
Indonesian 0.099 0.073 Portuguese 0.038 0.004

Irish 0.181 0.154 German 0.046 0.027
Japanese 0.247 0.08 Gothic 0.008 0.03

Old Church Slavonic 0.024 0.029 Italian 0.011 0.01
Persian 0.22 0.121 Bulgarian 0.037 0.015
Polish 0.056 0.022 Finnish 0.069 0.07

Romanian 0.029 0.009 French 0.024 0.02
Slovenian 0.015 0.031 Dutch 0.069 0.064
Swedish 0.012 0.007 English 0.025 0.036

Tamil 0.238 0.052 Hindi 0.363 0.173
Spanish 0.012 0.008

Test Average 0.112 0.054* All Average 0.084 0.045*

Table 4.8: Our final comparison on the 15 test languages appears at left. We ask whether
the average expected loss on these 15 real target languages is reduced by augmenting the
training pool of 20 UD languages with +20*21*21 GD languages. For completeness, we
extend the table with the cross-validation results on the training pool, which includes 16
training languages grouped by 5 folds (separated by dashed lines). The “Average” lines report
the average of 15 test or 31 training+testing languages. We mark both “+GD” averages with
“*” as they are significantly better than their “UD” counterparts (paired permutation test by
language, p < 0.05).

the language is visited (by re-running the stochastic permutation procedure, instead of

reusing the particular permutation released by the Galactic Dependencies project).

4.7 Related Work

Typological properties can usefully boost the performance of cross-linguistic systems

(Bender, 2009; O’Horan et al., 2016). These systems mainly aim to annotate low-

resource languages with help from models trained on similar high-resource languages.

99

Naseem, Barzilay, and Globerson (2012) introduce a “selective sharing” technique

for generative parsing, in which a Subject-Verb language will use parameters shared

with other Subject-Verb languages. Täckström, McDonald, and Nivre (2013) and

Zhang and Barzilay (2015) extend this idea to discriminative parsing and gain further

improvements by conjoining regular parsing features with typological features. The

cross-linguistic neural parser of Ammar et al. (2016) conditions on typological features

by supplying a “language embedding” as input. Zhang et al. (2012) use typological

properties to convert language-specific POS tags to UD POS tags, based on their

ordering in a corpus.

Moving from engineering to science, linguists seek typological universals of

human language (Greenberg, 1963; Croft, 2002; Song, 2014; Hawkins, 2014), e.g.,

“languages with dominant Verb-Subject-Object order are always prepositional.” Dryer

and Haspelmath (2013) characterize 2679 world languages with 192 typological

properties. Their WALS database can supply features to NLP systems (see previous

paragraph) or gold standard labels for typological classifiers. Daumé III and Campbell

(2007) take WALS as input and propose a Bayesian approach to discover new univer-

sals. Georgi, Xia, and Lewis (2010) impute missing properties of a language, not by

using universals, but by backing off to the language’s typological cluster. Murawaki

(2015) use WALS to help recover the evolutionary tree of human languages; Daumé

III (2009) considers the geographic distribution of WALS properties.

Attempts at automatic typological classification are relatively recent. Lewis and

Xia (2008) predict typological properties from induced trees, but guess those trees

from aligned bitexts, not by monolingual grammar induction as in Section 4.6.6. Liu

(2010) and Futrell, Mahowald, and Gibson (2015) show that the directionality of

100

(gold) dependencies is indicative of “basic” word order and freeness of word order.

Those papers predict typological properties from trees that are automatically (noisily)

annotated or manually (expensively) annotated. In addition, parallel data is shown to

be useful Östling (2015) and Malaviya, Neubig, and Littell (2017), where most work

used the machine translation techniques to infer alignment information for analyzing

for predicting word order typology.

An alternative is to predict the typology directly from raw or POS-tagged text, as

we do. Saha Roy et al. (2014) first explored this idea, building a system that correctly

predicts adposition typology on 19/23 languages with only word co-occurrence statis-

tics. Zhang et al. (2016) evaluate semi-supervised POS tagging by asking whether the

induced tag sequences can predict typological properties. Their prediction approach

is supervised like ours, although developed separately and trained on different data.

They more simply predict 6 binary-valued WALS properties, using 6 independent

binary classifiers based on POS bigram and trigrams. Our task is rather close to

grammar induction, which likewise predicts a set of real numbers giving the relative

probabilities of competing syntactic configurations. Most previous work on grammar

induction begins with maximum likelihood estimation of some generative model—

such as a PCFG (Lari and Young, 1990; Carroll and Charniak, 1992) or dependency

grammar (Klein and Manning, 2004)—though it may add linguistically-informed

inductive bias (Ganchev et al., 2010; Naseem et al., 2010). Most such methods use

local search and must wrestle with local optima (Spitkovsky, Alshawi, and Jurafsky,

2013). Fine-grained typological classification might supplement this approach, by

cutting through the initial combinatorial challenge of establishing the basic word order

properties of the language. In this work we only quantify the directionality of each

101

relation type, ignoring how tokens of these relations interact locally to give coherent

parse trees. Grammar induction methods like EM could naturally consider those

local interactions for a more refined analysis, when guided by our predicted global

directionalities.

4.8 Conclusions and Future Work

In this chapter, we introduced a typological classification task as a testbed of our

AB inference function, which attempts to extract quantitative knowledge about a

language’s syntactic structure from its surface forms (POS tag sequences). As far

as we know, we are the first to utilize synthetic languages to train a learner for real

languages: this move yielded substantial benefits.13

Figure 4.5 shows that we rank held-out languages rather accurately along a spec-

trum of directionality, for several common dependency relations. Table 4.8 shows that

if we jointly predict the directionalities of all the relations in a new language, most

of those numbers will be quite close to the truth (low aggregate error, weighted by

relation frequency). This holds promise for aiding grammar induction.

Our trained model is robust when applied to noisy POS tag sequences. In the

future, however, we would like to make similar predictions from raw word sequences.

That will require features that abstract away from the language-specific vocabulary.

Although recurrent neural networks in this chapter did not show a clear advantage over

hand-engineered features, they might be useful when used with word embeddings.

Finally, the output of our system has downstream uses. Several NLP tasks have

benefited from typological features (Section 4.1). By using end-to-end training, our

13See Chapter 3 for a review of using synthetic training data elsewhere in machine learning.

102

methods could be tuned to extract typological features that are particularly useful for

some task.

103

Chapter 5

Unsupervised Dependency Parsing

Chapter 4 has shown our amortized Bayes (AB) inference function (Section 2.4.4) is

effective at predicting the fine-grained syntactic typology of a language. However,

that task only finds global typological information: it did not establish which 70%

of the direct objects fell to the right of their verbs, let alone identify which nouns

were in fact direct objects of which verbs. That requires a token-level analysis of

each sentence, which is unsupervised parsing—the final goal of this thesis as we will

undertake in this chapter. In other words , instead of predicting typological properties

of a language as Chapter 4 did, we will predict the actual treebank ŷ corresponding

to the observed corpus x. The experimental results will show that our best method

improved attachment scores on held-out test languages by an average of 5.6 percentage

points over past work that does not inspect the unparsed data (McDonald, Petrov, and

Hall, 2011), and by 20.7 points over past “grammar induction” work that does not use

training languages (Naseem et al., 2010).

104

5.1 Task Formulation

The positive results of Chapter 4 demonstrate that there are indeed surface clues to

some linguistic properties in the input corpus, at least if it is POS-tagged. In this

chapter, we are interested in studying whether the input corpus has useful information

to form a language-specific parser, which is arguably a more challenging task than

typology prediction.

An unsupervised parser for language ℓ is built without any gold parse trees for

ℓ. Starting from Algorithm 2, like Chapter 4, we assume a corpus x of unparsed but

POS-tagged sentences of ℓ is available for input.

One difference is that Chapter 4 predicts τ(y), which is a fine-grained typology

vector derived from parse trees. In contrast, this chapter directly predicts the parse

trees y for the input sentences x. As Equation (2.11) explains, another difference is

that we assume additional “side information” u for extracting surface cues about the

language that are useful to the parser.

Overall, our approach is to train a “language-agnostic” parser—one that does not

know what language ℓ it is parsing in. Taking (x, u) as input, it produces parse trees

ŷ = eΘ(x, u). The parameters Θ are shared by all languages. To learn them, we will

allow ℓ to range over training languages, and then test our ability to parse when ℓ

ranges over novel test languages.

Following Algorithm 3, we train Θ on a collection of (x, u, y) tuples , each of

which corresponds to a UD or GD training language ℓ. In other words, as discussed

in Section 1.4, our system is trained to match how linguists annotate the training lan-

guages. We can therefore directly define the per-language loss (Line 5 in Algorithm 3)

105

for each training language ℓ as

Loss(ŷ, y) = mean
(x,y)∈(x,y)

loss(ParseΘ(x; u)  
ŷ

, y) (5.1)

where loss(. . .) is a task-specific per-sentence loss (defined in Section 5.5.1) that

evaluates the parser’s output ŷ def
= ParseΘ(x; u) on sentence x against x’s correct tree

y.

Our parser ParseΘ(x; u) has two stages. First, it uses a neural network to extract

statistics T(u) from u that are informative about the syntactic structure of ℓ, to guide

us in parsing POS-tagged sentences of ℓ. T(u) ∈ Rm is a vector that represents the

typological properties of ℓ and resembles the language embedding of Ammar et al.

(2016). Then it parses sentence x while taking T(u) as an additional input. We will

give details of these two components in Sections 5.3 and 5.4. We assume that the

input sentence x is given as a POS sequence: that is, our parser is delexicalized. This

spares us from also needing language-specific lexical parameters associated with the

specific vocabulary of each language, a problem that we leave to future work.

5.2 Related Work

5.2.1 Per-language learning

Many papers rely on some universal learning procedure to determine T(u) (see

Section 5.1) for a target language. For example, T(·) may be the Expectation-

Maximization (EM) algorithm, yielding a PCFG T(u) that fully determines a CKY

parser (Carroll and Charniak, 1992; Klein and Manning, 2004). Since EM and CKY

106

are fixed algorithms, this approach has no trainable parameters.

Grammar induction tries to turn an unsupervised corpus into a generative grammar.

The approach of the previous paragraph is often modified to reduce model error or

search error (Section 1.3). To reduce model error, many papers have used dependency

grammar, with training objectives that incorporate notions like lexical attraction (Yuret,

1998) and grammatical bigrams (Paskin, 2001; Paskin, 2002). The dependency model

with valence (DMV) (Klein and Manning, 2004) was the first method to beat a simple

right-branching heuristic. Headden III, Johnson, and McClosky (2009), Spitkovsky,

Alshawi, and Jurafsky (2012) and Blunsom and Cohn (2010) made the DMV more

expressive by including more linguistic phenomenon (such as higher-order valency

or punctuation). To reduce search error, strategies for eliminating or escaping local

optima have included convexified objectives (Wang, Schuurmans, and Lin, 2008;

Gimpel and Smith, 2012), smart initialization (Klein and Manning, 2004; Mareček

and Straka, 2013), search bias (Smith and Eisner, 2005; Smith and Eisner, 2006;

Naseem et al., 2010; Gillenwater et al., 2010), branch-and-bound search (Gormley and

Eisner, 2013), and switching objectives (Spitkovsky, Alshawi, and Jurafsky, 2013).

Unsupervised parsing (which is also our task) tries to turn the same corpus directly

into a treebank, without necessarily finding a grammar. We discuss some recent

milestones here. Grave and Elhadad (2015) propose a transductive learning objective

for unsupervised parsing, and a convex relaxation of it. (Jiang, Han, and Tu (2017)

combined that work with grammar induction.) Martínez Alonso et al. (2017) create

an unsupervised dependency parser that is formally similar to ours in that it uses

cross-linguistic knowledge as well as statistics computed from a corpus of POS

107

sequences in the target language. However, its cross-linguistic knowledge is hand-

coded: namely, the set of POS-to-POS dependencies that are allowed by the UD

annotation scheme, and the typical directions for some of these dependencies. The

only corpus statistic extracted from u is whether ADP-NOMINAL or NOMINAL-ADP

bigrams are more frequent,1 which distinguishes prepositional from postpositional

languages. The actual parser starts by identifying the head word as the most “central”

word according to a PageRank (Page et al., 1999) analysis of the graph of candidate

edges, and proceeds by greedily attaching words of decreasing PageRank at lower

depths in the tree.

5.2.2 Multi-language learning

This approach parses a “target” language using the treebanks of other resource-rich

languages as “source” languages, which attacts recent attention (Zeman et al., 2017;

Zeman et al., 2018) from the NLP community. There are two main variants.

Memory-based. This method trains a supervised parsing model on each source

treebank. It uses these (delexicalized) source-language models to help parse the

target sentence, favoring sources that are similar to the target language. A common

similarity measure (Rosa and Žabokrtský, 2015a) considers the probability of the

target language’s POS-corpus u under a trigram language model of source-language

POS sequences. Typological similarily has also been used for measuring (Shi et

al., 2017), which assumes the typological information of the target language to be

available.

Single-source transfer (SST) (Rosa and Žabokrtský, 2015a) simply uses the parser

1In our notation of Section 5.3.1, below, this asks whether ∑t∈{NOUN,PRON,PROPN} πw
t|ADP is greater

for w = 1 or w = −1.

108

for the most similar source treebank. Multi-source transfer (MST) (Rosa and Žabokrt-

ský, 2015a) parses the target POS sequence with each of the source parsers, and then

combines these parses into a consensus tree using the Chu-Liu-Edmonds algorithm

(Chu, 1965; Edmonds, 1967). As a faster variant, model interpolation (Rosa and

Žabokrtský, 2015b) builds a consensus model for the target language (via a weighted

average of source models’ parameters), rather than a consensus parse for each target

sentence separately.

Memory-based methods require storing models for all source treebanks, which is

expensive when we include thousands of GD treebanks (Chapter 3).

Model-based. This method trains a single language-agnostic model. McDonald,

Petrov, and Hall (2011) train a delexicalized parser on the concatenation of all source

treebanks, achieving a large gain over grammar induction. This parser can learn

universals such as the preference for determiners to attach to nouns (which was hard-

coded by Naseem et al. (2010)). However, when a parsing architecture is expressive

enough, it is expected to parse a sentence x without being told the language ℓ or even

a corpus u, possibly by guessing properties of the language from the configurations it

encounters in the single sentence x alone (Fisch, Guo, and Barzilay, 2019).

Further gains were achieved (Naseem, Barzilay, and Globerson, 2012; Täckström,

McDonald, and Nivre, 2013; Zhang and Barzilay, 2015; Ammar et al., 2016) by pro-

viding the parser with about 10 typological properties of x’s language—for example,

whether direct objects generally fall to the right of the verb—as listed in the World

Atlas of Linguistic Structures (Dryer and Haspelmath, 2013).

However, relying on WALS raises some issues. (1) The unknown language might

109

not be in WALS.2 (2) Some typological features are missing for some languages. (3)

All the WALS features are categorical values, which loses useful information about

tendencies (for example, how often the canonical word order is violated). (4) Not all

WALS features are useful—only 56 of them pertain to word order, and only 8 of those

have been used in past work. (5) With a richer parser (a stack LSTM dependency

parser), WALS features do not appear to help at all on unknown languages (Ammar

et al., 2016, Footnote 30).

In addition to pure memory-based or model-based methods, Smith et al. (2018)

proposed a hybrid approach by parsing a target language with the parser trained on

the concatenation of the source treebanks that are closely related to the target.

5.2.3 Exploiting parallel data

Some other work on generalizing from source to target languages assumes the avail-

ability of source-target parallel data, or bitext. Two uses:

Induction of multilingual word embeddings. Similar to universal POS tags, multi-

lingual word embeddings serve as a universal representation that bridges the lexical

differences among languages. Guo et al. (2016) proposed two approaches: (1) Train-

ing a variant of the skip-gram model (Mikolov et al., 2013) by using bilingual sets of

context words. (2) Generating the embedding of each target word by averaging the

embeddings of the source words to which it is aligned.

Annotation projection. Given aligned bitext, one can generate an approximate

parse for a target sentence by “projecting” the parse tree of the corresponding source

sentence. A target-language parser can then be trained from these approximate parses.

22,679 out of about 7,000 world languages are in WALS.

110

The idea was originally proposed by Yarowsky, Ngai, and Wicentowski (2001), and

then applied to dependency parsing on low-resource languages Hwa et al., 2005;

Ganchev, Gillenwater, and Taskar, 2009; Smith and Eisner, 2009; Tiedemann, 2014,

inter alia. McDonald, Petrov, and Hall (2011) extend this approach to multiple source

languages by projected transfer. Later work in this vein mainly tries to improve

the approximate parses, including translating the source treebanks into the target

language with an off-the-shelf machine translation system (Tiedemann, Agić, and

Nivre, 2014; Tiedemann and Agić, 2016; Rosa and Mareček, 2018), augmenting the

trees with weights (Agić et al., 2016), and using only partial trees with high-confidence

alignments (Rasooli and Collins, 2015; Rasooli and Collins, 2017; Lacroix et al.,

2016).

5.2.4 Situating our work

Our own approach can be categorized as model-based multi-language learning with no

parallel text or target-side supervision. However, we also analyze an unparsed corpus

u of the target language, as the per-language systems of Section 5.2.1 do. Our analysis

of u does not produce a specialized target grammar or parser, but only extracts a target

vector T(u) to be fed to the language-agnostic parser. The analyzer is trained jointly

with the parser, over many languages. Recently, a similar idea has been proposed by

Platanios et al. (2018) for zero-shot machine translation. Given a language pair, they

feed the embeddings of its source and target languages into a language-pair-agnostic

parameter generator (like our AB inference function) to predict a translation system

that is adapted to this language pair.

111

5.3 The Typology Component

Chapter 4 extract typological properties of a language from its POS-tagged corpus

u, in effect predicting syntactic structure from superficial features. Similarily, we

compute a hidden layer T(u) using a standard multilayer perceptron architecture, for

example,

T(u) = σ(Wπ(u) + bW) ∈ Rh (5.2)

where π(u) ∈ Rd is the surface features of u, W ∈ Rh×d maps π(u) into a h-

dimensional space, bW ∈ Rh is a bias vector, and σ is an element-wise activation

function. While Equation (5.2) has only 1 layer, we explore versions with from 0 to

3 layers (where T(u) = π(u) in the 0-layer case). A 2-layer version is shown in

Figure 5.1. The number of layers is chosen by cross-validation, as are h and the σ

function.

5.3.1 Design of the surface features π(u)

To define π(u), we used development data to select the following fast but effective

subset of the features proposed in Section 4.5.3.

Hand-engineered features. Using the same notation as Section 4.5.3, the final hand-

engineered π(u) includes:

• πw
t , for each tag type t and each w ∈ {1, 3, 8, 100}. This quantity measures

how frequently t appears in u.

• πw
t|s//πw

t and π−w
t|s //π−w

t , for each tag type pair s, t and each w ∈ {1, 3, 8, 100}.

Neural features. We use the same architecture as Figure 4.2, except the final neural

112

W1 W2

`
� �

u

⇡(u) T(u)

Figure 5.1: A 2-layer typology component. The bias vectors (bW) are suppressed for
readability.

π(u) only uses the average encoding of all sentences (average-pooling): that is, the

average of all sentence-level configurations. We specifically use a gated recurrent

unit (GRU) network (Cho et al., 2014b). The GRU is jointly trained with all other

parameters in the system so that it focuses on detecting word order properties of u

that are useful for parsing.

5.4 The Parsing Architecture

To construct Parse(x; u), we can extend any statistical parsing architecture Parse(x)

to be sensitive to T(u). For our experiments, we extend the delexicalized graph-

based implementation of the BIST parser (Kiperwasser and Goldberg, 2016)—an arc-

factored dependency model with neural context features extracted by a bidirectional

113

LSTM. This recent parser was the state of the art when it was published.

Given a POS-sentence x and a corpus u, our parser first computes an unlabeled

projective tree

argmax
y∈Y(x)

score(x, y; u) (5.3)

where, letting a range over the arcs in tree y,

score(x, y; u) = ∑
a∈y

s(ϕ(a; x, u)) (5.4)

With this definition, the argmax in Equation (5.3) is computed efficiently by the

algorithm of Eisner (1996).

s(·) is a neural scoring function on vectors,

s(ϕ(· · ·)) = v tanh(Vϕ(· · ·) + bV) (5.5)

where V is a matrix, bV is a bias vector, and v is a vector, all being parameters in Θ.

The function ϕ(a; x, u) extracts the feature vector of arc a given x and u. BIST

scores unlabeled arcs, so a denotes a pair (i, j)—the indices of the parent and child,

respectively. We define

ϕ(a; x, u) = [B(x, i; T(u)); B(x, j; T(u))] (5.6)

which concatenates contextual representations of tokens i and j. B(x, i) is itself a

concatenation of the hidden states of a left-to-right LSTM and a right-to-left LSTM

(Graves, 2012) when each has read sentence x up through word i (really POS tag i).

These LSTM parameters are included in Θ.

The POS tags in x are provided to the LSTMs as one-hot vectors. Crucially, T(u)

114

is also provided to the LSTM at each step, as shown in Figure 5.2.

After selecting the best tree via Equation (5.3), we use each arc’s ϕ vector again

to predict its label. This yields the labeled tree ŷ = ParseΘ(x; u).

The only extension that this makes to BIST is to supply T(u) to the BiLSTM.3

This extension is not a significant slowdown at test time, since T(u) only needs to

be computed once per test language, not once per test sentence. Since T(u) can be

computed for any novel language at test time, this differs from the “many languages,

one parser” architecture (Ammar et al., 2016), in which a test-time language must

have been seen at training time or at least must have known WALS features.

Product of experts. Similar to Equation (4.11), we also consider a combined variant

of the function Equation (5.5) for scoring arc a, namely

αsH(a) + (1− α)sN(a) (5.7)

where sH(a) and sN(a) are the scores produced by separately trained systems using,

respectively, the hand-engineered and neural features from Section 5.3.1. Hyperpa-

rameter α ∈ [0, 1] is tuned on through cross-validation.

5.5 Training the System

5.5.1 Training objective

We exactly follow the training method of Kiperwasser and Goldberg (2016), who min-

imize a structured max-margin hinge loss (Taskar et al., 2004; McDonald, Crammer,

3An alternative would be to concatenate T(u) with the representation computed by the BiLSTM.
This gets empirically worse results, probably because the BiLSTM does not have advance knowledge
of language-specific word order as it reads the sentence. We also tried an architecture that does both,
with no notable improvement.

115

1

2

3 0

1

2
s0,1 s1,0 s1,2 s2,1 s3,2s2,3

s3,1s1,3s0,2 s2,0

s0,3 s3,0

y

x

+SUM

x0 x1 x2 x3

lang info

arcs

POS seq.

T(u) T(u) T(u) T(u)u

score(x, y;u)

Figure 5.2: The architecture of the delexicalized graph-based BIST parser with the intro-
duction of T(u), where si,j in each cell is the arc score s(ϕ(a; x, T(u)) from Equation (5.5).
The root of the tree is always position 0, where x0 is a distinguished “root” symbol that is
prepended to the input sentence.

and Pereira, 2005; LeCun et al., 2007). We want the correct tree y to beat each tree y′

by a margin equal to the number of errors in y′ (we count spurious edges). Formally,

loss(x, y; u) is given by

max(0,− score(x, y; u)+

max
y′

(
score(x, y′; u)  

model score

+ ∑
a∈y′

1a/∈y  
precision error

)
) (5.8)

where a ranges over the arcs of a tree y, and 1a/∈y is an indicator that is 1 if a /∈ y.

116

Thus, this loss function is high if there exists a tree y′ that has a high score relative to

y yet low precision.4

The training algorithm makes use of loss-augmented inference (Taskar et al.,

2005), a variant on the ordinary inference of Equation (5.3). The most violating tree

y′ (in the maxy′ above) is computed again by an arc-factored dependency algorithm

(Eisner, 1996), where the score of any candidate arc a is s(ϕ(a; x, u)) + 1a/∈y.

Actually, the above method would only train the score function to predict the

correct unlabeled tree as above (since a ranges over unlabeled arcs as before). In

practice, we also jointly train the labeler to predict the correct labels on the gold arcs,

using a separate hinge-loss objective. Because these two components share parameters

through ϕ(a; x, u), this is a multi-task learning problem.

5.5.2 Training algorithm

Synthetic training data. Under our framework, each training example in Algorithm 3

is an entire language. We will experiment on augmenting our training dataset Ltrain

with thousands of synthetic languages from the GD dataset (Chapter 3), as already

discussed in Section 1.4.1.

Treating each language as a single large example during training would lead to

slow SGD steps. Instead, we take our SGD examples to be individual sentences,

by regarding Line 5 in Algorithm 3, and Equation (5.1) together as an objective

averaged over sentences. Each example (x, y, u) is sampled hierarchically, by first

drawing a language ℓ from Ltrain and setting u = u(ℓ), then drawing the sentence

(x, y) uniformly from (x(ℓ), y(ℓ)). We train using mini-batches of 100 sentences; each

4Formally, for this loss function to be used in equation Equation (5.1), we must interpret ParseΘ in
that equation as returning a forest of scored parses, not just a single parse.

117

mini-batch can mix many languages.

Encourage real languages. To sample ℓ from Ltrain, we first flip a coin with weight

β ∈ [0, 1] to choose “real” vs. “synthetic,” and then sample uniformly within that set.

Why? The test sentences will come from real languages, so the synthetic languages

are out-of-domain. Including them reduces variance but increases bias. We raise β to

keep them from overwhelming the real languages.

Sample efficiently. The sentences (x, y) are stored in different files by language. To

reduce disk accesses, we do not visit a file on each sample. Rather, for each language

ℓ, we maintain in memory a subset of (x(ℓ), y(ℓ)), obtained by reservoir sampling.

Samples from (x(ℓ), y(ℓ)) are drawn sequentially from this “chunk,” and when it is

used up we fetch a new chunk. We also maintain u(ℓ) and the hand-engineered features

from π(u(ℓ)) in memory.

5.6 Experiments

5.6.1 Basic setup

Our data split, hyperparameter tuning, and evaluation follow the same setup as Chap-

ter 4 (see Table 4.2). The UD and GD corpora provide a train/dev/test split of each

treebank, denoted as (xtrain, ytrain), (xdev, ydev) and (xtest, ytest). Throughout this

chapter, for both training and testing languages, we take (x, y) = (xtrain, ytrain). We

take u to consist of all xtrain sentences with ≤ 40 tokens.

5.6.2 Comparison among architectures

Table 5.1 shows the cross-validation parsing results over different systems discussed

so far. For each architecture, we show the best average unlabeled attachment score (the

118

or
ac

le
fe

at
ur

es 
UAS LAS

System UD +GD UD +GD
Single-source transfer (SST) 66.22* 65.70 50.40 50.54

Baseline 63.95 67.97 48.46 52.78
Hand-engineered features (H) 64.83 69.41 49.41 53.63

Neural features (N) 65.30 70.06 49.43 54.19
Concatenation of H and N (H;N) 65.26 69.62 49.67 53.68

Product-of-experts (H+N) 67.34* 70.65* 52.02* 55.18*
Directionalities (TD) 65.94 70.01* 49.77 53.43
WALS typology (TW) 64.84 69.75 49.30 53.79

Table 5.1: Average parsing results over 16 languages, computed by 5-fold cross-validation.
We compare training on real languages only (the UD column) versus augmenting with synthetic
languages at β = 0.2 (the +GD column). Baseline is the ablated system that omits T(u)
(Section 5.6.2). SST is the single-source transfer approach (Section 5.2.2). H and N use
only hand-engineered features or neural features, while H;N defines π(u) to concatenate
both (Section 5.3.1) and H+N is the product-of-experts model (Section 5.4). TD and TW
that incorporate oracle knowledge of the target-language syntax (Section 5.6.4). For each
comparison between UD and +GD, we boldface the better (higher) result, or both if they are
not significantly different (paired permutation test over languages with p < 0.05). In each
column, we star the best result as well as all results that are not significantly worse.

UAS column) chosen by cross-validation, and the corresponding labeled attachment

score (the LAS column). In brief, the main sources of improvement are twofold:

Synthetic languages. We observe that +GD consistently outperforms UD across all

architectures. It even helps with the baseline system that we tried, which simply

ignores the target corpus u(ℓ). In that system (similar to McDonald, Petrov, and Hall

(2011)), the BiLSTM may still manage to extract ℓ-specific information from the

single sentence x ∈ x(ℓ) that it is parsing.5 The additional GD training languages

apparently help it learn to do so in a way that generalizes to new languages.

To better understand the trend, we study how the performance varies when more

5That is, our baseline system has learned a single parser that can handle a cross-linguistic variety of
POS sequences (cf. McDonald, Petrov, and Hall, 2011; Ammar et al., 2016, section 4.2), just as the
reader was able to parse VERB DET NOUN ADJ DET NOUN in Section 1.4.1.

119

64

65

66

67

68

Av
g.

 a
tt

ac
hm

en
t s

co
re

UAS

0.0 0.2 0.4 0.6 0.8 1.0

49

50

51

52

53
LAS

Figure 5.3: Effect of β. The UAS and LAS (y-axis) of the baseline system as a function of β
(x-axis).

synthetic languages are used. As shown in Figure 5.3, when β = 1, all the training

languages are sampled from real languages. By gradually increasing the proportion

of GD languages (reducing β from Section 5.5.2), the baseline UAS increases dra-

matically from 63.95 to 67.97. However, if all languages are uniformly sampled

(β = 16
4624+16 ≈ 0.003) or only synthetic languages are used (β = 0), the UAS

falls back slightly to 67.42 or 67.36. The best β value is 0.2, which treats each real

language as 0.2/16
0.8/4624 ≈ 72 times more helpful than each synthetic language, yet 80%

of the training data is contributed by synthetic languages. β = 0.2 was also optimal

for the non-baseline systems in Table 5.1.

Unparsed corpora. The systems that exploit unparsed corpora consistently outper-

form the baseline system in both the UD and +GD conditions. To investigate, we

examine the impact of reducing u(ℓ) when parsing a held-out language ℓ. We used

120

61

62

63

64
Av

g.
 a

tt
ac

hm
en

t s
co

re

UAS

16 32 64 128 256 512 1024
Size of unparsed corpus

45

46

47

48

49

LAS

Figure 5.4: Effect of the size |u(ℓ)| of the unparsed corpus. The y-axis represents the
cross-validation UAS and LAS scores, averaged over the 7 languages that have |u(ℓ)| ≥ 9000
sentences, when using only a subset of the sentences from u(ℓ). Using all of u(ℓ) would
achieve 64.61 UAS and 49.04 LAS. The plot shows the average over 10 runs with different
random subsets; the error bars indicate the 10th to the 90th percentile of those runs. The 7
languages are Finnish (Finnic), Norwegian (Germanic), Dutch (Germanic), Czech (Slavic),
German (Germanic), Hindi (Indic), and English (Germanic).

the system in row N and column +GD of Table 5.1, which was trained on full-sized u

corpora. When testing on a held-out language ℓ, we compute T(u(ℓ)) using only a

random size-t subset of u(ℓ). As shown in Figure 5.4, the system does not need a very

large unparsed corpus—most of the benefit is obtained by t = 256. Nonetheless, a

larger corpus always achieves a better and more stable performance.

121

5.6.3 Comparison to SST

Besides Baseline, another directly comparable approach is SST (Section 5.2.2). As

shown in Table 5.1, SST gives a stronger baseline on the UD column—as good as

H+N. However, this advantage does not carry over to the +GD column, meaning

that SST cannot exploit the extra training data. Figure 3.5 already found that GD

languages provide diminishing benefit to SST as more UD languages get involved.6

For H+N, however, the extra GD languages do help to identify the truly useful surface

patterns in u.

We also considered trying model interpolation (Rosa and Žabokrtský, 2015b).

Unfortunately, as mentioned in Section 5.2.2, this method is impractical with GD

languages, because it requires storing 4624 (Section 5.6.1) additional local models.

Nonetheless, we can estimate an “upper bound” on how well the interpolation might

do. Our upper bound is SST where an oracle is used to choose the source language;

Rosa and Žabokrtský (2015b) found that in practice, this does better than interpolation.

This approximate upper bound is 68.03 of UAS and 52.10 of LAS, neither of which is

significantly better than H+N on UD, but both of which are significantly outperformed

by H+N on +GD.

5.6.4 Oracle typology vs. our learned T(u)

The results in Table 5.1 demonstrate that we learned to extract features T(u), from

the unparsed target corpus u, that improve the baseline parser. We consider replacing

T(u) by an oracle that has access to the true syntax of the target language. We consider

two different oracles, TD and TW.
6The number of real treebanks in our cross-validation setting is 16, greater than the 10 in Chapter 3.

122

ID Feature Description Values
81A Order of Subject, Object and Verb SVO, SOV, VSO, VOS, OVS, OSV
82A Order of Subject and Verb SV, VS
83A Order of Object and Verb OV, VO
85A Order of Adposition and Noun Postpositions, Prepositions, Inpositions
86A Order of Genitive and Noun Gen-Noun, Noun-Gen
87A Order of Adjective and Noun Adj-Noun, Noun-Adj
88A Order of Demonstrative and Noun Dem-Noun, Noun-Dem
89A Order of Numeral and Noun Num-Noun, Noun-Num

Table 5.2: The WALS features used in our experiment. For each feature, besides the values
in the table, we use an additional “ND” for the languages with no dominant order.

TD is the directionalities typology that was studied by Liu (2010) and used as a

training target by Chapter 4. Specifically, TD ∈ [0, 1]57 is a vector of the directionali-

ties of each type of dependency relation; it specifies what fraction of direct objects

fall to the right of the verb, and so on.7 In principle, this should be very helpful for

parsing, but it must be extracted from a treebank, which is presumably unavailable for

unknown languages.

We also consider TW—the WALS features—as the typological classification

given by linguists. This resembles the previous multi-language learning approaches

(Naseem, Barzilay, and Globerson, 2012; Täckström, McDonald, and Nivre, 2013;

Zhang and Barzilay, 2015; Ammar et al., 2016) that exploited the WALS features.

As shown in Table 5.2, we use 81A, 82A, 83A, 85A, 86A, 87A, 88A and 89A—a

union of WALS features used by those works. In order to derive the WALS features

for a synthetic GD language, we first copy the features from its substrate language

Section 3.3.1. We then replace the 81A, 82A, 83A features—which concern the order

7The directionality of a relation a in language ℓ is given by countℓ(
a→)

countℓ(a) , where countℓ(
a→) is the

count of a-relations that point from left to right, and countℓ(a) is the count of all a-relations.

123

between verbs and their dependents—by those of its V-superstrate language8 (if any).

We replace 85A, 86A, 87A, 88A and 89A—which concern the order between nouns

and their dependents—by those of its N-superstrate language (if any).

As a pleasant surprise, we find that our best system (H+N) is competitive with

both oracle methods. It outperforms both of them on both UAS and LAS, and the

improvements are significant and substantial in 3 of these 4 cases. Our parser has

learned to extract information T(u) that is not only cheap (no treebank needed), but

also at least as useful as “gold” typology for parsing.

5.6.5 Selected hyperparameter settings

For the rest of the experiments, we use the H+N system, as it wins under cross-

validation on both UD and +GD (Table 5.1). This is a combination via Equation (5.7)

of the best H system and the best N system under cross-validation, with the mixture

hyperparameter α also chosen by cross-validation.

For both UD and +GD, cross-validation selected 125 as the sizes of the LSTM

hidden states and 100 as the sizes of the hidden layers for scoring arcs (the length of v

in equation Equation (5.5)).

Hyperparameters for UD. The H system computes T(u) with a 1-layer network

(as in Equation (5.2)), with hidden size h = 128 and σ = tanh as the activation

function. For the N system, T(u) is a 1-layer network with hidden size h = 64 and

σ = sigmoid as the activation function. The size of the hidden state of GRU as

shown in Figure 4.2 is 128. The mixture weight for the final H+N system is α = 0.5.

Hyperparameters for +GD. The H system computes T(u) with a 2-layer network

8The language whose word order model is used to permute the dependents of the verbs. See
Section 3.3.1 for details.

124

(as shown in Figure 5.1), with h = 128 and σ = sigmoid for both hidden layers. For

N, T(u) is a 1-layer network with hidden size h = 64 and σ = sigmoid. The size of

the hidden state of GRU is 256. Both H and N set β = 0.2 (see Section 5.5.2). The

mixture weight for the final H+N system is α = 0.4.

5.6.6 Performance on noisy tag sequences

We test our trained system in a more realistic scenario where both u and x for

held-out languages consist of noisy POS tags rather than gold POS tags. Following

Sections 3.7.4 and 4.6.4, at test time, the gold POS tags in a corpus are replaced by

a noisy version produced by the RDRPOSTagger (Nguyen et al., 2014) trained on

a subset of the original gold-tagged corpus.9 Figure 5.5 shows a linear relationship

between the performance of our best model (H+N with +GD) and the noisiness of

the POS tags, which is controlled by altering the amount of training data. With only

100 training sentences, the performance suffers greatly—the UAS drops from 70.65

to 51.57—making it unclear whether our approach will outperform the baselines in

Table 5.1 under this noisy setting, which is left for futher work.10 Nonetheless, even

this is comparable to Naseem et al. (2010) on gold POS tags, which yields a UAS of

50.00. That system was the first grammar induction approach to exploit knowledge of

the distribution of natural languages, and remained state-of-the-art (Noji, Miyao, and

Johnson, 2016) until the work of Mareček (2016) and Martínez Alonso et al. (2017).

9Another way to get noisy tags, as a reviewer notes, would have been to use a cross-lingual POS
tagger designed for low-resource settings (Täckström et al., 2013; Kim et al., 2017).

10Tiedemann and Agić (2016) also show that noisy POS tags have a strong impact on single-source
tranfer.

125

55

60

65

70
Av

g.
 a

tt
ac

hm
en

t s
co

re

0.1K 0.2K

0.4K
0.8K

1.6K
3.2K

6.4K12.8K
UAS

80 85 90 95 100
Avg. tagging accuracy

35

40

45

50

55 LAS

Figure 5.5: Performance on noisy input over 16 training languages. Each dot is an experiment
annotated by the number of sentences used to train the tagger. (The rightmost “∞” point uses
gold tags instead of a tagger, which is the result from Table 5.1.) The x-axis gives the average
accuracy of the trained RDRPOSTagger. The y-axis gives the average parsing performance.

5.6.7 Analysis by dependency relation type

Figure 5.6 breaks down the results by dependency relation type—showing that using

u and synthetic data improves results almost across the board.

We also notice large differences between labeled and unlabeled F1 scores for some

relations, especially rarer ones. In other words, the system mislabels the arcs that

it correctly recovers. (Remember from Section 5.6.2 that the hyperparameters were

selected to maximize unlabeled scores (UAS) rather than labeled (LAS).)

Figure 5.7 gives the label confusion matrix. While the dark NONE column shows

126

0.0

3.6

7.2

10.8

14.4

18.0

Av
g.

 p
ro

po
rt

io
n

(%
)

nm
od cas

e
pu

nct de
t

nsu
bj roo

t
am

od do
bj

ad
vm

od con
j cc

mark au
x acl

ad
vcl

com
po

un
d cop

nu
mmod

na
me

xco
mp

Dependency relations

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
\ R

ec
al

l \
 F

1

Precision Recall Baseline + T(u) + T(u) + GD

Figure 5.6: Evaluation by dependency relation type, showing an equal-weighted average of
the 16 development languages. Each vertical bar spans the range from labeled F1 (bottom) to
unlabeled F1 (top), with error bars given by bootstrap resampling over the 16 languages. Pre-
cision and recall are also indicated. The pattern is that F1, precision, and recall—both labeled
and unlabeled—are improved over baseline when we exploit unlabeled corpora (+T(u)), and
improved again when we augment training data (+T(u)+GD). The relations are sorted by their
average gold proportion in the 16 languages, shown by the gray area and right vertical axis.
For example, nmod is the most common relation, accounting for 15.5% of all arcs. Altogether,
the 20 most frequent relations (shown here) account for 94% of the arcs.

that arcs of each type are often missed altogether (recall errors), the dark diagonal

shows that they are usually labeled correctly if found. That said, it is relatively

common to confuse the different labels for nominal dependents of verbs (nsubj,

dobj, nmod). We suspect that lexical information could help sort out these roles

via distributional semantics. Some other mistakes arise from discrepancies in the

annotation scheme. For example, neg can be easily confused with advmod, as some

languages (for example, Spanish) use adv instead of part for negations.

5.6.8 Final evaluation on test data

In all previous sections, we evaluated on the 16 languages in the training set by

cross-validation. For the final test, we combine all the 20 treebanks and train the

system with the hyperparameters given in Section 5.6.5, then test on the 15 unseen

127

nm
od

pu
nc

t
ca

se
de

t
ns

ub
j

ro
ot

am
od

do
bj

ad
vm

od
co

nj
cc m

ar
k

au
x

ac
l

ad
vc

l
co

m
po

un
d

co
p

nu
m

m
od

na
m

e
xc

om
p

OT
HE

RS
NO

NE

Predicted relations

OTHERS
xcomp
name

nummod
cop

compound
advcl

acl
aux

mark
cc

conj
advmod

dobj
amod

root
nsubj

det
case

punct
nmod

G
ol

d
re

la
tio

ns

0.0

0.5

Figure 5.7: The confusion matrix of our parser, as an equal-weight average over 16 de-
velopment languages. Each row is normalized to sum to 1 and represents a frequent gold
relation. For example, the nsubj row shows how well we recovered the gold nsubj arcs;
the (nsubj, dobj) entry shows p(predicted = dobj | gold = nsubj), which measures
the fraction of nsubj relations that are recovered but mislabeled as dobj. The diagonal
represents correct arcs: where dark, it indicates high labeled recall for that relation. The final
column represents gold arcs that were not recovered with any label: where dark, it indicates
low unlabeled recall for that relation. We show the top 20 relations sorted by gold frequency.

test languages. Table 5.3 displays results on these 15 test languages (top) as well as

the cross-validation results on the 16 languages (bottom).

We see that we improve significantly over baseline on almost every language. In-

deed, on the test languages, +T(u) improves both UAS and LAS by > 3.5 percentage

points on average. The improvement grows to > 5.6 if we augment the training data

as well (+GD, meaning +T(u)+GD).

One disappointment concerns the added benefit on the LAS of +GD over just

+T(u): while this data augmentation helped significantly on nearly every one of

the 16 development languages, it produced less consistent improvements on the test

languages and hurt some of them. We suspect that this is because we tuned the

hyperparameters to maximize UAS, not LAS (Section 5.6.2). As a result, while the

average benefit across our 15 test languages was fairly large, this sample was not

128

large enough to establish that it was significantly greater from 0, that is, that future

test languages would also see an improvement from data augmentation.

We also notice that there seems to be a small difference between the pattern of

results on development versus test languages. This may simply reflect overfitting to the

development languages, but we also note that the test languages (chosen by Chapter 3)

tended to have considerably smaller unparsed corpora u, so there may be a domain

mismatch problem. To ameliorate this problem, one could include training examples

with versions of u that are truncated to lengths seen in test data (cf. Figure 5.4). One

could also include the size |u| explicitly in T(u).

5.7 Conclusion and Future Work

We apply our AB inference function to delexicalized dependency parsing that can

better parse sentences of an unknown language by exploiting an unparsed (but POS-

tagged) corpus of that language. Unlike grammar induction, which estimates a PCFG

from the unparsed corpus, we train a neural network to extract a feature vector from

the unparsed corpus that helps a subsequent neural parser. By end-to-end training on

the treebanks of many languages (optionally including synthetic languages), our neural

network can extract linguistic information that helps neural dependency parsing.

Variants of our architecture are possible. In future work, the neural parser could

use attention to look at individual relevant sentences of u, which are posited to be

triggers in some theories of child grammar acquisition (Gibson and Wexler, 1994;

Frank and Kapur, 1996). We could also try injecting T(u) into the neural parser by

means other than concatenating it with the input POS embeddings.

129

UAS LAS
Language B +T(u) +GD B +T(u) +GD

Basque 49.89 54.34 57.59 27.07 31.46 35.32
Croatian 65.03 67.78 68.65 48.68 52.29 53.68

Greek 65.91 68.37 70.46 50.1 56.73 57.89
Hebrew 62.58 66.27 65.3 49.71 53.29 52.08

Hungarian 58.5 64.13 70.02 42.85 47.73 49.99
Indonesian 55.22 64.63 65.36 39.46 47.63 48.38

Irish 58.58 61.51 62.21 39.06 40.75 42.36
Japanese 54.97 60.41 58.4 37.57 40.6 37.86
Slavonic 68.79 71.13 71.54 40.03 43.95 44.12
Persian 40.38 34.2 57.25 30.06 24.6 47.14
Polish 72.15 76.85 78.28 50.08 54.85 58.15

Romanian 66.55 69.69 71.18 50.9 53.42 55.17
Slovenian 72.21 76.06 78.62 57.09 61.48 64.1
Swedish 72.26 75.32 73.89 55.35 58.42 52.39

Tamil 51.59 57.53 57.91 28.39 37.81 32.52
Avg. 60.97 64.55 67.11 43.09 47.00 48.74

Arabic 45.75 49.32 53.83 36.4 40.39 44.14
Danish 66.71 68.41 68.4 52.24 54.49 54.67

Norwegian 68.35 70.89 71.22 52.33 56.01 56.37
Czech 64.31 68.77 72.42 50.19 55.16 57.95

Estonian 72.67 79.88 81.67 42.81 51.32 52.57
Portuguese 70.48 73.47 74.83 60.85 63.18 64.96

German 62.18 63.62 66.52 48.44 49.46 53.51
Gothic 63.23 66.72 70.75 39.1 42.6 45.17
Italian 75.9 79.24 80.57 65.46 68.8 70.0

Bulgarian 77.57 79.53 83.66 55.83 57.65 61.47
Finnish 53.73 58.03 60.44 34.68 39.55 43.15
French 74.57 76.88 79.34 64.1 66.83 68.48
Dutch 59.63 62.58 60.31 45.84 48.28 47.98

English 61.66 63.99 65.9 47.61 51.43 53.13
Hindi 35.84 40.74 62.45 18.63 21.65 41.12

Spanish 70.65 75.36 78.03 60.8 65.45 68.23
All Avg. 62.51 65.99 68.94 45.86 49.59 52.07

Table 5.3: Data splits and final evaluation on the 15 test languages (top), along with cross-
validation results on the 16 development languages (bottom) grouped by 5 folds (separated
by dashed lines). For languages with multiple treebanks, we identify them by subscripts. We
use “Slavonic” for Old Church Slavonic. Column B is the baseline that doesn’t use T(u)
(McDonald, Petrov, and Hall, 2011). +T(u) is our H+N system, and +GD is that system
when the training data is augmented with synthetic languages. In comparing among these
three systems, we boldface the highest score as well as all scores that are not significantly
worse (paired permutation test, p < 0.05). If a row is an average over many sentences of
a single language, then each paired datapoint is a sentence, so a significant improvement
should generalize to new sentences. But if a row is an average, then each paired datapoint is a
language (as in Table 5.1), so a significant improvement should generalize to new languages.

130

We might also consider parsing architectures other than BIST, such as the LSTM-

Minus architecture for scoring spans (Cross and Huang, 2016), or the recent attention-

based arc-factored model (Dozat and Manning, 2017). Finally, our approach is

applicable to tasks other than dependency parsing, such as constituent parsing or

semantic parsing—if suitable treebanks are available for many training languages.

For applied uses, it would be interesting to combine the unsupervised techniques

of this work with low-resource techniques that make use of some annotated or parallel

data in the target language. It would also be interesting to include further synthetic

languages that have been modified to better resemble the actual target languages, using

the method of Chapter 6.

It is important to relax the delexicalized assumption. As shown in Section 5.6.6, the

performance of our system relies heavily on the gold POS tags, which are presumably

not available for unknown languages. What is available is lexical information—which

has proved to be very important for supervised parsing, and should help unsupervised

parsers as well. As discussed in Section 5.6.7, some errors seem easily fixable by

considering word distributions. In the future, we will explore ways to extend our cross-

linguistic parser to work with word sequences rather than POS sequences, perhaps by

learning a cross-language word representation that is shared among training and test

languages (Ruder, Vulić, and Søgaard, 2017).

131

Chapter 6

Synthetic Data Made to Order

While Chapter 3 introduced to mix-and-match the source languages to generate

synthetic languages so that they are diverse enough, Section 3.8 [point 5] asks whether

the synthesizing process could be biased directly to a given target language. In this

chapter, we extend this discussion and propose such an on-demand approach by

(stochastically) permuting source dependency treebank so that its surface part-of-

speech statistics approximately match those of the target language. The parameters

of the permutation model can be evaluated for quality by dynamic programming and

tuned by gradient descent (up to a local optimum). This optimization procedure yields

trees for a new artificial language that resembles the target language. We show that

delexicalized parsers for the target language can be successfully trained using such

“made to order” artificial languages.

6.1 Introduction

We begin with the observation in Figure 3.4 on page 56, where the clusters formed

by the real languages indicates a strong correlation between the closeness (in terms

132

of the language family) and the transfer parsing (train on one language and parse

on another) performance. In other words, to approximately parse an unfamiliar

language, it helps to have a treebank of a similar language. Thanks to the recent

development of multi-lingual treebanks (McDonald et al., 2013; Nivre et al., 2015;

Nivre et al., 2019), finding such similar language(s) is increasingly possible. The idea

is to parse the sentences of the target language with a supervised parser trained on

the treebanks of one or more closely related languages (e.g., using German to parse

Luxembourgish). Although the parser cannot be expected to know the words of the

target language, it can make do with POS tags (McDonald, Petrov, and Hall, 2011;

Täckström, McDonald, and Nivre, 2013; Zhang and Barzilay, 2015) or cross-lingual

word embeddings (Duong et al., 2015b; Guo et al., 2016; Ammar et al., 2016).

If the name of the target language is known, one could retrieve its family or

typological information from some existing resources such as WALS (Dryer and

Haspelmath, 2013) to find some languages that are linguistically related for training

Smith et al. (2018). If the language name is unknown, one could use the unsupervised

selection approach introduced in Section 3.7.2, where the closeness is measured by

the distance between POS language models trained on the source and target corpora.

To improve this approach, one straightforward (traditional) way is enriching the pool

of real languages to increase the odds of related languages—as the black curve in

Figure 3.5 shows. However, the annotation of real languages requires expensive

human effort which may not be cost-effective for improving parsing performance.

Therefore, both Chapter 3 and this chapter are focusing on synthesizing languages.

133

6.1.1 Chapter 3: Universal and reusable synthetic data

Chapter 3 introduces the Galactic Dependencies (GD)—a large and diverse collection

of synthetic languages generated from an automatic mix-and-match mechanism over

the real languages, which extends the learning curve in Figure 3.5 by increasing the

base number of source languages to fill in the gap between the real source languages

and the target language (Figure 3.4). One notable characteristic of this approach is the

generation of synthetic data fully depends on the given real languages. In other words,

the synthetic data will be stored and reused for any target languages.

6.1.2 This chapter: Tailored synthetic data

The novelty of this chapter is that instead of increasing the number of synthetic

languages, we improve the relevance of the synthetic languages by “personalizing” the

permutation of a real language toward the target language. How? Given a dependency

treebank of a possibly distant source language, we stochastically permute the children

of each node, according to some distribution that makes the permuted language close

to the target language.

And how do we find this distribution? We adopt the tree-permutation model

described in Section 3.4, and design a dynamic programming algorithm which, for

any given distribution p in Section 3.4’s family, can compute the expected counts of

all POS bigrams in the permuted source treebank. This allows us to evaluate p by

computing the divergence between the bigram POS language model formed by these

expected counts, and the one formed by the observed counts of POS bigrams in the

unparsed target language. In order to find a p that locally minimizes this divergence,

we adjust the model parameters by stochastic gradient descent (SGD). In contrast

134

to Chapter 3, the syntactic data will be generated on-the-fly after seeing the target

language.

6.1.3 Key limitations

Better measures of surface closeness between two languages might be devised. How-

ever, even counting the expected POS N-grams is moderately expensive, taking time

exponential in N if done exactly. So we compute only these local statistics, and

only for N = 2. We certainly need N > 1 because the 1-gram distribution is not

affected by permutation at all. N = 2 captures useful bigram statistics: for example,

to mimic a verb-final language with prenominal modifiers, we would seek constituent

permutations that result in matching its relatively high rate of VERB–PUNCT and

ADJ–NOUN bigrams. While N > 2 might have improved the results, it was too slow

for our large-scale experimental design. Section 6.7 discusses how richer measures

could be used in the future.

Again, throughout this chapter, we assume that our corpora are annotated with

gold POS tags, even in the target language (which lacks any gold training trees).

Section 6.7 discusses a possible avenue for doing without gold tags.

6.2 Modeling Surface Realization

We motivate our approach with a different view on the idea of tree permutation

described in Section 3.4. Let us suppose that the dependency tree for a sentence starts

as a labeled graph—a tree in which siblings are not yet ordered with respect to their

parent or one another. Each language has some systematic way to realize its unordered

135

trees as surface strings:1 it imposes a particular order on the tree’s word tokens. More

precisely, a language specifies a distribution p(string | unordered tree) over a tree’s

possible realizations.

As an engineering matter, we now make the strong assumption that the unordered

dependency trees are similar across languages. That is, we suppose that different

languages use similar underlying syntactic/semantic graphs, but differ in how they

realize this graph structure on the surface.

Thus, given a gold POS corpus u of the unknown target language, we may hope

to explain its distribution of surface POS bigrams as the result of applying some

target-language surface realization model to the distribution of cross-linguistically

“typical” unordered trees. To obtain samples of the latter distribution, we use the

treebanks of one or more other languages. The present work evaluates the method

when only a single source treebank is used. In the future, we could try tuning a mixture

of all available source treebanks.

6.2.1 Realization is systematic

We presume that the target language applies the same stochastic realization model

to all trees. All that we can optimize is the parameter vector of this model. Thus,

we deny ourselves the freedom to realize each individual tree in an ad hoc way.

To see why this is important, suppose the target language is French, whose corpus

u contains many NOUN–ADJ bigrams. We could achieve such a bigram from the

unordered source tree
DET NOUN VERB PROPN ADJ

the cake made Sue sleepy

det nsubj dobj
xcomp

by ordering it to yield

1Modeling this process was the topic of the recent Surface Realization Shared Task (Mille et al.,
2018). Most relevant is work on tree linearization (Filippova and Strube, 2009; Futrell and Gibson,
2015; Puzikov and Gurevych, 2018).

136

DET NOUN ADJ VERB PROPN

the cake sleepy made Sue

det dobjxcomp
nsubj

. However, that realization is not in fact appro-

priate for French, so that ordered tree would not be a useful training tree for French.

Our approach should disprefer this tempting but incorrect realization, because any

model with a high probability of this realization would, if applied systematically over

the whole corpus, also yield sentences like He sleepy made Sue, with unwanted

PRON–ADJ bigrams that would not match the surface statistics of French. We hope

our approach will instead choose the realization model that is correct for French,

in which the NOUN–ADJ bigrams arise instead from source trees where the ADJ is

a dependent of the NOUN, yielding (e.g.)
DET NOUN ADJ VERB PROPN

the cake tasty pleased Sue

dobjdet amod
nsubj

. This has the same POS sequence as the example above (as it happens), but now

assigns the correct tree to it.

6.2.2 A parametric realization model

As our family of realization distributions, we apply the log-linear model in Section 3.4,

which assumes that the root node a of the unordered dependency tree selects an

ordering o(a) of the na nodes consisting of a and its na − 1 dependent children. The

procedure is repeated recursively at the child nodes. This method can produce only

projective trees.

Each node a draws its ordering o(a) independently according to

pθ(o | a) =
1

Z(a)
exp ∑

1≤i<j≤na

θ · f(o, i, j) (6.1)

which is a distribution over the na! possible orderings. Z(a) is a normalizing constant.

f is a feature vector extracted from the ordered pair of nodes oi, oj, and θ is the model’s

137

parameter vector of feature weights.

To construct the feature vector f(o, i, j), we use the following subset of the feature

templates of Section 3.4.4.

• L.ti.ri, provided that rj = head.

• L.ti.ri.tj.rj, provided that ri ̸= head and rj ̸= head.

• d.ti.ri.tj.rj, where d is l (left), m (middle), or r (right) according to whether the

head position h satisfies i < j < h, i < h < j, or h < i < j.

• A.ti.ri.tj.rj, provided that j = i + 1.

These templates are instantiated with all tags and relations that appear in the source

treebank. In contrast to Chapter 3, the ordering model that we tune on the source

treebank is never applied to any other treebank. Thus, there is no need to include

tags or relations that do not appear in the source treebank, nor do we need the backoff

features of Chapter 3. Also, for speed, we exclude the “high-order” features from that

paper. Following Section 3.3.1, we choose new orderings for the noun and verb nodes

only, preserving the source treebank’s order at all other nodes a.

6.2.3 Generating training data

Given a source treebank y and some parameters θ, we can use Equation (6.1) to

randomly sample realizations of the trees in y. The effect is to reorder dependent

phrases within those trees. The resulting permuted treebank y′ can be used to train a

parser for the target language.

138

6.2.4 Choosing parameters θ

So how do we choose θ that works for the target language? Suppose u is a corpus of

target-language POS sequences, using the same set of POS tags as y. We evaluate

parameters θ according to whether POS tag sequences in y′ will be distributed like

POS tag sequences in u.

To do this, first we estimate a bigram language model q̂ from the actual distribution

q of POS sequences observed in u. Second, let pθ denote the distribution of POS

sequences that we expect to see in y′, that is, POS sequences obtained by stochastically

realizing observed trees in y according to θ. We estimate another bigram model p̂θ

from this distribution pθ.

We then try to set θ, using SGD, to minimize a divergence D(p̂θ, q̂) that we will

define below.

6.2.4.1 Estimation of bigram models

Estimating q̂ is straightforward: q̂(t | s) = cq(st)/cq(s), where cq(st) is the count of

POS bigram st in the average2 sentence of u and cq(s) = ∑t′ cq(st′). We estimate

p̂θ in the same way, where cp(st) denotes the expected count of st in a random POS

sequence s ∼ pθ. This is equivalent to choosing q̂, p̂θ to minimize the KL-divergences

KL(q || q̂), KL(pθ || p̂θ). It ensures that each model’s expected bigram counts match

those in the POS sequences.

However, these maximum-likelihood estimates might overfit on our finite data, u

and y. We therefore smooth both models by first adding λ = 0.1 to all bigram counts

2A more familiar definition of cq would use the total count in u. Our definition, which yields the
same bigram probabilities, is analogous to our definition of cp. This cp is needed for KL(p || q) in
Equation (6.3), and cq symmetrically for KL(q || p).

139

cq(st) and cp(st).3

6.2.4.2 Divergence of bigram models

We need a metric to evaluate θ. If p and q are bigram language models over POS

sequences s (sentences), their Kullback-Leibler divergence is

KL(p || q) def
= IE

s∼p
[log p(s)− log q(s)] (6.2)

= ∑
s,t

cp(st) · (log p(t | s)− log q(t | s)) (6.3)

where s ranges over POS sequences and st ranges over POS bigrams. These include

bigrams where s = BOS or t = EOS, which are boundary tags that we take to

surround s.

All quantities in Equation (6.3) can be determined directly from the (expected)

bigram counts given by cp and cq. No other model estimation is needed.

A concern about Equation (6.3) is that a single bigram st that is badly under-

represented in q may contribute an arbitrarily large term log p(t|s)
q(t|s) . To limit this

contribution to at most log 1
α , for some small α ∈ (0, 1), we define KLα(p || q) by

a variant of Equation (6.3) in which q(t | s) has been replaced by q̃(t | s) def
= αp(t |

s) + (1− α)q(t | s).4

Our final divergence metric D(p̂θ, q̂) defines D as a linear combination of exclu-

sive and inclusive KLα divergences, which respectively emphasize pθ’s precision and

3Ideally one should tune λ to minimize the language model perplexity on held-out data (e.g., by
cross-validation).

4This is inspired by the α-skew divergence of Lee (1999) and Lee (2001). Indeed, we may regard
KLα(p || q) as the α-skew divergence between the unigram distributions p(· | s) and q(· | s), averaged
over all s in proportion to cp(s). In principle, we could have used the α-skew divergence between
the distributions p(·) and q(·) over POS sequences s, but computing that would have required a
sampling-based approximation (Section 6.7).

140

recall at matching q’s bigrams:

D(p, q) = (1− β) · KLα1(p || q)
IEs∼p[|s|]

+ β · KLα2(q || p)
IEs∼q[|s|]

(6.4)

where β, α1, α2 are tuned by cross-validation to maximize the downstream parsing

performance. The division by average sentence length converts KL from nats per

sentence to nats per word,5 so that the KL values have comparable scale even if y has

much longer or shorter sentences than u.

6.3 Algorithms

6.3.1 Efficiently computing expected counts

We now present Algorithm 6—a polynomial-time algorithm for computing the ex-

pected bigram counts cp under pθ (or equivalently p̂θ), for use above. This averages

expected counts from each unordered tree t ∈ y. The insight of this algorithm is

that rather than sampling a single realization of t (as y′ does), we can use dynamic

programming to sum efficiently over all of its exponentially many realizations. This

gives an exact answer. It algorithmically resembles tree-to-string machine translation,

which likewise considers the possible reorderings of a source tree and incorporates a

language model by similarly tracking their surface N-grams (Chiang, 2007, Section

5.3.2).

For each node a of the tree t, let the POS string sa be the realization of the

subtree rooted at a. Let ca(st) be the expected count of bigram st in sa, whose

distribution is governed by Equation (6.1). We allow s = BOS or t = EOS as defined

in Section 6.2.4.2.
5Recall that the units of negated log-probability are called bits for log base 2, but nats for log base e.

141

Algorithm 6 A recursive routine for computing the expected bigram counts ca from
pθ. croot is the cp function needed by Section 6.2.4. LAZYCOMPUTE (Algorithm 7)
is a subroutine for efficiently computing the expected node bigram counts pa(i, j),
which will be described in Section 6.3.2.
Input: A node a in the dependency tree; current model parameters θ
Output: Sparse map ca where ca[st] gives the expected count ca(st) for each POS bigram st

1: procedure ECOUNTNODE(a, θ)
2: a0 = BOS; (a1, . . . , an−1) = children(a); an = head(a); an+1 = EOS ▷ a⃗ is the

node sequence defined in Section 6.3.1
3: ca ← {} ▷ map we’re constructing, initialized to empty; undefined count ca[st] can be

interpreted as 0
4: for i = 1 to n− 1 do
5: cai ← ECOUNTNODE(ai) ▷ recursively compute expected counts for any subtrees

rooted at children(a)

6: can ← {BOS h ↦→ 1, hEOS ↦→ 1} where h = POS(head(a)) ▷ serves as the base
case of the recursive routine

7: ca0 ← {BOSEOS ↦→ 1} ▷ dummy boundary nodes
8: can+1 ← {BOSEOS ↦→ 1}
9: pa ← LAZYCOMPUTE(⃗a, θ) ▷ call Algorithm 7 for node bigram probs pa (as defined

above Equation (6.5))
10: for i = 1 to n do
11: for st ∈ keys(cai) such that s ̸= BOS, t ̸= EOS do
12: ca[st] += cai [st] ▷ increase ca[st] by cwithin

a [st] using Equation (6.5)

13: for i = 0 to n do
14: for j = 1 to n + 1 such that j ̸= i do
15: for s, t such that sEOS ∈ keys(cai) and BOS t ∈ keys(caj) do
16: ca[st] += pa[i, j] · cai [sEOS] · caj [BOS t] ▷ increase ca[st] by cacross

a [st]
using Equation (6.5)

17: return ca

142

The ca function can be represented as a sparse map from POS bigrams to reals.

We compute ca at each node a of t in a bottom-up order. The final step computes croot,

giving the expected bigram counts in t’s realization s (that is, cp in Section 6.2.4).

We find ca as follows. Let n = na and recall from Section 6.2.2 that o(a) is an

ordering of a1, . . . , an, where a1, . . . , an−1 are the child nodes of a, and an is a dummy

node representing a’s head token. Also, let a0 and an+1 be dummy nodes that always

appear at the start and end of any ordering.

For all 0 ≤ i ≤ n and 1 ≤ j ≤ n + 1, let pa(i, j) denote the expected count of

the aiaj node bigram—the probability that o(a) places node ai immediately before

node aj. These node bigram probabilities can be obtained by enumerating all possible

orderings o, a matter we return to below.

It is now easy to compute ca:

ca(st) = cwithin
a (st) + cbetween

a (st) (6.5)

cwithin
a (st) =

{
∑n

i=1 cai(st) if s ̸= BOS, t ̸= EOS

0 otherwise

cacross
a (st) =

n

∑
i=0

n+1

∑
j=1

pa(i, j)cai(sEOS)caj(BOS t)

That is, ca inherits all non-boundary bigrams st that fall within its child constituents

(via cwithin
a). It also counts bigrams st that cross the boundary between consecutive

nodes (via cacross
a), where nodes ai and aj are consecutive with probability pa(i, j).

When computing ca via Equation (6.5), we will have already computed ca1 , . . . , can−1

bottom-up. As for the dummy nodes, an is realized by the length-1 string h where h

is the head token of node a, while a0 and an+1 are each realized by the empty string.

143

Thus, can simply assigns count 1 to the bigrams BOS h and hEOS, and ca0 and can+1

each assign expected count 1 to BOS EOS. (Notice that thus, cacross
a (st) counts sa’s

boundary bigrams—the bigrams st where s = BOS or t = EOS—when i = 0 or

j = n + 1 respectively.)

6.3.2 Efficient enumeration over permutations

The main challenge above is computing the node bigram probabilities pa(i, j). These

are marginals of p(o | a) as defined by Equation (6.1), which unfortunately is

intractable to marginalize: there is no better way than enumerating all n! permutations.

Similar to Section 3.4.1, we used the Steinhaus-Johnson-Trotter (SJT) algorithm

(Sedgewick, 1977), which obtains each permutation by applying a single swap to the

previous one. Only the features that are affected by this swap need to be recomputed.

Furthermore, the single swap of adjacent nodes only changes 3 bigrams (possi-

bly including boundary bigrams). As a result, it is possible to obtain the marginal

probabilities with O(1) additional work per permutation. Pseudocode is given in

Algorithm 7. The key is that UPDATE is called when a bigram is about to be destroyed;

it increments the bigram’s unnormalized probability by the cumulative change to the

running total Z(a) since that bigram was last created. Each enumerated permutation

swaps two adjacent nodes (thanks to SJT) in the previous permutation. This destroys

3 bigrams, so it first calls UPDATE on those (Line 15–17).

When we train the parameters θ (Section 6.2.4), we must back-propagate through

the whole computation of Equation (6.4), which depends on tag bigram counts ca(st),

which depend via Equation (6.5) on expected node bigram counts pa(i, j), which

depend via Algorithm 7 on the permutation probabilities p(o | a), which depend via

144

Algorithm 7 Computing node bigram probabilities.
Input: Sequence of nodes a⃗ = (a1, . . . , an); current model parameters θ
Output: Array p where p[i, j] = marginal probability of node bigram aiaj for all 0 ≤ i <

n + 1, 0 < j ≤ n + 1 with j ̸= i
1: procedure LAZYCOMPUTE(⃗a, θ)
2: p ← 0 ▷ initialize all marginal bigram probabilities to zero
3: t ← 0 ▷ number of permutations considered so far
4: Z(t) ← 0 ▷ Z(t) is always total unnormalized probability of first t permutations
5: ρi ← t for 0 ≤ i < n + 1 ▷ ρi is the latest permutation at which bigram (oi, oi+1) was

not yet adjacent
6: o ← (1, 2, . . . , n) ▷ initialize o to be identity permutation, (∀i)oi = i
7: procedure UPDATE(i)
8: ▷ This procedure updates the unnormalized marginal probability of the bigram (oi, oi+1),

which is about to change
9: p[oi, oi+1] += Z(t) − Z(ρi) ▷ total partial sum of Z(a) since (oi, oi+1) acquired its

current value
10: ρi ← t ▷ current time is last time at which (oi, oi+1) will have its current value (until

later)

11: w← θ ·∑1≤i<j≤n f(o, i, j) ▷ unnormalized log-probability of o from Equation (6.1)

12: t← t + 1; Z(t) ← Z(t−1) + exp w ▷ add the first permutation’s unnormalized prob into
Z

13: ▷ SJT iterates over a sequence of n!− 1 swaps, to get the remaining permutations
14: for k in SJT(n) do ▷ here 1 ≤ k < n, meaning to swap (ok, ok+1)

15: UPDATE(k− 1) ▷ increment prob of current bigram (ok−1, ok) before that bigram goes
away

16: UPDATE(k) ▷ similarly for (ok, ok+1)

17: UPDATE(k + 1) ▷ similarly for (ok+1, ok+2)

18: SWAP(ok, ok+1)
19: ▷ Update w from Algorithm 7 using only the difference of feature vectors, which is sparse

and computable in O(n) time
20: w← w + θ ·∑1≤i<j≤n (f(o, i, j)− f(oold, i, j)) ▷ where oold is the pre-swap θ and

is similar to θ

21: t← t + 1; Z(t) ← Z(t−1) + exp w ▷ add the new permutation’s unnormalized prob
into Z (same as Algorithm 7)

22: for i = 1 to n do ▷ count all bigrams in final permutation as we move on from it
23: UPDATE(i)
24: for i = 0 to n do
25: for j = 1 to n + 1 such that j ̸= i do
26: p[i, j]← p[i,j]

Z(t) ▷ normalize the probabilities

27: return the array p

145

Equation (6.1) on the feature weights θ.

6.4 Heuristics

6.4.1 Pruning high-degree trees

As a further speedup, we only train on trees with number of words < 40 and

maxa na ≤ 5, so na! ≤ 120.6 We then produce the synthetic treebank y′ (Sec-

tion 6.2.3) by drawing a single realization of each tree in y for which maxa na ≤ 7

(following Section 3.4.1). This requires sampling from up to 7! = 5040 candidates

per node, again using SJT.7

That is, we run exact algorithms (Section 6.3), but only on a subset of y. The

subset is not necessarily representative. An improvement would use importance

sampling, with a proposal distribution that samples the slower trees less often during

SGD but upweights them to compensate.

Section 6.7 suggests a future strategy that would run on all trees in y via ap-

proximate, sampling-based algorithms. The exact methods would remain useful for

calibrating the approximation quality.

6.4.2 Minibatch estimation of cp

To minimize Equation (6.4), we use the Adam variant of SGD (Kingma and Ba, 2015),

with learning rate 0.01 chosen by cross-validation (Section 6.5.1).

6We found that this threshold worked much better than ≤ 4 and about as well as the much slower
≤ 6.

7This pruning heuristic retains 36.1% of the trees (averaging over the 20 development treebanks
(Section 6.5.1)) for training, and 66.6% for actual realization.

146

SGD requires a stochastic estimate of the gradient of the training objective. Or-

dinarily this is done by replacing an expectation over the entire training set with an

expectation over a minibatch.

Equation (6.2) with p = p̂θ is indeed an expectation over sentences of y. It can

be stochastically estimated as Equation (6.3) where cp gives the expected bigram

counts averaged over only the sentences in a minibatch of y. These are found using

Section 6.3’s algorithms with the current θ. Unfortunately, the term log p(t | s)

depends on bigram counts that should be derived from the entire corpus y in the same

way. Our solution is to simply reuse the minibatch estimate of cp for the latter counts.

We use a large minibatch of 500 sentences from y so that this drop-in estimate does

not introduce too much bias into the stochastic gradient: after all, we only need to

estimate bigram statistics on 17 POS types.8

By contrast, the cq values that are used for the expectation in the second term of

Equation (6.4) and in log q(t | s) do not change during optimization, so we simply

compute them once from all of u.

6.4.3 Informed initialization

Unfortunately the objective Equation (6.4) is not convex, so the optimizer is sensitive

to initialization (see Section 6.5.4 below for empirical discussion). Initializing θ = 0

(so that p(o | a) is uniform) gave poor results in pilot experiments. Instead, we

initially choose θ to be the realization parameters of the source language, as estimated

from the source treebank y. This is at least a linguistically realistic θ, although it may

8We also used the minibatch to estimate the average sentence length IEs∼p[|s|] in Equation (6.4),
although here we could have simply used all of y since this value does not change.

147

not be close to the target language.9

For this initial estimation, we follow Chapter 3 and perform supervised training on

y of the log-linear realization model Equation (6.1), by maximizing the conditional

log-likelihood of y, namely ∑(t,o)∈y log pθ(o | t), where (t, o) are an unordered tree

and its observed ordering in y. This initial objective is convex.10

6.5 Experiments

6.5.1 Data and setup

Again, we use Universal Dependencies version 1.2 (Nivre et al., 2015)—a set of 37

dependency treebanks for 33 languages, with a unified POS-tag set and relation label

set.

Our evaluation metric was unlabeled attachment score (UAS) when parsing a

target treebank with a parser trained on a (possibly permuted) source treebank. For

both evaluation and training, we used only the training portion of each treebank.

Following Chapter 3, we use the Yara parser (Rasooli and Tetreault, 2015) with the

same modification as mentioned in Section 3.6 to ignore the input words and use only

the input gold POS tags (see Section 6.1.3). To train the Yara parser on a (possibly

permuted) source treebank, we first train on 80% of the trees and use the remaining

20% to tune Yara’s hyperparameters. We then retrain Yara on 100% of the source

trees and evaluate it on the target treebank.

9As an improvement, one could also try initial realization parameters for y that are estimated from
treebanks of other languages. Concretely, the optimizer could start by selecting a “galactic” treebank
from Chapter 3 that is already close to the target language, according to Equation (6.4), and try to make
it even closer. We leave this to future work.

10Unfortunately, we did not regularize it, which probably resulted in initializing some parameters
too close to ±∞ for the optimizer to change them meaningfully.

148

0.0 0.1 0.2 0.3 0.4 0.5
Divergence

10

20

30

40

50

60

70

80
U

AS
ar
bg
cs
da
de
en
es
et
fi
fr

got
grc
grc_proiel
hi
it
la_itt
la_proiel
nl
no
pt

0.0 0.1 0.2 0.3 0.4 0.5
Divergence

20

30

40

50

60

70

80

U
AS

ar
bg
cs
da
de
en
es
et
fi
fr

got
grc
grc_proiel
hi
it
la_itt
la_proiel
nl
no
pt

Figure 6.1: UAS is higher when divergence is lower. Each point represents a pair of source
and target languages, whose shape and color identify the treebank of the target language (see
legend). The marker is solid if the source and target languages belong to the same language
family.13The left graph uses the original source treebank (Kendall’s τ = −0.41), while the
right graph uses its permuted version (τ = −0.39).

We adopt the same set up as Section 4.6, which uses 20 treebanks (18 distinct

languages) in Table 4.2 as development data, and hold out the remaining 17 treebanks

for the final evaluation. We perform a grid search that evaluated all (α1, α2, β) triples

of Equation (6.4) in {0.0, 0.2, . . . , 1}3 and chose (α1, α2, β) = (0.2, 1, 0.2), which

maximizes the target-language UAS, averaged over all 376 transfer experiments where

the source and target treebanks were development treebanks of different languages.11

The next few sections perform some exploratory analysis on these 376 experiments.

Then, for the final test in Section 6.5.5, we will evaluate UAS on all 337 transfer

experiments where the source is a development treebank and the target is a test

treebank of a different language.12

11We have 19*20=380 pairs in total, minus the four excluded pairs (grc, grc_proiel), (grc_proiel,
grc), (la_proiel, la_itt) and (la_itt, la_proiel).

12Specifically, there are 3 duplicated sets: {grc, grc_proiel}, {la, la_proiel, la_itt}, and {fi, fi_ftb}.
Whenever one treebank is used as the target language, we exclude the other treebanks in the same set.

149

0.0 0.1 0.2 0.3 0.4 0.5

Original Treebank: 0.22

0.0

0.1

0.2

0.3

0.4

0.5

Sy
nt

he
tic

 T
re

eb
an

k:
 0

.1
8

ar
bg
cs
da

de
en
es
et

fi
fr
got
grc

grc_proiel
hi
it
la_itt

la_proiel
nl
no
pt

Figure 6.2: This graph plots the x-axes from the two graphs in Figure 6.1 against each other.
We see that for almost every source-target pair (330/376 = 96.01% of the pairs), the SGD
optimizer succeeded in constructing a permuted source treebank y′ with lower divergence
to the target than the original source treebank y. The diagonal line y = x is also shown for
readability. The number on each axis is the mean value.

6.5.2 Exploratory analysis

We have assumed that a smaller divergence between source and target treebanks

results in better transfer parsing accuracy. Figure 6.1 shows that these quantities are

indeed correlated, both for the original source treebanks and for their “made to order”

permuted versions.

Thus, we hope that the optimizer will find a systematic permutation that reduces

the divergence. Does it? Yes: Figures 6.2 and 6.3 show that the optimizer almost

always manages to reduce the objective on training data, as expected.

One concern is that our divergence metric might misguide us into producing

dysfunctional languages whose trees cannot be easily recovered from their surface

strings, i.e., they have no good parser. In such a language, the word order might

13According to the (sub-)family information in Table 3.3.

150

ar bg cs da de en es et fi fr got grc

grc_p
roiel hi it

la_itt
la_proiel nl no pt

Target Treebanks

0.0

0.1

0.2

0.3

0.4

0.5
D

iv
er

ge
nc

e
ar bg cs da de en es et fi fr got grc grc_proiel hi it la_itt la_proiel nl no pt

Figure 6.3: Divergences between 376 pairs of development treebanks. This is a different
presentation of Figure 6.2 in which the source-target pairs are grouped into columns. Each
column represents a target treebank, and each line segment within that column shows the
divergence Equation (6.4) from variants of a different source treebank. The two points on
that segment (from left to right) represent the original source treebank and its “made to order”
permutation. We use solid markers and purple lines if the transfer is within-family (source and
target treebank from the same language family), and hollow and olive for cross-family transfer.
The black segment in each column is the mean of the others.

be extremely free (e.g., θ = 0), or common constructions might be syntactically

ambiguous. Fortunately, Section 6.5.3 shows that our synthetic languages appear

natural with respect to their their parsability.

The above findings are promising. So does permuting the source language in fact

result in better transfer parsing of the target language? We experiment on the 376

development pairs.

The solid lines in Figure 6.5 show our improvements on the dev data, with a simpler

scatterplot given by in Figure 6.6. The upshot is that the synthetic source treebanks

yield a transfer UAS of 52.92 on average. This is not yet a result on held-out test data:

recall that 52.92 was the best transfer UAS achieved by any hyperparameter setting.

That said, it is 1.00 points better than transferring from the original source treebanks,

a significant difference (paired permutation test by language pair, p < 0.01).

Figure 6.5 shows that this average improvement is mainly due to the many cases

151

where the source and target languages come from different families. Permutation

tends to improve source languages that were doing badly to start with. However, it

tends to hurt a source language that is already in the target language family.

A hypothetical experiment shows that permuting the source does have good

potential to help (or at least not hurt) in both cases. The dashed lines in Figure 6.5—

and the scatterplot in Figure 6.7—show the potential of the method, by showing the

improvement we would get from permuting each source treebank using an “oracle”

realization policy—the supervised realization parameters θ that are estimated from the

actual target treebank. The usefulness of this oracle-permuted source varies depending

on the source language, but it is usually much better than the automatically-permuted

version of the same source.

This shows that large improvements would be possible if we could only find the

best permutation policy allowed by our model family. The question for future work

is whether such gains can be achieved by a more sensitive permutation model than

Equation (6.1), a better divergence objective than Equation (6.4), or a better search

algorithm than Section 6.4.2. Identifying the best available source treebank, or the

best mixture of all source treebanks, would also help greatly.

6.5.3 Parsability

For reasons explained above, we evaluated the parsability of our “made to order”

synthetic languages as shown in Figure 6.4, when the parser was given only POS

sequences as input. For each synthetic treebank y′, we trained the Yara parser on

a training portion and evaluated its UAS on a development portion. In fact, the

synthetic treebanks were slightly more parsable than the originals (mean UAS of

152

50 60 70 80 90 100ar bgcs dadeen es etfi frgotgrc_proielgrc hi itla_ittla_proiel nl nopt

Original
Synthetic

Figure 6.4: Parsability of 20 real treebanks vs. their many synthetic re-realizations (cf.
Figure 3.2).

74.96 vs. 73.61), though the improvement was far from significant under an unpaired

permutation test (p = 0.48). By contrast, Chapter 3 produces synthetic treebanks that

were significantly less parsable. We observed some regression to the mean: highly

parsable treebanks usually became less parsable when permuted, and vice-versa.

6.5.4 Sensitivity to initializer

Figure 6.5 makes clear that performance of the synthetic source treebanks is strongly

correlated with that of their original versions. Most points in Figure 6.6 lie near

the diagonal (Kendall’s τ = 0.85). Even with oracle permutation in Figure 6.7, the

correlation remains strong (τ = 0.59), suggesting that the choice of source treebank

is important even beyond its effect on search initialization.

14For speed, we restricted the experiment of Figure 6.8 to choose 48 of the 376 pairs. The source
treebanks were en, no, de, es, fr, pt, hi, it, ar. The target treebanks were fr, hi, de, ar, pt, en. This covers
both in-family transfer and cross-family transfer. By excluding the cases where source = target, we got
9 ∗ 6− 6 = 48 pairs.

153

All (376) in-family (46) cross-family (330)

Original 51.92 63.90 50.24

Synthetic 52.92 62.85 51.53
Oracle 59.45 66.14 58.51

Figure 6.5: UAS from 376 pairs of development treebanks. Each column represents a target
treebank, and each polyline within that column shows transfer from variants of a different
source treebank. The three points on the polyline (from left to right) represent the target
UAS for parsers trained on three sources: the original source treebank, the “made to order”
permutation that attempts to match surface statistics of the target treebank, and an oracle
permutation that uses a realization model trained on the target language. We use solid markers
and purple lines if the transfer is within-family (source and target treebank from the same
language family), and hollow and olive for cross-family transfer. The black polyline in each
column is the mean of the others. The table in the lower left gives summary results; the number
in each column header gives the number of points summarized. For each column, we boldface
the better result between the “Synthetic” and “Original”, or both if they are not significantly
different (paired permutation test, p < 0.01). We also show the oracle permutation result in
row “Oracle”.

154

All (376) in-family (46) cross-family (330)

Original 51.92 63.90 50.24

Synthetic 52.92 62.85 51.53

Figure 6.6: Unlabeled attachment scores (UAS) on 376 treebank pairs within the development
languages. Each marker represents one pair, whose x-axis is the UAS on the target language
using the original treebank of the source language, and the y-axis is the UAS using the
synthetic treebank permuted from the original treebank. The table in the upper left gives
summary results; the number in each column header gives the number of points summarized.
For each column, we boldface the better result, as well as the other if it is not significantly
worse (paired permutation test, p < 0.01).

We suspected that when “made to order” source treebanks (more than the oracle

versions) have performance close to their original versions, this is in part because

the optimizer can get stuck near the initializer (Section 6.4.3). To examine this, we

experimented with random restarts, as follows. In addition to informed initialization

(Section 6.4.3), we optimized from 5 other starting points θ ∼ N (0, I). From these 6

runs, we selected the final parameters that achieved the best divergence Equation (6.4).

As shown by Figure 6.8 in the supplement, greater gains appear to be possible with

more aggressive search methods of this sort, which we leave to future work. We could

also try non-random restarts based on the realization parameters of other languages,

as suggested in Footnote 9.

155

All (376) in-family (46) cross-family (330)

Original 51.92 63.90 50.24

Synthetic 59.45 66.14 58.51

Figure 6.7: UAS on 376 language pairs within the training languages. The design is similar
to Figure 6.6, but the synthetic treebanks are generated using an oracle—the actual realization
model of the target language.

6.5.5 Final evaluation on the test languages

For our final evaluation, we use the same hyperparameters (Section 6.5.1) and report

on single-source transfer to the 17 held-out treebanks.

The development results hold up in Figure 6.9. Using the synthetic languages

yields 50.36 UAS on average—1.75 points over the baseline, which is significant

(paired permutation test, p < 0.01).

Table 6.1 gives a breakdown view on each language pair for the above development

and test results.

6.6 Related Work

Our novel proposal ties into the recent interest in data augmentation in supervised

machine learning. In unsupervised parsing, the most widely adopted synthetic data

156

bg
es

gr
c_

pr
oi

el
ar

en
la

_p
ro

ie
l

la
_i

tt
fi

de
fr

it
go

t
pt

no
et

nl
hi

cs
gr

c
da

bg
-

69
.6

6
60

.8
5

45
.3

4
71

.6
5

63
.0

5
58

.8
3

68
.4

8
68

.3
4

70
.0

4
75

.1
1

66
.1

3
70

.1
8

73
.6

5
62

.5
0

69
.6

7
36

.1
1

75
.8

1
64

.6
4

75
.3

3
es

70
.9

9
-

60
.3

2
51

.5
4

67
.7

4
58

.1
8

55
.0

5
56

.2
1

63
.3

4
76

.4
2

76
.6

4
61

.2
3

70
.4

9
70

.5
0

45
.0

7
67

.2
3

31
.2

5
69

.7
6

50
.8

1
68

.5
5

gr
c_

pr
oi

el
54

.0
2

49
.2

8
-

39
.2

7
50

.2
3

50
.4

2
43

.8
9

45
.2

3
49

.7
7

47
.0

6
48

.9
3

59
.5

8
49

.4
4

51
.0

4
43

.8
1

51
.2

0
37

.8
0

53
.4

4
-

51
.5

0
ar

46
.5

8
44

.7
8

45
.6

3
-

34
.0

0
48

.4
6

49
.8

2
32

.0
8

42
.8

1
46

.4
8

45
.8

3
48

.7
5

45
.2

5
39

.5
0

39
.7

8
44

.0
4

14
.6

8
50

.1
8

49
.2

6
44

.3
3

en
57

.7
8

57
.4

0
48

.6
9

34
.4

9
-

47
.3

4
49

.9
7

53
.4

2
60

.5
2

59
.0

0
56

.4
1

48
.2

6
48

.5
6

61
.6

2
48

.6
8

51
.4

2
39

.7
7

58
.1

1
50

.2
5

58
.1

5
la

_p
ro

ie
l

50
.8

7
45

.1
4

51
.2

6
34

.0
9

44
.3

4
-

-
44

.8
8

43
.8

0
41

.9
9

43
.5

8
52

.8
4

44
.7

8
45

.5
0

43
.0

1
44

.5
1

33
.3

7
49

.6
5

47
.1

5
44

.5
9

la
_i

tt
45

.5
7

46
.1

8
44

.1
9

36
.7

8
43

.2
0

-
-

44
.0

8
43

.4
4

43
.5

5
44

.7
8

45
.2

1
45

.6
2

45
.3

4
39

.9
5

42
.7

1
29

.0
3

48
.3

7
46

.5
4

42
.1

0
fi

47
.0

0
46

.7
8

45
.0

2
27

.7
5

49
.1

5
42

.8
6

35
.6

2
-

45
.7

0
44

.3
8

45
.0

1
45

.3
2

39
.3

0
53

.4
4

46
.1

2
45

.1
8

40
.8

1
48

.3
8

47
.0

7
49

.9
9

de
61

.4
4

61
.0

5
55

.7
7

38
.7

2
64

.5
1

47
.6

6
49

.2
0

50
.0

3
-

58
.1

1
59

.1
2

51
.0

0
56

.6
8

59
.7

1
47

.7
9

61
.0

3
45

.7
5

63
.1

3
49

.2
2

58
.4

5
fr

73
.5

7
78

.5
1

62
.0

9
54

.0
9

69
.7

1
57

.5
4

56
.9

7
57

.4
6

67
.2

8
-

76
.5

6
62

.3
7

70
.3

4
73

.0
0

41
.9

6
69

.6
2

33
.3

6
72

.1
2

53
.5

6
72

.3
5

it
75

.6
5

79
.9

7
62

.5
3

56
.1

9
71

.1
4

61
.0

9
62

.3
4

55
.5

3
66

.2
4

78
.0

3
-

61
.9

8
71

.7
4

75
.4

8
45

.9
1

70
.4

5
34

.0
9

73
.7

0
53

.5
3

73
.5

7
go

t
61

.3
3

53
.3

5
65

.1
6

41
.9

2
53

.4
2

62
.6

7
47

.8
3

52
.0

3
51

.7
1

47
.9

4
50

.8
9

-
52

.8
5

55
.2

0
52

.5
1

52
.8

5
35

.8
0

57
.1

7
56

.7
6

54
.7

4
pt

71
.0

2
76

.3
4

61
.9

9
53

.1
7

69
.0

9
58

.9
2

56
.5

7
52

.2
0

64
.8

9
74

.7
4

76
.5

5
61

.8
2

-
70

.2
6

37
.7

2
69

.6
2

34
.3

1
71

.1
9

52
.1

0
71

.0
4

no
66

.7
7

62
.7

4
55

.8
5

39
.5

3
65

.9
9

50
.8

2
54

.7
1

60
.6

7
59

.3
3

62
.9

7
65

.9
1

54
.9

7
55

.1
4

-
47

.7
3

55
.8

6
35

.1
4

64
.7

2
53

.7
9

67
.8

8
et

66
.0

2
60

.8
9

67
.5

7
41

.4
8

59
.7

9
62

.8
4

55
.5

0
74

.8
4

55
.2

2
46

.7
8

57
.4

7
69

.0
3

53
.2

2
67

.6
9

-
55

.8
4

55
.1

4
64

.1
8

69
.8

0
70

.4
7

nl
52

.6
0

56
.4

6
50

.4
4

38
.9

1
55

.2
9

47
.5

7
47

.9
3

45
.2

4
59

.3
8

52
.8

9
55

.0
9

49
.4

2
54

.5
3

50
.5

2
38

.4
1

-
40

.8
1

53
.3

0
44

.9
6

57
.7

9
hi

27
.0

2
24

.4
5

37
.0

4
18

.8
9

30
.8

1
37

.8
8

34
.9

6
48

.1
8

40
.3

9
22

.3
8

25
.3

1
38

.8
2

28
.0

7
27

.3
1

48
.4

2
29

.7
4

-
27

.7
4

38
.6

0
24

.5
0

cs
64

.3
3

64
.2

1
53

.4
8

36
.6

9
53

.6
5

55
.4

1
54

.0
0

58
.0

9
58

.7
8

60
.0

3
65

.6
4

55
.4

2
60

.5
8

60
.1

1
50

.1
6

57
.6

6
33

.9
9

-
55

.1
6

60
.1

6
gr

c
49

.1
1

43
.0

6
-

31
.4

6
42

.8
1

45
.7

0
40

.0
5

43
.5

3
44

.0
7

41
.1

0
43

.3
1

48
.9

2
44

.6
3

46
.7

6
45

.0
7

46
.9

6
36

.0
0

44
.2

7
-

47
.1

4
da

65
.7

2
64

.6
9

54
.4

2
39

.4
6

62
.9

9
51

.9
3

53
.3

9
57

.5
4

59
.8

7
64

.3
3

65
.5

8
53

.7
4

56
.7

0
68

.4
3

49
.0

3
59

.3
9

34
.3

9
64

.6
5

51
.7

6
-

cu
64

.8
4

55
.1

5
64

.4
2

45
.5

5
56

.8
7

65
.8

2
49

.9
7

54
.6

2
52

.1
6

50
.9

5
54

.1
1

68
.3

4
55

.7
8

59
.2

2
54

.9
1

54
.1

2
33

.5
9

60
.1

9
60

.3
5

58
.6

9
el

62
.6

9
56

.8
2

58
.6

8
45

.8
0

59
.4

9
50

.3
4

57
.1

1
48

.5
2

61
.3

1
58

.9
5

57
.9

9
57

.6
1

59
.9

2
60

.8
2

41
.9

7
56

.0
8

39
.9

3
64

.7
0

58
.2

4
57

.9
7

eu
48

.6
8

40
.0

2
45

.3
1

32
.7

9
44

.8
4

46
.1

4
43

.7
3

41
.2

9
43

.2
4

34
.0

1
44

.5
3

42
.0

7
43

.2
8

43
.2

9
48

.1
2

47
.1

1
48

.0
3

47
.6

0
43

.2
2

46
.8

3
fa

50
.3

3
48

.7
8

42
.4

3
45

.9
6

38
.0

8
48

.3
7

49
.0

3
39

.4
0

45
.3

4
48

.7
3

48
.1

1
50

.9
1

47
.4

7
40

.9
7

38
.3

7
43

.3
0

28
.8

6
54

.0
8

49
.8

2
44

.2
2

fi_
ft

b
49

.7
6

47
.0

7
51

.1
0

31
.1

2
50

.5
6

46
.6

5
37

.7
9

-
51

.5
7

42
.7

2
49

.0
8

48
.4

2
47

.9
9

54
.2

0
48

.0
6

48
.5

4
46

.9
3

50
.0

3
48

.2
9

46
.3

5
ga

55
.2

1
52

.8
2

53
.2

9
55

.7
7

51
.5

8
49

.5
7

51
.0

1
46

.4
3

52
.9

0
55

.0
8

55
.3

3
53

.0
0

53
.9

6
56

.3
5

43
.8

4
50

.5
1

29
.1

8
61

.1
8

50
.6

5
58

.7
7

he
59

.8
0

57
.9

1
61

.1
5

55
.1

7
52

.9
3

53
.4

3
56

.4
9

50
.6

7
53

.0
0

52
.1

2
56

.9
0

61
.7

5
57

.2
2

56
.0

7
42

.5
7

53
.6

0
28

.6
2

62
.3

6
55

.4
6

53
.8

6
hr

64
.2

3
62

.4
4

52
.1

9
37

.7
0

55
.9

9
55

.3
4

54
.3

5
58

.4
8

57
.1

3
57

.7
4

64
.8

6
55

.1
3

57
.3

1
53

.3
9

48
.4

4
55

.2
8

33
.3

5
69

.2
6

48
.0

8
60

.8
1

hu
56

.6
5

50
.5

7
53

.0
6

28
.2

3
54

.8
1

47
.4

0
43

.0
8

53
.8

3
57

.3
3

49
.6

7
50

.8
7

48
.7

9
51

.1
6

56
.9

8
50

.0
3

56
.1

0
53

.5
0

53
.1

5
54

.3
8

54
.7

4
id

62
.7

3
58

.0
1

49
.8

4
48

.0
8

37
.9

1
52

.2
1

43
.0

0
49

.4
0

41
.8

7
53

.2
8

62
.0

0
52

.9
5

56
.8

4
50

.6
1

36
.9

6
47

.4
8

22
.8

0
62

.0
0

44
.8

7
53

.8
5

ja
_k

tc
20

.8
7

18
.8

5
35

.9
4

14
.3

6
28

.5
0

37
.5

5
28

.3
9

50
.4

5
31

.3
4

17
.8

9
17

.8
6

30
.8

2
20

.5
2

29
.1

5
44

.3
3

16
.6

7
62

.0
9

25
.0

5
37

.9
5

28
.6

5
la

46
.8

3
39

.9
1

43
.6

8
30

.0
4

40
.5

2
-

-
43

.9
1

38
.8

1
36

.3
2

38
.6

2
46

.0
1

41
.8

6
42

.5
5

42
.0

6
40

.9
7

35
.6

2
43

.2
8

45
.6

4
43

.4
9

pl
65

.7
5

64
.7

4
53

.2
0

53
.2

7
57

.1
2

57
.7

9
58

.3
1

57
.5

9
58

.7
8

60
.7

8
64

.3
9

54
.9

1
63

.6
4

61
.7

0
60

.4
5

56
.7

3
37

.4
9

69
.9

7
64

.6
0

63
.4

9
ro

67
.4

4
64

.8
1

55
.1

0
51

.8
2

59
.1

8
53

.3
2

56
.6

5
54

.9
8

57
.1

0
62

.1
3

65
.7

9
54

.9
3

57
.0

0
60

.9
7

46
.4

7
55

.9
1

28
.5

2
65

.4
8

55
.3

3
64

.6
4

sl
70

.3
7

69
.4

7
56

.3
3

39
.6

4
63

.1
5

56
.1

1
57

.4
9

63
.8

1
67

.0
6

68
.3

5
69

.2
3

57
.3

7
57

.9
2

66
.1

3
54

.5
8

60
.2

6
38

.3
6

76
.4

1
60

.1
6

66
.3

4
sv

68
.7

2
66

.9
9

58
.1

9
39

.6
0

69
.8

8
55

.4
6

57
.1

2
64

.2
5

65
.3

7
65

.6
7

69
.3

5
58

.6
2

61
.0

6
75

.3
3

53
.5

9
64

.1
7

39
.6

0
68

.4
1

59
.4

4
73

.2
2

ta
40

.4
8

27
.3

5
39

.3
4

17
.3

7
42

.1
1

40
.8

9
37

.1
1

42
.3

2
39

.4
8

28
.8

0
30

.8
6

32
.9

1
30

.4
7

39
.9

2
44

.9
3

31
.9

0
57

.5
9

33
.1

0
33

.7
9

31
.2

1

Table 6.1: UAS scores on single-source transfer results using the synthetic languages, where
the columns represent source treebanks and the rows represent target treebanks. The upper
half of the table is the cross-validation result used for generating the y-axis of Figure 6.6. The
lower half is the final test result used for the y-axis of Figure 6.9. For each pair, we boldface
the results that are not significantly worse (paired permutation test by sentence, p < 0.05)
than using the original treebanks.

157

All (48) in-family (10) cross-family (38)

Original 49.39 71.00 43.71

Synthetic (informed) 50.72 69.94 45.66

Synthetic (random) 52.72 62.36 50.18
Synthetic (all) 54.49 67.19 51.15

Figure 6.8: UAS on 48 of the language pairs within the development languages.14The design
is similar to Figure 6.6, but we optimize divergence more aggressively by selecting the best
of 6 optimization runs for each pair (informed initialization plus 5 random restarts). In 36 of
48 cases, the best run used a random restart. The average x and y values are given in the first
and last rows of the table, with the intermediate rows showing the results if we had used only
informed initialization or only random restarts. Each column boldfaces the best result as well
as all others that are not significantly worse (paired permutation test, p < 0.01).

method has been annotation projection, which generates synthetic analyses of target-

language sentences by “projecting” the analysis from a source-language translation.

Of course, this requires bilingual corpora as an additional resource. Annotation pro-

jection was proposed by Yarowsky, Ngai, and Wicentowski (2001), gained promising

results on sequence labelling tasks, and was later developed for unsupervised parsing

(Hwa et al., 2005; Ganchev, Gillenwater, and Taskar, 2009; Smith and Eisner, 2009;

Tiedemann, 2014; Ma and Xia, 2014; Tiedemann, Agić, and Nivre, 2014). Recent

work in this vein has mainly focused on improving the synthetic data, including

reweighting the training trees (Agić et al., 2016) or pruning those that cannot be

aligned well (Rasooli and Collins, 2015; Rasooli and Collins, 2017; Lacroix et al.,

2016).

158

10 20 30 40 50 60 70 80 90
Original Treebank: 48.61

10

20

30

40

50

60

70

80

90

Sy
nt

he
tic

 T
re

eb
an

k:
 5

0.
36

cu
el
eu
fa
fi_ftb
ga

he
hr
hu
id
ja_ktc
la

pl
ro
sl
sv
ta

Figure 6.9: UAS on 337 treebank pairs from the developments languages to the test languages.

On the other hand, Chapter 3 proposed to permute source language treebanks using

word order realization models trained on other source languages. They generated on

the order of 50,000 synthetic languages by “mixing and matching” a few dozen source

languages. Their idea was that with a large set of synthetic languages, they could use

them as supervised examples to train an unsupervised structure discovery system that

could analyze any new language. Systems built with this dataset were competitive in

single-source parser transfer (Chapter 3), typology prediction (Chapter 4), and parsing

unknown languages (Chapter 5).

This chapter differs from Chapter 3 in that our synthetic treebanks are “made to

order.” Rather than combine aspects of different treebanks and hope to get at least one

combination that is close to the target language, we “combine” the source treebank

with a POS corpus of the target language, which guides our customized permutation

of the source.

Beyond unsupervised parsing, synthetic data has been used for several other tasks.

159

In NLP, it has been used for complex tasks such as question answering (QA) (Serban

et al., 2016) and machine reading comprehension (Weston et al., 2016; Hermann et al.,

2015; Rajpurkar et al., 2016), where highly expressive neural models are used and not

enough real data is available to train them. In the playground of supervised parsing,

Gulordava and Merlo (2016) conduct a controlled study on the parsibility of languages

by generating treebanks with short dependency length and low variability of word

order.

6.7 Conclusion and Future Work

We have shown in this chapter on how to permute the source treebank to better

resemble the target language on the surface (in its distribution of gold POS bi-

grams), which could improve cross-lingual transfer parsing. The code is avail-

able at https://github.com/wddabc/ordersynthetic. The key idea

is grounded in the notion that by trying to explain the POS bigram counts in a target

corpus, we can discover a stochastic realization policy for the target language, which

correctly “translates” the source trees into appropriate target trees.

We formulated an objective for evaluating such a policy, based on KL-divergence

between bigram models. We showed that the objective could be computed efficiently

by dynamic programming, thanks to the limitation to bigram statistics.

Experimenting on the Universal Dependencies treebanks v1.2, we showed that

the synthetic treebanks were—on average—modestly but significantly better than the

corresponding real treebanks for single-source transfer.

On the downside, Figure 6.6 shows that with our current method, permuting the

source language to be more like the target language is helpful (on average) only when

160

https://github.com/wddabc/ordersynthetic

the source language is from a different language family. This contrast would be even

more striking if we had a better optimizer: Figure 6.8 shows that SGD’s initialization

bias limits permutation’s benefit for cross-family training, as well as its harm for

within-family training.

Several opportunities for future work have already been mentioned throughout this

chapter (Sections 6.2.1, 6.5.2 and 6.5.4 and Footnote 9). First of all, since this chapter

uses the same permutation distribution family as Chapter 3, some improvements

as discussed in Section 3.8 will also be beneficial to this chapter, e.g. producing

non-projective trees. In addition, we are interested in experimenting with richer

families of permutation distributions, as well as “conservative” distributions that tend

to prefer the original source order. We could use entropy regularization (Grandvalet

and Bengio, 2005) to encourage more “deterministic” patterns of realization in the

synthetic languages.

It is possible to combine the approaches in this chapter with Chapter 3. For ex-

ample, the on-demand permutation in this chapter only finds a local optimum of the

realization model, so initialization is important. The mix-and-match permutations of

the real training language in Chapter 3 could be used as different plausible initializa-

tions. Finally, train a universal parser on these permuted models. This is a form of

local learning but with synthetic training data created in the vicinity of the test point.

We would also like to consider more sensitive divergence measures that go beyond

bigrams, for example using recurrent neural network language models (RNNLMs) for

q̂ and p̂θ. This means abandoning our exact dynamic programming methods; we would

also like to abandon exact exhaustive enumeration in order to drop Section 6.4.1’s

bounds on n. Fortunately, there exist powerful MCMC methods (Eisner and Tromble,

161

2006) that can sample from interesting distributions over the space of n! permutations,

even for large n. Thus, we could approximately sample from pθ by drawing permuted

versions of each tree in y.

Given this change, a very interesting direction would be to graduate from POS

language models to word language models, using cross-lingual unsupervised word

embeddings (Ruder, Vulić, and Søgaard, 2017). This would eliminate the need for the

gold POS tags that we unrealistically assumed (which are typically unavailable for

a low-resource target language). Furthermore, it would enable us to harness richer

lexical information beyond the 17 UD POS tags. After all, even a (gold) POS corpus

might not be sufficient to determine the word order of the target language: “NOUN

VERB NOUN” could be either subject-verb-object or object-verb-subject. However,

“water drink boy” is presumably object-verb-subject. Thus, using cross-lingual

embeddings, we would try to realize the unordered source trees so that their word

strings, with few edits, can achieve high probability under a neural language model of

the target.

162

Chapter 7

Conclusion

We have presented the amortized Bayes (AB) framework to estimate the parsing

parameters for unsupervised dependency parsing. The main novelty of our approach is

converting this traditional unsupervised learning problem into a supervised one—we

train our system on many synthetic languages. Around this idea, we introduced four

published papers:

• The Galactic Dependencies (Chapter 3; Wang and Eisner, 2016), which aims

to solve the challenge of data sparsity in our approach (Sections 1.4 and 2.5)

by introducing a large set of synthetic languages generated from the mix-and-

match over the real languages. This resource serves as our main working data

throughout this thesis.

• Fine-grained prediction of syntactic typology (Chapter 4; Wang and Eisner,

2017), which shows that the AB estimator trained on our synthetic data is

effective in predicting syntactic typology from only POS corpus—another unsu-

pervised learning problem in natural language processing (NLP). In addition to

the importance on its own, the unsupervised prediction of syntactic typology

163

could be considered preliminary task of unsupervised parsing.

• Unsupervised dependency parsing (Chapter 5; Wang and Eisner, 2018a),

which shows that the AB estimator outperforms various baselines on unsuper-

vised parsing—our main task. We conclude that the source of the improvement

is two fold: 1) Training on thousands of synthetic languages, and 2) surface-form

features extracted from the unparsed corpus of the target language.

• Synthetic data made to order (Chapter 6; Wang and Eisner, 2018b), which

extends the idea of GD and proposes to generate synthetic data whose surface

statistics match the target language. Experimental results on single-source

transfer parsing show improvements over using only real languages, especially

when source and target languages are from different families.

Throughout this thesis, we are trying to answer a fundamental question on whether

the surface statistics of a language provide clues about how to find the underlying

syntactic dependencies. Chomsky (1965) imagined that such clues might be exploited

by a Language Acquisition Device, so it is interesting to know that they do exist, at

least in the surface part-of-speech corpus.

Another takeaway message is that synthetic training languages are useful for NLP.

Using synthetic examples in training is a way to encourage a system to be invariant to

superficial variation. We created synthetic languages by varying the surface structure

in a way that “should” preserve the deep structure. This allows our trained system to

be invariant to variation in surface structure, just as object recognition wants to be

invariant to an image’s angle or lighting conditions (Chapters 3 and 6).

Our final takeaway goes beyond language: one can treat unsupervised structure

164

discovery as a supervised learning problem. As Sections 1.4 and 2.5 discuss, this

approach inherits the advantages of supervised learning. Training may face an easier

optimization landscape, and we can train the system to find the specific kind of

structure that we desire, using any features that we think may be discriminative.

Future work has been discussed in Sections 3.8, 4.8, 5.7 and 6.7. In sum, the

general direction is two-fold: 1) Generate better synthetic languages by considering

a wider range of linguistic complexities, where possible approaches include richer

features in the reordering model, handling non-projective trees, and generating syn-

thetic words; and 2) improve the parsing architecture, where possible approaches

include using more recent local parsers such as Dozat and Manning (2017), using

attention mechanisms to extract surface-form features, and relaxing the delexicalized

assumption on the target languages by using cross-language word representation.

165

References

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan-
delion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng
(2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
URL: https://www.tensorflow.org/.

Abu-Mostafa, Yaser S. (1995). “Hints”. In: Neural Computation 7, pp. 639–671. URL:
http://www.work.caltech.edu/yaser/paper/95hints.ps.

Agarwal, Apoorv, Boyi Xie, Ilia Vovsha, Owen Rambow, and Rebecca Passonneau
(2011). “Sentiment Analysis of Twitter Data”. In: Proceedings of the Workshop
on Language in Social Media (LSM 2011). Portland, Oregon: Association for
Computational Linguistics, pp. 30–38. URL: https://www.aclweb.org/
anthology/W11-0705.

Agić, Željko, Anders Johannsen, Barbara Plank, Héctor Martínez Alonso, Natalie
Schluter, and Anders Søgaard (2016). “Multilingual Projection for Parsing Truly
Low-Resource Languages”. In: Transactions of the Association for Computational
Linguistics 4, pp. 301–312. URL: http://aclweb.org/anthology/Q16-
1022.

Ammar, Waleed, George Mulcaire, Miguel Ballesteros, Chris Dyer, and Noah A.
Smith (2016). “Many Languages, One Parser”. In: Transactions of the Association
for Computational Linguistics 4, pp. 431–444. DOI: 10.1162/tacl_a_00109.
URL: https://www.aclweb.org/anthology/Q16-1031.

Andor, Daniel, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuz-
man Ganchev, Slav Petrov, and Michael Collins (2016). “Globally Normalized

166

https://www.tensorflow.org/
http://www.work.caltech.edu/yaser/paper/95hints.ps
https://www.aclweb.org/anthology/W11-0705
https://www.aclweb.org/anthology/W11-0705
http://aclweb.org/anthology/Q16-1022
http://aclweb.org/anthology/Q16-1022
https://doi.org/10.1162/tacl_a_00109
https://www.aclweb.org/anthology/Q16-1031

Transition-Based Neural Networks”. In: Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers).
Berlin, Germany: Association for Computational Linguistics, pp. 2442–2452.
DOI: 10.18653/v1/P16-1231. URL: https://www.aclweb.org/
anthology/P16-1231.

Angluin, Dana and Carl H Smith (1983). “Inductive inference: Theory and methods”.
In: ACM Computing Surveys (CSUR) 15.3, pp. 237–269.

Arjovsky, Martin, Soumith Chintala, and Léon Bottou (2017). “Wasserstein Genera-
tive Adversarial Networks”. In: Proceedings of the 34th International Conference
on Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceed-
ings of Machine Learning Research. International Convention Centre, Sydney,
Australia: PMLR, pp. 214–223. URL: http://proceedings.mlr.press/
v70/arjovsky17a.html.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Machine
Translation by Jointly Learning to Align and Translate”. In: Proceedings of the
International Conference on Learning Representations.

Baker, J. K. (1979). “Trainable Grammars for Speech Recognition”. In: Speech
Communication Papers Presented at the 97th Meeting of the Acoustical Society of
America. Ed. by Jared J. Wolf and Dennis H. Klatt. MIT, Cambridge, MA.

Basu, Sumit, Chuck Jacobs, and Lucy Vanderwende (2013). “Powergrading: A Clus-
tering Approach to Amplify Human Effort for Short Answer Grading”. In: Trans-
actions of the Association for Computational Linguistics 1, pp. 391–402. URL:
https://transacl.org/ojs/index.php/tacl/article/view/
139.

Bender, Emily M. (2009). “Linguistically Naïve != Language Independent: Why NLP
Needs Linguistic Typology”. In: Proceedings of the EACL 2009 Workshop on the
Interaction between Linguistics and Computational Linguistics: Virtuous, Vicious
or Vacuous?, pp. 26–32. URL: http://www.aclweb.org/anthology/
W09-0106.

Blunsom, Phil and Trevor Cohn (2010). “Unsupervised induction of tree substitution
grammars for dependency parsing”. In: Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing. Association for Computa-
tional Linguistics. Cambridge, MA: Association for Computational Linguistics,
pp. 1204–1213.

Borg, Ingwer and Patrick J.F. Groenen (2005). Modern Multidimensional Scaling:
Theory and Applications. URL: http://www.springer.com/us/book/
9780387251509.

167

https://doi.org/10.18653/v1/P16-1231
https://www.aclweb.org/anthology/P16-1231
https://www.aclweb.org/anthology/P16-1231
http://proceedings.mlr.press/v70/arjovsky17a.html
http://proceedings.mlr.press/v70/arjovsky17a.html
https://transacl.org/ojs/index.php/tacl/article/view/139
https://transacl.org/ojs/index.php/tacl/article/view/139
http://www.aclweb.org/anthology/W09-0106
http://www.aclweb.org/anthology/W09-0106
http://www.springer.com/us/book/9780387251509
http://www.springer.com/us/book/9780387251509

Bowman, Samuel R., Christopher Potts, and Christopher D. Manning (2015). “Recur-
sive Neural Networks Can Learn Logical Semantics”. In: Proceedings of the 3rd
Workshop on Continuous Vector Space Models and their Compositionality. Beijing,
China: Association for Computational Linguistics, pp. 12–21. DOI: 10.18653/
v1/W15-4002. URL: https://www.aclweb.org/anthology/W15-
4002.

Brin, Sergey and Lawrence Page (1998). “The anatomy of a large-scale hypertextual
web search engine”. In: Computer networks and ISDN systems 30.1-7, pp. 107–
117.

Carroll, Glenn and Eugene Charniak (1992). “Two Experiments on Learning Prob-
abilistic Dependency Grammars from Corpora”. In: Working Notes of the AAAI
Workshop on Statistically-Based NLP Techniques. Department of Computer Sci-
ence, Univ., pp. 1–13. URL: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.52.9158.

Chen, Danqi and Christopher Manning (2014). “A Fast and Accurate Dependency
Parser using Neural Networks”. In: Proceedings of the 2014 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association
for Computational Linguistics, pp. 740–750. DOI: 10.3115/v1/D14-1082.
URL: https://www.aclweb.org/anthology/D14-1082.

Chiang, David (2005). “A Hierarchical Phrase-Based Model for Statistical Machine
Translation”. In: Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05). Association for Computational Linguistics.
Ann Arbor, Michigan: Association for Computational Linguistics, pp. 263–270.
DOI: 10.3115/1219840.1219873. URL: https://www.aclweb.org/
anthology/P05-1033.

Chiang, David (2007). “Hierarchical Phrase-Based Translation”. In: Computational
Linguistics 33.2, pp. 201–228. DOI: http://dx.doi.org/10.1162/coli.
2007.33.2.201.

Cho, Kyunghyun, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio (2014a). “Learning Phrase Rep-
resentations using RNN Encoder–Decoder for Statistical Machine Translation”.
In: Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Doha, Qatar: Association for Computational Lin-
guistics, pp. 1724–1734. DOI: 10.3115/v1/D14- 1179. URL: https:
//www.aclweb.org/anthology/D14-1179.

Cho, Kyunghyun, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio
(2014b). “On the Properties of Neural Machine Translation: Encoder-Decoder
Approaches”. In: Proceedings of Eighth Workshop on Syntax, Semantics and

168

https://doi.org/10.18653/v1/W15-4002
https://doi.org/10.18653/v1/W15-4002
https://www.aclweb.org/anthology/W15-4002
https://www.aclweb.org/anthology/W15-4002
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.9158
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.9158
https://doi.org/10.3115/v1/D14-1082
https://www.aclweb.org/anthology/D14-1082
https://doi.org/10.3115/1219840.1219873
https://www.aclweb.org/anthology/P05-1033
https://www.aclweb.org/anthology/P05-1033
https://doi.org/http://dx.doi.org/10.1162/coli.2007.33.2.201
https://doi.org/http://dx.doi.org/10.1162/coli.2007.33.2.201
https://doi.org/10.3115/v1/D14-1179
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179

Structure in Statistical Translation. Doha, Qatar, pp. 103–111. DOI: 10.3115/
v1/W14-4012. URL: http://aclweb.org/anthology/W14-4012.

Chomsky, Noam (1957). Syntactic structure. Mouton.
Chomsky, Noam (1965). Aspects of the Theory of Syntax. Vol. 11. MIT press.
Chomsky, Noam (1981). Lectures on Government and Binding: The Pisa Lectures.

Holland: Foris Publications. URL: http://www.degruyter.com/view/
product/60947.

Chomsky, Noam and Howard Lasnik (1993). “The Theory of Principles and Parame-
ters”. In: Syntax: An International Handbook of Contemporary Research. Berlin:
de Gruyter.

Chu, Yoeng-Jin (1965). “On the shortest arborescence of a directed graph”. In: Science
Sinica 14, pp. 1396–1400.

Clark, Alexander (2001). “Unsupervised language acquisition: Theory and practice”.
PhD thesis. University of Sussex. URL: https://arxiv.org/pdf/cs/
0212024.pdf.

Cohen, Shay and Noah A. Smith (2010). “Viterbi Training for PCFGs: Hardness
Results and Competitiveness of Uniform Initialization”. In: Proceedings of ACL,
pp. 1502–1511. URL: http://www.aclweb.org/anthology/P10-
1152.

Cohen, Shay B., Kevin Gimpel, and Noah A Smith (2009). “Logistic Normal Priors
for Unsupervised Probabilistic Grammar Induction”. In: Advances in Neural
Information Processing Systems 21. Curran Associates, Inc., pp. 321–328.

Cohen, Shay B. and Noah A. Smith (2012). “Empirical Risk Minimization for Proba-
bilistic Grammars: Sample Complexity and Hardness of Learning”. In: Compu-
tational Linguistics 38.3, pp. 479–526. URL: http://www.aclweb.org/
anthology/J12-3003.

Collins, Michael (2003). “Head-Driven Statistical Models for Natural Language
Parsing”. In: Computational Linguistics 29.4, pp. 589–637. DOI: 10.1162/
089120103322753356. URL: https://www.aclweb.org/anthology/
J03-4003.

Collins, Michael and Nigel Duffy (2001). “Convolution Kernels for Natural Language”.
In: Proceedings of the 14th International Conference on Neural Information Pro-
cessing Systems: Natural and Synthetic. NIPS’01. Vancouver, British Columbia,
Canada: MIT Press, pp. 625–632. URL: http://dl.acm.org/citation.
cfm?id=2980539.2980621.

Collins, Michael, Philipp Koehn, and Ivona Kucerova (2005). “Clause Restructuring
for Statistical Machine Translation”. In: Proceedings of the 43rd Annual Meeting

169

https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
http://aclweb.org/anthology/W14-4012
http://www.degruyter.com/view/product/60947
http://www.degruyter.com/view/product/60947
https://arxiv.org/pdf/cs/0212024.pdf
https://arxiv.org/pdf/cs/0212024.pdf
http://www.aclweb.org/anthology/P10-1152
http://www.aclweb.org/anthology/P10-1152
http://www.aclweb.org/anthology/J12-3003
http://www.aclweb.org/anthology/J12-3003
https://doi.org/10.1162/089120103322753356
https://doi.org/10.1162/089120103322753356
https://www.aclweb.org/anthology/J03-4003
https://www.aclweb.org/anthology/J03-4003
http://dl.acm.org/citation.cfm?id=2980539.2980621
http://dl.acm.org/citation.cfm?id=2980539.2980621

of the Association for Computational Linguistics. Ann Arbor, Michigan, pp. 531–
540. URL: http://aclweb.org/anthology/P05-1066.

Comrie, Bernard (1989). Language Universals and Linguistic Typology. Oxford: Basil
Blackwell.

Conneau, Alexis, German Kruszewski, Guillaume Lample, Loïc Barrault, and Marco
Baroni (2018). “What you can cram into a single $&!#* vector: Probing sentence
embeddings for linguistic properties”. In: Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers).
Melbourne, Australia: Association for Computational Linguistics, pp. 2126–2136.
URL: https://www.aclweb.org/anthology/P18-1198.

Cotterell, Ryan, Nanyun Peng, and Jason Eisner (2015). “Modeling Word Forms Using
Latent Underlying Morphs and Phonology”. In: Transactions of the Association
for Computational Linguistics 3, pp. 433–447. URL: http://cs.jhu.edu/
~jason/papers/#cotterell-peng-eisner-2015.

Croft, William (2002). Typology and Universals. Cambridge University Press. URL:
http://www.cambridge.org/us/academic/subjects/languages-
linguistics/grammar-and-syntax/typology-and-universals-
2nd-edition?format=PB&isbn=9780521004992.

Cross, James and Liang Huang (2016). “Incremental Parsing with Minimal Features
Using Bi-Directional LSTM”. In: Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers). Berlin,
pp. 32–37. URL: http://anthology.aclweb.org/P16-2006.

Cui, Xiaodong, Vaibhava Goel, and Brian Kingsbury (2015). “Data Augmentation
for Deep Neural Network Acoustic Modeling”. In: IEEE/ACM Transactions on
Audio, Speech and Language Processing 23.9, pp. 1469–1477. ISSN: 2329-9290.
DOI: 10.1109/TASLP.2015.2438544. URL: http://dx.doi.org/
10.1109/TASLP.2015.2438544.

Culotta, Aron and Jeffrey Sorensen (2004). “Dependency Tree Kernels for Relation
Extraction”. In: Proceedings of the 42nd Meeting of the Association for Com-
putational Linguistics (ACL’04), Main Volume. Barcelona, Spain, pp. 423–429.
DOI: 10.3115/1218955.1219009. URL: https://www.aclweb.org/
anthology/P04-1054.

Daumé III, Hal (2009). “Non-Parametric Bayesian Areal Linguistics”. In: Proceedings
of Human Language Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics. Boulder,
Colorado, pp. 593–601. URL: http://aclweb.org/anthology/N09-
1067.

170

http://aclweb.org/anthology/P05-1066
https://www.aclweb.org/anthology/P18-1198
http://cs.jhu.edu/~jason/papers/#cotterell-peng-eisner-2015
http://cs.jhu.edu/~jason/papers/#cotterell-peng-eisner-2015
http://www.cambridge.org/us/academic/subjects/languages-linguistics/grammar-and-syntax/typology-and-universals-2nd-edition?format=PB&isbn=9780521004992
http://www.cambridge.org/us/academic/subjects/languages-linguistics/grammar-and-syntax/typology-and-universals-2nd-edition?format=PB&isbn=9780521004992
http://www.cambridge.org/us/academic/subjects/languages-linguistics/grammar-and-syntax/typology-and-universals-2nd-edition?format=PB&isbn=9780521004992
http://anthology.aclweb.org/P16-2006
https://doi.org/10.1109/TASLP.2015.2438544
http://dx.doi.org/10.1109/TASLP.2015.2438544
http://dx.doi.org/10.1109/TASLP.2015.2438544
https://doi.org/10.3115/1218955.1219009
https://www.aclweb.org/anthology/P04-1054
https://www.aclweb.org/anthology/P04-1054
http://aclweb.org/anthology/N09-1067
http://aclweb.org/anthology/N09-1067

Daumé III, Hal and Lyle Campbell (2007). “A Bayesian Model for Discovering
Typological Implications”. In: Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics. Prague, Czech Republic, pp. 65–72.
URL: http://aclweb.org/anthology/P07-1009.

De Marneffe, Marie-Catherine (2012). “What’s that Supposed to Mean? Modeling the
Pragmatic Meaning of Utterances”. PhD thesis. Stanford University.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). “Maximum Likelihood from
Incomplete Data via the EM Algorithm”. In: J. Royal Statist. Soc. Ser. B 39.1,
pp. 1–38.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2019). “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding”. In:
Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers). Minneapolis, Minnesota: Association for Compu-
tational Linguistics, pp. 4171–4186. URL: https://www.aclweb.org/
anthology/N19-1423.

Dorr, Bonnie J. (1993). Machine Translation: A View from the Lexicon. Cambridge,
MA: MIT Press. URL: https://mitpress.mit.edu/books/machine-
translation.

Dorr, Bonnie J., Lisa Pearl, Rebecca Hwa, and Nizar Habash (2002). “DUSTer: A
Method for Unraveling Cross-Language Divergences for Statistical Word-Level
Alignment”. In: Proceedings of the 5th Conference of the Association for Machine
Translation in the Americas on Machine Translation: From Research to Real
Users. AMTA ’02. London, UK, UK, pp. 31–43. URL: http://dl.acm.org/
citation.cfm?id=648181.749385.

Dozat, Timothy and Christopher D. Manning (2017). “Deep Biaffine Attention
for Neural Dependency Parsing”. In: Proceedings of the International Confer-
ence on Learning Representations. URL: https://web.stanford.edu/
~tdozat/files/TDozat-ICLR2017-Paper.pdf.

Drucker, Harris, Christopher JC Burges, Linda Kaufman, Alex J Smola, and Vladimir
Vapnik (1997). “Support vector regression machines”. In: Advances in neural
information processing systems, pp. 155–161.

Dryer, Matthew S. and Martin Haspelmath, eds. (2013). The World Atlas of Language
Structures Online. Leipzig: Max Planck Institute for Evolutionary Anthropology.
URL: http://wals.info/.

171

http://aclweb.org/anthology/P07-1009
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://mitpress.mit.edu/books/machine-translation
https://mitpress.mit.edu/books/machine-translation
http://dl.acm.org/citation.cfm?id=648181.749385
http://dl.acm.org/citation.cfm?id=648181.749385
https://web.stanford.edu/~tdozat/files/TDozat-ICLR2017-Paper.pdf
https://web.stanford.edu/~tdozat/files/TDozat-ICLR2017-Paper.pdf
http://wals.info/

Duong, Long, Trevor Cohn, Steven Bird, and Paul Cook (2015a). “Cross-lingual
Transfer for Unsupervised Dependency Parsing Without Parallel Data”. In: Pro-
ceedings of the Nineteenth Conference on Computational Natural Language Learn-
ing. Beijing, China: Association for Computational Linguistics, pp. 113–122.
DOI: 10.18653/v1/K15-1012. URL: https://www.aclweb.org/
anthology/K15-1012.

Duong, Long, Trevor Cohn, Steven Bird, and Paul Cook (2015b). “Cross-lingual Trans-
fer for Unsupervised Dependency Parsing Without Parallel Data”. In: Proceedings
of the 19th Conference on Computational Natural Language Learning. Beijing,
China, pp. 113–122. URL: http://aclweb.org/anthology/K15-1012.

Dyer, Chris, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith
(2015). “Transition-Based Dependency Parsing with Stack Long Short-Term Mem-
ory”. In: Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Beijing, China: Association for
Computational Linguistics, pp. 334–343. DOI: 10.3115/v1/P15-1033. URL:
https://www.aclweb.org/anthology/P15-1033.

Edmonds, Jack (1967). “Optimum branchings”. In: Journal of Research of the National
Bureau of Standards B 71.4, pp. 233–240.

Eisner, Jason (1996). “Three New Probabilistic Models for Dependency Parsing: An
Exploration”. In: Proceedings of the 16th International Conference on Compu-
tational Linguistics, pp. 340–345. URL: http://cs.jhu.edu/~jason/
papers/#eisner-1996-coling.

Eisner, Jason (2000). “Bilexical Grammars and Their Cubic-Time Parsing Algorithms”.
In: Advances in Probabilistic and Other Parsing Technologies. Ed. by Harry
Bunt and Anton Nijholt. Kluwer Academic Publishers, pp. 29–62. URL: http:
//cs.jhu.edu/~jason/papers/#eisner-2000-iwptbook.

Eisner, Jason (2003). “Learning Non-Isomorphic Tree Mappings for Machine Transla-
tion”. In: The Companion Volume to the Proceedings of 41st Annual Meeting of
the Association for Computational Linguistics. Sapporo, Japan: Association for
Computational Linguistics, pp. 205–208. DOI: 10.3115/1075178.1075217.
URL: https://www.aclweb.org/anthology/P03-2041.

Eisner, Jason (2016). “Inside-Outside and Forward-Backward Algorithms are Just
Backprop”. In: Proceedings of the EMNLP Workshop on Structured Prediction for
NLP. Austin, TX, pp. 1–17. URL: http://cs.jhu.edu/~jason/papers/
#eisner-2016.

Eisner, Jason and Damianos Karakos (2005). “Bootstrapping Without the Boot”. In:
Proceedings of Human Language Technology Conference and Conference on

172

https://doi.org/10.18653/v1/K15-1012
https://www.aclweb.org/anthology/K15-1012
https://www.aclweb.org/anthology/K15-1012
http://aclweb.org/anthology/K15-1012
https://doi.org/10.3115/v1/P15-1033
https://www.aclweb.org/anthology/P15-1033
http://cs.jhu.edu/~jason/papers/#eisner-1996-coling
http://cs.jhu.edu/~jason/papers/#eisner-1996-coling
http://cs.jhu.edu/~jason/papers/#eisner-2000-iwptbook
http://cs.jhu.edu/~jason/papers/#eisner-2000-iwptbook
https://doi.org/10.3115/1075178.1075217
https://www.aclweb.org/anthology/P03-2041
http://cs.jhu.edu/~jason/papers/#eisner-2016
http://cs.jhu.edu/~jason/papers/#eisner-2016

Empirical Methods in Natural Language Processing, pp. 395–402. URL: http:
//www.aclweb.org/anthology/H/H05/H05-1050.

Eisner, Jason and Giorgio Satta (1999). “Efficient Parsing for Bilexical Context-
Free Grammars and Head Automaton Grammars”. In: Proceedings of the 37th
Annual Meeting of the Association for Computational Linguistics. College Park,
Maryland, USA: Association for Computational Linguistics, pp. 457–464. DOI:
10.3115/1034678.1034748. URL: https://www.aclweb.org/
anthology/P99-1059.

Eisner, Jason and Noah A. Smith (2010). “Favor Short Dependencies: Parsing with Soft
and Hard Constraints on Dependency Length”. In: Trends in Parsing Technology:
Dependency Parsing, Domain Adaptation, and Deep Parsing. Ed. by Harry Bunt,
Paola Merlo, and Joakim Nivre. Chap. 8, pp. 121–150. URL: http://cs.jhu.
edu/~jason/papers/#eisner-smith-2010-iwptbook.

Eisner, Jason and Roy W. Tromble (2006). “Local Search with Very Large-Scale
Neighborhoods for Optimal Permutations in Machine Translation”. In: Proceed-
ings of the HLT-NAACL Workshop on Computationally Hard Problems and Joint
Inference in Speech and Language Processing, pp. 57–75. URL: http://cs.
jhu.edu/~jason/papers/#eisner-tromble-2006.

Fernández-González, Daniel and Carlos Gómez-Rodríguez (2019). “Left-to-Right
Dependency Parsing with Pointer Networks”. In: Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
Minneapolis, Minnesota: Association for Computational Linguistics, pp. 710–716.
DOI: 10.18653/v1/N19-1076. URL: https://www.aclweb.org/
anthology/N19-1076.

Filippova, Katja and Michael Strube (2009). “Tree Linearization in English: Improving
Language Model Based Approaches”. In: Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics, Companion Volume: Short Papers, pp. 225–
228. URL: http://www.aclweb.org/anthology/N/N09/N09-2057.

Fisch, Adam, Jiang Guo, and Regina Barzilay (2019). “Working Hard or Hardly
Working: Challenges of Integrating Typology into Neural Dependency Parsers”.
In: Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP).

Frank, Robert and Shyam Kapur (1996). “On the Use of Triggers in Parameter Setting”.
In: Linguistic Inquiry 27, pp. 623–660. URL: https://www.jstor.org/
stable/4178955.

173

http://www.aclweb.org/anthology/H/H05/H05-1050
http://www.aclweb.org/anthology/H/H05/H05-1050
https://doi.org/10.3115/1034678.1034748
https://www.aclweb.org/anthology/P99-1059
https://www.aclweb.org/anthology/P99-1059
http://cs.jhu.edu/~jason/papers/#eisner-smith-2010-iwptbook
http://cs.jhu.edu/~jason/papers/#eisner-smith-2010-iwptbook
http://cs.jhu.edu/~jason/papers/#eisner-tromble-2006
http://cs.jhu.edu/~jason/papers/#eisner-tromble-2006
https://doi.org/10.18653/v1/N19-1076
https://www.aclweb.org/anthology/N19-1076
https://www.aclweb.org/anthology/N19-1076
http://www.aclweb.org/anthology/N/N09/N09-2057
https://www.jstor.org/stable/4178955
https://www.jstor.org/stable/4178955

Fu, King-Sun and Taylor L Booth (1975). “Grammatical inference: Introduction and
survey-Part I”. In: IEEE Transactions on Systems, Man, and Cybernetics 1, pp. 95–
111.

Futrell, Richard and Edward Gibson (2015). “Experiments with Generative Models
for Dependency Tree Linearization”. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pp. 1978–1983. URL:
http://aclweb.org/anthology/D15-1231.

Futrell, Richard, Kyle Mahowald, and Edward Gibson (2015). “Quantifying Word
Order Freedom in Dependency Corpora”. In: Proceedings of the Third Interna-
tional Conference on Dependency Linguistics, pp. 91–100. URL: http://www.
aclweb.org/anthology/W15-2112.

Galley, Michel, Mark Hopkins, Kevin Knight, and Daniel Marcu (2004). “What’s in a
translation rule?” In: Proceedings of the Human Language Technology Conference
of the North American Chapter of the Association for Computational Linguistics:
HLT-NAACL 2004. Boston, Massachusetts, USA: Association for Computational
Linguistics, pp. 273–280. URL: https://www.aclweb.org/anthology/
N04-1035.

Ganchev, Kuzman, Jennifer Gillenwater, and Ben Taskar (2009). “Dependency Gram-
mar Induction via Bitext Projection Constraints”. In: Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP. Suntec, Singapore,
pp. 369–377. URL: http://www.aclweb.org/anthology/P09-1042.

Ganchev, Kuzman, Joao Graça, Jennifer Gillenwater, and Ben Taskar (2010). “Poste-
rior regularization for structured latent variable models”. In: Journal of Machine
Learning Research 11, pp. 2001–2049. URL: http://www.jmlr.org/
papers/v11/ganchev10a.html.

Georgi, Ryan, Fei Xia, and William Lewis (2010). “Comparing Language Similarity
across Genetic and Typologically-Based Groupings”. In: Proceedings of the 23rd
International Conference on Computational Linguistics. Beijing, China, pp. 385–
393. URL: http://aclweb.org/anthology/C10-1044.

Gershman, Samuel and Noah Goodman (2014). “Amortized inference in probabilistic
reasoning”. In: Proceedings of the annual meeting of the cognitive science society.
Vol. 36. 36.

Gibson, Edward and Kenneth Wexler (1994). “Triggers”. In: Linguistic Inquiry 25.3,
pp. 407–454. URL: http://www.jstor.org/stable/4178869.

174

http://aclweb.org/anthology/D15-1231
http://www.aclweb.org/anthology/W15-2112
http://www.aclweb.org/anthology/W15-2112
https://www.aclweb.org/anthology/N04-1035
https://www.aclweb.org/anthology/N04-1035
http://www.aclweb.org/anthology/P09-1042
http://www.jmlr.org/papers/v11/ganchev10a.html
http://www.jmlr.org/papers/v11/ganchev10a.html
http://aclweb.org/anthology/C10-1044
http://www.jstor.org/stable/4178869

Gildea, Daniel and Martha Palmer (2002). “The Necessity of Parsing for Predicate
Argument Recognition”. In: Proceedings of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics. Philadelphia, Pennsylvania, USA: Associ-
ation for Computational Linguistics, pp. 239–246. DOI: 10.3115/1073083.
1073124. URL: https://www.aclweb.org/anthology/P02-1031.

Gillenwater, Jennifer, Kuzman Ganchev, João Graça, Fernando Pereira, and Ben
Taskar (2010). “Sparsity in Dependency Grammar Induction”. In: Proceedings of
the 48th Annual Meeting of the Association for Computational Linguistics (ACL
2010) Short Papers. Uppsala, Sweden: Association for Computational Linguistics,
pp. 194–199. URL: https://www.aclweb.org/anthology/P10-
2036.

Gimpel, Kevin and Noah A. Smith (2012). “Concavity and Initialization for Unsuper-
vised Dependency Parsing”. In: Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies. Montréal, Canada: Association for Computational Linguis-
tics, pp. 577–581. URL: https://www.aclweb.org/anthology/N12-
1069.

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of training
deep feedforward neural networks”. In: Proceedings of the International Con-
ference on Artificial Intelligence and Statistics. URL: http://jmlr.org/
proceedings/papers/v9/glorot10a/glorot10a.pdf.

Goller, Christoph and Alexander Kuchler (1996). “Learning task-dependent distributed
representations by backpropagation through structure”. In:

Gormley, Matthew R. and Jason Eisner (2013). “Nonconvex Global Optimization
for Latent-Variable Models”. In: ACL. Sofia, Bulgaria. URL: http://cs.jhu.
edu/~jason/papers/#gormley-eisner-2013.

Grandvalet, Yves and Yoshua Bengio (2005). “Semi-supervised Learning by Entropy
Minimization”. In: Advances in Neural Information Processing Systems 17. Ed.
by L. K. Saul, Y. Weiss, and L. Bottou. MIT Press, pp. 529–536. URL: http:
//papers.nips.cc/paper/2740-semi-supervised-learning-
by-entropy-minimization.pdf.

Grave, Edouard and Noémie Elhadad (2015). “A convex and feature-rich discrimi-
native approach to dependency grammar induction”. In: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics, ACL 2015, July
26-31, 2015, Beijing, China, pp. 1375–1384.

Graves, Alex (2012). Supervised Sequence Labelling with Recurrent Neural Networks.
Springer. URL: http://www.cs.toronto.edu/~graves/preprint.
pdf.

175

https://doi.org/10.3115/1073083.1073124
https://doi.org/10.3115/1073083.1073124
https://www.aclweb.org/anthology/P02-1031
https://www.aclweb.org/anthology/P10-2036
https://www.aclweb.org/anthology/P10-2036
https://www.aclweb.org/anthology/N12-1069
https://www.aclweb.org/anthology/N12-1069
http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
http://cs.jhu.edu/~jason/papers/#gormley-eisner-2013
http://cs.jhu.edu/~jason/papers/#gormley-eisner-2013
http://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization.pdf
http://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization.pdf
http://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization.pdf
http://www.cs.toronto.edu/~graves/preprint.pdf
http://www.cs.toronto.edu/~graves/preprint.pdf

Greenberg, Joseph H. (1963). “Some Universals of Grammar with Particular Reference
to the Order of Meaningful Elements”. In: Universals of Language. Ed. by Joseph
H. Greenberg. MIT Press, pp. 73–113.

Gulordava, Kristina and Paola Merlo (2016). “Multi-lingual Dependency Parsing Eval-
uation: A Large-scale Analysis of Word Order Properties using Artificial Data”.
In: Transactions of the Association for Computational Linguistics 4, pp. 343–356.
URL: http://aclweb.org/anthology/Q16-1025.

Guo, Jiang, Wanxiang Che, David Yarowsky, Haifeng Wang, and Ting Liu (2015).
“Cross-lingual Dependency Parsing Based on Distributed Representations”. In:
Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language
Processing. Beijing, China, pp. 1234–1244. URL: http://aclweb.org/
anthology/P15-1119.

Guo, Jiang, Wanxiang Che, David Yarowsky, Haifeng Wang, and Ting Liu (2016).
“A Representation Learning Framework for Multi-source Transfer Parsing”. In:
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI’16.
Phoenix, Arizona: AAAI Press, pp. 2734–2740. URL: http://dl.acm.org/
citation.cfm?id=3016100.3016284.

Hamilton, Will, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec (2018).
“Embedding Logical Queries on Knowledge Graphs”. In: Advances in Neural
Information Processing Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates, Inc., pp. 2026–
2037. URL: http://papers.nips.cc/paper/7473-embedding-
logical-queries-on-knowledge-graphs.pdf.

Hawkins, John (1994). A Performance Theory of Order and Constituency. Cambridge
University Press. URL: http://www.cambridge.org/us/academic/
subjects / languages - linguistics / grammar - and - syntax /
performance-theory-order-and-constituency.

Hawkins, John A. (2014). Word Order Universals. Elsevier. URL: https://www.
elsevier.com/books/word-order-universals/hawkins/978-
0-12-333370-4.

Headden III, William P., Mark Johnson, and David McClosky (2009). “Improving
Unsupervised Dependency Parsing with Richer Contexts and Smoothing”. In:
Proceedings of Human Language Technologies: The 2009 Annual Conference of
the North American Chapter of the Association for Computational Linguistics.
Association for Computational Linguistics, pp. 101–109. URL: http://www.
aclweb.org/anthology/N/N09/N09-1012.

176

http://aclweb.org/anthology/Q16-1025
http://aclweb.org/anthology/P15-1119
http://aclweb.org/anthology/P15-1119
http://dl.acm.org/citation.cfm?id=3016100.3016284
http://dl.acm.org/citation.cfm?id=3016100.3016284
http://papers.nips.cc/paper/7473-embedding-logical-queries-on-knowledge-graphs.pdf
http://papers.nips.cc/paper/7473-embedding-logical-queries-on-knowledge-graphs.pdf
http://www.cambridge.org/us/academic/subjects/languages-linguistics/grammar-and-syntax/performance-theory-order-and-constituency
http://www.cambridge.org/us/academic/subjects/languages-linguistics/grammar-and-syntax/performance-theory-order-and-constituency
http://www.cambridge.org/us/academic/subjects/languages-linguistics/grammar-and-syntax/performance-theory-order-and-constituency
https://www.elsevier.com/books/word-order-universals/hawkins/978-0-12-333370-4
https://www.elsevier.com/books/word-order-universals/hawkins/978-0-12-333370-4
https://www.elsevier.com/books/word-order-universals/hawkins/978-0-12-333370-4
http://www.aclweb.org/anthology/N/N09/N09-1012
http://www.aclweb.org/anthology/N/N09/N09-1012

Hellwig, Peter (1986). “Dependency unification grammar”. In: Proceedings of the
11th International Conference on Computational Linguistics. Vol. 1.

Hermann, Karl Moritz, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will
Kay, Mustafa Suleyman, and Phil Blunsom (2015). “Teaching Machines to Read
and Comprehend”. In: Advances in Neural Information Processing Systems,
pp. 1684–1692. URL: http://arxiv.org/abs/1506.03340.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”. In:
Neural Computation 9.8, pp. 1735–1780. URL: http://www.mitpressjournals.
org/doi/abs/10.1162/neco.1997.9.8.1735#.WKp_mxLyso9.

Howlett, Susan and Mark Dras (2011). “Clause Restructuring For SMT Not Absolutely
Helpful”. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies. Portland, Oregon,
USA, pp. 384–388. URL: http://aclweb.org/anthology/P11-2067.

Huang, Zhongqiang, Martin Čmejrek, and Bowen Zhou (2010). “Soft Syntactic Con-
straints for Hierarchical Phrase-Based Translation Using Latent Syntactic Distribu-
tions”. In: Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing. Cambridge, MA: Association for Computational Linguis-
tics, pp. 138–147. URL: https://www.aclweb.org/anthology/D10-
1014.

Hudson, Richard A (1984). Word grammar. Blackwell Oxford.
Hwa, Rebecca, Philip Resnik, Amy Weinberg, Clara Cabezas, and Okan Kolak

(2005). “Bootstrapping Parsers via Syntactic Projection Across Parallel Texts”.
In: Natural Language Engineering 11.3, pp. 311–325. ISSN: 1351-3249. DOI:
10.1017/S1351324905003840. URL: http://dx.doi.org/10.
1017/S1351324905003840.

Jaitly, Navdeep and Geoffrey E. Hinton (2013). “Vocal Tract Length Perturbation
(VTLP) Improves Speech Recognition”. In: Proceedings of the 30th Interna-
tional Conference on Machine Learning Workshop on Deep Learning for Audio,
Speech and Language. URL: https://www.cs.toronto.edu/~hinton/
absps/perturb.pdf.

Jiang, Yong, Wenjuan Han, and Kewei Tu (2017). “Combining Generative and Dis-
criminative Approaches to Unsupervised Dependency Parsing via Dual Decom-
position”. In: Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pp. 1689–1694. URL: http://aclweb.org/
anthology/D17-1177.

Johnson, Mark, Thomas Griffiths, and Sharon Goldwater (2007). “Bayesian Inference
for PCFGs via Markov Chain Monte Carlo”. In: Human Language Technologies
2007: The Conference of the North American Chapter of the Association for

177

http://arxiv.org/abs/1506.03340
http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735#.WKp_mxLyso9
http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735#.WKp_mxLyso9
http://aclweb.org/anthology/P11-2067
https://www.aclweb.org/anthology/D10-1014
https://www.aclweb.org/anthology/D10-1014
https://doi.org/10.1017/S1351324905003840
http://dx.doi.org/10.1017/S1351324905003840
http://dx.doi.org/10.1017/S1351324905003840
https://www.cs.toronto.edu/~hinton/absps/perturb.pdf
https://www.cs.toronto.edu/~hinton/absps/perturb.pdf
http://aclweb.org/anthology/D17-1177
http://aclweb.org/anthology/D17-1177

Computational Linguistics; Proceedings of the Main Conference. Rochester, New
York: Association for Computational Linguistics, pp. 139–146. URL: https:
//www.aclweb.org/anthology/N07-1018.

Kahane, Sylvain (2012). “Why to choose dependency rather than constituency for
syntax: a formal point of view”. In: J. Apresjan, M.-C. L’Homme, M.-C. Iomdin, J.
Milicevic, A. Polguère, and L. Wanner, editors, Meanings, Texts, and other exciting
things: A Festschrift to Commemorate the 80th Anniversary of Professor Igor A.
MelâĂŹcuk, pp. 257–272.

Karakos, Damianos, Jason Eisner, Sanjeev Khudanpur, and Carey E. Priebe (2007).
“Cross-Instance Tuning of Unsupervised Document Clustering Algorithms”. In:
Human Language Technologies: Proceedings of the Annual Conference of the
North American Chapter of the Association for Computational Linguistics, pp. 252–
259. URL: http://www.aclweb.org/anthology/N/N07/N07-1032.

Kim, Joo-Kyung, Young-Bum Kim, Ruhi Sarikaya, and Eric Fosler-Lussier (2017).
“Cross-Lingual Transfer Learning for POS Tagging without Cross-Lingual Re-
sources”. In: Proceedings of the 2017 Conference on Empirical Methods in Natu-
ral Language Processing. Copenhagen, Denmark, pp. 2832–2838. URL: http:
//aclweb.org/anthology/D17-1302.

Kingma, Diederik and Jimmy Ba (2015). “Adam: A Method for Stochastic Optimiza-
tion”. In: Proceedings of the International Conference on Learning Representa-
tions. URL: https://arxiv.org/pdf/1412.6980.pdf.

Kiperwasser, Eliyahu and Yoav Goldberg (2016). “Simple and Accurate Dependency
Parsing Using Bidirectional LSTM Feature Representations”. In: Transactions of
the Association for Computational Linguistics 4, pp. 313–327. DOI: 10.1162/
tacl_a_00101. URL: https://www.aclweb.org/anthology/Q16-
1023.

Klein, Dan and Christopher Manning (2004). “Corpus-Based Induction of Syntactic
Structure: Models of Dependency and Constituency”. In: Proceedings of the 42nd
Annual Meeting of the Association for Computational Linguistics, pp. 478–485.
DOI: 10.3115/1218955.1219016. URL: http://www.aclweb.org/
anthology/P04-1061.

Klein, Dan and Christopher D Manning (2005). “The unsupervised learning of natural
language structure”. PhD thesis.

Kong, Lingpeng, Alexander M. Rush, and Noah A. Smith (2015). “Transforming
Dependencies into Phrase Structures”. In: Proceedings of the 2015 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Denver, Colorado: Association for Computational

178

https://www.aclweb.org/anthology/N07-1018
https://www.aclweb.org/anthology/N07-1018
http://www.aclweb.org/anthology/N/N07/N07-1032
http://aclweb.org/anthology/D17-1302
http://aclweb.org/anthology/D17-1302
https://arxiv.org/pdf/1412.6980.pdf
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://www.aclweb.org/anthology/Q16-1023
https://www.aclweb.org/anthology/Q16-1023
https://doi.org/10.3115/1218955.1219016
http://www.aclweb.org/anthology/P04-1061
http://www.aclweb.org/anthology/P04-1061

Linguistics, pp. 788–798. DOI: 10.3115/v1/N15-1080. URL: https:
//www.aclweb.org/anthology/N15-1080.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). “ImageNet Clas-
sification with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems 25. Ed. by F. Pereira, C.J.C. Burges, L. Bottou,
and K.Q. Weinberger, pp. 1097–1105.

Kruijff, Geert-Jan M (2002). “Formal and computational aspects of dependency
grammar: History and development of DG”. In: Tech. Report, ESSLLI.

Kurihara, Kenichi and Taisuke Sato (2004). “An application of the variational Bayesian
approach to probabilistic context-free grammars”. In: IJCNLP-04 Workshop be-
yond shallow analyses.

Lacroix, Ophélie, Lauriane Aufrant, Guillaume Wisniewski, and François Yvon (2016).
“Frustratingly Easy Cross-Lingual Transfer for Transition-Based Dependency
Parsing”. In: Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies.
San Diego, California, pp. 1058–1063. DOI: 10.18653/v1/N16-1121. URL:
http://www.aclweb.org/anthology/N16-1121.

Lari, Karim and Steve J. Young (1990). “The estimation of stochastic context-free
grammars using the Inside-Outside algorithm”. In: Computer Speech and Lan-
guage 4.1, pp. 35–56. URL: http://www.sciencedirect.com/science/
article/pii/088523089090022X.

Le, Phong and Willem Zuidema (2015). “Unsupervised Dependency Parsing: Let’s
Use Supervised Parsers”. In: Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 651–661. URL: http://www.aclweb.org/
anthology/N15-1067.

LeCun, Yann, Sumit Chopra, Raia Hadsell, and Fu Jie Huang (2007). “A Tutorial on
Energy-Based Learning”. In: Predicting Structured Data. Ed. by Gökhan Bakır,
Thomas Hofmann, Bernhard Schölkopf, Alexander J. Smola, Ben Taskar, and
S. V. N. Vishwanathan. MIT Press. URL: http://yann.lecun.com/exdb/
publis/orig/lecun-06.pdf.

Lee, Juho, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye
Teh (2019). “Set Transformer: A Framework for Attention-based Permutation-
Invariant Neural Networks”. In: International Conference on Machine Learning,
pp. 3744–3753.

Lee, Lillian (1999). “Measures of Distributional Similarity”. In: Proceedings of the
37th Annual Meeting of the Association for Computational Linguistics, pp. 25–32.
URL: http://www.aclweb.org/anthology/P99-1004.

179

https://doi.org/10.3115/v1/N15-1080
https://www.aclweb.org/anthology/N15-1080
https://www.aclweb.org/anthology/N15-1080
https://doi.org/10.18653/v1/N16-1121
http://www.aclweb.org/anthology/N16-1121
http://www.sciencedirect.com/science/article/pii/088523089090022X
http://www.sciencedirect.com/science/article/pii/088523089090022X
http://www.aclweb.org/anthology/N15-1067
http://www.aclweb.org/anthology/N15-1067
http://yann.lecun.com/exdb/publis/orig/lecun-06.pdf
http://yann.lecun.com/exdb/publis/orig/lecun-06.pdf
http://www.aclweb.org/anthology/P99-1004

Lee, Lillian (2001). “On the effectiveness of the skew divergence for statistical lan-
guage analysis”. In: Proceedings of AISTATS.

Lehmann, Erich L and George Casella (2006). Theory of point estimation. Springer
Science & Business Media.

Levy, Omer and Yoav Goldberg (2014). “Dependency-Based Word Embeddings”. In:
Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Baltimore, Maryland: Association for Com-
putational Linguistics, pp. 302–308. DOI: 10.3115/v1/P14-2050. URL:
https://www.aclweb.org/anthology/P14-2050.

Lewis, William D. and Fei Xia (2008). “Automatically Identifying Computation-
ally Relevant Typological Features”. In: Proceedings of the Third International
Joint Conference on Natural Language Processing: Volume-II. URL: http://
aclweb.org/anthology/I08-2093.

Li, Xiang Lisa, Dingquan Wang, and Jason Eisner (2019). “A Generative Model
for Punctuation in Dependency Trees”. In: Transactions of the Association for
Computational Linguistics (TACL), pp. 357–373. ISSN: 2307-387X. URL: http:
//cs.jhu.edu/~jason/papers/#li-et-al-2019-tacl.

Lin, Yongjie, Yi Chern Tan, and Robert Frank (2019). “Open Sesame: Getting Inside
BERT’s Linguistic Knowledge”. In: Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP.

Linzen, Tal, Emmanuel Dupoux, and Yoav Goldberg (2016). “Assessing the Ability
of LSTMs to Learn Syntax-Sensitive Dependencies”. In: Transactions of the
Association for Computational Linguistics 4, pp. 521–535. DOI: 10.1162/
tacl_a_00115. URL: https://www.aclweb.org/anthology/Q16-
1037.

Liu, Haitao (2010). “Dependency Direction as a Means of Word-Order Typology: A
Method Based on Dependency Treebanks”. In: Lingua 120.6, pp. 1567–1578.

Ma, Xuezhe and Fei Xia (2014). “Unsupervised Dependency Parsing with Transferring
Distribution via Parallel Guidance and Entropy Regularization”. In: Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics.
Vol. 1. Baltimore, Maryland, pp. 1337–1348. URL: http://aclweb.org/
anthology/P14-1126.

Ma, Xuezhe, Zecong Hu, Jingzhou Liu, Nanyun Peng, Graham Neubig, and Eduard
Hovy (2018). “Stack-Pointer Networks for Dependency Parsing”. In: Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Melbourne, Australia: Association for Computational
Linguistics, pp. 1403–1414. DOI: 10.18653/v1/P18-1130. URL: https:
//www.aclweb.org/anthology/P18-1130.

180

https://doi.org/10.3115/v1/P14-2050
https://www.aclweb.org/anthology/P14-2050
http://aclweb.org/anthology/I08-2093
http://aclweb.org/anthology/I08-2093
http://cs.jhu.edu/~jason/papers/#li-et-al-2019-tacl
http://cs.jhu.edu/~jason/papers/#li-et-al-2019-tacl
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://www.aclweb.org/anthology/Q16-1037
https://www.aclweb.org/anthology/Q16-1037
http://aclweb.org/anthology/P14-1126
http://aclweb.org/anthology/P14-1126
https://doi.org/10.18653/v1/P18-1130
https://www.aclweb.org/anthology/P18-1130
https://www.aclweb.org/anthology/P18-1130

Majliš, Martin (2011). W2C—Web to Corpus—Corpora. URL: http://hdl.
handle.net/11858/00-097C-0000-0022-6133-9.

Malaviya, Chaitanya, Graham Neubig, and Patrick Littell (2017). “Learning Language
Representations for Typology Prediction”. In: Conference on Empirical Methods
in Natural Language Processing (EMNLP). Copenhagen, Denmark. URL: https:
//www.phontron.com/paper/malaviya17emnlp.pdf.

Marcheggiani, Diego and Ivan Titov (2017). “Encoding Sentences with Graph Convo-
lutional Networks for Semantic Role Labeling”. In: Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing. Copen-
hagen, Denmark: Association for Computational Linguistics, pp. 1506–1515.
DOI: 10.18653/v1/D17-1159. URL: https://www.aclweb.org/
anthology/D17-1159.

Marcus, Mitchell P., Mary Ann Marcinkiewicz, and Beatrice Santorini (1993). “Build-
ing a large annotated corpus of English: The Penn Treebank”. In: Computational
linguistics 19.2, pp. 313–330. URL: http://dl.acm.org/citation.
cfm?id=972475 (visited on 11/09/2013).

Mareček, David and Milan Straka (2013). “Stop-probability estimates computed on a
large corpus improve Unsupervised Dependency Parsing”. In: Proceedings of the
51st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Sofia, Bulgaria, pp. 281–290. URL: http://aclweb.org/
anthology/P13-1028.

Mareček, David (2016). “Twelve Years of Unsupervised Dependency Parsing”. In:
Proceedings of the 16th ITAT Conference Information Technologies—Applications
and Theory, pp. 56–62. URL: http://ceur-ws.org/Vol-1649/56.pdf.

Marneffe, Marie-Catherine de, Timothy Dozat, Natalia Silveira, Katri Haverinen, Filip
Ginter, Joakim Nivre, and Christopher D. Manning (2014). “Universal Stanford
dependencies: A cross-linguistic typology”. In: Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evaluation (LREC’14). Reykjavik,
Iceland: European Language Resources Association (ELRA), pp. 4585–4592.
URL: http://www.lrec-conf.org/proceedings/lrec2014/pdf/
1062_Paper.pdf.

Martínez Alonso, Héctor, Željko Agić, Barbara Plank, and Anders Søgaard (2017).
“Parsing Universal Dependencies without training”. In: Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pp. 230–240. URL: http://aclanthology.
coli.uni-saarland.de/pdf/E/E17/E17-1022.pdf.

Maxwell, Dan (2013). “Why So Many Nodes?” In: Proceedings of the Second Inter-
national Conference on Dependency Linguistics (DepLing 2013). Prague, Czech

181

http://hdl.handle.net/11858/00-097C-0000-0022-6133-9
http://hdl.handle.net/11858/00-097C-0000-0022-6133-9
https://www.phontron.com/paper/malaviya17emnlp.pdf
https://www.phontron.com/paper/malaviya17emnlp.pdf
https://doi.org/10.18653/v1/D17-1159
https://www.aclweb.org/anthology/D17-1159
https://www.aclweb.org/anthology/D17-1159
http://dl.acm.org/citation.cfm?id=972475
http://dl.acm.org/citation.cfm?id=972475
http://aclweb.org/anthology/P13-1028
http://aclweb.org/anthology/P13-1028
http://ceur-ws.org/Vol-1649/56.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
http://aclanthology.coli.uni-saarland.de/pdf/E/E17/E17-1022.pdf
http://aclanthology.coli.uni-saarland.de/pdf/E/E17/E17-1022.pdf

Republic: Charles University in Prague, Matfyzpress, Prague, Czech Republic,
pp. 197–206. URL: https://www.aclweb.org/anthology/W13-
3722.

McCann, Bryan, James Bradbury, Caiming Xiong, and Richard Socher (2017). “Learned
in Translation: Contextualized Word Vectors”. In: Advances in Neural Information
Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett. Curran Associates, Inc., pp. 6294–
6305. URL: http://papers.nips.cc/paper/7209-learned-in-
translation-contextualized-word-vectors.pdf.

McDonald, Ryan (2006). “Discriminative Learning and Spanning Tree Algorithms
for Dependency Parsing”. PhD thesis. University of Pennsylvania. URL: https:
//repository.upenn.edu/dissertations/AAI3225503/.

McDonald, Ryan, Koby Crammer, and Fernando Pereira (2005). “Online Large-
Margin Training of Dependency Parsers”. In: Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL’05), pp. 91–98.
URL: http://aclanthology.coli.uni-saarland.de/pdf/P/
P05/P05-1012.pdf.

McDonald, Ryan, Slav Petrov, and Keith Hall (2011). “Multi-Source Transfer of
Delexicalized Dependency Parsers”. In: Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing. Edinburgh, Scotland, UK.,
pp. 62–72. URL: http://aclweb.org/anthology/D11-1006.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajič (2005). “Non-
Projective Dependency Parsing using Spanning Tree Algorithms”. In: Proceed-
ings of Human Language Technology Conference and Conference on Empir-
ical Methods in Natural Language Processing. Vancouver, British Columbia,
Canada: Association for Computational Linguistics, pp. 523–530. URL: https:
//www.aclweb.org/anthology/H05-1066.

McDonald, Ryan, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg,
Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar
Täckström, Claudia Bedini, Núria Bertomeu Castelló, and Jungmee Lee (2013).
“Universal Dependency Annotation for Multilingual Parsing”. In: Proceedings of
the 51st Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers). Sofia, Bulgaria, pp. 92–97. URL: http://www.aclweb.
org/anthology/P13-2017.

Mel’cuk, Igor Aleksandrovic et al. (1988). Dependency syntax: theory and practice.
SUNY press.

Mihalcea, Rada and Paul Tarau (2004). “TextRank: Bringing Order into Text”. In:
Proceedings of the 2004 Conference on Empirical Methods in Natural Language

182

https://www.aclweb.org/anthology/W13-3722
https://www.aclweb.org/anthology/W13-3722
http://papers.nips.cc/paper/7209-learned-in-translation-contextualized-word-vectors.pdf
http://papers.nips.cc/paper/7209-learned-in-translation-contextualized-word-vectors.pdf
https://repository.upenn.edu/dissertations/AAI3225503/
https://repository.upenn.edu/dissertations/AAI3225503/
http://aclanthology.coli.uni-saarland.de/pdf/P/P05/P05-1012.pdf
http://aclanthology.coli.uni-saarland.de/pdf/P/P05/P05-1012.pdf
http://aclweb.org/anthology/D11-1006
https://www.aclweb.org/anthology/H05-1066
https://www.aclweb.org/anthology/H05-1066
http://www.aclweb.org/anthology/P13-2017
http://www.aclweb.org/anthology/P13-2017

Processing. Barcelona, Spain: Association for Computational Linguistics, pp. 404–
411. URL: https://www.aclweb.org/anthology/W04-3252.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean (2013).
“Distributed representations of words and phrases and their compositionality”. In:
Advances in Neural Information Processing Systems, pp. 3111–3119.

Mille, Simon, Anja Belz, Bernd Bohnet, Yvette Graham, Emily Pitler, and Leo Wan-
ner (2018). “The First Multilingual Surface Realisation Shared Task (SR’18):
Overview and Evaluation Results”. In: Proceedings of the 1st Workshop on Multi-
lingual Surface Realization (MSR), 56th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 1–12. URL: http://www.aclweb.
org/anthology/W18-3601.

Murawaki, Yugo (2015). “Continuous Space Representations of Linguistic Typology
and their Application to Phylogenetic Inference”. In: Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. Denver, Colorado, pp. 324–334. DOI:
10.3115/v1/N15-1036. URL: http://aclweb.org/anthology/
N15-1036.

Naseem, Tahira, Regina Barzilay, and Amir Globerson (2012). “Selective Sharing for
Multilingual Dependency Parsing”. In: Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Jeju
Island, Korea, pp. 629–637. URL: http://aclweb.org/anthology/P12-
1066.

Naseem, Tahira, Harr Chen, Regina Barzilay, and Mark Johnson (2010). “Using
Universal Linguistic Knowledge to Guide Grammar Induction”. In: Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Processing.
Cambridge, MA, pp. 1234–1244. URL: http://aclweb.org/anthology/
D10-1120.

Nguyen, Dat Quoc, Dai Quoc Nguyen, Dang Duc Pham, and Son Bao Pham (2014).
“RDRPOSTagger: A Ripple Down Rules-based Part-Of-Speech Tagger”. In: Pro-
ceedings of the Demonstrations at the 14th Conference of the European Chap-
ter of the Association for Computational Linguistics, pp. 17–20. URL: http:
//www.aclweb.org/anthology/E14-2005.

Nivre, Joakim (2003). “An Efficient Algorithm for Projective Dependency Parsing”.
In: Proceedings of the Eighth International Workshop on Parsing Technologies
(IWPT. Nancy, France, pp. 149–160. URL: https://www.aclweb.org/
anthology/W03-3017.

Nivre, Joakim (2005). “Dependency grammar and dependency parsing”. In: MSI
report 5133.1959, pp. 1–32.

183

https://www.aclweb.org/anthology/W04-3252
http://www.aclweb.org/anthology/W18-3601
http://www.aclweb.org/anthology/W18-3601
https://doi.org/10.3115/v1/N15-1036
http://aclweb.org/anthology/N15-1036
http://aclweb.org/anthology/N15-1036
http://aclweb.org/anthology/P12-1066
http://aclweb.org/anthology/P12-1066
http://aclweb.org/anthology/D10-1120
http://aclweb.org/anthology/D10-1120
http://www.aclweb.org/anthology/E14-2005
http://www.aclweb.org/anthology/E14-2005
https://www.aclweb.org/anthology/W03-3017
https://www.aclweb.org/anthology/W03-3017

Nivre, Joakim (2008). “Algorithms for Deterministic Incremental Dependency Pars-
ing”. In: Computational Linguistics 34.4, pp. 513–553. URL: https://www.
mitpressjournals.org/doi/pdf/10.1162/coli.07-056-R1-
07-027.

Nivre, Joakim and Jens Nilsson (2005). “Pseudo-Projective Dependency Parsing”. In:
Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics. Ann Arbor, Michigan, pp. 99–106. URL: http://aclweb.org/
anthology/P05-1013.

Nivre, Joakim, Željko Agić, Maria Jesus Aranzabe, Masayuki Asahara, Aitziber
Atutxa, Miguel Ballesteros, John Bauer, Kepa Bengoetxea, Riyaz Ahmad Bhat,
Cristina Bosco, Sam Bowman, Giuseppe G. A. Celano, Miriam Connor, Marie-
Catherine de Marneffe, Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Timothy Dozat,
Tomaž Erjavec, Richárd Farkas, Jennifer Foster, Daniel Galbraith, Filip Ginter,
Iakes Goenaga, Koldo Gojenola, Yoav Goldberg, Berta Gonzales, Bruno Guil-
laume, Jan Hajič, Dag Haug, Radu Ion, Elena Irimia, Anders Johannsen, Hiroshi
Kanayama, Jenna Kanerva, Simon Krek, Veronika Laippala, Alessandro Lenci,
Nikola Ljubešić, Teresa Lynn, Christopher Manning, CÄČtÄČlina MÄČrÄČnduc,
David Mareček, Héctor Martínez Alonso, Jan Mašek, Yuji Matsumoto, Ryan
McDonald, Anna Missilä, Verginica Mititelu, Yusuke Miyao, Simonetta Mon-
temagni, Shunsuke Mori, Hanna Nurmi, Petya Osenova, Lilja Øvrelid, Elena
Pascual, Marco Passarotti, Cenel-Augusto Perez, Slav Petrov, Jussi Piitulainen,
Barbara Plank, Martin Popel, Prokopis Prokopidis, Sampo Pyysalo, Loganathan
Ramasamy, Rudolf Rosa, Shadi Saleh, Sebastian Schuster, Wolfgang Seeker, Moj-
gan Seraji, Natalia Silveira, Maria Simi, Radu Simionescu, Katalin Simkó, Kiril
Simov, Aaron Smith, Jan Štěpánek, Alane Suhr, Zsolt Szántó, Takaaki Tanaka,
Reut Tsarfaty, Sumire Uematsu, Larraitz Uria, Viktor Varga, Veronika Vincze,
Zdeněk Žabokrtský, Daniel Zeman, and Hanzhi Zhu (2015). Universal Dependen-
cies 1.2. URL: http://hdl.handle.net/11234/1-1548.

Nivre, Joakim, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Ha-
jič, Christopher Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Na-
talia Silveira, Reut Tsarfaty, and Daniel Zeman (2016). “Universal Dependencies
v1: A Multilingual Treebank Collection”. In: Proceedings of the 10th Interna-
tional Conference on Language Resources and Evaluation, pp. 1659–1666. URL:
http://www.lrec-conf.org/proceedings/lrec2016/pdf/
348_Paper.pdf.

Nivre, Joakim et al. (2019). Universal Dependencies 2.4. URL: http://hdl.
handle.net/11234/1-2988.

184

https://www.mitpressjournals.org/doi/pdf/10.1162/coli.07-056-R1-07-027
https://www.mitpressjournals.org/doi/pdf/10.1162/coli.07-056-R1-07-027
https://www.mitpressjournals.org/doi/pdf/10.1162/coli.07-056-R1-07-027
http://aclweb.org/anthology/P05-1013
http://aclweb.org/anthology/P05-1013
http://hdl.handle.net/11234/1-1548
http://www.lrec-conf.org/proceedings/lrec2016/pdf/348_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/348_Paper.pdf
http://hdl.handle.net/11234/1-2988
http://hdl.handle.net/11234/1-2988

Noji, Hiroshi, Yusuke Miyao, and Mark Johnson (2016). “Using Left-corner Parsing to
Encode Universal Structural Constraints in Grammar Induction”. In: Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing.
Austin, Texas, pp. 33–43. URL: http://aclweb.org/anthology/D16-
1004.

Nunberg, Geoffrey (1990). The Linguistics of Punctuation. CSLI Lecture Notes
18. Center for the Study of Language and Information. URL: https://web.
stanford.edu/group/cslipublications/cslipublications/
site/0937073466.shtml.

O’Horan, Helen, Yevgeni Berzak, Ivan Vulic, Roi Reichart, and Anna Korhonen
(2016). “Survey on the Use of Typological Information in Natural Language
Processing”. In: Proceedings of the 26th International Conference on Computa-
tional Linguistics: Technical Papers. Osaka, Japan, pp. 1297–1308. URL: http:
//aclweb.org/anthology/C16-1123.

Östling, Robert (2015). “Word Order Typology through Multilingual Word Align-
ment”. In: Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers). Beijing, China: Association for
Computational Linguistics, pp. 205–211. DOI: 10.3115/v1/P15-2034.

Page, Lawrence, Sergey Brin, Rajeev Motwani, and Terry Winograd (1999). The
PageRank Citation Ranking: Bringing Order to the Web. Technical Report 1999-66.
Stanford InfoLab. URL: http://ilpubs.stanford.edu:8090/422/.

Pakman, Ari and Liam Paninski (2018). “Amortized Bayesian inference for clustering
models”. In: Advances in Neural Information Processing Systems 32. Curran
Associates, Inc.

Paskin, Mark A (2001). Cubic-time parsing and learning algorithms for grammatical
bigram models. Citeseer.

Paskin, Mark A (2002). “Grammatical digrams”. In: Advances in Neural Information
Processing Systems 14.1, pp. 91–97.

Paszke, Adam, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer (2017).
“Automatic differentiation in PyTorch”. In:

Pate, John K and Mark Johnson (2016). “Grammar induction from (lots of) words
alone”. In: Proceedings of COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers. Osaka, Japan: The COLING
2016 Organizing Committee, pp. 23–32. URL: https://www.aclweb.org/
anthology/C16-1003.

185

http://aclweb.org/anthology/D16-1004
http://aclweb.org/anthology/D16-1004
https://web.stanford.edu/group/cslipublications/cslipublications/site/0937073466.shtml
https://web.stanford.edu/group/cslipublications/cslipublications/site/0937073466.shtml
https://web.stanford.edu/group/cslipublications/cslipublications/site/0937073466.shtml
http://aclweb.org/anthology/C16-1123
http://aclweb.org/anthology/C16-1123
https://doi.org/10.3115/v1/P15-2034
http://ilpubs.stanford.edu:8090/422/
https://www.aclweb.org/anthology/C16-1003
https://www.aclweb.org/anthology/C16-1003

Peters, Matthew, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer (2018). “Deep Contextualized Word Rep-
resentations”. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). New Orleans, Louisiana: Association for
Computational Linguistics, pp. 2227–2237. DOI: 10.18653/v1/N18-1202.
URL: https://www.aclweb.org/anthology/N18-1202.

Platanios, Emmanouil Antonios, Mrinmaya Sachan, Graham Neubig, and Tom Mitchell
(2018). “Contextual Parameter Generation for Universal Neural Machine Transla-
tion”. In: Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing. Brussels, Belgium: Association for Computational Linguis-
tics, pp. 425–435. DOI: 10.18653/v1/D18-1039.

Puzikov, Yevgeniy and Iryna Gurevych (2018). “BinLin: A Simple Method of De-
pendency Tree Linearization”. In: Proceedings of the First Workshop on Multi-
lingual Surface Realisation, pp. 13–28. URL: http://www.aclweb.org/
anthology/W18-3602.

Qian, Peng, Xipeng Qiu, and Xuanjing Huang (2016). “Analyzing Linguistic Knowl-
edge in Sequential Model of Sentence”. In: Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing. Austin, Texas: Association
for Computational Linguistics, pp. 826–835. DOI: 10.18653/v1/D16-1079.
URL: https://www.aclweb.org/anthology/D16-1079.

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever (2019). “Language models are unsupervised multitask learners”. In:
OpenAI Blog 1.8.

Rajpurkar, Pranav, Jian Zhang, Konstantin Lopyrev, and Percy Liang (2016). “SQuAD:
100,000+ Questions for Machine Comprehension of Text”. In: Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing.
Austin, Texas, pp. 2383–2392. DOI: 10.18653/v1/D16-1264. URL: http:
//www.aclweb.org/anthology/D16-1264.

Rasooli, Mohammad Sadegh and Michael Collins (2015). “Density-Driven Cross-
Lingual Transfer of Dependency Parsers”. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pp. 328–338. URL: http:
//aclweb.org/anthology/D15-1039.

Rasooli, Mohammad Sadegh and Michael Collins (2017). “Cross-Lingual Syntac-
tic Transfer with Limited Resources”. In: Transactions of the Association for
Computational Linguistics 5, pp. 279–293. ISSN: 2307-387X. URL: https:
//transacl.org/ojs/index.php/tacl/article/view/922.

186

https://doi.org/10.18653/v1/N18-1202
https://www.aclweb.org/anthology/N18-1202
https://doi.org/10.18653/v1/D18-1039
http://www.aclweb.org/anthology/W18-3602
http://www.aclweb.org/anthology/W18-3602
https://doi.org/10.18653/v1/D16-1079
https://www.aclweb.org/anthology/D16-1079
https://doi.org/10.18653/v1/D16-1264
http://www.aclweb.org/anthology/D16-1264
http://www.aclweb.org/anthology/D16-1264
http://aclweb.org/anthology/D15-1039
http://aclweb.org/anthology/D15-1039
https://transacl.org/ojs/index.php/tacl/article/view/922
https://transacl.org/ojs/index.php/tacl/article/view/922

Rasooli, Mohammad Sadegh and Joel R. Tetreault (2015). “Yara Parser: A Fast and Ac-
curate Dependency Parser”. In: Computing Research Repository arXiv:1503.06733.
URL: http://arxiv.org/abs/1503.06733.

Rasooli, Mohammad Sadegh, Thomas Lippincott, Nizar Habash, and Owen Rambow
(2014). “Unsupervised Morphology-Based Vocabulary Expansion”. In: Proceed-
ings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1349–1359. URL: http://aclweb.org/
anthology/P14-1127.

Ravfogel, Shauli, Yoav Goldberg, and Tal Linzen (2019). “Studying the Inductive
Biases of RNNs with Synthetic Variations of Natural Languages”. In: Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Minneapolis, Minnesota: Association for Computational Linguis-
tics, pp. 3532–3542. URL: https://www.aclweb.org/anthology/N19-
1356.

Rosa, Rudolf and David Mareček (2018). “CUNI x-ling: Parsing Under-Resourced
Languages in CoNLL 2018 UD Shared Task”. In: Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependen-
cies. Brussels, Belgium: Association for Computational Linguistics, pp. 187–196.
DOI: 10.18653/v1/K18-2019. URL: https://www.aclweb.org/
anthology/K18-2019.

Rosa, Rudolf and Zdeněk Žabokrtský (2015a). “KLcpos3 — A Language Similarity
Measure for Delexicalized Parser Transfer”. In: Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 2: Short Papers).
Beijing, China, pp. 243–249. DOI: 10.3115/v1/P15-2040. URL: http:
//www.aclweb.org/anthology/P15-2040.

Rosa, Rudolf and Zdeněk Žabokrtský (2015b). “MSTParser Model Interpolation for
Multi-Source Delexicalized Transfer”. In: Proceedings of the 14th International
Conference on Parsing Technologies, pp. 71–75. DOI: 10.18653/v1/W15-
2209. URL: http://www.aclweb.org/anthology/W15-2209.

Roth, Michael and Mirella Lapata (2016). “Neural Semantic Role Labeling with
Dependency Path Embeddings”. In: Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). Berlin,
Germany: Association for Computational Linguistics, pp. 1192–1202. DOI: 10.
18653/v1/P16-1113. URL: https://www.aclweb.org/anthology/
P16-1113.

187

http://arxiv.org/abs/1503.06733
http://aclweb.org/anthology/P14-1127
http://aclweb.org/anthology/P14-1127
https://www.aclweb.org/anthology/N19-1356
https://www.aclweb.org/anthology/N19-1356
https://doi.org/10.18653/v1/K18-2019
https://www.aclweb.org/anthology/K18-2019
https://www.aclweb.org/anthology/K18-2019
https://doi.org/10.3115/v1/P15-2040
http://www.aclweb.org/anthology/P15-2040
http://www.aclweb.org/anthology/P15-2040
https://doi.org/10.18653/v1/W15-2209
https://doi.org/10.18653/v1/W15-2209
http://www.aclweb.org/anthology/W15-2209
https://doi.org/10.18653/v1/P16-1113
https://doi.org/10.18653/v1/P16-1113
https://www.aclweb.org/anthology/P16-1113
https://www.aclweb.org/anthology/P16-1113

Rozovskaya, Alla and Dan Roth (2010). “Training Paradigms for Correcting Errors
in Grammar and Usage”. In: Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics. Los Angeles, California, pp. 154–162. URL: http://aclweb.
org/anthology/N10-1018.

Ruder, Sebastian, Ivan Vulić, and Anders Søgaard (2017). “A Survey Of Cross-Lingual
Word Embedding Models”. In: Computing Research Repository arXiv:1706.04902.
URL: https://arxiv.org/abs/1706.04902.

Saha Roy, Rishiraj, Rahul Katare, Niloy Ganguly, and Monojit Choudhury (2014).
“Automatic Discovery of Adposition Typology”. In: Proceedings of the 25th
International Conference on Computational Linguistics: Technical Papers. Dublin,
Ireland, pp. 1037–1046. URL: http://aclweb.org/anthology/C14-
1098.

Sakakibara, Yasubumi, Michael Brown, Richard Hughey, I Saira Mian, Kimmen
Sjölander, Rebecca C Underwood, and David Haussler (1994). “Stochastic context-
free grammers for tRNA modeling”. In: Nucleic acids research 22.23, pp. 5112–
5120.

Sedgewick, Robert (1977). “Permutation Generation Methods”. In: ACM Computing
Surveys 9.2, pp. 137–164. URL: http://dl.acm.org/citation.cfm?
id=356692.

Sennrich, Rico, Barry Haddow, and Alexandra Birch (2016). “Improving Neural
Machine Translation Models with Monolingual Data”. In: Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Berlin, Germany: Association for Computational Linguistics, pp. 86–96.
DOI: 10.18653/v1/P16-1009.

Serban, Iulian Vlad, Alberto García-Durán, Caglar Gulcehre, Sungjin Ahn, Sarath
Chandar, Aaron Courville, and Yoshua Bengio (2016). “Generating Factoid Ques-
tions With Recurrent Neural Networks: The 30M Factoid Question-Answer Cor-
pus”. In: Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). Berlin, Germany: Association
for Computational Linguistics, pp. 588–598. DOI: 10.18653/v1/P16-1056.
URL: http://aclweb.org/anthology/P16-1056.

Sgall, Petr, Eva Hajicová, Eva Hajicová, Jarmila Panevová, and Jarmila Panevova
(1986). The meaning of the sentence in its semantic and pragmatic aspects.
Springer Science & Business Media.

Shi, Tianze, Felix G. Wu, Xilun Chen, and Yao Cheng (2017). “Combining Global
Models for Parsing Universal Dependencies”. In: Proceedings of the CoNLL

188

http://aclweb.org/anthology/N10-1018
http://aclweb.org/anthology/N10-1018
https://arxiv.org/abs/1706.04902
http://aclweb.org/anthology/C14-1098
http://aclweb.org/anthology/C14-1098
http://dl.acm.org/citation.cfm?id=356692
http://dl.acm.org/citation.cfm?id=356692
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1056
http://aclweb.org/anthology/P16-1056

2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependen-
cies. Vancouver, Canada: Association for Computational Linguistics, pp. 31–39.
DOI: 10.18653/v1/K17-3003. URL: https://www.aclweb.org/
anthology/K17-3003.

Simard, Patrice Y., Dave Steinkraus, and John C. Platt (2003). “Best Practices for
Convolutional Neural Networks Applied to Visual Document Analysis”. In: Pro-
ceedings of the 7th International Conference on Document Analysis and Recogni-
tion, pp. 958–. URL: http://research.microsoft.com/apps/pubs/
default.aspx?id=68920.

Smith, Aaron, Bernd Bohnet, Miryam de Lhoneux, Joakim Nivre, Yan Shao, and
Sara Stymne (2018). “82 Treebanks, 34 Models: Universal Dependency Parsing
with Multi-Treebank Models”. In: Proceedings of the CoNLL 2018 Shared Task:
Multilingual Parsing from Raw Text to Universal Dependencies. Brussels, Belgium:
Association for Computational Linguistics, pp. 113–123. DOI: 10.18653/v1/
K18- 2011. URL: https://www.aclweb.org/anthology/K18-
2011.

Smith, Carl H (1982). “The power of pluralism for automatic program synthesis”. In:
Journal of the ACM (JACM) 29.4, pp. 1144–1165.

Smith, David A. and Jason Eisner (2009). “Parser Adaptation and Projection with
Quasi-Synchronous Grammar Features”. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pp. 822–831. URL: http:
//www.aclweb.org/anthology/D/D09/D09-1086.

Smith, Noah A. (2006). “Novel Estimation Methods for Unsupervised Discovery of
Latent Structure in Natural Language Text”. PhD thesis. Baltimore, MD: Johns
Hopkins University. URL: http://cs.jhu.edu/~jason/papers/
#smith-2006.

Smith, Noah A. and Jason Eisner (2005). “Guiding Unsupervised Grammar Induction
Using Contrastive Estimation”. In: International Joint Conference on Artificial
Intelligence (IJCAI) Workshop on Grammatical Inference Applications. Edinburgh,
pp. 73–82. URL: http://cs.jhu.edu/~jason/papers/#smith-
eisner-2005-gia.

Smith, Noah A. and Jason Eisner (2006). “Annealing Structural Bias in Multilingual
Weighted Grammar Induction”. In: Proceedings of the International Conference
on Computational Linguistics and the Association for Computational Linguis-
tics (COLING-ACL). Sydney, pp. 569–576. URL: http://cs.jhu.edu/
~jason/papers/#smith-eisner-2006-acl-sa.

Smola, Alex J and Bernhard Schölkopf (2004). “A tutorial on support vector regres-
sion”. In: Statistics and computing 14.3, pp. 199–222.

189

https://doi.org/10.18653/v1/K17-3003
https://www.aclweb.org/anthology/K17-3003
https://www.aclweb.org/anthology/K17-3003
http://research.microsoft.com/apps/pubs/default.aspx?id=68920
http://research.microsoft.com/apps/pubs/default.aspx?id=68920
https://doi.org/10.18653/v1/K18-2011
https://doi.org/10.18653/v1/K18-2011
https://www.aclweb.org/anthology/K18-2011
https://www.aclweb.org/anthology/K18-2011
http://www.aclweb.org/anthology/D/D09/D09-1086
http://www.aclweb.org/anthology/D/D09/D09-1086
http://cs.jhu.edu/~jason/papers/#smith-2006
http://cs.jhu.edu/~jason/papers/#smith-2006
http://cs.jhu.edu/~jason/papers/#smith-eisner-2005-gia
http://cs.jhu.edu/~jason/papers/#smith-eisner-2005-gia
http://cs.jhu.edu/~jason/papers/#smith-eisner-2006-acl-sa
http://cs.jhu.edu/~jason/papers/#smith-eisner-2006-acl-sa

Socher, Richard, Christopher D Manning, and Andrew Y Ng (2010). “Learning
continuous phrase representations and syntactic parsing with recursive neural
networks”. In: Proceedings of the NIPS-2010 Deep Learning and Unsupervised
Feature Learning Workshop. Vol. 2010, pp. 1–9.

Socher, Richard, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,
Andrew Ng, and Christopher Potts (2013). “Recursive Deep Models for Seman-
tic Compositionality Over a Sentiment Treebank”. In: Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing. Seattle, Wash-
ington, USA: Association for Computational Linguistics, pp. 1631–1642. URL:
https://www.aclweb.org/anthology/D13-1170.

Song, Jae Jung (2014). Linguistic Typology: Morphology and Syntax. Routledge.
URL: https://books.google.com/books/about/Linguistic_
typology.html?id=TiULAQAAMAAJ.

Spitkovsky, Valentin I. (2013). “Grammar Induction and Parsing with Dependency-
and-Boundary Models”. PhD thesis. Stanford, CA: Computer Science Depart-
ment, Stanford University. URL: http://nlp.stanford.edu/pubs/
SpitkovskyThesis.pdf.

Spitkovsky, Valentin I., Hiyan Alshawi, and Daniel Jurafsky (2010). “From Baby
Steps to Leapfrog: How “Less is More” in Unsupervised Dependency Parsing”.
In: Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics. Los Angeles,
California, pp. 751–759. URL: http://aclweb.org/anthology/N10-
1116.

Spitkovsky, Valentin I., Hiyan Alshawi, and Daniel Jurafsky (2012). “Three Dependency-
and-Boundary Models for Grammar Induction”. In: Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning. Jeju Island, Korea: Association for
Computational Linguistics, pp. 688–698. URL: https://www.aclweb.org/
anthology/D12-1063.

Spitkovsky, Valentin I., Hiyan Alshawi, and Daniel Jurafsky (2013). “Breaking Out
of Local Optima with Count Transforms and Model Recombination: A Study
in Grammar Induction”. In: Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing. Seattle, Washington, USA, pp. 1983–
1995. URL: http://aclweb.org/anthology/D13-1204.

Strubell, Emma, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCallum
(2018). “Linguistically-Informed Self-Attention for Semantic Role Labeling”.
In: Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing. Brussels, Belgium: Association for Computational Linguistics,

190

https://www.aclweb.org/anthology/D13-1170
https://books.google.com/books/about/Linguistic_typology.html?id=TiULAQAAMAAJ
https://books.google.com/books/about/Linguistic_typology.html?id=TiULAQAAMAAJ
http://nlp.stanford.edu/pubs/SpitkovskyThesis.pdf
http://nlp.stanford.edu/pubs/SpitkovskyThesis.pdf
http://aclweb.org/anthology/N10-1116
http://aclweb.org/anthology/N10-1116
https://www.aclweb.org/anthology/D12-1063
https://www.aclweb.org/anthology/D12-1063
http://aclweb.org/anthology/D13-1204

pp. 5027–5038. URL: https://www.aclweb.org/anthology/D18-
1548.

Stuhlmüller, Andreas, Jacob Taylor, and Noah Goodman (2013). “Learning stochastic
inverses”. In: Advances in neural information processing systems, pp. 3048–3056.

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le (2014). “Sequence to Sequence Learn-
ing with Neural Networks”. In: Advances in Neural Information Processing
Systems 27. Ed. by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger. Curran Associates, Inc., pp. 3104–3112. URL: http:
//papers.nips.cc/paper/5346- sequence- to- sequence-
learning-with-neural-networks.pdf.

Täckström, Oscar, Ryan McDonald, and Joakim Nivre (2013). “Target Language
Adaptation of Discriminative Transfer Parsers”. In: Proceedings of the 2013
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. Atlanta, Georgia, pp. 1061–1071.
URL: http://aclweb.org/anthology/N13-1126.

Täckström, Oscar, Dipanjan Das, Slav Petrov, Ryan McDonald, and Joakim Nivre
(2013). “Token and Type Constraints for Cross-Lingual Part-of-Speech Tagging”.
In: Transactions of the Association for Computational Linguistics 1, pp. 1–12.
URL: http://aclweb.org/anthology/Q13-1001.

Taskar, Ben, Dan Klein, Michael Collins, Daphne Koller, and Christopher Manning
(2004). “Max-Margin Parsing”. In: Proceedings of the 2004 Conference on Empir-
ical Methods in Natural Language Processing. URL: http://www.aclweb.
org/anthology/W04-3201.

Taskar, Ben, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin (2005). “Learn-
ing Structured Prediction Models: A Large Margin Approach”. In: Proceedings of
the 22nd International Conference on Machine Learning, pp. 896–903. ISBN:
1-59593-180-5. URL: http://doi.acm.org/10.1145/1102351.
1102464.

Tesnière, Lucien (1959). Eléments de syntaxe structurale. Klincksieck.
Tiedemann, Jörg (2014). “Rediscovering Annotation Projection for Cross-Lingual

Parser Induction”. In: Proceedings of COLING 2014, the 25th International Con-
ference on Computational Linguistics: Technical Papers, pp. 1854–1864. URL:
http://www.aclweb.org/anthology/C14-1175.

Tiedemann, Jörg and Zeljko Agić (2016). “Synthetic treebanking for cross-lingual
dependency parsing”. In: Journal of Artificial Intelligence Research 55, pp. 209–
248.

Tiedemann, Jörg, Željko Agić, and Joakim Nivre (2014). “Treebank Translation for
Cross-Lingual Parser Induction”. In: Proceedings of the Eighteenth Conference

191

https://www.aclweb.org/anthology/D18-1548
https://www.aclweb.org/anthology/D18-1548
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://aclweb.org/anthology/N13-1126
http://aclweb.org/anthology/Q13-1001
http://www.aclweb.org/anthology/W04-3201
http://www.aclweb.org/anthology/W04-3201
http://doi.acm.org/10.1145/1102351.1102464
http://doi.acm.org/10.1145/1102351.1102464
http://www.aclweb.org/anthology/C14-1175

on Computational Natural Language Learning. Ann Arbor, Michigan, pp. 130–
140. DOI: 10.3115/v1/W14-1614. URL: http://www.aclweb.org/
anthology/W14-1614.

Tieleman, Tijmen and Geoffrey Hinton (2012). Lecture 6.5—RmsProp: Divide the
gradient by a running average of its recent magnitude. COURSERA: Neural
Networks for Machine Learning. URL: https://www.coursera.org/
learn/neural- networks/lecture/YQHki/rmsprop- divide-
the - gradient - by - a - running - average - of - its - recent -
magnitude.

Tu, Kewei (2015). “Stochastic And-Or grammars: A unified framework and logic per-
spective”. In: Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI 2016).

Vapnik, Vladimir (2013). The nature of statistical learning theory. Springer science &
business media.

Varjokallio, Matti and Dietrich Klakow (2016). “Unsupervised morph segmentation
and statistical language models for vocabulary expansion”. In: Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers). Berlin, Germany, pp. 175–180. URL: http://aclweb.org/
anthology/P16-2029.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin (2017). “Attention is All you Need”.
In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett.
Curran Associates, Inc., pp. 5998–6008. URL: http://papers.nips.cc/
paper/7181-attention-is-all-you-need.pdf.

Vilares, Jesús, Manuel Vilares, and Juan Otero (2011). “Managing Misspelled Queries
in IR Applications”. In: Information Processing & Management 47.2, pp. 263–286.
URL: http://dl.acm.org/citation.cfm?id=1945179.

Wang, Dingquan and Jason Eisner (2016). “The Galactic Dependencies Treebanks:
Getting More Data by Synthesizing New Languages”. In: Transactions of the
Association of Computational Linguistics 4, pp. 491–505. URL: http://cs.
jhu.edu/~jason/papers/#wang-eisner-2016.

Wang, Dingquan and Jason Eisner (2017). “Fine-Grained Prediction of Syntactic Ty-
pology: Discovering Latent Structure with Supervised Learning”. In: Transactions
of the Association for Computational Linguistics 5, pp. 147–161. URL: https:
//transacl.org/ojs/index.php/tacl/article/view/1060.

192

https://doi.org/10.3115/v1/W14-1614
http://www.aclweb.org/anthology/W14-1614
http://www.aclweb.org/anthology/W14-1614
https://www.coursera.org/learn/neural-networks/lecture/YQHki/rmsprop-divide-the-gradient-by-a-running-average-of-its-recent-magnitude
https://www.coursera.org/learn/neural-networks/lecture/YQHki/rmsprop-divide-the-gradient-by-a-running-average-of-its-recent-magnitude
https://www.coursera.org/learn/neural-networks/lecture/YQHki/rmsprop-divide-the-gradient-by-a-running-average-of-its-recent-magnitude
https://www.coursera.org/learn/neural-networks/lecture/YQHki/rmsprop-divide-the-gradient-by-a-running-average-of-its-recent-magnitude
http://aclweb.org/anthology/P16-2029
http://aclweb.org/anthology/P16-2029
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://dl.acm.org/citation.cfm?id=1945179
http://cs.jhu.edu/~jason/papers/#wang-eisner-2016
http://cs.jhu.edu/~jason/papers/#wang-eisner-2016
https://transacl.org/ojs/index.php/tacl/article/view/1060
https://transacl.org/ojs/index.php/tacl/article/view/1060

Wang, Dingquan and Jason Eisner (2018a). “Surface Statistics of an Unknown Lan-
guage Indicate How to Parse It”. In: Transactions of the Association for Compu-
tational Linguistics 6, pp. 667–685. DOI: 10.1162/tacl_a_00248. URL:
https://www.aclweb.org/anthology/Q18-1046.

Wang, Dingquan and Jason Eisner (2018b). “Synthetic Data Made to Order: The
Case of Parsing”. In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP). Brussels, pp. 1325–1337. URL: https:
//www.cs.jhu.edu/~jason/papers/#wang- eisner- 2018-
emnlp.

Wang, Qin Iris, Dale Schuurmans, and Dekang Lin (2008). “Semi-Supervised Convex
Training for Dependency Parsing”. In: Proceedings of the 2008 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Columbus, Ohio: Association for Computational
Linguistics, pp. 532–540. URL: https://www.aclweb.org/anthology/
P08-1061.

Wang, Yushi, Jonathan Berant, and Percy Liang (2015a). “Building a Semantic Parser
Overnight”. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Beijing, China: Association for
Computational Linguistics, pp. 1332–1342. DOI: 10.3115/v1/P15-1129.

Wang, Yushi, Jonathan Berant, and Percy Liang (2015b). “Building a Semantic Parser
Overnight”. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Beijing, China, pp. 1332–1342.
URL: http://aclweb.org/anthology/P15-1129.

Weston, Jason, Antoine Bordes, Sumit Chopra, and Tomas Mikolov (2016). “To-
wards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks”. In:
Proceedings of the International Conference on Learning Representations. URL:
http://arxiv.org/abs/1502.05698.

Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka (2019). “How Powerful
are Graph Neural Networks?” In: International Conference on Learning Represen-
tations. URL: https://openreview.net/forum?id=ryGs6iA5Km.

Yamada, Kenji and Kevin Knight (2001). “A Syntax-based Statistical Translation
Model”. In: Proceedings of the 39th Annual Meeting of the Association for Compu-
tational Linguistics. Toulouse, France: Association for Computational Linguistics,
pp. 523–530. DOI: 10.3115/1073012.1073079.

Yarowsky, David, Grace Ngai, and Richard Wicentowski (2001). “Inducing Multi-
lingual Text Analysis Tools via Robust Projection across Aligned Corpora”. In:

193

https://doi.org/10.1162/tacl_a_00248
https://www.aclweb.org/anthology/Q18-1046
https://www.cs.jhu.edu/~jason/papers/#wang-eisner-2018-emnlp
https://www.cs.jhu.edu/~jason/papers/#wang-eisner-2018-emnlp
https://www.cs.jhu.edu/~jason/papers/#wang-eisner-2018-emnlp
https://www.aclweb.org/anthology/P08-1061
https://www.aclweb.org/anthology/P08-1061
https://doi.org/10.3115/v1/P15-1129
http://aclweb.org/anthology/P15-1129
http://arxiv.org/abs/1502.05698
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.3115/1073012.1073079

Proceedings of the First International Conference on Human Language Technol-
ogy Research. URL: http://www.aclweb.org/anthology/H01-1035.

Yuret, Deniz (1998). “Discovery of linguistic relations using lexical attraction”. In:
arXiv preprint cmp-lg/9805009.

Zeman, Daniel, Martin Popel, Milan Straka, Jan Hajič, Joakim Nivre, Filip Ginter,
Juhani Luotolahti, Sampo Pyysalo, Slav Petrov, Martin Potthast, Francis Tyers,
Elena Badmaeva, Memduh Gokirmak, Anna Nedoluzhko, Silvie Cinková, Jan
Hajič jr., Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka Urešová, Jenna Kan-
erva, Stina Ojala, Anna Missilä, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Leung, Marie-Catherine de Marn-
effe, Manuela Sanguinetti, Maria Simi, Hiroshi Kanayama, Valeria de Paiva, Kira
Droganova, Héctor Martínez Alonso, Çağrı Çöltekin, Umut Sulubacak, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt, Kim Harris, Katrin Marhei-
necke, Georg Rehm, Tolga Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran
Yu, Emily Pitler, Saran Lertpradit, Michael Mandl, Jesse Kirchner, Hector Fer-
nandez Alcalde, Jana Strnadová, Esha Banerjee, Ruli Manurung, Antonio Stella,
Atsuko Shimada, Sookyoung Kwak, Gustavo Mendonça, Tatiana Lando, Rattima
Nitisaroj, and Josie Li (2017). “CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies”. In: Proceedings of the CoNLL
2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependen-
cies. Vancouver, Canada: Association for Computational Linguistics, pp. 1–19.
DOI: 10.18653/v1/K17-3001. URL: https://www.aclweb.org/
anthology/K17-3001.

Zeman, Daniel, Jan Hajič, Martin Popel, Martin Potthast, Milan Straka, Filip Ginter,
Joakim Nivre, and Slav Petrov (2018). “CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies”. In: Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependen-
cies. Brussels, Belgium: Association for Computational Linguistics, pp. 1–21.
DOI: 10.18653/v1/K18-2001. URL: https://www.aclweb.org/
anthology/K18-2001.

Zettlemoyer, Luke and Michael Collins (2007). “Online Learning of Relaxed CCG
Grammars for Parsing to Logical Form”. In: Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL). Prague, Czech Republic: Asso-
ciation for Computational Linguistics, pp. 678–687. URL: https://www.
aclweb.org/anthology/D07-1071.

Zhang, Yuan and Regina Barzilay (2015). “Hierarchical Low-Rank Tensors for Multi-
lingual Transfer Parsing”. In: Proceedings of the 2015 Conference on Empirical

194

http://www.aclweb.org/anthology/H01-1035
https://doi.org/10.18653/v1/K17-3001
https://www.aclweb.org/anthology/K17-3001
https://www.aclweb.org/anthology/K17-3001
https://doi.org/10.18653/v1/K18-2001
https://www.aclweb.org/anthology/K18-2001
https://www.aclweb.org/anthology/K18-2001
https://www.aclweb.org/anthology/D07-1071
https://www.aclweb.org/anthology/D07-1071

Methods in Natural Language Processing. Lisbon, Portugal: Association for Com-
putational Linguistics, pp. 1857–1867. DOI: 10.18653/v1/D15-1213. URL:
https://www.aclweb.org/anthology/D15-1213.

Zhang, Yuan, Roi Reichart, Regina Barzilay, and Amir Globerson (2012). “Learn-
ing to Map into a Universal POS Tagset”. In: Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Compu-
tational Natural Language Learning. Jeju Island, Korea, pp. 1368–1378. URL:
http://aclweb.org/anthology/D12-1125.

Zhang, Yuan, David Gaddy, Regina Barzilay, and Tommi Jaakkola (2016). “Ten Pairs
to Tag—Multilingual POS Tagging via Coarse Mapping between Embeddings”.
In: Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. San
Diego, California, pp. 1307–1317. DOI: 10.18653/v1/N16-1156. URL:
http://aclweb.org/anthology/N16-1156.

Zhu, Song-Chun, David Mumford, et al. (2007). “A stochastic grammar of images”.
In: Foundations and Trends® in Computer Graphics and Vision 2.4, pp. 259–362.

Zmigrod, Ran, Sebastian J. Mielke, Hanna Wallach, and Ryan Cotterell (2019). “Coun-
terfactual Data Augmentation for Mitigating Gender Stereotypes in Languages
with Rich Morphology”. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence, Italy: Association for Com-
putational Linguistics, pp. 1651–1661. DOI: 10.18653/v1/P19-1161.

Zwicky, Arnold M (1985). “Heads”. In: Journal of linguistics 21.1, pp. 1–29.

195

https://doi.org/10.18653/v1/D15-1213
https://www.aclweb.org/anthology/D15-1213
http://aclweb.org/anthology/D12-1125
https://doi.org/10.18653/v1/N16-1156
http://aclweb.org/anthology/N16-1156
https://doi.org/10.18653/v1/P19-1161

Wang, Dingquan

Contact
Information

Hackerman 321, 3400 N. Charles Street, Mobile: +1 (917)680-9648
Baltimore, MD, 21218 E-mail: wdd@cs.jhu.edu
Site: www.cs.jhu.edu/~wdd GitHub: github.com/wddabc

Research
Interests

Natural language processing and machine learning, with a focus on syntactic analysis on low-resource
langauges via un/semi-supervised learning methods.

Education Johns Hopkins University, Baltimore, US
Whiting School of Engineering

Doctor of Philosophy, Computer Science, September, 2014-

• Adviser: Jason Eisner

Columbia University, New York, US
The Fu Foundation School of Engineering & Applied Science

Masters, Computer Science, September, 2012- Decemeber, 2013, GPA: 3.95/4.0

• Advisers: Rebecca J. Passonneau and Michael Collins

Shanghai Jiao Tong University, Shanghai, China
Computer Science and Technology(ACM Honored Class)

B.S., Engineering, July, 2011, Major GPA: 3.74/4.3

• Dissertation Topic: “Intent Based Query Clustering on User Logs”
• Adviser: Yong Yu

Publications Xiang Lisa Li*, Dingquan Wang* and Jason Eisner: A Generative Model for Punctuation in
Dependency Trees, Transactions of the Association for Computational Linguistics (TACL), 2019, to
appear

Dingquan Wang and Jason Eisner: Surface statistics of an unknown language indicate how to
parse it, Transactions of the Association for Computational Linguistics (TACL), 2019, to appear

Dingquan Wang and Jason Eisner: Synthetic data made to order: The case of parsing, In 2018
Conference on Empirical Methods in Natural Language Processing (EMNLP), Brussels, Belgium,
2018, oral presentation

Dingquan Wang and Jason Eisner: Predicting fine-grained syntactic typology from surface fea-
tures, Society for Computation in Linguistics (SCiL), Salt Lake City, US, 2018

Dingquan Wang, Nanyun Peng and Kevin Duh: A Multi-task Learning Approach to Adapting
Bilingual Word Embeddings for Cross-lingual Named Entity Recognition, In Proceedings of the
International Joint Conference on Natural Language Processing (IJCNLP), Taipei, Taiwan, 2017,
oral presentation

Dingquan Wang and Jason Eisner: Fine-grained prediction of syntactic typology: Discovering
latent structure with supervised learning, Transactions of the Association for Computational Lin-
guistics (TACL), 2017, oral presentation at ACL 2017

Dingquan Wang and Jason Eisner: The Galactic Dependencies treebanks: Getting more data by
synthesizing new languages, Transactions of the Association for Computational Linguistics (TACL),
2016, oral presentation at EMNLP 2016

Ruihua Song, Dingquan Wang, Jian-Yun Nie, Ji-Rong Wen and Yong Yu: Enhancing Web Search
with Queries of Equivalent Intents, Information Retrieval Journal, 2016

196

Dingquan Wang, Rebecca J. Passonneau, Michael Collins and Cynthia Rudin: Modeling Weather
Impact on a Secondary Electrical Grid, In Proceedings of the the 4th International Conference on
Sustainable Energy Information Technology (SEIT-2014)

Boyi Xie, Dingquan Wang and Rebecca J. Passonneau: Semantic Feature Representation to Cap-
ture News Impact, In Proceedings of the 27th International Florida Artificial Intelligence Research
Society Conference, FLAIRS 2014

Dingquan Wang, Weinan Zhang, Gui-Rong Xue and Yong Yu: Deep Classifier for Large Scale
Hierarchical Text Classification, In the 1st PASCAL Challenge on Large Scale Hierarchical Text
Classification

Weinan Zhang, Dingquan Wang, Gui-Rong Xue and Hongyuan Zha: Advertising Keywords Rec-
ommendation for Short-text Web Pages using Wikipedia, ACM Transactions on Intelligent Systems
and Technology Vol. 3, No. 2. DOI=10.1145/2089094.2089112

Work
Experience

Microsoft Research Summer, 2015
Machine Learning Department Mentor: Matthew Richardson and Scott Yih
Research internship

Neural network models for machine reading comprehension

Mobvoi Inc. Summer, 2014
Natural Language processing Group Mentor: Libin Shen
Research internship

Unsupervised method for generating Chinese abbreviations

Microsoft Research Asia July, 2011 - September, 2011 and July, 2010 - February, 2011
Web Data Management Group Mentor: Ruihua Song
Research Internship

Query clustering on user logs

Teaching
Experience

Johns Hopkins University
Artificial Intelligence Benjamin Van Durme, Fall, 2018
Artificial Intelligence Benjamin Van Durme, Spring, 2018
Natural Language Processing Jason Eisner, Spring, 2016
Natural Language Processing Jason Eisner, Fall, 2014

Columbia University
Advanced Machine Learning Tony Jebara, Spring, 2013
Machine Learning Tony Jebara, Fall, 2012

Shanghai Jiao Tong University
Mathematics in Computer Science John E. Hopcroft, Spring, 2012
Computer Organization Lab ACM Honored Class, Spring, 2010

Honors and
Awards

MSTA Fellowship of Columbia University Spring, 2013
Microsoft Excellent Internship Award April,2011
Microsoft Young Fellowship Award, May, 2010
Excellent Academic Scholarship, Shanghai Jiao Tong University 2007–2010

Professional
Services

Reviewer: ACL(2017), EMNLP(2017,2018), NAACL(2019), CCL(2017), IJCNLP(2017), AAAI(2018)

197

Computer Skills OS, Tools and IDEs: MacOS, Linux, Windows, Latex, Pytorch, Theano, Keras, Fabric, Makefile,
SGE, Slurm, Gnuplot, Vim, IntelliJ IDEA
Programming Languages: Python, Java, C, C++, C#, Matlab, Perl, R

198

	Abstract
	Thesis Committee
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Parse Trees in the Era of Neural Networks
	Making neural models linguistically informed
	Understanding neural models
	Guiding model transfer across domains

	Dependency Structure
	Reason for using dependency structure

	Unsupervised Dependency Parsing
	Our Approach: An Artificial Linguist
	The importance of the synthetic training languages

	Key Limitation

	Formal Approach
	Bayesian Estimation and Inference
	Maximum a posteriori estimation
	Bayes estimator
	Posterior mean estimator

	Amortized Bayes Estimator (our proposal)
	An Analogy: Statistical Estimation as Function Inversion
	From Grammar Induction to Other Tasks
	Grammar induction as Bayesian estimation
	Limitations of grammar induction
	Unsupervised parsing as (amortized) Bayesian inference
	Typology prediction as (amortized) Bayesian inference
	Eliminating explicit grammars altogether

	Discussion

	Resolving the Challenge of Data Sparsity—the Galactic Dependencies
	Motivation
	Related Work
	Synthetic Language Generation
	Method
	Discussion

	Modeling Dependent Order
	Efficient sampling
	Training parameters on a real language
	Setting parameters of a synthetic language
	Feature templates

	The Resource
	Exploratory Data Analysis
	An Experiment
	Single-source selection
	Experimental setup
	Results
	Experiment with Noisy Tags
	Discussion

	Conclusions and Future Work

	Fine-Grained Prediction of Syntactic Typology
	Introduction
	Approach
	Task Formulation
	Simple ``Expected Count'' Baseline
	Proposed Model Architecture
	Directionality predictions from scores
	Design of the scoring function mlp
	Design of the featurization function feature
	Training procedure

	Experiments
	Data splits
	Comparison of architectures
	Contribution of different feature classes
	Robustness to noisy input
	Hyperparameter settings
	Comparison with grammar induction
	Fine-grained analysis
	Binary classification accuracy
	Final evaluation on test data

	Related Work
	Conclusions and Future Work

	Unsupervised Dependency Parsing
	Task Formulation
	Related Work
	Per-language learning
	Multi-language learning
	Exploiting parallel data
	Situating our work

	The Typology Component
	Design of the surface features

	The Parsing Architecture
	Training the System
	Training objective
	Training algorithm

	Experiments
	Basic setup
	Comparison among architectures
	Comparison to SST
	Oracle typology vs. our learned
	Selected hyperparameter settings
	Performance on noisy tag sequences
	Analysis by dependency relation type
	Final evaluation on test data

	Conclusion and Future Work

	Synthetic Data Made to Order
	Introduction
	chap:galactic: Universal and reusable synthetic data
	This chapter: Tailored synthetic data
	Key limitations

	Modeling Surface Realization
	Realization is systematic
	A parametric realization model
	Generating training data
	Choosing parameters
	Estimation of bigram models
	Divergence of bigram models

	Algorithms
	Efficiently computing expected counts
	Efficient enumeration over permutations

	Heuristics
	Pruning high-degree trees
	Minibatch estimation of cp
	Informed initialization

	Experiments
	Data and setup
	Exploratory analysis
	Parsability
	Sensitivity to initializer
	Final evaluation on the test languages

	Related Work
	Conclusion and Future Work

	Conclusion
	References
	Vita

