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Abstract Future pervasive environments are expected to immerse users in a con-
sistent world of probes, sensors and actuators. Multimodal interfaces combined
with social computing interactions and high-performance networking can foster a
new generation of pervasive environments. However, much work is still needed to
harness the full potential of multimodal interaction. In this paper we discuss some
short-term research goals, including advanced techniques for joining and correlat-
ing multiple data flows, each with its own approximations and uncertainty models.
Also, we discuss some longer term objectives, like providing users with a mental
model of their own multimodal “aura”, enabling them to collaborate with the net-
work infrastructure toward inter-modal correlation of multimodal inputs, much in
the same way as the human brain extracts a single self-conscious experience from
multiple sensorial data flows.

1 Multimodal systems: Introduction

Humans naturally communicate with each other in a multimodal fashion: we speak,
gesture, gaze and move generating a rich, multi-streamed flow of multimedia in-
formation. Interacting with machines has traditionally been a much simpler affair,
typically generating a single flow of uniform events like the discrete mouse clicks
entered sequentially in a graphical user interface. As the global information infras-
tructure is becoming more and more pervasive, however, digital business transac-
tions are performed in diverse situations, using a variety of mobile devices and
across multiple communication channels. Rather than being forced to assume a
fixed, pre-set position in front of a machine, users move freely around their work
environment, starting and monitoring different transactions. Mobile terminals get

Università degli Studi di Milano,
Dipartimento di Tecnologie dell’informazione,
e-mail: {marco.anisetti, valerio.bellandi, paolo.ceravolo, ernesto.damiani,}@unimi.it

1

Dagstuhl Seminar Proceedings 10042 
Semantic Challenges in Sensor Networks     
http://drops.dagstuhl.de/opus/volltexte/2010/2566

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Marco Anisetti, Valerio Bellandi, Paolo Ceravolo and Ernesto Damiani

smaller and lighter, yet at the same time the requirements to be able to interact with
pervasive applications keep expanding. Terminal devices are increasingly equipped
with sensors, such as video cameras or audio microphones, capable of collecting
information from the environment. Our own voice, hands, and whole body, once
augmented by sensors (e.g. of pressure or acceleration), become the ultimate mo-
bile multimodal input devices. In this new paradigm of multimodal access to net-
worked media, a much richer context representation regarding both users and the
resources they access is made available to applications. The outcome of an interac-
tion may well depend of where is the user when a certain application-related event
takes place, where is she headed, or even whether is she sitting at her desk alone or
walking accompanied by others.
However, multimodal context information is based on sensor data that are hardly
ever perfect or certain, especially within unsupervised environments. Still, theories
and models proposed so far for representing and managing sensor data are mostly
aimed at ensuring semantics-aware interoperability of the sensor infrastructure [21],
leaving uncertainty management aside.
Lack of attention for uncertainty is partly due to the idea that different modes can
confirm - or disprove -each other’s results. Early multimodal systems were based on
joint recognition of active modes, such as speech and handwriting, for which there
is now a large body of research work. Today, context-aware systems sense and in-
corporate data about illumination, noise level, location, time, people other than the
user, as well as many other pieces of information to adjust their model of the user’s
environment. However, the emergence of novel pervasive computing applications,
which combine active interaction modes with passive modality channels based on
perception, context, environment and ambience [1, 2, 3], has raised new challenges
linked to the imprecision and time-dependence of multimedia predicates, and to dif-
ficulties in conjoining facts coming from different modal streams. We argue that
inherent uncertainty of sensor data cannot be hidden simply by representing them
as crisp information. Facts representing users position and posture (e.g., as shown in
a video feed), for instance, are semantically very different from traditional database
records, being both highly dynamic and uncertain. Designing and implementing sys-
tems that take the best advantage of recognition-based modalities of interaction and
multi-sensory observations is difficult. In pervasive environments, sensors that can
capture data about the user’s physical state or behavior, have been used to gather
cues which can help the system perceive users’ status [4, 5, 6]; however, these at-
tempts have only very partially succeeded, due to problems in using different modal-
ities to support or disprove one another. Our lack of understanding of how modalities
must be combined in the user interface often leads to flawed understanding of the
user’s intent. Short-term research objectives include solving well-known technical
issues of traditional multimodal interaction (e.g. the one carried out via camera,
speech and pen interfaces). Natural modalities of interaction, such as speech and
gestures, rely on recognition-based technologies, which are inherently error prone.
In pervasive computing applications, where the capture and the analysis of passive
modes are key, errors are much greater. Issues to be handled include managing un-
certain and error prone sources having heterogeneous uncertainty models in a robust
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and consistent way. Today strategies for uncertainty reduction mostly work at the in-
terface level, either by constraining user behavior into less error-prone interaction
(i.e. “error reduction by design”), or by exploiting other information coming from
other modalities (i.e. “error reduction by cross-modality”). However, it is important
to remember that in pervasive environments users may not even be aware that their
behavior is monitored by a system. They may also have a wrong understanding of
what data the various devices capture, and how it is used. Traditional methods of
cross-modality error correction are ill adapted to pervasive computing applications
and research is urgently needed to better understand user behavior when faced with
errors in this type of application. Mid- and long-term research will address putting
the human in the loop of multimodal interaction, not only as a source of sensor data
but as an integral part, fully in control of the process of capturing and understanding
her own multimodal flows [7]. For instance, users will be supported in forming new
mental models of the network and of the networked media they interact with. These
mental models will provide them with effortless awareness of what data about them
is captured and recorded, and how it is used, enabling the development new user-
centric strategies to cope with errors in pervasive computing applications.
Like its sensor-less predecessor, the coming Semantic Web of Sensors is focusing
on representation formats, for handling sensor context, (e.g. source of information,
temporal location, dependencies and so on) rather than on handling uncertainty. The
reason is probably that uncertainty (e.g., about locations or motion parameters) is
assumed to be have been successfully handled by some sort of low-level layer. In
this paper, we argue that this is not the case. Multimodal interaction involves not
only uncertain sensor data, but also uncertain inferences based on these data; and
the nature of inference uncertainty (e.g. whether it is frequency-based probability or
a belief) depends on application semantics, and cannot be handled by any low-level
layer.
Mathematical models for reasoning with uniformly uncertain information have been
successfully applied in several situations, but predicates inferred from heteroge-
neous sensor data exhibit different types of uncertainty (for example, sensor-based
predicates like ”user accompanied by someone” and ”user close to door”) and re-
quire hybrid reasoning strategies.
An Ontology of Uncertainty, like the one proposed by the W3C’s UR3W-XG in-
cubator group 1, provides an important first step: a vocabulary to annotate different
sources of information with different types of uncertainty. Here we argue that such
annotations can be mapped to hybrid reasoning and representation strategies.
As a proof of concept of this approach we present, in this paper, a Patient Mon-
itoring System (PMS) implementing a semantics-aware matching strategy, where
(i) the semantics of each assertion is represented explicitly as instances of an on-
tology (ii) the representation of matchings is also based on a specific ontological
representation. An uncertainty type is assigned to each relation using SWRL rules,
this allows to divide the knowledge base in sub-parts according with the specific
uncertainty. The Ontology of Uncertainty, proposed by W3C’s UR3W-XG incuba-

1 http://www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/
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tor group, allows an explicit definition of the various types uncertainty. Assigning
to each model a reasoner process it then possible to manage different independent
sources of information. In our case, the different sources of information derive from
sensors producing data of different nature (i.e. video, audio, RFID, positioning sen-
sor).

2 Uncertain Information Representation and Reasoning Issues

Uncertainty falls at a meta-level with respect to truth; it arises when the available
knowledge does not provide sufficient information to decide if a statement is true
or false. Many researchers have tried to classify uncertainty types, starting from
Epistemic Uncertainty, that comes from the limited knowledge of the agent that
generates the statement , and proceeding to Aleatory Uncertainty, which is intrinsic
in statements reporting quantitative observations of the world, including scientific
ones.Uncertainty can also be classified according to its source: Objective if it derives
from a repeatable observation and Subjective, if the uncertainty in the information
is derived from an informal evaluation.
Depending on the “coordinates” of the uncertainty to deal with, a certain model
(such as Fuzzy theories, Probabilistic Theories and Possibility theory) can be more
suitable than another.
Once we are resigned to (i) establish a unified vocabulary about uncertainty models,
such as gradual truth values and probabilities (ii) use it for building meta-assertions
describing the type of uncertainty of predicates inferred from sensor data flows, we
face the problem of what to do with these meta-assertions, i.e. how to take them
into account when composing predicates inferred from sensor data. Unfortunately
this is a difficult problem. As stated in [8] probability and possibility theories are
not fully compositional with respect to all the logical connectives, without a rele-
vant loss of expressiveness. Some work in this direction has nevertheless been done
by imposing restrictions to the expressiveness of the logics. Among the most rele-
vant studies, [13] proposes a definition of possibilistic fuzzy description logics by
associating weights, representing degrees of uncertainty, to fuzzy description logic
formulas2. Other works like [9, 10] define probabilistic description logics programs
by assigning probability degrees to fuzzy description logics programs.
In [14] the authors propose a framework for sharing information between three dif-
ferent models of uncertainty, where the fuzzy linguistic truth values are propagated
through the three models in a non monotonic way, by exploiting the extension prin-
ciple [17] and aggregation of linguistic values. . Generally speaking, the choice
between uncertainty composition techniques depends on the situation. A shared
representation of uncertainty types would indeed facilitate automatic selection of
a composition technique. For this reason the URW3-XG1 working group has pro-
posed an ontology (called Ontology of Uncertainty) as a generic meta-model for

2 An extension of the Fuzzy Description Logics in the field of Possibility theory has been presented
also in [12]
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representing the semantics of the uncertainty in various assertions. This ontology
is designed for a flexible environment, where different uncertainty types can arise
in the same knowledge base, so the selection of the correct model for inference
is driven by the information in the ontology. Of course, the URW3-XG incubator
group was concerned with representation only, and did not specify how to deal with
situations where more than one model is involved in the inference process; this is
exactly the open issue we want to address. In the literature we are not aware of
hybrid reasoning processes, which can handle the flexible integration of different
models. In [16, 14, 15, 11] the interoperability has been studied and defined on a
set of selected inference models. Adding new models to the framework can easily
result in a revision of the underlying theory.

3 Nursing Home Monitoring Framework

In this Section, we shall briefly present an example of handling heterogenous uncer-
taintiy types in access control. In the logics-based approach to access control policy
evaluation [19], evaluating a policy means computing an inference. In other words,
for each access request r to a resource R, the policy evaluation system need to evalu-
ate whether the access policy PR implies the request r logically, taking into account
all available predicates representing the context in which the access takes place. If
this evaluation terminates correctly, access is granted/denied depending on its out-
come. Otherwise, a negotiation phase takes place to extract additional information
from the user and/or the environment, so that the evaluation can be concluded. As
said before, predicates for multimodal pervasive environment can support an ex-
tended context of interaction for each user and resource in the environment, mod-
eling their state and spatial-temporal relationships with other users/resources [20].
Here, context is not the static situation of a predefined environment; rather, it is a dy-
namic part of the process of interacting with a changing environment, composed of
mobile users and resources [18]. The environment is monitored by different sensors
producing assertions on users and resources that are annotated with the model of
uncertainty characterizing the specific sensor. According to the model specified the
suitable inference process is activated3 A reconciliation among the different infer-
ences is computed only at the end of process, allowing to evaluate the conjunction
of their results. Several techniques can be envisioned to deal with such reconcilia-
tion [22]. To provide an illustration of our method we introduce an example related
to a healthcare scenario. The general idea is that the access to specific areas of a
Nursing Home are allowed only if a doctor and its patient are together. To evalu-
ate this condition the system is organized in three independent inference models. A
first model take in inputs video signals and using a probabilistic model evaluate the
identity and the role of the persons inside the focus of the camera. A second model,

3 Note that, in order to avoid the introduction of inconsistencies along the inference process a
constraint of safeness may be applied to the flow of inference. This constraint implies that if a
model A is using the conclusions of a model B, B cannot use conclusions from A in any premises.
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using a fuzzy approach, evaluates if the persons inside the focus of the camera are
”near” the door. A third model, taking in input the conclusions of the second model
plus the data available in a database evaluate if the persons are currently in the right
relation on to the other. The conclusions from the different models are conjunctively
evaluated to verify if the access request is implied in the access policy.
The access policy describing our example is expressed in assertion 1:

Open(door1)→ Patient(x)∧Doctor(y)∧nearTo(x,door1)
∧nearTo(y,door1)∧ careGiver(y,x). (1)

The data expressing the request to be evaluated are obtained by the system from
different sources and evaluated according to the specific uncertainty model associ-
ated to each. These data can be interpreted as independent set of assertions that any
source produces and tags with the appropriate uncertainty model. This way the sys-
tem activates the right inference service, collects all the conclusions and finally tries
to enforce the access policy. In our example the sensors in the environment produces
three source of knowledge expressed in the assertions 2, 3, and 4.

→ hasUncertainty(Sentence1,0.8) (2)
→ saidBy(Sentence1,camera1)

→ saidAbout(Sentence1,eyes distance)
→ uncertaintyModel(Sentence1,Probability)

Sentence1[→ user1]

→ hasUncertainty(Sentence2,0.9)
→ saidBy(Sentence2,camera1)
→ saidAbout(Sentence2, iris)

→ uncertaintyModel(Sentence2,Probability)
Sentence2[→ user1]

→ hasUncertainty(Sentence3,0.3)
→ saidBy(Sentence3,camera1)

→ saidAbout(Sentence3,eyesd istance)
→ uncertaintyModel(Sentence3,Probability)

Sentence3[→ user3]

→ hasUncertainty(Sentence4,0.7)
→ saidBy(Sentence4,camera1)
→ saidAbout(Sentence4, iris)

→ uncertaintyModel(Sentence4,Probability)
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Sentence4[→ user3]

→ hasUncertainty(Sentence5,0.9)
→ saidBy(Sentence5,camera1)

→ saidAbout(Sentence5,eyesd istance)
→ uncertaintyModel(Sentence5,Probability)

Sentence5[→ user2]

→ hasUncertainty(Sentence6,0.9)
→ saidBy(Sentence6,camera1)
→ saidAbout(Sentence6, iris)

→ uncertaintyModel(Sentence6,Probability)
Sentence6[→ user2]

→ hasUncertainty(Sentence7,0.7) (3)
→ saidBy(Sentence7,camera1)

→ saidAbout(Sentence7,nearTo)
→ uncertaintyModel(Sentence7,Fuzzy)

Sentence7[→ nearTo(user1,door1)]

→ hasUncertainty(Sentence8,0.8)
→ saidBy(Sentence8,camera1)

→ saidAbout(Sentence8,nearTo)
→ uncertaintyModel(Sentence8,Fuzzy)

Sentence8[→ nearTo(user2,door1)]

→ hasUncertainty(Sentence9,1) (4)
→ saidBy(Sentence9,NHDB)

→ saidAbout(Sentence9,12h32m23s)
→ uncertaintyModel(Sentence9,Temporal)

Sentence9[→ careGiver(user1,user2)]

The first source of knowledge is evaluated by a probabilistic reasoner that aggre-
gates the assertions related to the same entity (users in our example) and according
to the parameter under analysis (eyes distance or in our example) computes the
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union or intersection of the corresponding probabilities.

user1 : p(eyesd istance)∩ p(iris) = 0.8∗0.9 = 0.72

user2 : p(eyesd istance)∩ p(iris) = 0.9∗0.9 = 0.81

user3 : p(eyesd istance)∩ p(iris) = 0.3∗0.7 = 0.21

Finally a threshold is applied on the assertions, saving only the assertions whose
confidence is high enough.
The second source of knowledge is evaluated by a fuzzy reasoner that is configured
to apply a threshold not on the single assertions but on the intersection or union of
the assertions. In our example we consider the intersection, computed via a t-conorm
(the min operator).

(nearTo(user1,door1)∩nearTo(user2,door1)) = min(0.7,0.8) = 0.7

If in the example we take 0.7 as a threshold, the assertion in the knowledge base are
the following:

→ user1 (5)
→ user2 (6)

→ nearTo(user1,door1) (7)
→ nearTo(user2,door1) (8)

The third source of knowledge is not generated by a sensor; rather, it is produced
by the system querying the Nursing Home database taking impulse from the asser-
tions generated by the sensors. The goal is to expand the knowledge provided by the
sensors with the contextual knowledge of the specific domain in order to verify if
the access request (detected directly by observing the environment) is implied in the
access rules. The type of uncertainty handled at this level is not related to vagueness
or incompleteness as in the previous examples; rather it is related to the fact that
the validity of the assertions is temporary, and must be verified within the temporal
range of the specific situation. Querying the database one obtains the assertions in
9.

user1? :→ Doctor(user1) (9)
user2? :→ Patient(user2) (10)

In conclusion the system, computing the conjunction all available sources of
knowledge, is able to correctly evaluate assertion [7] that represents the context
of the access request, directly derived by observing the environment.
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→ Patient(user2) ∧Doctor(user1)∧nearTo(user1,door1)
∧nearTo(user2,door1)∧ careGiver(user1,user2). (11)

4 Conclusions

Like its predecessor, the coming Semantic Web of Sensors promises to be more
focused on handling sensor data context, (e.g. source of information, temporal loca-
tion, dependencies and so on) than on handling uncertainty. The reason is probably
that uncertainty (e.g., about locations or motion parameters) is assumed to be suc-
cessfully handled at the individual sensor level. In this paper, we argue that this is
not the case. Multimodal interaction involves not only uncertain sensor data, but
also uncertain inferences based on these data. Although mathematical models for
reasoning with uncertain information have been successfully applied in several situ-
ations, predicates inferred from heterogeneous sensor data exhibit different types of
uncertainty (for example, sensor-based predicates like ”user accompanied by some-
one” and ”user close to door” involve two very different notions of uncertainty). In
this paper, we described a simple Use Case. supporting the idea of using W3C On-
tology of Uncertainty to write meta-assertions guiding hybrid reasoning strategies
on sensor data.
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