6,265 research outputs found

    Trusted product lines

    Get PDF
    This thesis describes research undertaken into the application of software product line approaches to the development of high-integrity, embedded real-time software systems that are subject to regulatory approval/certification. The motivation for the research arose from a real business need to reduce cost and lead time of aerospace software development projects. The thesis hypothesis can be summarised as follows: It is feasible to construct product line models that allow the specification of required behaviour within a reference architecture that can be transformed into an effective product implementation, whilst enabling suitable supporting evidence for certification to be produced. The research concentrates on the following four main areas: 1. Construction of an argument framework in which the application of product line techniques to high-integrity software development can be assessed and critically reviewed. 2. Definition of a product-line reference architecture that can host components containing variation. 3. Design of model transformations that can automatically instantiate products from a set of components hosted within the reference architecture. 4. Identification of verification approaches that may provide evidence that the transformations designed in step 3 above preserve properties of interest from the product line model into the product instantiations. Together, these areas form the basis of an approach we term “Trusted Product Lines”. The approach has been evaluated and validated by deployment on a real aerospace project; the approach has been used to produce DO-178B/ED-12B Level A applications of over 300 KSLOC in size. The effect of this approach on the software development process has been critically evaluated in this thesis, both quantitatively (in terms of cost and relative size of process phases) and qualitatively (in terms of software quality). The “Trusted Product Lines” approach, as described within the thesis, shows how product line approaches can be applied to high-integrity software development, and how certification evidence created and arguments constructed for products instantiated from the product line. To the best of our knowledge, the development and effective application of product line techniques in a certification environment is novel and unique

    Seamless Variability Management With the Virtual Platform

    Get PDF
    Customization is a general trend in software engineering, demanding systems that support variable stakeholder requirements. Two opposing strategies are commonly used to create variants: software clone & own and software configuration with an integrated platform. Organizations often start with the former, which is cheap, agile, and supports quick innovation, but does not scale. The latter scales by establishing an integrated platform that shares software assets between variants, but requires high up-front investments or risky migration processes. So, could we have a method that allows an easy transition or even combine the benefits of both strategies? We propose a method and tool that supports a truly incremental development of variant-rich systems, exploiting a spectrum between both opposing strategies. We design, formalize, and prototype the variability-management framework virtual platform. It bridges clone & own and platform-oriented development. Relying on programming-language-independent conceptual structures representing software assets, it offers operators for engineering and evolving a system, comprising: traditional, asset-oriented operators and novel, feature-oriented operators for incrementally adopting concepts of an integrated platform. The operators record meta-data that is exploited by other operators to support the transition. Among others, they eliminate expensive feature-location effort or the need to trace clones. Our evaluation simulates the evolution of a real-world, clone-based system, measuring its costs and benefits.Comment: 13 pages, 10 figures; accepted for publication at the 43rd International Conference on Software Engineering (ICSE 2021), main technical trac

    Towards Automatic Parsing of Structured Visual Content through the Use of Synthetic Data

    Get PDF
    Structured Visual Content (SVC) such as graphs, flow charts, or the like are used by authors to illustrate various concepts. While such depictions allow the average reader to better understand the contents, images containing SVCs are typically not machine-readable. This, in turn, not only hinders automated knowledge aggregation, but also the perception of displayed in-formation for visually impaired people. In this work, we propose a synthetic dataset, containing SVCs in the form of images as well as ground truths. We show the usage of this dataset by an application that automatically extracts a graph representation from an SVC image. This is done by training a model via common supervised learning methods. As there currently exist no large-scale public datasets for the detailed analysis of SVC, we propose the Synthetic SVC (SSVC) dataset comprising 12,000 images with respective bounding box annotations and detailed graph representations. Our dataset enables the development of strong models for the interpretation of SVCs while skipping the time-consuming dense data annotation. We evaluate our model on both synthetic and manually annotated data and show the transferability of synthetic to real via various metrics, given the presented application. Here, we evaluate that this proof of concept is possible to some extend and lay down a solid baseline for this task. We discuss the limitations of our approach for further improvements. Our utilized metrics can be used as a tool for future comparisons in this domain. To enable further research on this task, the dataset is publicly available at https://bit.ly/3jN1pJ

    A conceptual model for unifying variability in space and time: Rationale, validation, and illustrative applications

    Get PDF
    With the increasing demand for customized systems and rapidly evolving technology, software engineering faces many challenges. A particular challenge is the development and maintenance of systems that are highly variable both in space (concurrent variations of the system at one point in time) and time (sequential variations of the system, due to its evolution). Recent research aims to address this challenge by managing variability in space and time simultaneously. However, this research originates from two different areas, software product line engineering and software configuration management, resulting in non-uniform terminologies and a varying understanding of concepts. These problems hamper the communication and understanding of involved concepts, as well as the development of techniques that unify variability in space and time. To tackle these problems, we performed an iterative, expert-driven analysis of existing tools from both research areas to derive a conceptual model that integrates and unifies concepts of both dimensions of variability. In this article, we first explain the construction process and present the resulting conceptual model. We validate the model and discuss its coverage and granularity with respect to established concepts of variability in space and time. Furthermore, we perform a formal concept analysis to discuss the commonalities and differences among the tools we considered. Finally, we show illustrative applications to explain how the conceptual model can be used in practice to derive conforming tools. The conceptual model unifies concepts and relations used in software product line engineering and software configuration management, provides a unified terminology and common ground for researchers and developers for comparing their works, clarifies communication, and prevents redundant developments

    Survey of Template-Based Code Generation

    Full text link
    L'automatisation de la génération des artefacts textuels à partir des modÚles est une étape critique dans l'Ingénierie Dirigée par les ModÚles (IDM). C'est une transformation de modÚles utile pour générer le code source, sérialiser les modÚles dans de stockages persistents, générer les rapports ou encore la documentation. Parmi les différents paradigmes de transformation de modÚle-au-texte, la génération de code basée sur les templates (TBCG) est la plus utilisée en IDM. La TBCG est une technique de génération qui produit du code à partir des spécifications de haut niveau appelées templates. Compte tenu de la diversité des outils et des approches, il est nécessaire de classifier et de comparer les techniques de TBCG existantes afin d'apporter un soutien approprié aux développeurs. L'objectif de ce mémoire est de mieux comprendre les caractéristiques des techniques de TBCG, identifier les tendances dans la recherche, et éxaminer l'importance du rÎle de l'IDM par rapport à cette approche. J'évalue également l'expressivité, la performance et la mise à l'échelle des outils associés selon une série de modÚles. Je propose une étude systématique de cartographie de la littérature qui décrit une intéressante vue d'ensemble de la TBCG et une étude comparitive des outils de la TBCG pour mieux guider les dévloppeurs dans leur choix. Cette étude montre que les outils basés sur les modÚles offrent plus d'expressivité tandis que les outils basés sur le code sont les plus performants. Enfin, Xtend2 offre le meilleur compromis entre l'expressivité et la performance.A critical step in model-driven engineering (MDE) is the automatic synthesis of a textual artifact from models. This is a very useful model transformation to generate application code, to serialize the model in persistent storage, generate documentation or reports. Among the various model-to-text transformation paradigms, Template-Based Code Generation (TBCG) is the most popular in MDE. TBCG is a synthesis technique that produces code from high-level specifications, called templates. It is a popular technique in MDE given that they both emphasize abstraction and automation. Given the diversity of tools and approaches, it is necessary to classify and compare existing TBCG techniques to provide appropriate support to developers. The goal of this thesis is to better understand the characteristics of TBCG techniques, identify research trends, and assess the importance of the role of MDE in this code synthesis approach. We also evaluate the expressiveness, performance and scalability of the associated tools based on a range of models that implement critical patterns. To this end, we conduct a systematic mapping study of the literature that paints an interesting overview of TBCG and a comparative study on TBCG tools to better guide developers in their choices. This study shows that model-based tools offer more expressiveness whereas code-based tools performed much faster. Xtend2 offers the best compromise between the expressiveness and the performance

    Software diversity: state of the art and perspectives

    Get PDF
    International audienceDiversity is prevalent in modern software systems to facilitate adapting the software to customer requirements or the execution environment. Diversity has an impact on all phases of the software development process. Appropriate means and organizational structures are required to deal with the additional complexity introduced by software variability. This introductory article to the special section "Software Diversity--Modeling, Analysis and Evolution" provides an overview of the current state of the art in diverse systems development and discusses challenges and potential solutions. The article covers requirements analysis, design, implementation, verification and validation, maintenance and evolution as well as organizational aspects. It also provides an overview of the articles which are part of this special section and addresses particular issues of diverse systems development

    Model-Based Engineering of Collaborative Embedded Systems

    Get PDF
    This Open Access book presents the results of the "Collaborative Embedded Systems" (CrESt) project, aimed at adapting and complementing the methodology underlying modeling techniques developed to cope with the challenges of the dynamic structures of collaborative embedded systems (CESs) based on the SPES development methodology. In order to manage the high complexity of the individual systems and the dynamically formed interaction structures at runtime, advanced and powerful development methods are required that extend the current state of the art in the development of embedded systems and cyber-physical systems. The methodological contributions of the project support the effective and efficient development of CESs in dynamic and uncertain contexts, with special emphasis on the reliability and variability of individual systems and the creation of networks of such systems at runtime. The project was funded by the German Federal Ministry of Education and Research (BMBF), and the case studies are therefore selected from areas that are highly relevant for Germany’s economy (automotive, industrial production, power generation, and robotics). It also supports the digitalization of complex and transformable industrial plants in the context of the German government's "Industry 4.0" initiative, and the project results provide a solid foundation for implementing the German government's high-tech strategy "Innovations for Germany" in the coming years
    • 

    corecore