2,816 research outputs found

    From fuzzy to annotated semantic web languages

    Get PDF
    The aim of this chapter is to present a detailed, selfcontained and comprehensive account of the state of the art in representing and reasoning with fuzzy knowledge in Semantic Web Languages such as triple languages RDF/RDFS, conceptual languages of the OWL 2 family and rule languages. We further show how one may generalise them to so-called annotation domains, that cover also e.g. temporal and provenance extensions

    Reducing fuzzy answer set programming to model finding in fuzzy logics

    Get PDF
    In recent years, answer set programming (ASP) has been extended to deal with multivalued predicates. The resulting formalisms allow for the modeling of continuous problems as elegantly as ASP allows for the modeling of discrete problems, by combining the stable model semantics underlying ASP with fuzzy logics. However, contrary to the case of classical ASP where many efficient solvers have been constructed, to date there is no efficient fuzzy ASP solver. A well-known technique for classical ASP consists of translating an ASP program P to a propositional theory whose models exactly correspond to the answer sets of P. In this paper, we show how this idea can be extended to fuzzy ASP, paving the way to implement efficient fuzzy ASP solvers that can take advantage of existing fuzzy logic reasoners

    Towards Contingent World Descriptions in Description Logics

    Get PDF
    The philosophical, logical, and terminological junctions between Description Logics (DLs) and Modal Logic (ML) are important because they can support the formal analysis of modal notions of ‘possibility’ and ‘necessity’ through the lens of DLs. This paper introduces functional contingents in order to (i) structurally and terminologically analyse ‘functional possibility’ and ‘functional necessity’ in DL world descriptions and (ii) logically and terminologically annotate DL world descriptions based on functional contingents. The most significant contributions of this research are the logical characterisation and terminological analysis of functional contingents in DL world descriptions. The ultimate goal is to investigate how modal operators can – logically and terminologically – be expressed within DL world descriptions

    Toward Sensor-Based Context Aware Systems

    Get PDF
    This paper proposes a methodology for sensor data interpretation that can combine sensor outputs with contexts represented as sets of annotated business rules. Sensor readings are interpreted to generate events labeled with the appropriate type and level of uncertainty. Then, the appropriate context is selected. Reconciliation of different uncertainty types is achieved by a simple technique that moves uncertainty from events to business rules by generating combs of standard Boolean predicates. Finally, context rules are evaluated together with the events to take a decision. The feasibility of our idea is demonstrated via a case study where a context-reasoning engine has been connected to simulated heartbeat sensors using prerecorded experimental data. We use sensor outputs to identify the proper context of operation of a system and trigger decision-making based on context information

    Multimodality in Pervasive Environment

    Get PDF
    Future pervasive environments are expected to immerse users in a consistent world of probes, sensors and actuators. Multimodal interfaces combined with social computing interactions and high-performance networking can foster a new generation of pervasive environments. However, much work is still needed to harness the full potential of multimodal interaction. In this paper we discuss some short-term research goals, including advanced techniques for joining and correlating multiple data flows, each with its own approximations and uncertainty models. Also, we discuss some longer term objectives, like providing users with a mental model of their own multimodal "aura", enabling them to collaborate with the network infrastructure toward inter-modal correlation of multimodal inputs, much in the same way as the human brain extracts a single self-conscious experience from multiple sensorial data flows

    Bounded Rationality and Heuristics in Humans and in Artificial Cognitive Systems

    Get PDF
    In this paper I will present an analysis of the impact that the notion of “bounded rationality”, introduced by Herbert Simon in his book “Administrative Behavior”, produced in the field of Artificial Intelligence (AI). In particular, by focusing on the field of Automated Decision Making (ADM), I will show how the introduction of the cognitive dimension into the study of choice of a rational (natural) agent, indirectly determined - in the AI field - the development of a line of research aiming at the realisation of artificial systems whose decisions are based on the adoption of powerful shortcut strategies (known as heuristics) based on “satisficing” - i.e. non optimal - solutions to problem solving. I will show how the “heuristic approach” to problem solving allowed, in AI, to face problems of combinatorial complexity in real-life situations and still represents an important strategy for the design and implementation of intelligent systems

    On the incorporation of interval-valued fuzzy sets into the Bousi-Prolog system: declarative semantics, implementation and applications

    Full text link
    In this paper we analyse the benefits of incorporating interval-valued fuzzy sets into the Bousi-Prolog system. A syntax, declarative semantics and im- plementation for this extension is presented and formalised. We show, by using potential applications, that fuzzy logic programming frameworks enhanced with them can correctly work together with lexical resources and ontologies in order to improve their capabilities for knowledge representation and reasoning
    corecore