
Under consideration for publication in Theory and Practice of Logic Programming 1

Reducing Fuzzy Answer Set Programming to
Model Finding in Fuzzy Logics

JEROEN JANSSEN∗
Dept. of Computer Science, Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium

(e-mail: jeroen.janssen@vub.ac.be)

STEVEN SCHOCKAERT†
Dept. of Applied Mathematics and Computer Science, Universiteit Gent

Krijgslaan 281, 9000 Ghent, Belgium

(e-mail: steven.schockaert@ugent.be)

DIRK VERMEIR

Dept. of Computer Science, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

(e-mail: dirk.vermeir@vub.ac.be)

MARTINE DE COCK‡
Institute of Technology, University of Washington
1900 Commerce Street, WA-98402 Tacoma, USA

(e-mail: mdecock@u.washington.edu)

submitted August 16, 2010; revised January 17, 2011; accepted March 26, 2011

Abstract

In recent years answer set programming has been extended to deal with multi-valued
predicates. The resulting formalisms allows for the modeling of continuous problems as
elegantly as ASP allows for the modeling of discrete problems, by combining the stable
model semantics underlying ASP with fuzzy logics. However, contrary to the case of clas-
sical ASP where many efficient solvers have been constructed, to date there is no efficient
fuzzy answer set programming solver. A well-known technique for classical ASP consists of
translating an ASP program P to a propositional theory whose models exactly correspond
to the answer sets of P . In this paper, we show how this idea can be extended to fuzzy
ASP, paving the way to implement efficient fuzzy ASP solvers that can take advantage of
existing fuzzy logic reasoners. To appear in Theory and Practice of Logic Programming
(TPLP).

KEYWORDS: Fuzzy Logic, Answer Set Programming, ASSAT

∗ Funded by a joint Research Foundation-Flanders (FWO) project
† Postdoctoral fellow of the Research Foundation-Flanders (FWO)
‡ On leave of absence from Ghent University

ar
X

iv
:1

10
4.

51
33

v1
 [

cs
.P

L
]

 2
7

A
pr

 2
01

1
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55763715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Jeroen Janssen, Steven Schockaert, Dirk Vermeir and Martine De Cock

1 Introduction

Answer Set Programming (ASP), see e.g. (Baral 2003) is a form of non-monotonic

reasoning based on the stable model semantics for logic programming (Gelfond and

Lifschitz 1988). Intuitively, in answer set programming one writes a set of rules

(the program) such that certain minimal models (the answer sets) of this program

correspond to solutions of the problem of interest.

In recent work, logic programming has been extended to handle many different

facets of imperfect information. Most notably are the probabilistic (Baral et al. 2007;

Damásio and Pereira 2000; Fuhr 2000; Lukasiewicz 1998; Lukasiewicz 1999; Ng and

Subrahmanian 1993; Ng and Subrahmanian 1994; Straccia 2008) and possibilistic

(Alsinet et al. 2002; Bauters et al. 2010; Nicolas et al. 2005; Nicolas et al. 2006) ex-

tensions to handle uncertainty, the fuzzy extensions (Cao 2000; Ishizuka and Kanai

1985; Lukasiewicz 2006; Lukasiewicz and Straccia 2007a; Lukasiewicz and Straccia

2007b; Madrid and Ojeda-Aciego 2008; Madrid and Ojeda-Aciego 2009; Saad 2009a;

Straccia 2008; Van Nieuwenborgh et al. 2007b; Vojtás 2001; Wagner 1998) which

allow to encode the intensity to which the predicates are satisfied, and, more gen-

erally, many-valued extensions (Damásio et al. 2004; Damásio et al. 2007; Damásio

and Pereira 2001a; Damásio and Pereira 2001b; Damásio and Pereira 2004; Emden

1986; Fitting 1991; Kifer and Li 1988; Kifer and Subrahmanian 1992; Lakshmanan

1994; Lakshmanan and Sadri 1994; Lakshmanan and Sadri 1997; Lakshmanan and

Shiri 2001; Lakshmanan 1997; Loyer and Straccia 2002; Loyer and Straccia 2003;

Nerode et al. 1997; Shapiro 1983; Straccia 2005; Straccia 2006; Straccia et al. 2009;

Subrahmanian 1994). In this paper we focus on a fuzzy extension of ASP, called

fuzzy answer set programming (FASP), which combines the stable model semantics

for logic programming with fuzzy logics. More generally, FASP provides a seman-

tics for logic programs in which the truth of predicates (or propositions) may be

graded. Such grades may mean different things in different applications, but often

they are related to the intensity to which a given property is satisfied. From an

application point of view, this is important because it allows to describe continuous

phenomena in a logical setting. Thus a formalism is obtained in which problems

with continuous domains can be modeled with the same ease by which discrete

problems can be modeled in classical ASP.

In recent years, efficient solvers for classical ASP have been developed. Some of

these are based on the DPLL algorithm (Davis and Putnam 1960) such as Smodels

(Simons 2000) and DLV (Leone et al. 2006), others use ideas from SAT solving

such as clasp (Gebser et al. 2009), while still others directly use SAT solvers to find

answer sets, e.g. ASSAT (Lin and Zhao 2004), cmodels (Giunchiglia et al. 2004),

and pbmodels (Liu and Truszczyński 2005). The SAT based approaches have been

shown to be fast, and have the advantage that they can use the high number of

efficient SAT solvers that have been released in recent years. The DPLL based

solvers have the advantage that they allow a flexible modeling language, since they

are not restricted to what can directly and efficiently be translated to SAT, and

that they can be optimized for specific types of programs.

Probabilistic ASP can be reduced to classical SAT (Saad 2009b), allowing imple-

Reducing Fuzzy Answer Set Programming to Model Finding in Fuzzy Logics 3

mentations using regular SAT solvers. Likewise, possibilistic ASP can be reduced

to classical ASP (Nicolas et al. 2006), which means ASP solvers can be used for

solving possibilistic ASP programs.

In the case of fuzzy ASP programs with a finite number of truth values, it has

been shown in (Van Nieuwenborgh et al. 2007a) that FASP can be solved using reg-

ular ASP solvers. Unfortunately, to date, no fuzzy ASP solvers or solving methods

have been constructed for programs with infinitely many truth values. Our goal in

this paper is to take a first step towards creating such efficient solvers by showing

how the idea of translating ASP programs to SAT instances can be generalized

to fuzzy answer set programs. In this way we can create fuzzy answer set solvers

that use existing techniques for solving fuzzy satisfiability problems, e.g. based on

mixed-integer programming or other forms of mathematical programming. Specifi-

cally, we focus on the ASSAT approach introduced in (Lin and Zhao 2004). While

translating ASP to SAT is straightforward when ASP programs do not contain

cyclic dependencies, called loops, careful attention is needed to correctly cover the

important case of programs with loops. The solution presented by ASSAT is based

on constructing particular propositional formulas for any loop in the program. In

this paper, we pursue a similar strategy where fuzzy loop formulas are used to

correctly deal with loops. Our main contributions can be summarized as follows:

1. We define the completion of a fuzzy answer set program in the sense of (Van

Nieuwenborgh et al. 2007b), and show that the answer sets of FASP programs

without loops are exactly the models of its completion.

2. By generalizing the loop formulas from (Lin and Zhao 2004), we then show

how the answer sets of arbitrary FASP programs can be found, provided

that the fuzzy logical connectives are t-norms. We furthermore show how

the ASSAT procedure, which attempts to overcome the problem with an

exponential number of loops, can be generalized to the fuzzy case.

We furthermore show that the FASP semantics in terms of unfounded sets (Van

Nieuwenborgh et al. 2007a) coincide with the FASP semantics in terms of fixpoints

(see e.g. (Lukasiewicz 2006)). This is necessary because the development of loop

formulas can more easily be done using the unfounded semantics, while the gener-

alization of the ASSAT procedure is based on the fixpoint semantics.

The structure of the paper is as follows. Section 2 recalls the basic fuzzy logic

operators and Section 3 recalls the FASP framework from (Van Nieuwenborgh et al.

2007b). In Section 3 we furthermore show that the unfounded semantics and fixpoint

semantics of FASP coincide. Next, we define the completion of a FASP program in

Section 4 and discuss the problems that occur in programs with loops. Section 5 then

shows how these problems can be solved by adding loop formulas to the completion.

We illustrate our approach on the problem of placing a set of ATM machines on

the roads connecting a set of cities such that each city has an ATM machine nearby

in Section 6. The reason for restricting our approach to t-norms is discussed in

Section 7. Afterwards, in Section 8, we give an overview of related work and then

present the conclusions in Section 9.

A preliminary version of this paper appeared in (Janssen et al. 2008). This paper

4 Jeroen Janssen, Steven Schockaert, Dirk Vermeir and Martine De Cock

extends our earlier work by adding proofs, a detailed use case and a discussion

on the problems that occur when programs are allowed to contain t-conorms in

the body. Furthermore we improved the presentation by removing the aggregation-

based approach that was used in the aforementioned work.

2 Preliminaries

In general, fuzzy logics are logics whose semantics are defined in terms of variables

that can take a truth value from the unit interval [0, 1] instead of only the values 0

(false) and 1 (true). Different ways exist to extend the classical logic connectives,

leading to different logics with different tautologies and axiomatizations (Hájek

2001; Novák et al. 1999). We briefly recall the most important concepts related to

fuzzy logic connectives.

A negator is a decreasing [0, 1] → [0, 1] mapping N satisfying N (0) = 1 and

N (1) = 0. A negator is called involutive iff ∀x ∈ [0, 1] : N (N (x)) = x.

A triangular norm (t-norm) is an increasing, commutative and associative

[0, 1]2 → [0, 1] operator T satisfying ∀x ∈ [0, 1] : T (1, x) = x. Intuitively, this op-

erator corresponds to logical conjunction. In this paper, we restrict ourselves to

left-continuous t-norms. As the most commonly used t-norms obey this restriction,

this poses no practical constraint.

A triangular conorm (t-conorm) is an increasing, commutative and associative

[0, 1]2 → [0, 1] operator S satisfying ∀x ∈ [0, 1] : S(0, x) = x. Intuitively, it corre-

sponds to logical disjunction.

An implicator I is a [0, 1]2 → [0, 1] operator that is decreasing in its first and

increasing in its second argument, and satisfies I(0, 0) = I(0, 1) = I(1, 1) = 1,

I(1, 0) = 0 and ∀x ∈ [0, 1] : I(x, 1) = x. Every left-continuous t-norm induces a

residual implicator defined by I(x, y) = sup{λ ∈ [0, 1] | T (x, λ) ≤ y}. Further-

more, a left-continuous t-norm T and its residual implicator I satisfy the residu-

ation principle, i.e. for x, y, z in [0, 1] we have that T (x, y) ≤ z iff x ≤ I(y, z).

For any left-continuous t-norm T , its residual implicator I satisfies

I(x, y) = 1 iff x ≤ y (1)

For a given implicator I its induced negator is the operator N defined by N(x) =

I(x, 0). We summarize some common t-norms, t-conorms, residual implicators, and

induced negators in Tables 1 and 2.

The biresiduum of a residual implicator I is denoted as ≈, and defined by

x ≈ y = T (I(x, y), I(y, x)). Note that due to (1) it follows that x ≈ y is always

equal to either I(x, y) or I(y, x). We denote the particular choice of t-norm and

implicator using a subscript, when it is not clear from the context, as in x ≈m y =

Tm(Im(x, y), Im(y, x)).

A fuzzy set A in a universe X is an X → [0, 1] mapping. For x ∈ X we

call A(x) the membership degree of x in A. For convenience we denote with

A = {ak11 , . . . , aknn } the fuzzy set A satisfying A(ai) = ki for 1 ≤ i ≤ n and A(a) = 0

for a 6∈ {a1, . . . , an}. We use F(X) to denote the universe of all fuzzy sets in X. The

support of a fuzzy set A is defined by supp(A) = {x ∈ X | A(x) > 0}. Inclusion

Reducing Fuzzy Answer Set Programming to Model Finding in Fuzzy Logics 5

t-norm t-conorm

Tm(x, y) = min(x, y) Sm(x, y) = max(x, y)
Tl(x, y) = max(0, x + y − 1) Sl(x, y) = min(x + y, 1)
Tp(x, y) = x · y Sp(x, y) = x + y − x · y

Table 1. Common fuzzy t-norms and t-conorms over ([0, 1],≤)

t-norm residual implicator induced negator

Tm Im(x, y) =

{
y if x > y

1 otherwise
Nm(x) =

{
0 if x > 0

1 otherwise

Tl Il(x, y) = min(1, 1− x + y) Nl(x) = 1− x

Tp Ip(x, y) =

{
y/x if x > y

1 otherwise
Np(x) = Nm(x)

Table 2. Common residual pairs and induced negators over ([0, 1],≤)

of fuzzy sets in the sense of Zadeh is defined as A ⊆ B iff ∀x ∈ X : A(x) ≤ B(x).

Last, in this paper we will write the difference A�B of two fuzzy sets to denote

the fuzzy set defined by (A�B)(x) = max(0, A(x)−B(x)).

A signature is a tuple S = 〈A,T,C, I,N〉, with A a set of atoms (i.e. propositional

letters), T a set of t-norms, C a set of t-conorms, I a set of implicators, and N a

set of negators. Additionally, we demand that max and min are in the signature. A

fuzzy formula over a signature S then is either an atom, a value from [0, 1], or the

application of a t-norm or t-conorm from T, resp. C, to two formulas, the application

of an implicator from I to two formulas, or the application of a negator from N to a

single formula. A fuzzy theory over a signature S is a set of fuzzy formulas over S.

An interpretation I over a signature S is a mapping from A to [0, 1]. It is extended

to fuzzy formulas in a straightforward way, i.e. if F and G are fuzzy formulas,

then I(T (F,G)) = T (I(F), I(G)) (with T ∈ T), I(S(F,G) = S(I(F), I(G)) (with

S ∈ C), I(I(F,G)) = I(I(F), I(G)) (with I ∈ I), and I(N(F)) = N(I(F)) (with

N ∈ N). An interpretation M is a model of a fuzzy formula F , denoted M |= F , iff

M(F) = 1. An interpretation M is a model of a fuzzy theory Θ, denoted M |= Θ,

iff for each F ∈ Θ we have that M |= F .

A particular signature leads to a particular fuzzy logic (Hájek 2001). For ex-

ample, S = 〈A, {Tm}, {Sm}, {Im}, {Nm}〉 gives rise to Gödel logic, S = 〈A,
{Tl, Tm}, {Sl,Sm}, {Il}, {Nl}〉 gives rise to Lukasiewicz logic, and S = 〈A, {Tp, Tm},
{Sp,Sm}, {Ip}, {Np}〉 gives rise to product logic. For example, Lukasiewicz logic

is generally considered to be closest in spirit to classical logic, in the sense that

6 Jeroen Janssen, Steven Schockaert, Dirk Vermeir and Martine De Cock

many of its important properties are preserved. Another important advantage of

 Lukasiewicz logic is that the implicator is continuous, which is not the case for Gödel

or product logic. Reasoning in this logic can be done using mixed integer program-

ming, whereas reasoning in Gödel logic can be done with the help of boolean SAT

solvers. As in the boolean case, satisfiability checking in these three particular logics

is NP-complete.

Last, we denote the infimum, resp. supremum of two elements of [0, 1] as a u b,
resp. a t b.

3 Fuzzy Answer Set Programming

Over the years many different fuzzy answer set programming formalisms have

been developed (Lukasiewicz 2006; Lukasiewicz and Straccia 2007a; Madrid and

Ojeda-Aciego 2008; Madrid and Ojeda-Aciego 2009; Saad 2009a; Straccia 2008;

Van Nieuwenborgh et al. 2007b). Most of these base their semantics on fixpoints

or minimal models, in combination with a reduct operation. The approaches de-

scribed in (Loyer and Straccia 2006; Van Nieuwenborgh et al. 2007b), however, are

constructed from a generalization of unfounded sets. As the development of loop

formulas can be done more elegantly when starting from unfounded sets, and we

can show that the fixpoint semantics are equivalent to the semantics proposed in

(Van Nieuwenborgh et al. 2007b), we will base our semantics on the latter frame-

work. However, because the generalization of the ASSAT procedure from (Lin and

Zhao 2004) is based on fixpoint semantics, in this section we also show novel links

between the unfounded and fixpoint semantics that ensure the correctness of our

generalized procedure. First, we recall the main definitions from (Van Nieuwenborgh

et al. 2007b).

A literal1 is either an atom a or a constant from [0, 1]. An extended literal is

either a literal (called a positive extended literal) or an expression of the form

N(a) (called a negative extended literal), with a an atom and N an arbitrary

negator. A rule r is of the form

r : a← T (b1, . . . , bn)

where n > 0, a is a literal, {b1, . . . , bn} is a set of extended literals, T is an arbitrary

t-norm, and r is a rule label. Furthermore, for convenience, we define T (b) = b, and

define T (b1, . . . , bn) as T (b1, T (b2, . . .)). The literal a is called the head, H(r), of

r, while the set {b1, . . . , bn} is called the body, B(r), of r. We use Lit+(B(r)) to

denote the set of positive extended literals from the set B(r). Given a rule r we

denote the t-norm used in its body as Tr; the residual implicator corresponding to

Tr is denoted as Ir. A constraint is a rule with a constant in its head, whereas

a fact is a rule with a constant as its body (and no constant in its head). For

convenience, we abbreviate a rule of the form r : a ← T (b, 1), with b an extended

literal, as r : a← b.

A FASP program P is a finite set of rules. We call a program simple if no rule

1 As usual, we assume that programs have already been grounded.

Reducing Fuzzy Answer Set Programming to Model Finding in Fuzzy Logics 7

contains negative extended literals. The set of all atoms occurring in P is called the

Herbrand Base BP of P . Note that the Herbrand Base is finite since we assume

that no function symbols occur in the terms of the ungrounded program. For any

a ∈ BP we define the set Pa as the set of rules with atom a in their head. An

interpretation I of P is a fuzzy set in BP . We extend interpretations to constants

from [0, 1], extended literals, and rules as follows:

1. I(c) = c if c ∈ [0, 1]

2. I(N(l)) = N(I(l)) if l is a literal

3. I(a← T(b1, . . . , bn)) = Ir(T(I(b1), . . . , I(bn)), I(a))

A model of a program P is an interpretation I of P such that for each rule r ∈ P
we have I(r) = 1.

Note that, although each rule in a FASP program can only have a single t-norm

in its body, a rule with mixed t-norms, such as r : a ← T1(a, T2(b, c)), can easily

be simulated by introducing a polynomial number of new literals and rules. In the

case of rule r we need one new literal a′ and two new rules r1 : a ← T1(a, a′) and

r2 : a′ ← T2(b, c).

Example 1

Consider the program P , which consists of the following set of rules:

r1 : a← Tm(b, c)

r2 : b← 0.8

r3 : c← Tm(a,Nl(b))
r4 : 0← Tl(a, b)

Note that rule r2 is a fact, and rule r4 a constraint. The fuzzy sets I1 = {a0, b0.8, c0},
and I2 = {a0.2, b0.8, c0.2} are interpretations of P . For both interpretations we have

that I1(r1) = I2(r1) = . . . = I1(r4) = I2(r4) = 1, i.e. they both are models of the

program.

The definition of fuzzy answer sets relies on the notion of unfounded sets, stud-

ied in (Van Nieuwenborgh et al. 2007b), which correspond to sets of “assumption

atoms” that have no proper motivation from the program.

Definition 1 (Unfounded sets (Van Nieuwenborgh et al. 2007b))

Let P be a FASP program and let I be an interpretation of P . A set U ⊆ BP is

called unfounded w.r.t. I iff for each atom u ∈ U and rule r ∈ Pu either:

1. U ∩ Lit+(B(r)) 6= ∅; or

2. I(u) > I(B(r)); or

3. I(B(r)) = 0

An interpretation I of P is called unfounded-free iff supp(I) ∩ U = ∅ for any set

U that is unfounded w.r.t. I.

Intuitively, an unfounded set w.r.t. an interpretation I of a FASP program P is

a set of atoms that obtain a value in I that is not motivated by the rules of the

8 Jeroen Janssen, Steven Schockaert, Dirk Vermeir and Martine De Cock

program. The first condition of Definition 1 ensures that the values of the literals

in U are justified by the values of literals not in U . The second condition shows

that the degree to which a rule can motivate an atom is bounded by the value of

its body. The third condition is needed to obtain a proper generalization of the

classical definition of unfounded sets (Baral 2003) (see (Van Nieuwenborgh et al.

2007b) for more details).

Example 2
Consider program P and interpretations I1 and I2 from Example 1. For I2 we can

see that U2 = {a, c} is an unfounded set, as for rule r1 and r3, the only rules with

a or c in the head, we have that Lit+(B(r1)) ∩ U2 6= ∅ and Lit+(B(r3)) ∩ U2 6= ∅.
Since supp(I2) ∩ U2 6= ∅, interpretation I2 is not unfounded-free. Interpretation I1,

however, is unfounded-free.

As shown in (Van Nieuwenborgh et al. 2007b), answer sets of FASP programs

can be defined as the unfounded-free interpretations, which reflects the intuition

that each atom in an answer set should have a proper motivation from the program.

Definition 2 (Answer Set (Van Nieuwenborgh et al. 2007b))
Let P be a FASP program. A model M of P is called an answer set iff M is

unfounded-free.

Example 3
Consider program P and interpretation I1 from Example 1. Since we know from

Example 2 that I1 is unfounded-free, it follows that I1 is an answer set of P .

An alternative definition of answer sets, in terms of fixpoints, exists (see for

example (Lukasiewicz 2006)). We will use this to generalize the ASSAT procedure

described in (Lin and Zhao 2004).

Definition 3 (Immediate Consequence Operator (Lukasiewicz 2006))
Let P be a FASP program. The immediate consequence operator of P is the

mapping ΠP : F(BP)→ F(BP) defined by

ΠP (I)(l) = sup{I(B(r)) | r ∈ Pl}

As shown in (Lukasiewicz 2006), for simple programs this operator is monotonic

and thus has a least fixpoint (Tarski 1955), denoted as Π∗P . For these simple pro-

grams, (Lukasiewicz 2006) then defines the answer sets of a program as the least

fixpoints of this operator. Since this operator is monotonic, the least fixpoint is

unique and can be found by iteratively applying ΠP from the interpretation ∅ until

a fixpoint is encountered. For non-simple programs, (Lukasiewicz 2006) defines a

reduct operation that transforms a non-simple program into a simple program.

Definition 4 (Reduct (Lukasiewicz 2006))
Let P be a FASP program and let r : a← T (b1, . . . , bm,N(bm+1), . . . ,N(bn)) be a

rule in P , where (b1, . . . , bm) = Lit+(B(r)). The reduct of rule r, with respect to

an interpretation I, is denoted as rI , and defined by

rI : a← T (b1, . . . , bm, I(N(bm+1)), . . . , I(N(bn)))

The reduct of a program P w.r.t. an interpretation I is defined as P I = {rI | r ∈ P}.

Reducing Fuzzy Answer Set Programming to Model Finding in Fuzzy Logics 9

Example 4

Consider program P and interpretation I1 from Example 1. The reduct of P with

respect to I1 then is the following program

rI11 : a← Tm(b, c)

rI12 : b← 0.8

rI13 : c← Tm(a, 0.2)

rI14 : 0← Tl(a, b)

In the following we show the novel result that the semantics in terms of fixpoints

coincide with those in terms of unfounded sets. An important lemma regarding the

immediate consequence operator and reduct is the following.

Lemma 1

Let P be a FASP program. For any interpretation I of P it holds that I = ΠP (I)

iff I = ΠP I (I).

Proof

Follows trivially by the construction of P I and Definition 4.

We now show that any answer set is a fixpoint of the immediate consequence

operator.

Lemma 2

Let P be a FASP program. Then any answer set A of P is a fixpoint of ΠP .

Proof

Let A be an answer set of P . We show that A(a) = sup{A(B(r)) | r ∈ Pa} =

ΠP (A)(a) for any a ∈ BP , from which the stated readily follows. The proof is split

into the case for a ∈ supp(A) and a 6∈ supp(A). For any a ∈ supp(A) it must

hold that {a} is not unfounded w.r.t. A, meaning that Pa 6= ∅ and there is some

r ∈ Pa such that A(a) ≤ A(B(r)). Since A(r) = 1, it then follows from (1) that

A(a) = A(B(r)). As for any r′ ∈ Pa we have A(r′) = 1, from (1) it also follows

that A(B(r)) = A(a) ≥ A(B(r′)). Hence A(B(r)) = A(a) is the supremum of

{A(B(r′)) | r′ ∈ Pa}.
The case for a 6∈ supp(A) is as follows. First remark that as A(a) = 0, it follows

from (1) and the fact that A(r) = 1 for each r ∈ Pa, that A(B(r)) = 0. Hence,

A(a) = sup{A(B(r)) | r ∈ Pa}.

Second we show that answer sets can be characterized in terms of fixpoints of

the immediate consequence operator.

Proposition 1

Let P be a FASP program. An interpretation A is an answer set of P iff A = Π∗PA .

10 Jeroen Janssen, Steven Schockaert, Dirk Vermeir and Martine De Cock

Proof
Let M be a model of P . In (Van Nieuwenborgh et al. 2007b) it was shown that the

least fixpoint of ΠPM must necessarily be unfounded-free (Proposition 4). As any

fixpoint of ΠP is a model of P , we only need to show that if M is unfounded-free,

it is the least fixpoint of ΠPM .

Suppose M 6= Π∗PM . Then, since any unfounded-free model is a fixpoint of ΠPM

due to Lemmas 1 and 2, it holds that some set M ′ ⊂M exists such that M ′ = Π∗PM .

Consider then U = {u ∈ BP | M ′(u) < M(u)}. Surely U ⊆ supp(M) and hence

U ∩ supp(M) 6= ∅. We now show that U is unfounded with respect to M , leading

to a contradiction. First, we show that for any atom u ∈ U and rule r ∈ Pu it holds

that (
Lit+(B(r)) ∩ U = ∅

)
⇒M(B(r)) < M(u) (2)

as follows

Lit+(B(r)) ∩ U = ∅
≡ 〈Def. ∩〉 6 ∃l ∈ Lit+(B(r)) : l ∈ U
≡ 〈Duality ∀,∃〉 ∀l ∈ Lit+(B(r)) : l 6∈ U
≡ 〈Def. U〉 ∀l ∈ Lit+(B(r)) : M(a) = M ′(a)

⇒ 〈M(l) = M(lM)〉 M(B(rM)) = M ′(B(rM))

⇒ 〈Monotonicity sup〉 M(B(rM)) ≤ supr′∈PM
u
M ′(B(r′))

≡ 〈M ′ = ΠPM (M ′)〉 M(B(rM)) ≤M ′(u)

⇒ 〈u ∈ U , Def. U〉 M(B(rM)) < M(u)

Thus, since it follows from the Definition of rM that M(B(rM)) = M(B(r)), we

have shown that (2) holds. From this equation we obtain that(
Lit+(B(r)) ∩ U 6= ∅

)
∨
(
M(B(r)) < M(u)

)
Hence (

Lit+(B(r)) ∩ U 6= ∅
)
∨
(
M(B(r)) < M(u)

)
∨
(
M(B(r)) = 0

)
Which means U is unfounded with respect to M , a contradiction.

Example 5
Consider program P and interpretations I1 and I2 from Example 1. Computing the

least fixpoint of ΠP I1 and ΠP I2 can be done by iteratively applying these operators,

starting from ∅, until we find a fixpoint. Hence for P I1 we obtain in the first iteration

J1 = ΠP I1 (∅) = {b0.8}. The second iteration gives J2 = ΠP I1 (J1) = {b0.8} = J1,

hence a fixpoint, meaning {b0.8} = I1 is the least fixpoint of ΠP I1 . Iteratively

applying ΠP I2 brings us J1 = ΠP I2 (∅) = {b0.8}, which is also a fixpoint of ΠP I2 .

4 Completion of FASP programs

In this section we show how certain fuzzy answer set programs can be translated

to fuzzy theories such that the models of these theories correspond to answer sets

of the program and vice versa. Such a correspondence is important as it allows us

to find answer sets using fuzzy SAT solvers.

Reducing Fuzzy Answer Set Programming to Model Finding in Fuzzy Logics 11

Definition 5 (Completion of a FASP program)

Let P be a FASP program. The completion of P , denoted as comp(P), is defined

as the following set of fuzzy formulas:

{a ≈ (max{B(r) | r ∈ Pa}) | a ∈ BP } ∪ {Ir(B(r), H(r)) | r ∈ P,H(r) ∈ [0, 1]}

where ≈ is the biresiduum of an arbitrary residual implicator, and Ir is the residual

implicator of the t-norm used in the body of rule r.

The completion of a program consists of two parts, viz. a part for the literals

{a ≈ (max{B(r) | r ∈ Pa}) | a ∈ BP }, and a part for constraints {Ir(B(r), H(r)) |
r ∈ P,H(r) ∈ [0, 1]}. The constraints part simply ensures that all constraints

are satisfied. The literal part ensures two things. By definition of the biresiduum

and the fact that I(a, b) = 1 iff I(a) ≤ I(b) for any residual implicator, we have

that I(a ≈ b) = 1 iff I(a) ≤ I(b) and I(b) ≤ I(a). Hence, the literal part of the

completion establishes that rules are satisfied and second that the value of the literal

is not higher than what is supported by the rule bodies.

Example 6

Consider program P from Example 1. Its completion is the following set of fuzzy

propositions

a ≈ Tm(b, c)

b ≈ 0.8)

c ≈ Tm(a,Nm(b))

Il(Tl(a, b), 0)

Note that when applying Definition 5 for a literal l that does not appear in the

head of any rule, we get a ≈ max ∅, where we define max ∅ = 0.

We can now show that any answer set of a program P is a model of its completion

comp(P).

Proposition 2

Let P be a FASP program and let comp(P) be its completion. Then any answer

set of P is a model of comp(P).

Proof

Suppose A is an answer set of P . By Lemma 2, it follows that A is a fixpoint of ΠP ,

hence for each a ∈ BP , A(a) = sup{A(B(r)) | r ∈ Pa}. By construction of comp(P)

and the fact that A is a model of P , it then easily follows that A |= comp(P).

Example 7

Consider program P and interpretation I1 from Example 1. It is easy to see that

I1 is a model of comp(P).

The reverse of Proposition 2 is not true in general, which is unsurprising because

it is already invalid for classical answer set programming. The problem occurs for

programs with “loops”, as shown in the following example.

12 Jeroen Janssen, Steven Schockaert, Dirk Vermeir and Martine De Cock

Example 8
Consider program P and interpretation I2 from Example 1. We can easily see that

I2 is a model of comp(P), but, as we have seen in Example 2, it is not an answer

set of P .

One might wonder whether taking the minimal models of the completion would

solve the above problem. The following example shows that the answer is negative.

Example 9
Consider the following program Pmin

a← a

p← Tl(Nl(p),Nl(a))

The completion comp(Pmin) is

a ≈ a
p ≈ Tl(Nl(p),Nl(a))

Consider now the interpretation I = {a0.2, p0.4}. Since I(a) = I(a) and

Tl(Nl(I(p)),Nl(I(a))) = max(0, 1− I(p) + 1− I(a)− 1) = 0.4

we can see that I is a model of comp(Pmin). We show that it is a minimal model

as follows. Suppose some I ′ ⊂ I exists. Then we can consider three cases: (i)

I ′(a) < I(a) and I ′(p) = I(p); (ii) I ′(a) = I(a) and I ′(p) < I(p); (iii) I ′(a) < I(a)

and I ′(p) < I(p). In all three cases we obtain that Tl(Nl(I ′(p)),Nl(I ′(a))) > 0.4 >

I ′(p), since Nl(I ′(a)) = 1− I ′(a) > 0.8 or Nl(I ′(p)) > 0.6. Hence I ′ is not a model

of comp(Pmin) and I is thus a minimal model of comp(Pmin). However, I ′ is not

an answer set of Pmin since Π∗
P I

min ,=
{a0, p0.4}.

As in the crisp case however, when a program has no loops in its positive de-

pendency graph, the models of the completion and the answer sets coincide. First

we define exactly what a loop of a FASP program is, and then we show that this

property indeed still holds for FASP.

Definition 6 (Loop)
Let P be a FASP program. The positive dependency graph of P is a directed

graph GP = 〈BP , D〉 where (a, b) ∈ D iff ∃r ∈ Pa : b ∈ Lit+(B(r)). For ease of

notation we also denote this relation with (a, b) ∈ GP for atoms a and b in the

Herbrand base of P . We call a non-empty set L ⊆ BP a loop of P iff for all literals

a and b in L there is a path (with length > 0) from a to b in GP such that all

vertices of this path are elements of L.

Example 10
Consider program Pmin from Example 9. The dependency graph of Pmin is pictured

in Figure 1. We can see that {a} is a loop. If this loop was not in the program, its

completion would become

a ≈ 0

p ≈ Tm(Nm(p),Nm(a))

Reducing Fuzzy Answer Set Programming to Model Finding in Fuzzy Logics 13

a p

Fig. 1. Dependency graph of program Pmin from Example 9

a

b c

Fig. 2. Dependency graph of program P from Example 1

This fuzzy theory has no models. Since program Pmin has no answer sets, this

means the answer sets coincide with the models of the completion when removing

the loop.

Example 11

Consider program P from Example 1. The dependency graph of P is pictured in

Figure 2. We can clearly see that there is a loop between nodes a and c. Due to

this loop, the values of a and c are not sufficiently constrained in the completion.

From the preceding examples one might think that removing the loops from the

program would be sufficient to make the models of the completion and the answer

sets coincide. However, this is not the case, as the semantics of the program then

changes, as illustrated in the following example.

Example 12

Consider program Pchange consisting of the following rules

r1 : a← 0.3

r2 : a← b

r3 : b← a

Its single answer set is {a0.3, b0.3}. If we remove rule r2 or r3, the answer set of the

resulting program is {a0.3}.

We can now show that for programs without loops the answer sets coincide with

the models of their completion. We first introduce two lemmas.

Lemma 3

Let G = 〈V,E〉 be a directed graph with a finite set of vertices and X ⊆ V with

X 6= ∅. If every node in X has at least one outgoing edge to another node in X,

there must be a loop in X.

14 Jeroen Janssen, Steven Schockaert, Dirk Vermeir and Martine De Cock

Proof

From the assumptions it holds that each x ∈ X has an outgoing edge to another

node in X. This means that there is an infinite sequence of nodes x1, x2, . . . such

that (xi, xi+1) ∈ E for i ≥ 1. Since X is finite, it follows that some vertex occurs

twice in this sequence, and hence that there is a loop in X.

Lemma 4

Let P be a FASP program, I an interpretation of P and U ⊆ BP . Then if I |=
comp(P) and U is unfounded w.r.t. I it holds that for each u in U ∩ supp(I) there

is some r in Pu such that Lit+(B(r)) ∩ U ∩ supp(I) 6= ∅.

Proof

Assume that u ∈ U∩supp(I), in other words u ∈ U and I(u) > 0. As U is unfounded

w.r.t. I, for each r ∈ Pu it holds that either

1. Lit+(B(r)) ∩ U 6= ∅; or

2. I(B(r)) < I(u); or

3. I(B(r)) = 0

We can now show that there is at least one rule r ∈ Pu that violates the second

and third of these conditions, meaning it must satisfy the first.

From I |= comp(P) we know by construction of comp(P) that for each u ∈ U ,

I(u) = sup{I(B(r)) | r ∈ Pu}. Hence for each u ∈ U there is a rule r ∈ Pu such

that I(u) = I(B(r)), thus the second condition is violated. Since I(u) > 0, it then

also follows that the third condition is violated.

In other words there must be some r ∈ Pu such that I(B(r)) = I(u) and

I(B(r)) 6= 0. Since U is unfounded w.r.t. I, this means that Lit+(B(r)) ∩ U 6=
∅. Since I(B(r)) 6= 0 implies that Lit+(B(r)) ⊆ supp(I) due to the fact that

T (0, x) = 0 for any t-norm T , we can conclude that there is some r ∈ Pu such that

Lit+(B(r)) ∩ U ∩ supp(I) 6= ∅.

Using these lemmas we can now show that the answer sets of any program without

loops in its dependency graph coincide with the models of its completion. This

resembles Fages’ theorem on tight programs in classical ASP (Fages 1994).

Proposition 3

Let P be a FASP program. If P has no loops in its positive dependency graph it

holds that an interpretation I of P is an answer set of P iff I |= comp(P).

Proof

We already know from Proposition 2 that any answer set of P is necessarily a model

of comp(P), hence we only need to show that every model of comp(P) is an answer

set of P under the conditions of this proposition. As I |= comp(P), it holds that I

is a model of P . We show by contradiction that I is unfounded-free. Assume that

there is a set U ⊆ BP such that U is unfounded w.r.t. I and U ∩ supp(I) 6= ∅. From

Lemma 4 we know that for each u ∈ U ∩ supp(I) it holds that there is some rule

r ∈ Pu such that Lit+(B(r)) ∩ U ∩ supp(I) 6= ∅. Using the definition of GP , this

means that for each such u there is some u′ ∈ U ∩ supp(I) such that GP (u, u′).

Reducing Fuzzy Answer Set Programming to Model Finding in Fuzzy Logics 15

This however means that there is a loop in GP by Lemma 3, contradicting the

assumption.

Hence, finding the answer sets of a program with no loops in its positive depen-

dency graph can be done by finding models of its completion.

5 Loop Formulas

As mentioned in the previous section, sometimes the models of the completion are

not answer sets. In this section, we investigate how the solution that has been

proposed for boolean answer set programming, viz. adding loop formulas to the

completion (Lin and Zhao 2004), can be extended to fuzzy answer set programming.

For this extension, we start from a partition of the rules whose heads are in some

particular loop L. Based upon this partition, for every loop L we define a formula

in fuzzy logic, such that any model of the completion satisfying these formulas is

an answer set.

For any program P and loop L we consider the following partition of the rules

in P whose head belongs to the set L (due to (Lin and Zhao 2004))

R+
P (L) = {a← B | ((a← B) ∈ P) ∧ (a ∈ L) ∧ (B+ ∩ L 6= ∅)} (3)

R−P (L) = {a← B | ((a← B) ∈ P) ∧ (a ∈ L) ∧ (B+ ∩ L = ∅)} (4)

Note that this partition only takes the positive occurrences of atoms in the loop

into account. Intuitively, the set R+
P (L) contains the rules that are “in” the loop L,

i.e. the rules that are jointly responsible for the creation of the loop in the positive

dependency graph, whereas the rules in R−P (L) are the rules that are outside of this

loop. We will refer to them as “loop rules”, resp. “non-loop rules.”

Example 13

Consider program P from Example 1. It is clear that for the loop L = {a, c} the

set of loop rules is R+
P (L) = {r1, r3} and the set of non-loop rules is R−P (L) = ∅.

Example 14

Consider program P from Example 1 with interpretations I1 and I2 from Example 1

once again. It is clear that in I1 no loop rules were used to derive the values of a

and c, whereas in I2 only loop rules are used.

Hence there is a problem when the value of literals in a loop are only derived from

rules in the loop. To solve this problem, we should require that at least one non-loop

rule motivates the value of these loop literals. As illustrated in the next example,

one non-loop rule is sufficient as the value provided by this rule can propagate

through the loop by applying loop rules.

Example 15

Consider program Pchange from Example 12 again. Clearly this program has a loop

L = {a, b} with R+
P (L) = {r2, r3} and R−P (L) = {r1}. Consider then interpretations

I1 = {a0.3, b0.3} and I2 = {a1, b1}. We can easily see that I1 is an answer set of P ,

whereas I2 is not, although they are both models of comp(P). The problem is that

16 Jeroen Janssen, Steven Schockaert, Dirk Vermeir and Martine De Cock

in I2 the values of a and b are higher than what can be derived from the non-loop

rule r1, whereas in I1 their values are exactly what can be justified from applying

rule r1. The latter is allowed, as values are properly supported from outside the

loop, while the former is not, as in this case the loop is “self-motivating”.

To remove the non-answer set models of the completion, we add loop formulas

to the completion, defined as follows.

Definition 7 (Loop Formula)

Let P be a FASP program and L = {l1, . . . , lm} a loop of P . Suppose that R−P (L) =

{r1, . . . , rn}. Then the loop formula induced by loop L, denoted by LF(L,P), is the

following fuzzy logic formula:

I(max(l1, . . . , lm),max(B(r1), . . . , B(rn)) (5)

where I is an arbitrary residual implicator. If R−P (L) = ∅, the loop formula becomes

I(max(l1, . . . , lm), 0)

The loop formula proposed for boolean answer set programs in (Lin and Zhao

2004) is of the form

¬(
∧
B(r1) ∨ . . . ∨

∧
B(rn))⇒ (¬l1 ∧ . . . ∧ ¬lm) (6)

It can easily be seen that (5) is a straightforward generalisation of (6) as the

latter is equivalent to

(l1 ∨ . . . ∨ lm)⇒ (
∧
B(r1) ∨ . . . ∨

∧
B(rn))

Note that this equivalence is preserved in Lukasiewicz logic, but not in Gödel or

product logic. Furthermore, since I |= I(max(l1, . . . , lm), 0) only when max(I(l1),

. . . , I(lm)) ≤ 0, it is easy to see that in the case where R−P (L) = ∅, the truth value

of all atoms in the loop L is 0.

Example 16

Consider program P and interpretations I1 and I2 from Example 1. The loop for-

mula for its loop L = {a, c} is the fuzzy formula Im(max(a, c), 0), since R−P (L) = ∅.
It is easy to see that I2 does not satisfy this formula, while interpretation I1 does.

Example 17

Consider program Pchange from Example 12. The loop formula for its loop L =

{a, b} is the propositional formula Im(max(a, b), 0.3), since R−P (L) = {r1}. Again

we see that interpretation I1 from Example 15 satisfies this loop formula, whereas

interpretation I2 from the same example does not.

We now show that by adding loop formulas to the completion of a program, we

get a fuzzy propositional theory that is both sound and complete with respect to

the answer set semantics. First we show that this procedure is complete.

Proposition 4 (Completeness)

Let P be a FASP program, let L be the set of all loops of P , and define LF(P) =

{LF(L,P) | L ∈ L}. For any answer set I of P , it holds that I |= LF(P)∪comp(P).

Reducing Fuzzy Answer Set Programming to Model Finding in Fuzzy Logics 17

Proof
Suppose I is an answer set of P and I 6|= LF(P) ∪ comp(P). Since any answer set

is a model of comp(P) according to Proposition 2, this means that I 6|= LF(P).

Hence, the loop formula of some loop L in P is not fulfilled; this means:

sup
u∈L

I(u) > sup
r∈R−P (L)

I(B(r))

Consider then the set U = {u ∈ L | I(u) > supr∈R−P (L) I(B(r))}. We show that U

is unfounded w.r.t. I, i.e. we show that for each u ∈ U and rule r ∈ Pu, at least one

of the conditions of Definition 1 applies.

Since Pu = R+
Pu

(L) ∪ R−Pu
(L), each rule r ∈ Pu must either be in R+

Pu
(L) or in

R−Pu
(L). We consider the following cases:

1. If r ∈ R−Pu
(L) then by construction of U it holds that I(B(r)) < I(u).

2. If r ∈ R+
Pu

(L) and I(B(r)) ≤ supr′∈R−Pu
(L) I(B(r′)), by construction of U we

have that I(B(r)) < I(u).

3. Suppose r ∈ R+
Pu

(L) and I(B(r)) > supr′∈R−Pu
(L) I(B(r′)). Since T (x, y) ≤

min(x, y) for each t-norm T , we know that I(B(r)) ≤ I(l) for each l ∈ Lit+(B(r)).

Hence for each l ∈ Lit+(B(r)) we have I(l) > supr′∈R−Pu
(L) I(B(r′)). This means

that, since r ∈ R+
P (L) and thus Lit+(B(r)) ∩ L 6= ∅, we know from the definition

of U that Lit+(B(r)) ∩ U 6= ∅.
Now remark that U ∩ supp(I) 6= ∅ as U ⊆ supp(I) due to I(u) > 0 for each

u ∈ U . From the above we can thus conclude that U is unfounded w.r.t. I, and

since U ∩ supp(I) 6= ∅, that I is not unfounded-free: a contradiction.

Second we show that adding the loop formulas to the completion of a program

is a sound procedure.

Lemma 5
Let G = 〈V,E〉 be a directed graph and X ⊆ V , with V finite, such that each

node of X has at least one outgoing edge to another node in X. Then there is a set

L ⊆ X such that L is a maximal loop in X and for each l ∈ L we have that there

is no x ∈ X \ L for which (l, x) ∈ E.

Proof
From Lemma 3 we already know that there must be a loop in X. Hence, there must

also be a maximal loop in X. First, remark that maximal loops must of course be

disjoint as otherwise their union would form a bigger loop. Consider then the set

X, which is a collection of disjoint maximal loops L and remaining nodes S (single

nodes that are not in any loop). There is an induced graph G′ of G with nodes

S ∪ L (i.e. each maximal loop is a single node in the induced graph) and edges E

induced as usual (i.e. (L1, L2) ∈ E if for some node l1 in L1 there is a node l2 in

L2 such that (l1, l2) ∈ E and likewise for the nodes in S). Clearly, G′ is acyclic as

otherwise the nodes in G′ on the cycle would create a bigger loop in X. Hence, G′

has leafs without outgoing edges. However, a leaf cannot be in S since that would

imply a node in X without an outgoing edge. Thus we can conclude that all leafs

in G′ are maximal loops in X.

18 Jeroen Janssen, Steven Schockaert, Dirk Vermeir and Martine De Cock

Proposition 5 (Soundness)

Let P be a FASP program and let LF(P) be the set of all loop formulas of P . Then

for any interpretation I of P it holds that if I |= LF(P) ∪ comp(P), then I must

be an answer set of P .

Proof

Suppose I |= LF(P) ∪ comp(P) and I is not an answer set of P . Since any model

of comp(P) must be a model of P , this must mean that I is not unfounded-free,

i.e. that there exists a set U ⊆ BP such that U is unfounded w.r.t. I. From Lemma 4

we know that for each u ∈ U ∩ supp(I) there must be some r ∈ Pu such that

Lit+(B(r))∩U ∩ supp(I) 6= ∅. Hence, by definition of GP this means that for each

u ∈ U ∩ supp(I) there is some u′ ∈ U ∩ supp(I) such that (u, u′) ∈ GP . Using

Lemma 5 this means that there is a set L ⊆ U ∩ supp(I) such that L is a loop in P

and for each l ∈ L there is no u ∈ (U ∩ supp(I)) \L such that (l, u) ∈ GP . In other

words, for each l ∈ L and rule r ∈ Pl we have that(
U ∩ supp(I) ∩ Lit+(B(r)) 6= ∅

)
⇒
(
L ∩ Lit+(B(r)) 6= ∅

)
(7)

Now, consider l ∈ L. Since L ⊆ U ∩ supp(I), we know that I(l) > 0. Hence, if

I(B(r)) = I(l) for some rule r ∈ Pl, we know that I(B(r)) > 0. As U is unfounded

w.r.t. I, it follows from Definition 1 that L ∩ Lit+(B(r)) 6= ∅.
Using contraposition, this means that for each l ∈ L and r ∈ Pl we have that(

L ∩ Lit+(B(r)) = ∅
)
⇒
(
I(B(r)) 6= I(l)

)
(8)

By the definition of comp(P), however, we know that for each model of comp(P)

and for each a ∈ BP and r ∈ Pa we have I(a) ≥ I(B(r)). Hence for each l ∈ L and

r ∈ Pl from (8) we have that(
L ∩ Lit+(B(r)) = ∅

)
⇒
(
I(B(r)) < I(l)

)
(9)

Now, for each l ∈ L and r ∈ R−P (L) ∩ Pl by definition of R−P (L) it holds that

L ∩ Lit+(B(r)) = ∅, meaning I(B(r)) < I(l). Thus, sup{I(B(r)) | r ∈ R−P (L)} <
sup{I(l) | l ∈ L}, meaning I 6|= LF(L,P), a contradiction.

A straightforward procedure for finding answer sets would now be to extend

the completion of a program with all possible loop formulas and let a fuzzy SAT

solver generate models of the resulting fuzzy propositional theory. The models of

this theory are the answer sets of the program, as ensured by Propositions 4 and

5. As there may be an exponential number of loops, however, this translation is

not polynomial in general. A similar situation arises for classical ASP. The solution

proposed in (Lin and Zhao 2004) overcomes this limitation by iteratively adding

loop formulas. In particular, a SAT solver is first used to find a model of the

completion of a classical ASP program. Then it is checked in polynomial time

whether this model is an answer set. If this is not the case, a loop formula, which is

not satisfied by the model that was found, is added to the completion. The whole

process is then repeated until an answer set is found. We will show that a similar

procedure can be used to find answer sets of a FASP program.

Reducing Fuzzy Answer Set Programming to Model Finding in Fuzzy Logics 19

Starting from the fixpoint characterization of answer sets of FASP programs, we

show that for any given model of the completion that is not an answer set, we can

construct a loop that is violated.

Proposition 6

Let P be a FASP program. If an interpretation I of P is a model of comp(P) and

I 6= Π∗P I , then some L ⊆ supp(I � Π∗P I) must exist such that I 6|= LF(P,L).

Proof

Suppose I is an interpretation of P and I |= comp(P), then from the definition of

comp(P) and Lemma 1, we can easily see that I is a fixpoint of ΠP I . Since I 6= Π∗P I ,

some I ′ ⊂ I must exist such that I ′ = Π∗P I .

Consider then the set U = {u ∈ BP | I(u) > I ′(u)}. It holds that U = supp(I�I ′)
since I ′ ⊂ I and thus U = supp(I � Π∗P I) by definition of I ′. From the proof of

Proposition 1 we then also know that for this set U the following property holds

∀u ∈ U : ∀r ∈ Pu :
(
Lit+(B(r)) ∩ U = ∅

)
⇒
(
I(B(r)) < I(u)

)
(10)

We can then show that there is a loop in U whose loop formula is violated. Since

I = ΠP I (I) we know from Lemma 1 that I = ΠP (I). From the definition of ΠP

this means

∀l ∈ BP : I(l) = sup{I(B(r)) | r ∈ Pl}
Since the supremum is attained because P is finite we obtain

∀l ∈ BP : ∃r ∈ Pl : I(l) = I(B(r))

As U ⊆ BP this means

∀u ∈ U : ∃r ∈ Pu : I(l) = I(B(r))

Using (10) it then holds that

∀u ∈ U : ∃r ∈ Pu : Lit+(B(r)) ∩ U 6= ∅

From the definition of GP we thus get

∀u ∈ U : ∃u′ ∈ U : (u, u′) ∈ GP

Using Lemma 5 it follows that there is a set L ⊆ U that is a loop in P such that for

each l ∈ L there is no l′ ∈ U \L such that (l, l′) ∈ E. In other words, for each l ∈ L
there is no l′ ∈ U \ L such that there is a rule r ∈ Pl for which l′ ∈ Lit+(B(r)).

Hence for each l ∈ L and rule r ∈ Pl such that U ∩ Lit+(B(r)) 6= ∅, it follows that

L ∩ Lit+(B(r)) 6= ∅. From (10) and using contraposition this means there is some

L ⊆ U that is a loop in P and for each l ∈ L and r ∈ Pl if L ∩ Lit+(B(r)) = ∅ it

must hold that I(B(r)) < I(l). Now, for each l ∈ L and r ∈ R−P (L)∩Pl by definition

it holds that L ∩ supp(I) = ∅, meaning I(B(r)) < I(l). Thus, sup{I(B(r)) | r ∈
R−P (L)} < sup{I(l) | l ∈ L}, meaning I 6|= LF(L,P).

Now, we can extend the ASSAT-procedure from (Lin and Zhao 2004) to fuzzy

answer set programs P . The main idea of this method is to use fuzzy SAT solving

20 Jeroen Janssen, Steven Schockaert, Dirk Vermeir and Martine De Cock

techniques to find models of the fuzzy propositional theory which consists of the

completion of P , together with the loop formulas of particular maximal loops of P .

If a model is found which is not an answer set, then we determine a loop that is

violated by the model and add its loop formula to the fuzzy propositional theory,

after which the fuzzy SAT solver is invoked again. The algorithm thus becomes:

1. Initialize Loops = ∅
2. Generate a model M of comp(I) ∪ LF(P,Loops), where LF(P,Loops) is the

set of loop formulas of all loops in Loops.

3. If M = Π∗PM , return M as it is an answer set. Else, find the loops occurring

in supp(I � Π∗PM), add their loop formulas to Loops and return to step 2.

The reason that we can expect this process to be efficient is articulated by Propo-

sition 6. Indeed, when searching for violated loops, we can restrict our attention to

subsets of supp(I � Π∗P I). Although the worst-case complexity of this algorithm is

still exponential, in most practical applications, we can expect supp(I�Π∗P I) to be

small, as well as the number of iterations of the process that is needed before an

answer set is found. In (Lin and Zhao 2004) experimental evidence for this claim

is provided in the case of classical ASP. Last, note that the fuzzy SAT solving

technique depends on the t-norms used in the program. If only the Lukasiewicz

t-norm is used, we can use (bounded) mixed integer programming (bMIP) (Hähnle

1994). Since Fuzzy Description Logic Solvers are based on the same techniques as

fuzzy SAT solvers, we also know that for the product t-norm we need to resort to

bounded mixed integer quadratically constrained programming (bMICQP) (Bobillo

and Straccia 2007).

6 Example: the ATM location selection problem

In this section we illustrate our algorithm on a FASP program modeling a real-life

problem. Suppose we are tasked with placing k ATM machines ATM = {a1, . . . , ak}
on roads connecting n towns Towns = {t1, . . . , tn} such that the distance between

each town and some ATM machine is minimized, i.e. we aim to find a configu-

ration in which each town has an ATM that is as close as practically possible.

To obtain this we optimize the sum of closeness degrees for each town and ATM.

Note that this problem closely resembles the well-known k-center selection prob-

lem (see e.g. (Ausiello et al. 1999)). The difference is that in the k-center problem

the ATMs need to be placed in towns, where we allow them to be placed on the

roads connecting towns. We can model this problem as an undirected weighted

graph G = 〈V,E〉 where V = Towns is the set of vertices and the edge set E

connects two towns if they are directly connected by a road. Given a distance func-

tion d : Towns × Towns → R that models the distance between two towns2, the

weight of the edge (a, b) ∈ E is given by the normalized distance d(a, b)/dsum,

where dsum =
∑
{d(t1, t2) | t1, t2 ∈ Towns}.

2 For cities that are not connected the function d models the distance of the shortest path between
them.

Reducing Fuzzy Answer Set Programming to Model Finding in Fuzzy Logics 21

Since our FASP programs can only have t-norms in rule bodies, we also need to

find a way to sum up the distances between towns and ATM machines. By using the

nearness degree, or closeness degree, which for a normalized distance d is defined as

1−d, we can perform summations of distances in our program. To see this, consider

the following derivation:

Tl(1− dist1, 1− dist2) = max(1− dist1 + 1− dist2 − 1, 0)

= max(1− (dist1 + dist2), 0)

= 1−min(dist1 + dist2, 1)

Hence, by applying the Lukasiewicz t-norm on the nearness degrees, we are summing

the distances.

The program PATM solving the ATM selection problem is given as follows:

gloc : loc(A, T1, T2) ← Tl(conn(T1, T2), β)

gnear : locNear(A, T1) ← Nl(locNear′(A, T1))

gnear′ : locNear′(A, T1) ← Tl(loc(A, T1, T2),Nl(near(T1, T2)),

locNear(A, T2)), T1 6= T2

nearr : near(T1, T2) ← Tl(conn(T1, T3), near(T1, T3), near(T3, T2))

locr : loc(A, T1, T2) ← loc(A, T2, T1)

atmr : ATMNear(A, T) ← Tl(loc(A, T1, T2), locNear(A, T1), near(T, T1))

tDist : totNear ← Tl({ATMNear(a, t) | a ∈ ATM , t ∈ Towns})

where

β = Tl({Nm(loc(A, T1′, T2′)) | {T ′1, T ′2} 6= {T1, T2}})
Note that, due to grounding, a rule such as locr actually corresponds to a set of

variable-free rules {locra,t1,t2 | a ∈ ATM, t1, t2 ∈ Towns}. We will keep referring

to the specific grounded instance of a rule by the subscript.

Program PATM consists of a generate and define part, which for a specific con-

figuration is augmented with an input part consisting of facts. The generate part

consists of the three rules gloc, gnear, and gnear′, which generate a specific config-

uration of ATMs. The gloc rule chooses an edge on which the ATM machine A is

placed by guessing a location for an ATM that does not yet has an assigned location,

as ensured by the β part of this rule. The gnear and gnear′ rules generate a location

on this edge where A is placed. Rules gnear and gnear′ originate from the constraint

d(a, t1) = d(t1, t2)− d(a, t2), where d(x, y) is the distance between x and y, if ATM

a is placed on the edge between t1 and t2. Defining n(x, y) as the nearness degree

between x and y and noting that n(a, t1) = 1− d(a, t1) = 1− (d(t1, t2)− d(a, t2)),

we can rewrite this constraint in terms of t-norms and nearness degrees:

n(a, t1) = 1− (d(t1, t2)− d(a, t2))

= 1− (d(t1, t2) + (1− d(a, t2))− 1)

= 1− Tl(d(t1, t2), 1− d(a, t2))

= 1− Tl(1− n(t1, t2), n(a, t2))

= Nl(Tl(1− n(t1, t2), n(a, t2)))

22 Jeroen Janssen, Steven Schockaert, Dirk Vermeir and Martine De Cock

Hence, the bodies of rules gnear and gnear′ ensure that this constraint is satis-

fied. The reason we need two rules and cannot directly write a rule with body

Ns(Tl(loc(A, T1, T2),Nl(near(T1, T2)), locNear(A, T2)) is that the syntax does

not allow negation in front of arbitrary expressions.

Rule nearr recursively defines the degree of closeness between two towns based

on the known distances for connected towns. Additionally, since the bodies of rules

with the same head are combined using the maximum, the nearness degree obtained

by nearr is always one minus the distance of the shortest path. The locr rule

makes sure that if an ATM is located on the edge between town T1 and T2, it

is also recognized as being on the edge between T2 and T1, as we are working

with an undirected graph. The atmr rule defines the location between a particular

ATM machine and a town. Note that due to rule locr this rule also covers the

case when near(T, T2) is higher than near(T, T1). The tDist rule aggregates the

total distances such that different answer sets of this program can be compared

and ordered. In this way we could for example search for the answer set that has a

maximal total degree of nearness, i.e. in which the distance from the towns to the

ATMs is lowest.

Consider the specific configuration GP = 〈V,E〉 of towns Towns = {t1, t2, t3}
depicted in Figure 3 and suppose ATM = {a1, a2}. In Figure 4 we depicted a subset

of the dependency graph of the grounded version of P ′ATM = PATM ∪ F , where F

is the input part of the problem, given by the following rules

F ={conn(t, t′)← 1 | t, t′ ∈ Towns, (t, t′) ∈ E}
∪{near(t, t′)← k | t, t′ ∈ Towns, (t, t′) ∈ E, k = 1− (d(t, t′)/dsum)}

For the configuration depicted in Figure 3 the input part F is

F ={conn(t1, t1)← 1, conn(t1, t2)← 1, conn(t1, t3)← 1}
∪ {conn(t2, t1)← 1, conn(t2, t2)← 1, conn(t2, t3)← 1}
∪ {conn(t3, t1)← 1, conn(t3, t2)← 1, conn(t3, t3)← 1}
∪ {near(t1, t1)← 1, near(t1, t2)← 0.8, near(t1, t3)← 0.7}
∪ {near(t2, t1)← 0.8, near(t2, t2)← 1, near(t2, t3)← 0.5}
∪ {near(t3, t1)← 0.7, near(t3, t2)← 0.5, near(t3, t3)← 1}

It is clear that P ′ATM contains a number of loops. The completion of P ′ATM is the

following fuzzy propositional theory:

conn(t1, t1) ≈ 1, conn(t1, t2) ≈ 1, conn(t1, t3) ≈ 1

conn(t2, t1) ≈ 1, conn(t2, t2) ≈ 1, conn(t2, t3) ≈ 1

conn(t3, t1) ≈ 1, conn(t3, t2) ≈ 1, conn(t3, t3) ≈ 1

near(t1, t1) ≈ 1, near(t1, t2) ≈ 0.8, near(t1, t3) ≈ 0.7

near(t2, t1) ≈ 0.8, near(t2, t2) ≈ 1, near(t2, t3) ≈ 0.5

near(t3, t1) ≈ 0.7, near(t3, t2) ≈ 0.5, near(t3, t3) ≈ 1

loc(a1, t1, t1) ≈l max(Tl(conn(t1, t1), β1,1,1), loc(a1, t1, t1))

Reducing Fuzzy Answer Set Programming to Model Finding in Fuzzy Logics 23

loc(a1, t1, t2) ≈l max(Tl(conn(t1, t2), β1,1,2), loc(a1, t2, t1))

loc(a1, t1, t3) ≈l max(Tl(conn(t1, t3, β1,1,3), loc(a1, t3, t1))

. . .

loc(a2, t3, t1) ≈l max(Tl(conn(t3, t1), β2,3,1), loc(a2, t1, t3))

loc(a2, t3, t2) ≈l max(Tl(conn(t3, t2), β2,3,2), loc(a2, t2, t3))

loc(a2, t3, t3) ≈l max(Tl(conn(t3, t3), β2,3,3), loc(a2, t3, t3))

locNear(a1, t1) ≈l Nl(locNear′(a1, t1))

. . .

locNear(a2, t3) ≈l Nl(locNear′(a2, t3))

locNear′(a1, t1) ≈l max(Tl(loc(a1, t1, t2), locNear(a1, t2),Nl(near(t1, t2))),

Tl(loc(a1, t1, t3), locNear(a1, t3),Nl(near(t1, t3))))

. . .

locNear′(a2, t3) ≈l max(Tl(loc(a2, t3, t1), locNear(a2, t1),Nl(near(t3, t1))),

Tl(loc(a2, t3, t2), locNear(a2, t2),Nl(near(t3, t2))))

near(t1, t1) ≈l max(Tl(conn(t1, t1), near(t1, t1), near(t1, t1)),

Tl(conn(t1, t2), near(t1, t2), near(t2, t1)),

Tl(conn(t1, t3), near(t1, t3), near(t3, t1)), 1)

near(t1, t2) ≈l max(Tl(conn(t1, t1), near(t1, t1), near(t1, t2)),

Tl(conn(t1, t2), near(t1, t2), near(t2, t2)),

Tl(conn(t1, t3), near(t1, t3), near(t3, t2)), 0.8)

. . .

near(t3, t3) ≈l max(Tl(conn(t3, t3), near(t3, t3), near(t3, t3)),

Tl(conn(t3, t2), near(t3, t2), near(t2, t3)),

Tl(conn(t3, t1), near(t3, t1), near(t1, t3)), 1)

ATMNear(a1, t1) ≈ max(Tl(loc(a1, t1, t1), locNear(a1, t1), near(t1, t1)),

Tl(loc(a1, t1, t2), locNear(a1, t1), near(t1, t1)),

. . .

Tl(loc(a1, t3, t2), locNear(a1, t3), near(t1, t3))

Tl(loc(a1, t3, t3), locNear(a1, t3), near(t1, t3)))

. . .

ATMNear(a2, t3) ≈ max(Tl(loc(a2, t1, t1), locNear(a2, t1), near(t3, t1)),

Tl(loc(a2, t1, t2), locNear(a2, t1), near(t3, t1)),

. . .

Tl(loc(a2, t3, t2), locNear(a2, t3), near(t3, t3))

Tl(loc(a2, t3, t3), locNear(a2, t3), near(t3, t3)))

totNear ≈ Tl{ATMNear(a, t) | a ∈ ATM , t ∈ Towns}

24 Jeroen Janssen, Steven Schockaert, Dirk Vermeir and Martine De Cock

where

βi,j,k = Tl({Nm(loc(ai, t
′
j , t
′
k)) | {t′j , t′k} 6= {tj , tk}})

Note that e.g. the 1 in the right-hand side of the fuzzy proposition with near(t1, t1)

on the right-hand side stems from the inputs F we added to PATM . From the com-

pletion comp(P ′ATM) we can see that an interpretationM satisfyingM(near(t1, t2)) =

1 can be a model of comp(P ′ATM), which is clearly unwanted as this would overes-

timate the nearness degrees between towns (i.e. underestimate the distances). For

example, consider

M ={loc(a1, t1, t2)1, loc(a1, t2, t1)1, loc(a2, t1, t3)1, loc(a2, t3, t1)1,

locNear(a1, t1)1, locNear(a1, t2)1, locNear(a2, t1)0.75, locNear(a2, t3)0.75,

locNear′(a2, t1)0.25, locNear′(a2, t3)0.25, near(t1, t1)1, near(t1, t2)1,

near(t2, t1)1, near(t1, t3)0.7, near(t3, t1)0.7, near(t2, t3)0.5, near(t3, t2)0.5,

near(t2, t2)1, near(t3, t3)1,ATMNear(a1 , t1)
1
,ATMNear(a1 , t2)

1
,

ATMNear(a1, t3)0.7,ATMNear(a2, t1)0.75,ATMNear(a2, t2)0.75,

ATMNear(a2, t3)0.75}

Note that atoms a for which M(a) = 0 are not included in the set notation, which

is e.g. the case for totNear. One can easily verify that M is a model of comp(P ′ATM).

To check whether M is an answer set we compute Π∗(P ′ATM)M by repeatedly applying

Π(P ′ATM)M , starting from the empty set, until we obtain a fixpoint, and check whether

M = Π∗(P ′ATM)M . Performing this procedure, we obtain

Π∗(P ′ATM)M ={loc(a1, t1, t2)1, loc(a1, t2, t1)1, loc(a2, t1, t3)1, loc(a2, t3, t1)1,

locNear(a1, t1)1, locNear(a1, t2)1, locNear(a2, t1)0.75,

locNear(a2, t3)0.75, locNear′(a2, t1)0.25, locNear′(a2, t3)0.25,

near(t1, t1)1, near(t1, t2)0.8, near(t2, t1)0.8, near(t1, t3)0.5,

near(t3, t1)0.5, near(t2, t3)0.7, near(t3, t2)0.7, near(t2, t2)1, near(t3, t3)1,

ATMNear(a1 , t1)
1
,ATMNear(a1 , t2)

1
,ATMNear(a1, t3)0.7,

ATMNear(a2, t1)0.75,ATMNear(a2, t2)0.75,ATMNear(a2, t3)0.75}

We can see that Π∗(P ′ATM)M (near(t1, t2)) = 0.8 6= M(near(t1, t2)), hence M is not

an answer set of P ′ATM . From Proposition 6 we then know that there must be a loop

in supp(M�Π∗(P ′ATM)M) = {near(t1, t2), near(t2, t1)} whose loop formula is violated.

Looking at the dependency graph, we can see that L = supp(M � Π∗(P ′ATM)M) =

{near(t1, t2), near(t2, t1)} contains three loops: L1 = L, L2 = {near(t1, t2)} and

Reducing Fuzzy Answer Set Programming to Model Finding in Fuzzy Logics 25

t1

t2

t3
0.7

0.5

0.8

Fig. 3. Town configuration for PATM . The weights on the edges denote the nearness

degrees between towns t1, t2 and t3

L3 = {near(t2, t1)}. Their loop formulas are

LF(L1, P
′
ATM) = I(max

(
near(t1, t2), near(t2, t1)

)
,max

(
Tl(conn(t1, t3),

near(t1, t3), near(t3, t2)), 0.8, Tl(conn(t2, t3), near(t2, t3), near(t3, t1))
)

LF(L2, P
′
ATM) =

I(max
(
near(t1, t2)

)
,max

(
Tl(conn(t1, t3), near(t1, t3), near(t3, t2)), 0.8

)
LF(L3, P

′
ATM) =

I(max
(
near(t2, t1)

)
,max

(
Tl(conn(t2, t3), near(t2, t3), near(t3, t1)), 0.8

)
Clearly, these loop formulas are violated by M , hence following the algorithm in-

troduced in Section 5, we create a new fuzzy propositional theory comp(P ′ATM) ∪
{LF(L1, P

′
ATM),LF(L2, P

′
ATM),LF(L3, P

′
ATM)}, and try to find a model of this new

theory. Consider then the following model of this new theory:

M ={loc(a1, t1, t2)1, loc(a1, t2, t1)1, loc(a2, t1, t3)1, loc(a2, t3, t1)1,

locNear(a1, t1)0.15, locNear(a1, t2)0.05, locNear′(a1, t1)0.85,

locNear′(a1, t2)0.95locNear(a2, t1)0.75, locNear(a2, t3)0.75,

locNear′(a2, t1)0.25, locNear′(a2, t3)0.25, near(t1, t1)1, near(t1, t2)0.8,

near(t2, t1)0.8, near(t1, t3)0.7, near(t3, t1)0.7, near(t2, t3)0.5, near(t3, t2)0.5,

near(t2, t2)1, near(t3, t3)1,ATMNear(a1 , t1)
0.85

,ATMNear(a1 , t2)
0.95

,

ATMNear(a1, t3)0.55,ATMNear(a2, t1)0.75,ATMNear(a2, t2)0.55,

ATMNear(a2, t3)0.75}

One can readily verify that this model is an answer set of P ′ATM , hence the

algorithm stops and returns M .

We could have solved this problem using Mixed Integer Programming (MIP)3.

However, the exact encoding of this problem would be less clear and straightforward

to write. The reason for this is that in the MIP translation the loop formulas would

3 Though in general the Gödel negation Nm cannot be implemented in MIP, in the ATM example
we can implement the gloc rules using integer variables.

26 Jeroen Janssen, Steven Schockaert, Dirk Vermeir and Martine De Cock

near(t1,t1)

conn(t1,t1)

conn(t1,t2)conn(t1,t3)

near(t1,t2)

near(t1,t3)

near(t2,t1)

near(t2,t2) near(t2,t3)

near(t3,t1)

near(t3,t2)

near(t3,t3)

Fig. 4. Dependency graph of PATM

need to be explicitly represented in the program, while in FASP this is handled

implicitly. Hence, only the implementer of a FASP system needs to handle these

loop formulas, not the developer who writes the FASP programs. This is exactly

the power of FASP: providing an elegant, concise, and clear modelling language for

representing continuous problems, which, thanks to the results in this paper, can be

automatically translated to lower-level languages for solving continuous problems,

such as MIP.

7 Discussion

The reader might wonder why we limit our approach to FASP programs with t-

norms in their body, because at first sight it seems the presented approach is easily

extendable to arbitrary functions. It turns out that this is not the case, however.

Consider FASP with the Lukasiewicz t-norm in rule bodies. As mentioned before,

the completion of such a program, and its loop formulas, are formulas in Lukasiewicz

logic and are implementable using MIP. Now let us consider FASP where both the

 Lukasiewicz t-norm and the Lukasiewicz t-conorm may occur in rule bodies. At

first, one would suspect that the loop formulas of such a program would again be

formulas in Lukasiewicz logic. This turns out to be wrong however. To see this,

consider the following rules:

b← Nl(a)

b← Sl(b, b)

Reducing Fuzzy Answer Set Programming to Model Finding in Fuzzy Logics 27

One can readily verify that in the answer sets of a program containing these rules,

literal b will be equal to Nm(a) (provided that b does not occur in the head of

any other rule). However, the negation Nm cannot be implemented in MIP, as

the solution space of a MIP problem is always a topologically closed set (viz. the

union of a finite number of polyhedra), whereas the solution space of a constraint

b ≈ Nm(a) cannot be represented as a closed set due to the strict negation in the

definition of Nm. This means that as soon as the Lukasiewicz t-conorm is allowed,

in general, there will not exist a Lukasiewicz logic theory such that the models of

that theory coincide with the answer sets of a given program. Hence, it is clear that

the case where other operators than t-norms are used requires a different strategy.

Finding generalized loop formulas that cover e.g. both the Lukasiewicz t-norm

and t-conorm is not a trivial problem. To illustrate some of the issues, let us ex-

amine two intuitive candidates. First, remark that the loop formulas introduced

in Section 5 eliminate certain answer sets (i.e. they are too strict). Consider the

following program P :

a← Sl(a, b)
b← k

where k ∈ [0, 1]. This program has one loop, viz. {a, b} with corresponding loop

formula max(a, b) ≤ k. Now note that for k > 0 the value of a in any answer

set is equal to 1. Hence, the loop formula incorrectly eliminates all answer sets in

this case. One might think this can be solved by including a condition in the loop

formula: (max(a, b) ≤ l) ∨ (b > 0). This formula however fails to eliminate models

that are not answer sets (i.e. it is not strict enough) on the following program:

a← Tm(Sl(a, b), 0.8)

b← Sl(a, b)
b← k

If k > 0 the unique answer set of this program is {a0.8, b1}. However, {a1, b1} is

also a model of the completion of this program and satisfies the above loop formula.

Although again more refined loop formulas can be thought of that handle the

latter program correctly, we are pessimistic about the possibility of finding loop

formulas that cover all cases. It appears that such a general solution should be able

to capture some underlying idea of recursion: one loop may justify the truth value

of some atom a, up to a certain level, which may then trigger other rules that justify

the truth value of a, up to some higher level, etc.

Note that this problem does not occur in classical ASP (or when using the max-

imum t-conorm), since e.g. a ← b ∨ c is equivalent to a ← b and a ← c, which is

indeed why disjunctions in the body of rules are not considered in classical ASP.

28 Jeroen Janssen, Steven Schockaert, Dirk Vermeir and Martine De Cock

8 Related Work

The approach to fuzzy answer set programming for which we provided the trans-

lation to fuzzy SAT is called an unweighted implication-based approach. There also

exist weighted implication-based approaches (e.g. (Lukasiewicz and Straccia 2007a;

Madrid and Ojeda-Aciego 2011; Madrid and Ojeda-Aciego 2008; Madrid and Ojeda-

Aciego 2009)), which use rules of the form

r : a
α← T (b1, . . . , bn) (11)

where r is a rule label, a is an atom, bi, for 1 ≤ i ≤ n, are extended literals, and

α ∈ [0, 1]. An interpretation I models this rule iff

Ir(T (I(b1), . . . , I(bn)), I(a)) ≥ α

Since Ir is the residual implicator of T this is equivalent to

I(a) ≥ T (I(b1), . . . , I(bn), α)

Hence a weighted rule of the form (11) above can be simulated by the rule

r′ : a← T (b1, . . . , bn, α)

Thus, the translation presented in this paper can equally be applied to weighted

implication-based approaches.

In addition to the implication-based approaches (IB) one also finds annotation-

based (AB) approaches (see e.g. (Straccia 2006)). In the annotation-based setting

a rule is of the form

A : f(β1, . . . , βn)← B1 : β1, . . . , Bn : βn

Such a rule asserts that the value of atom A is at least f(β1, . . . , βn) if the value

of each atom Bi, 1 ≤ n, is at least βi. In this setting f is a computable function

and βi is either a constant or a variable ranging over an appropriate truth domain.

Due to the difference in semantics between the IB and AB approaches, our method

is not directly applicable to AB frameworks. One can find an in-depth overview of

logic programming with fuzzy logic in (Straccia 2008).

In (Van Nieuwenborgh et al. 2007a), an implementation method for FASP pro-

grams with a finite truth value set is presented, which consists of translating a

FASP program to a specific DLVHEX program. For solving continuous problems,

however, we need infinite truth values, for which a solving method is much harder

to construct. Our method is able to handle continuous problems, and additionally

is more flexible than (Van Nieuwenborgh et al. 2007a) since any method for solving

continuous problems can be used as the backend, including fuzzy SAT solvers and

the vast body of existing MIP solvers.

Apart from fuzzy answer set programming, in recent years possibilistic and prob-

abilistic answer set programming have been developed. Both of these approaches

can be reduced to classical SAT. In the case of probabilistic ASP, there is a direct

translation method (Saad 2009b), while a possibilistic ASP program can be trans-

lated to an equivalent ASP program, on which the ASSAT procedure can then be

applied.

Reducing Fuzzy Answer Set Programming to Model Finding in Fuzzy Logics 29

9 Conclusion

In this paper we have focused on the translation of FASP programs to particular

satisfiability problems. We have introduced the completion of a program and have

shown that in the case of programs without loops, the models of the completion

are exactly the answer sets. Furthermore, to solve the general problem, we have

generalized the notion of loop formulas. This translation is important because it

allows to solve FASP programs using fuzzy SAT solvers. Under appropriate re-

strictions, for example, the satisfiability problems that are obtained can be solved

using off-the-shelf mixed integer programming methods. From an application point

of view, this allows us to encode continuous optimization problems in a declarative

style which is similar to traditional answer set programming. This style of encoding

problems is often more intuitive, as well as more concise, while the results we have

presented ensure that the power of mathematical programming techniques can still

be employed to find the solutions.

Acknowledgment

The authors would like to thank the anonymous reviewers for their useful sugges-

tions and remarks.

References

Alsinet, T., Godo, L., and Sandri, S. 2002. Two formalisms of extended possibilistic
logic programming with context-dependent fuzzy unification: A comparative descrip-
tion. Electronic Notes in Theoretical Computer Science 66, 5, 1 – 21.

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.,
and Protasi, M. 1999. Complexity and Approximation. Springer-Verlag.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press.

Baral, C., Gelfond, M., and Rushton, N. 2007. Probabilistic reasoning with answer
sets. In Proceedings of the 9th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’07), V. Lifschitz and I. Niemelä, Eds. LNCS, vol.
2923. Springer Berlin / Heidelberg, 21–33.

Bauters, K., Schockaert, S., De Cock, M., and Vermeir, D. 2010. Possibilistic
answer set programming revisited. In Proceedings of the 26th Conference on Uncertainty
in Artificial Intelligence (UAI-10), P. Grünwald and P. Spirtes, Eds. AUAI Press.

Bobillo, F. and Straccia, U. 2007. A fuzzy description logic with product t-norm. In
Proceedings of the 16th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE
2007). IEEE Computer Society, 652–657.

Cao, T. H. 2000. Annotated fuzzy logic programs. Fuzzy Sets & Systems 113, 2, 277–298.

Damásio, C. V., Medina, J., and Ojeda-Aciego, M. 2004. Sorted multi-adjoint logic
programs: termination results and applications. In Proceedings of the 9th European
Conference on Logics in Artificial Intelligence (JELIA’04), J. J. Alferes and J. Leite,
Eds. LNCS, vol. 3229. Springer Berlin / Heidelberg, 252–265.

Damásio, C. V., Medina, J., and Ojeda-Aciego, M. 2007. Termination of logic pro-
grams with imperfect information: applications and query procedure. Journal of Applied
Logic 5, 3, 435–458.

30 Jeroen Janssen, Steven Schockaert, Dirk Vermeir and Martine De Cock

Damásio, C. V. and Pereira, L. M. 2000. Hybrid probabilistic logic programs as
residuated logic programs. In Proceedings of the 7th European Workshop on Logics in
Artificial Intelligence (JELIA’00), M. Ojeda-Aciego, I. de Guzmán, G. Brewka, and
L. Moniz Pereira, Eds. LNCS, vol. 1919. Springer Berlin / Heidelberg, 57–72.

Damásio, C. V. and Pereira, L. M. 2001a. Antitonic logic programs. In Proceedings of
the 6th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’01), T. Eiter, W. Faber, and M. Truszczynski, Eds. LNCS, vol. 2173. Springer
Berlin / Heidelberg, 379–393.

Damásio, C. V. and Pereira, L. M. 2001b. Monotonic and residuated logic programs. In
Proceedings of the 6th European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU’01), S. Benferhat and P. Besnard, Eds. LNCS,
vol. 2143. Springer Berlin / Heidelberg, 748–759.

Damásio, C. V. and Pereira, L. M. 2004. Sorted monotonic logic programs and their
embeddings. In Proceedings of Information Processing and Management of Uncertainty
(IPMU04). 807–814.

Davis, M. and Putnam, H. 1960. A computing procedure for quantification theory.
Journal of the ACM 7, 3, 201–215.

Emden, M. H. v. 1986. Quantitative deduction and its fixpoint theory. Journal of Logic
Programming 30, 1, 37–53.

Fages, F. 1994. Consistency of Clark’s completion and existence of stable models. Methods
of Logic in Computer Science 1, 51–60.

Fitting, M. 1991. Bilattices and the semantics of logic programming. Journal of Logic
Programming 11, 2, 91–116.

Fuhr, N. 2000. Probabilistic datalog: implementing logical information retrieval for ad-
vanced applications. Journal of the American Society for Information Science 51, 2,
95–110.

Gebser, M., Kaufmann, B., and Schaub, T. 2009. The conflict-driven answer set
solver clasp: Progress report. In Proceedings of the 10th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’09), E. Erdem, F. Lin, and
T. Schaub, Eds. LNCS, vol. 5753. Springer Berlin / Heidelberg, 509–514.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic program-
ming. In Proceedings of the Fifth International Conference and Symposium on Logic
Programming (ICLP/SLP’88). MIT Press, 1081–1086.

Giunchiglia, E., Lierler, Y., and Maratea, M. 2004. SAT-based answer set program-
ming. In Proceedings of the 19th national conference on Artifical intelligence (AAAI’04).
AAAI Press / The MIT Press, 61–66.

Hähnle, R. 1994. Many-valued logic and mixed integer programming. Annals of Mathe-
matics and Artificial Intelligence 12, 3-4, 231–263.

Hájek, P. 2001. Metamathematics of Fuzzy Logic (Trends in Logic). Springer.

Ishizuka, M. and Kanai, N. 1985. Prolog-ELF incorporating fuzzy logic. In Proceedings
of the 9th international joint conference on Artificial intelligence (IJCAI’85). 701–703.

Janssen, J., Heymans, S., Vermeir, D., and De Cock, M. 2008. Compiling fuzzy
answer set programs to fuzzy propositional theories. In Proceedings of the 24th In-
ternational Conference on Logic Programming (ICLP’08), M. Garcia de la Banda and
E. Pontelli, Eds. LNCS, vol. 5366. Springer Berlin / Heidelberg, 362–376.

Kifer, M. and Li, A. 1988. On the semantics of rule-based expert systems with un-
certainty. In Proceedings of the 2nd International Conference on Database Theory
(ICDT’88), M. Gyssens, J. Paredaens, and D. Van Gucht, Eds. LNCS, vol. 326. Springer
Berlin / Heidelberg, 102–117.

Reducing Fuzzy Answer Set Programming to Model Finding in Fuzzy Logics 31

Kifer, M. and Subrahmanian, V. S. 1992. Theory of generalized annotated logic
programming and its applications. Journal of Logic Programming 12, 3&4, 335–367.

Lakshmanan, L. V. S. 1994. An epistemic foundation for logic programming with un-
certainty. In Proceedings of the 14th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’94), P. Thiagarajan, Ed. LNCS, vol. 880.
Springer Berlin / Heidelberg, 89–100.

Lakshmanan, L. V. S. 1997. Towards a generalized theory of deductive databases with
uncertainty. Ph.D. thesis, Concordia University.

Lakshmanan, L. V. S. and Sadri, F. 1994. Modeling uncertainty in deductive databases.
In Proceedings of the 5th International Conference on Database and Expert Systems
Applications (DEXA’94), D. Karagiannis, Ed. LNCS, vol. 856. Springer Berlin / Hei-
delberg, 724–733.

Lakshmanan, L. V. S. and Sadri, F. 1997. Uncertain deductive databases: a hybrid
approach. Information Systems 22, 9, 483–508.

Lakshmanan, L. V. S. and Shiri, N. 2001. A parametric approach to deductive
databases with uncertainty. IEEE Transactions on Knowledge and Data Engineer-
ing 13, 4, 554–570.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scar-
cello, F. 2006. The DLV system for knowledge representation and reasoning. ACM
Transactions on Computational Logic 7, 3, 499–562.

Lin, F. and Zhao, Y. 2004. ASSAT: computing answer sets of a logic program by SAT
solvers. Artificial Intelligence 157, 1-2, 115–137.

Liu, L. and Truszczyński, M. 2005. Pbmodels – software to compute stable models by
pseudoboolean solvers. In Proceedings of the 8th international conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR’05), C. Baral, G. Greco, N. Leone,
and G. Terracina, Eds. LNCS, vol. 3662. Springer Berlin / Heidelberg, 410–415.

Loyer, Y. and Straccia, U. 2002. The well-founded semantics in normal logic programs
with uncertainty. In Proceedings of the 6th International Symposium on Functional and
Logic Programming (FLOPS’02), Z. Hu and M. Rodŕıguez-Artalejo, Eds. LNCS, vol.
2441. Springer, 152–166.

Loyer, Y. and Straccia, U. 2003. The approximate well-founded semantics for logic
programs with uncertainty. In Proceedings of the 28th International Symposium on
Mathematical Foundations of Computer Science (MFCS’03), B. Rovan and P. Vojtáš,
Eds. LNCS, vol. 2747. Springer Berlin / Heidelberg, 541–550.

Loyer, Y. and Straccia, U. 2006. Epistemic foundation of stable model semantics.
Journal of Theory and Practice of Logic Programming 6, 355–393.

Lukasiewicz, T. 1998. Probabilistic logic programming. In Proceedings of the 13th
European Conference on Artificial Intelligence (ECAI’98). J. Wiley & Sons, 388–392.

Lukasiewicz, T. 1999. Many-valued disjunctive logic programs with probabilistic se-
mantics. In Proceedings of the 5th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’99), M. Gelfond, N. Leone, and G. Pfeifer, Eds.
LNCS, vol. 1730. Springer Berlin / Heidelberg, 277–289.

Lukasiewicz, T. 2006. Fuzzy description logic programs under the answer set semantics
for the semantic web. In Proceedings of the Second International Conference on Rules
and Rule Markup Languages for the Semantic Web (RuleML’06). 89–96.

Lukasiewicz, T. and Straccia, U. 2007a. Tightly integrated fuzzy description logic pro-
grams under the answer set semantics for the semantic web. In Proceedings of the First
International Conference on Web Reasoning and Rule Systems (RR’07), M. Marchiori,
J. Pan, and C. Marie, Eds. LNCS, vol. 4524. Springer Berlin / Heidelberg, 289–298.

Lukasiewicz, T. and Straccia, U. 2007b. Top-k retrieval in description logic programs

32 Jeroen Janssen, Steven Schockaert, Dirk Vermeir and Martine De Cock

under vagueness for the semantic web. In Proceedings of the 1st international conference
on Scalable Uncertainty Management (SUM’07), H. Prade and V. Subrahmanian, Eds.
LNCS, vol. 4772. Springer Berlin / Heidelberg, 16–30.

Madrid, N. and Ojeda-Aciego, M. 2008. Towards a fuzzy answer set semantics for
residuated logic programs. In Proceedings of the 2008 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT’08). 260–
264.

Madrid, N. and Ojeda-Aciego, M. 2009. On coherence and consistence in fuzzy an-
swer set semantics for residuated logic programs. In Proceedings of the 8th International
Workshop on Fuzzy Logic and Applications (WILF’09), V. Di Gesù, S. Pal, and A. Pet-
rosino, Eds. LNCS, vol. 5571. Springer Berlin / Heidelberg, 60–67.

Madrid, N. and Ojeda-Aciego, M. 2011. On the existence and unicity of stable models
in normal residuated logic programs. International Journal on Computer Mathematics.
To Appear.

Nerode, A., Remmel, J. B., and Subrahmanian, V. S. 1997. Annotated nonmonotonic
rule systems. Theoretical Computer Science 171, 1-2, 111–146.

Ng, R. and Subrahmanian, V. S. 1993. A semantical framework for supporting sub-
jective and conditional probabilities in deductive databases. Journal of Automated
Reasoning 10, 2, 191–235.

Ng, R. and Subrahmanian, V. S. 1994. Stable semantics for probabilistic deductive
databases. Information and Computation 110, 1, 42–83.

Nicolas, P., Garcia, L., and Stéphan, I. 2005. Possibilistic stable models. In Nonmono-
tonic Reasoning, Answer Set Programming and Constraints. Dagstuhl Seminar Proceed-
ings. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI).

Nicolas, P., Garcia, L., Stéphan, I., and Lefèvre, C. 2006. Possibilistic uncertainty
handling for answer set programming. Annals of Mathematics and Artificial Intelli-
gence 47, 1-2, 139–181.

Novák, V., Perfilieva, I., and Moc̆kor̆, J. 1999. Mathematical Principles of Fuzzy
Logic. Kluwer Academic Publishers.

Saad, E. 2009a. Extended fuzzy logic programs with fuzzy answer set semantics. In
Proceedings of the 3rd International Conference on Scalable Uncertainty Management
(SUM’09), L. Godo and A. Pugliese, Eds. LNCS, vol. 5785. Springer Berlin / Heidelberg,
223–239.

Saad, E. 2009b. Probabilistic reasoning by SAT solvers. In Proceedings of the 10th
European Conference on Symbolic and Quantitative Approaches to Reasoning with Un-
certainty (ECSQARU’09), C. Sossai and G. Chemello, Eds. LNCS, vol. 5590. Springer
Berlin / Heidelberg, 663–675.

Shapiro, E. Y. 1983. Logic programs with uncertainties: a tool for implementing rule-
based systems. In Proceedings of the Eighth international joint conference on Artificial
intelligence (IJCAI’83), A. Bundy, Ed. William Kaufmann, 529–532.

Simons, P. 2000. Extending and implementing the stable model semantics. Ph.D. thesis,
Helsinki University of Technology.

Straccia, U. 2005. Query answering in normal logic programs under uncertainty. In
In 8th European Conferences on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty (ECSQARU-05), L. Godo, Ed. LNCS, vol. 3571. Springer Berlin /
Heidelberg, 470–470.

Straccia, U. 2006. Annotated answer set programming. In Proceedings of the 11th
International Conference on Information Processing and Management of Uncertainty
in Knowledge-Based Systems (IPMU’06).

Straccia, U. 2008. Managing uncertainty and vagueness in description logics, logic

Reducing Fuzzy Answer Set Programming to Model Finding in Fuzzy Logics 33

programs and description logic programs. In Reasoning Web: 4th International Summer
School 2008, C. Baroglio, P. A. Bonatti, J. M. uszynski, M. Marchiori, A. Polleres, and
S. Schaffert, Eds. LNCS, vol. 5224. 54–103.

Straccia, U., Ojeda-Aciego, M., and Damásio, C. V. 2009. On fixed-points of multi-
valued functions on complete lattices and their application to generalized logic programs.
SIAM Journal on Computing 38, 5, 1881–1911.

Subrahmanian, V. S. 1994. Amalgamating knowledge bases. ACM Transactions on
Database Systems 19, 2, 291–331.

Tarski, A. 1955. A lattice theoretical fixpoint theorem and its application. Pacific Journal
of Mathematics 5, 285–309.

Van Nieuwenborgh, D., De Cock, M., and Vermeir, D. 2007a. Computing fuzzy
answer sets using DLVHEX. In Proceedings of the 23rd International Conference on
Logic Programming (ICLP’07), V. Dahl and I. Niemelä, Eds. LNCS, vol. 4670. Springer
Berlin / Heidelberg, 449–450.

Van Nieuwenborgh, D., De Cock, M., and Vermeir, D. 2007b. An introduction to
fuzzy answer set programming. Annals of Mathematics and Artificial Intelligence 50, 3-
4, 363–388.

Vojtás, P. 2001. Fuzzy logic programming. Fuzzy Sets and Systems 124, 3, 361–370.

Wagner, G. 1998. Negation in fuzzy and possibilistic logic programs. Uncertainty Theory
in Artificial Intelligence Series 3, 113–128.

	1 Introduction
	2 Preliminaries
	3 Fuzzy Answer Set Programming
	4 Completion of FASP programs
	5 Loop Formulas
	6 Example: the ATM location selection problem
	7 Discussion
	8 Related Work
	9 Conclusion
	References

