

PROGRESS white papers 2006

Citation for published version (APA):
Corporaal, H., Niemegeers, I. G. M. M., & Vaandrager, F. W. (2006). PROGRESS white papers 2006:
embedded systems design, networks and connected systems, verification and validation, networks on chip.
STW Technology Foundation.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/47e7ae39-1c33-48fe-917e-f51e0e67d0be

Il .leId.) Is't
WHITE
PAPERS
2006

embedded systems design

networks and connected systems

verification and validation

networks on chip

I:OIjIIIttiIUJ

WHITE
PAPERS
2006

P 0 ss HITE
embedded systems design
networks and connected systems
verification and validation
networks on chip

E 52

00

1:;1;[I11iIl11

WHITE
PAPERS
2006

INHOUDSOPG VE

INTRODUCTION

EMBEDDED SYSTEM DESIGN
Introduction
Characteristics of embedded systems
Current design practice
Embedded system design problems
Ingredients for solutions
Raise the design abstraction level
Predictabie design
Solving the memory wall
PROGRESS project involvement

10 Summary, conclusions and open issues

CHAllENGES FOR FUTURE NETWORKED EMBEDDED SYSTEMS
Introduction
Drivers for Change: Semiconductor Technology and Wireless
Fourth Generation Wireless Networking
Technologies for 4G
Distinguishing characteristics and future embedded networks
Positioning of PROGRESS research in Networks & Connected Embedded Systems
Conclusion

DOES IT PAY OFF? MODEl-BASEO VERIFICATION AND VALIDATION OF EMBEODED SYSTEMS!
Introduction
Formal Methods
PROGRESS Projects on Verification and Validation
Conclusion

NETWORKS ON CHIP: A COMMUNICATION-CENTRIC APPROACH TO PlATFORM-BASEO DESIGN
Introduction
Deep Sub-micron problems
First generation platforms

4 Second generation platforms
5 PROGRESS contributions
6 Third generation: the future

Conclusions

005

007
007
008
009
012
015
016
017
021
022
024

029
029
030
032
033
035
039
041

043
043
047
058
062

067
067
068
070
072
079
080
081

00 3

1:01 i"'l1 iJ Jil

WHITE
PAPERS
2006

DUCTIO

PROGRESS, Program for Research on Embedded Systems and Software, initiates and coordinates
Dutch academie research in named areas since 1998. Over the years about 25 projects we re maintained
in five tenders and over 60 academie researchers collaborated with industrial colleagues on a wide
spectrum of embedded subjects. Through its set-up and its results PROGRESS has become a landmark
on demand-driven academie research in The Netherlands.

Instead of issuing a sixth tender, PROGRESS management has decided to spend their remaining efforts
and money on optimizing the impact ofthe projects for the Dutch economy.ln this framework we coined
the term uva, for Utilization, Valorization and Outreach and issued a Call for Proposals for UVO-projeds.

In order to inform our industrial and academie partners about the state of the art in PROGRESS, we
organized four symposia on the following four embedded themes:

Embedded systems design - on May 10, 2006
Networks and connected systems - on May 11, 2006
Verification and validation of embedded systems - on May 31, 2006
Networks on chip - on June 1,2006

We asked four keynote speakers, all exponents of the Dutch academia, to write white papers on these
themes, containing the genera I state of the art in the four fields and the contributions of PROGRESS
projects belonging to these themes more specifically.
This booklet bundies these white papers and hence forms a good survey of the present state of the
Dutch academie embedded systems research .

Utrecht, June 2006

00 \

Henk Corporaal I Eindhoven University ofTechnology

I 1 Introduction I

Information processing systems play a tremendously increasing role in our life. At the heart of these
systems we find usually a computer containing a programmabie processor. Some of these systems are
prominently visible, like personal computers (PCs), and personal digital assistants (POAs). These
systems contain very powerful general purpose processors; i.e. their processors are not tuned for a
particular area. Also game computers are very popular. Besides a genera I purpose processor, game
computers have special support for 30 vector calculations and 20 graphics. This allows them to run the
most demanding games smoothly. Every year hundreds of millions of these systems are sold.
However an even much bigger number of information processing systems are far less visible; they

are embedded in other (embedding) systems. We
call them embedded systems. You'lI find them
literally everywhere, in cars, cameras, mobile phones,
house holds, security equipment, medica I equipment;
you name it. In an average family house you may

EMBEDDED easily count a hundred embedded systems; in a high
SYSTEM end car you will find more than 50, used for things

'ililllttilUi

WHITE
PAPERS
2006

Figure' An embedded system and its interaction with
the surrounding.

like cruise control, air bags, fuel control, brakes, car
radio, and steering control. Every year billions of
embedded systems are made, most of them contain
tiny processors, however some of them may be
quite powerful.

From the above we can infer a definition of an
embedded system: it is the information processing

and controlling part of an embedding system; it determines for a large part the operation of the
surrounding system, usually has a fixed functionality, and operates autonomously.

Figure 7 shows an abstract view. Via interfaces (Cl, 51, Al: communication, sensor and actuator
interfaces) the embedded system is connected to the surrounding world.

007

008

Overview paper
In this paper we wiJl focus on the design of embedded systems. First, in section 2, we detail the
characteristics of embedded systems. Section 3 highlights aspects of the current design practice.
Section 4 explains what makes embedded system design hard and complex. Section 5 indicates
several ingredients alleviating the design problem. In sections 6, 7 and 8 we pay attention to three
important design issues: raising the design abstraction level, making the design trajeetory predictable,
and dealing with the memory bottleneck. Section 9 shows how several PROGRESS projects contribute
to the challenging area of embedded system design. Finally, in section 10 we summarize and draw
several conclusions.
Note that the embedded system design area is gigantic.lt is totally impossible for a paper to even aim
at completeness in its description. Necessarily the following is subjective, and can only focus on a few
important trends, problems and directions.

I 2 Characteristics of embedded systems I
Embedded systems have a number of special characteristics, the most important ones being low cost,
rea I-time behavior and reliability.

Design and manufacturing costs are very important since many embedded systems are used in high
volume produets (Iike consumer electronics) with often low profit margins.
An embedded system obviously has to be functionally correct, i.e. its output should be correct for
all possible inputs and input sequences. On top of that timing behavior plays a key role. Most
embedded systems must satisfy either soft or hard real-time properties. Streaming based systems
are often soft real-time, while event based control based systems mostly have to obey hard
timing deadlines.
Since the correct operation of the embedding system largely depends on the embedded system,
reliability is of key importance. The system should operate correctly during its whole lifetime,
should be robust with respect to unforeseen usage and changing environmental conditions, and it
should also operate safely.

Besides above three characteristics we aften observe other qualities of embedded systems;
in particular:
- Importance of software. Embedded systems almost always contain one or more fully program

mabie processors (i.e. being able to run, after translation, any (program, and offering operating
system functionality). A large and increasing part of the functionality is realized using software for
these processors.

I:IJ ilrItIiI li1

WHITE
PAPERS
2006

l:f1iltIîlilUi

WHITE
PAPERS
2006

- Heterogeneous. Embedded systems are built out of various components, including different
processors, various memories, specific interfaces, and domain specific accelerators. Figure 2 shows
an example of such a heterogeneous system.

- Domain specific. The combination of hardware and software is tuned for aspecific application or
application domain (e.g. for video processing). Specializing embedded systems has a positive impact

on several issues like design time and other non
recurrent cost, manufacturing (recurrent) cost,
performance, and energy consumption. However it
reduces its applicability for other applications (and
therefore the selling volume potentiai).

I]J -Energy conscious. Many embedded systems are
portable and run on batteries, or even rely on energy
scavenging. This stresses the energy consumption
constraints.

L([)(fV

1. rssfO(l .:
~

RS-212C IrO'- PCMCIA DlIlII .. ,
Figure 2 Example embedded system: inside a digital
(amerall]

I 3 Current design practice I

J

- Concurrency. Since embedded systems observe and
control many parts of their embedding system, there
is a natural kind of concurrency. Multiple processes
have to run in parallel.

- Co-design. Embedded system design requires by
nature co-design of hardware and software. On top of
that embedded system design takes place in a multi
disciplinaryenvironment.

Above characteristics make embedded systems very
complex and their design extremely challenging.

The purpose of embedded system design can be described as: the design of very complex information
processing (sub)systems, having sufficient flexibility, and taking all the functional and non-functional
constraints into account, in a fast and cost-efficient way. In this context non-functional constraints
refer to issues like system cost, energy consumption, rea I-time requirements, and time-to-market. As
indicated, embedded systems can be extremely complex, while the affordable design time tends to
decrease. Therefore their design requires a methodological approach; in a systematic way several
design steps have to be taken. The set of design steps and their ordering is called a design flow.
There are many different flows. (ommon to all of them is that each flow traverses several abstraction

009

OIO

levels. This can be visualized by the well-known design pyramid (see Figure 3), which shows a few
abstraction levels (the actual number of abstraction levels highly depends on the design flow and
domain). This pyramid indicates th at an Idea can be realized in an almost infinite number ofways (the
solution space is extremely large). Going from Idea to Realization requires many design decisions.
Every decision adds detail to the design, restricts the design spa ce, and lowers the abstraction level.
E.g., starting from the top of the pyramid, the whole solution spa ce is still reachable, however, when
after a certain number of decisions we arrive at (partial) design point X then only space Y is available
for the next design step. At all levels the designer
can make aspect models which estimate the

z
o

~

consequences of successive design decisions for
certain aspects of the product, without really
working out the design. This helps the designer to
evaluate a big search spa ce without making all the
possible implementations in th is space. The latter is
clearly unfeasible. Modeling is therefore a necessity
and extremely important in embedded system
design. In the design literature many so-called
'models-of-computation' are described, often
formally defined, which facilitate the modeling
process [2].

REALIZATION

Roughly we can state that for lower levels synthesis
tools are available, but for higher level most of the
design steps are made manual. This does not mean

SOLUlIONS

Figure J Design pyramid; showing different abstraction
levels

that there is no tooi support for higher layers. E.g. for making a specification and architecture design
we can use tools based on UML (Unifying Modeling Language [3][4]).

Note that the design pyramid shows an ideal picture. In reality most designs are incremental; i.e., the
product to be designed is an (major) update, variation or combination of existing products. Still for the
newly added ideas designers have to traverse the design pyramid, but will reuse and learn as much as
possible from existing designs.

Reuse and dealing with complexity
Although the design pyramid is often used to illustrate the design process, it does not show how we
deal with complexity. Although oriented towards hardware (chip) design, a better view on this is
given by the Y-chart of Gajski-Kuhn [SJ; see Figure 4. Each circle describes a certain abstraction level (as
in the design pyramid). The behavioral axis represents the temporal and functional behavior of a

CONSTRUCT
ASPECT
MOOElS

ANO
EVAlUATE

PROPERTIES

I :;1jIt Xciii Ui
WHITE
PAPERS
2006

BEHAVIORAL
... '

smw "
AIGOIII1IMS "

KM'" . TUNSfER /

/

STRUCTURAL
/'

CPU· MEMORY

/ SUBSY~TEMS. BUSES

ALU •. REGISTERS

system; the structural axis describes its components
and their interconnection (often called a net-list);
the geometry axis represents the physical design
and realization .

LOGIC " r---. / GATIS . fLIPflOPS

The ideal traversalof th is chart is the following: start
with a behavioral description at system level (upper
left), perform an initial division of the description in
tasks, large data structures, and their communication.
This maps to structural components like (PUs and
Memories. This division is a first illustration of the
'divide-and-conquer' principle. We transform a design
in smaller components such th at:

IUNSIER FUNCl ONS (y) IRANSISTORS

~ 'POLYGONS ')

1:11 ilelfl ilUi

WHITE
PAPERS
2006

1 ,-
-CHLS - MOOULE PLANS

MACROS· FlOOR PLANS

CLUSTERS

. (HIPS· 'PHYSICA! PARI1110NS

~

GEOMETRY

Figure 4 Gdjski-Kuhn Y·chart for system design, pursuant to
161. A design starts at the upper len and finishes at the bonom.

- each component deals with part of the design and
can be easier solved, and

- the system behavior is the composition of its
component behaviors.

The latter property assumes compasitianality of its components, i.e. if we know the behavior of
components and its interconnect we can derive the behavior of the total system. Good models of
computation and design languages allow compositional modeling and design .

On ce we know the structure at the system level, we can define the behavior of each component in
more detail, e.g. by specifying the algorithms needed to implement this behavior. Then the 'divide
and-conquer' process repeats itself. Each algorithm can be decomposed and mapped to structural
components. For each of these components we can make a behavioral description at the register
transfer level, and-so-on.

Where does this end? If everything has to be designed from scratch, the (hardware) designer has to
ultimately specify his system at the transistor level (a huge netlist with millions of connected
transistors). Hopefully he has a geometric description of each type of transistor used. Using the net list
and this description the who Ie physical design (chip) can be synthesized.ln practice things are (luckily)
different. As soon as we can decompose into components for which the physical realizations are
available, we do not have to refine them to lower abstraction levels. Furthermore, starting from the
register-transfer level we have good tools to synthesize systems.

011

012

As mentioned, the Gajski-Kuhn Y-chart isoriented towards hardware chip design. However, embedded
systems also heavily rely on software to realize their functionality. In addition they are closely
interacting through sensors and actuators with their embedding system, which may contain
mechanica I, optica I and ot her components. As aresuIt embedded system design is a highly multi
disciplinary process. Since a common framework for heterogeneous design is lacking, it typically
happens that early in the design process the design is split-up into a hardware part, software part, and
other components. This means that often in a somewhat ad hoc way, based on experience of earl ier
designs, a partition is made. Late in the design cycle these parts will be integrated and the long test
and debugging process for the whole system starts.

I 4 Embedded system design problems I
In section 2 we have seen a number of characteristics which make the design of embedded systems
extremely hard like its increasing complexity (more and more intelligence is put into them),
heterogeneity, concurrency, real-time requirements, often low power, and the reducing time-to
market. But that's not all. There are other problems which make embedded system design even more
challenging. We will highlight two of them (which, as we will discover later, have some relationship):
- The memory wall, i.e. the huge and increasing discrepancy between processing and memory

performance, and
- Uncertainty of behavior.

We will show that variability at application, architecture and VLSI level leads to all kinds of
uncertainties which the designer has to deal with.

Hitting the memory wall
As is well-known, processing performance has increased exponentially over the last two decades with
about 55% per year (that is more than 6000 times faster in 20 years) . This performance improvement
had several contributors: VLSI improvements, giving faster transistors every year; use an enhanced
architecture and organization (e.g. the use of pipelining, exploitation of parallelism at different
levels); implement faster circuits; use of high quality compilation tools, and more code optimizations
(even source-to-source transformation tools become gradually available; see section 9) .
With the increase of processing power, the amount of data needed has also grown tremendously. This
has been facilitated by the exponential growth of memory sizes. However, th is has not been mirrored
by an equal reduction in memory latency (access time). Latency has only improved by about 7% per
year during the last decades. As aresuit the speed difference of on-chip processing and large external

':f"@lrtjIJiJ

WHITE
PAPERS
2006

liOIIiHitilUi

WHITE
PAPERS
2006

memory circuits grows exponentially with almost 50% per year (more than a factor 4000 in 20 years).
This does not mean that memory structures can not be fast; on-chip and small memories can be a lot
faster. It's mainly the long wires of huge memories and the associated capacitance of all connected
memoryelements which make them slow.
Large memories have an additional problem; they consume a lot of energy per memory access. It
would be good if we can avoid too many accesses to large memories; this would reduce energy
consumption and speed-up the processing. Luckily many applications show reasonable temporal and
spatiallocality (meaning that the same or neighboring data elements and instructions are needed in
the near future). This allows us to exploit small on-chip memories. A big debate is still ongoing
whether these on-chip memories should be caches or so-called scratch-pad memories (SPMs). Caches
are hardware controlled; this means the (hardware implemented) cache controller determines when
and where to load data and instructions (when not yet in the cache), and which items to discard
(when the cache becomes full). For SPMs the application writer has to manage local memories himself.
In section 9 we come back on th is important issue.

Uncertainty of behavior
In the past most embedded systems where running a single application, and there was not so much
dynamism in its application (often less than a factor of two). This made life of the designer relatively
easy. E.g. he could measure the worst case execution conditions and design its system solely for this
situation. Today we observe that the dynamism in applications can be considerable; e.g. performance
requirements can easily change over time with more than a factor of ten. An example is drawn in
Figure 5. It shows how the load, measured in the number of required resources (Iike processor
cycles, memory size and bandwidth and communication
bandwidth) varies over time.

We observe that this application suddenly changes its average
resource requirements from a lower to a higher level;
apparently it is running in two different scenarios. Scenarios
are defined as (application) modes of operation which require
substantial different resources. Examples of scenario changes
are: encoding different type of video frames, going from mono
to stereo in an audio stream, going to a different resolution or
size, a sudden scene change, a sudden change in the number
of processed objects. Usually scenario changes are caused
by control parameters which are encoded in the head of a
frame (kind of meta data), or determined by user settings. Figure 5 Load variation in application over time

013

014

On top of scenario changes many embedded systems have to run not just one, but multiple
applications. E.g. a mobile system may support multiple communication codecs (and for each
codec it can still run in different scenarios or modes).
You may ask yourself why is th is so important? A designer can still determine the worst case scenario,
i.e. the situation requiring the most resources (often 'having to take the union of resources required by
different scenarios) and design the system accordingly. This is true, but the system could become far
too expensive, and certainly would not operate in an energy efficient way. In section 8 we will come
back on this issue.

It is not only the uncertainty in application behavior which hurts the designer. Also the availability of
architecture resources is not always guaranteed. Future architecture platforms will contain many
processing resources (see [7]). Since multiple applications may run simultaneously, they have to share
these resources. E.g. multiple tasks have to share a single processor, have to communicate over the
same physical channel, have to put their data in the same memory, need 1/0 at the same time, ete. To
enable sharing we can use all kinds of scheduling policies for these shared resources, like Round
Robin, TDMA, FCFS, LRU, EDLF, or Priority based scheduling, but the bottom line is that the availability
of a resource can not always be guaranteed; someone else might need it at the same time. One way to
tackle this is complete virtualization of all architectural resources. This means that the capacity of each
resource is divided among all its possible consumers (i.e. applications which need this resource at least
somewhere in time), in a guaranteed way. This guarantee has to be enforced by the architecture. As a
result every application 'thinks' it owns its (reduced) resources completely by itself. There are several
problems with this solution however, as we will see in section 8.

Apart from sharing of resources between applications, the memory bottleneck mayalso spoil the
ability to reason about your system. As explained, most systems today use multiple levels of caching
to partially solve the discrepancy between processing and memory speed. However, use of caching
results in unpredictable latencies to the memory system. Depending at which level a data item is
stored, its access latency can vary from one cyde to hundreds of cydes.

Also at the VLSllevel we run into uncertainties [7]. For future deep submicron technologies we can no
long er neglect issues like extreme long wire latencies, dock distribution problems (forcing us to use
multiple dock domains), Vdd and Vss voltage drops, signa I integrity (e.g. due to cross-talk), and
process variation within a single die. 50 far the chip designer could shield the application designer
completely from these effects. This may not be entirely true for future systems. E.g., instead of running
all (similar) parts of the chip at the same, worst case, speed, performance variations may be visible at
architecturallevel. This enables the designer to exploit these differences, but of course makes his task

1:11 iNî'1iJ lij
WHITE
PAPERS
2006

liOIiN?JillJ1
WHITE
PAPERS
2006

more complicated. Also integrity of signa Is, which is now completely taken care off by the hardware,
may have to be dealt with at higher (application) layers.
All above forms of uncertainty lead to design cios ure problems, i.e. a realization can not meet all
its requirements, including functionality, speed, power, and area requirements, without many
design iterations; or in other words, we run into a trial and error design approach, with long
and many design iterations.

I 5 Ingredients tor solutions I

Given all the listed complex features of embedded systems and additional problems mentioned
above, how can we alleviate the job of the embedded system designer? There are a number of
techniques and ingredients which may help:
- Use of standardized domain specific platforms.
- Raise the design abstraction levels.
- Use of an advanced memory hierarchy and design methods to support this hierarchy.
- Develop a predictabie design methodology.
The first item is discussed below; the last th ree are treated in separate sections 6,7 and 8.

Platforms splitting the design trajectory
Use of platforms is not the topic of this paper; we refer to 17] for an excellent overview on trends in this
area. Nevertheless, for the remainder it is needed to spend a
few words on it. A platform is an off-the-shelf available,
general programmabie (containing at least one fully
programmabie general purpose processor), but domain
specific information processing (sub)system, consisting both
of hardware and software. It is the target of an application
(embedded system) designer. It actually splits the design
trajeetory of embedded systems into two parts, the system
design and the platform design (see Figure 6). The nature of
the platform is driven both by the requirements of the
applications to be mapped, and by the capabilities (and
bottlenecks) of available realization technologies.
Using platforms has a number of advantages: 1) it enables
reuse and promotes standardization; 2) it reduces the system
design trajeetory and therefore the time-to-market; 3) pre-

PLATFORM DESIGN

ENABLJNG
TECHNOLOG IES

Figure 6 The use of platforms spli ls the
design trajectory

01 S

016

designed platforms have higher quality and reliability; and 4) the platform can be tuned for a specinc
domain. Note that a platform does not consists of hardware only; a combination of hardware and
software has to raise the abstraction level such that the embedded system designer can view and
abstract the platform as a weil denned set of processing, comm!lnication and storage services. Part of
these services concern guaranteed access to certain resources, this to reduce the uncertainty problem
mentioned in section 4.

I 6 Raise the design abstraction level I
As indicated embedded system design is a multi-disciplinary activity, concerning disciplines from
electronic hardware and software domains, and also requiring strong interaction with other disciplines
needed for the design ofthe whole embedding system. Sin ce a common framework for heterogeneous
modeling is lacking, system design follows the flow as indicated in Figure 7a, where system integration
is performed inevitably in a late design stage. Due to the heterogeneity and uncertainty problems
described earlier, many (design) errors are detected during integration. This can lead to many
substantial design iterations. ln ad dit ion, the later an error is detected, the more costly it is to solve it.
During integration, verincation and quality assessment is mainly performed by testing the physical
realization or prototype. However, testing a concurrent rea I-time embedded system realization is not
an easy task. The reasons are a lack of observability (making it hard to locate and isolate errors). the
Heisenberg principle
in testing, and the
difficulty to offer
stimuli to the system
in a systematic and
controlIabie way.
As aresuit, system
integration and testing
are costly, and
time-consuming tasks.

To reduce this problem
it is needed to change
the design flow and
start with making an
integrated model of the

~, ,
\

Figure 7 Design flow and duration without integrated models (a)

and with integrated models (b)

, ,
I ,

I

FlNAl Tm & INTEGRATIOH

DISCIPLINES

FINAl TEST & INTEGRATION

1:;,1 j{IIitU"J;i

WHITE
PAPERS
2006

l:<Jj(IMjIJii

WHITE
PAPERS
2006

whole system early in the design ph ase, as shown in Figure lb. Ideally this model should allow 1) to
reason at a high level about key properties of the system, and 2) to support a synthesis trajectory
for the realization of the whole system. If we only consider the hardware and software disciplines we
observe quite some progress. A few modeling languages, like SystemC, [8] are available which allow
to describe, simulate and synthesize an embedded system (although with certain restrictions), using
a combined hardware-software description. However, the synthesis trajectory requires the system to
be described at a very low abstraction level (RTL level for the hardware synthesis part). High level
descriptions, which allow to reason about high level system properties, can not be directly synthesized.
Furthermore, extending th is approach to include the modeling of the embedding system is very
challenging. The PROGRESS ViewCorrect project is investigating th is in the domain of embedded
controllers for mechatronic systems (see section 9).

I 7 Predictabie design I
In a mono-disciplinary design, predicting the properties of a product (concerning e.g. power, area,
rea I-time and correctness) from high-level design models is already hard. This is even more true for
embedded applications consisting of many concurrent processes that have to satisfy hard or soft real
time constraints, and that have to share common resources (such as processor and memory resources).
Current design methods eitherlackdecent semanticfacilities for modeling, abstraction and refinement
or they do not provide property-preserving code-generation. As aresuit, the real-time behavior of a
model may differ completely from th at of an (automatically generated) implementation 19]. Wh at is
needed is a predictabIe design trajectory, which means:
- being able to reason at a high level about a design, in terms of functional and non-functional

properties, and
- being able to realize this design, while preserving all its properties, without time consuming

iterations (design closure) .
Ingredients for predictabie design are studied in several PROGRESS projects.

Is your system correct?
This raises the question: how do you prove th at your design is correct? Usually we distinguish validation
and verification. With validation we check whether we make the right design, i.e. is it doing wh at it
should do. This can be ambiguous since we often do not precisely and completely know how the
product under design should behave, under all circumstances, for all possible uses; for this we refer to
the third symposium [10]. With verification we check wh ether we design the system right, i.e. whether
two descriptions at different abstraction levels be have the same.

017

018

In principle we have three options here :
- Do a comparison by simulation.
- Formally proof the design to be correct.
- Correct by construction (or correct by synthesis) .

Simulation has the problem of a never ending story; you never know th at your system has visited all
its state sequences. What people usually do is taking a large and representative data input set for the
simulation. The bottom line is that simulation may take extremely long, especially at low abstraction
levels, and does not completely verify your system.
A formal proof would be much better. Most formal proof systems rely on traversing the whole
application state space. However, this is virtually impossible for any reasonable completely specified
system. Formal proofs are however very useful at sufficient high abstraction level and for aspect
models (see section 3); see further [10).

The best option is the third one, i.e., use design transformation tools which apply correct trans
formations in an automated or user driven way (see e.g. [11) about proving code transformations to be
correct) .
There are two problems with th is option:
1 Transformational design systems have fundamentallimits. As proven in [12) from a given specification

in e.g. VHDL it is not possible to reach by transformations all possible implementations. Actually
onlya subspace of all solutions can be reached, and this subspace highly depends on the specification
itself. In that sense any specification is 'over specified'. Luckily th is does not mean that
transformational design can not be useful; look e.g. at the success of highly optimizing compilers.

2 There is no reason to believe that we ever can synthesize a complex system automatically and
efficiently from a high level specification.

Dur concJusion is th at a completely predictabie design trajeetory does not exist. The best we can do is
the following:
- At a very high level of abstraction the system models can be traetabie by formal methods and

tools. They should be used to validate your design and check certain properties, like not running
into deadlock.
At high level use aspect models to guide design (transformation) decisions (see section 3) .
If aspect models are smalI, formal provers may be of help here as weil.

- Use weil defined transformations as much as possible.
- From a certain lower abstraction level the design may be detailed enough to allow automatic

synthesis tools to transform it into areasonabie efficient implementation and realization.
This level is raising gradually.

1:01 iNti il Ui
WHITE
PAPERS
2006

Sc1

FREQ
Sc2

i

- The quality of a design trajeetory highly depends on platform specifics, and on the focus to an
application domain.

The last point needs some explanation. lt will be clear th at the smaller the gap the synthesis trajeetory
has to bridge, the higher potential synthesis quality. E.g., an architecture offering guaranteed services
makes life much easier. Furthermore, when restricting to a certain application domain, results usually
are better. E.g. for streaming applications which can be expressed as SDF (Statie DataHow) graphs we
can both provide powerful model checking and design exploration tools, as weil as areasonabie
synthesis trajeetory. As another example, given acontrol dominated application in the language
POOSL (13), we can synthesize correctly (preserving properties) an implementation on a single
processor platform.

Scenarios
In section 4 we discussed that applications can run into different operation modes, called scenarios,
where each scenario has substantial different resource requirements. Assuming that we can determine
or predict in which scenario an application is, we can do a better design job. Usually an application is
not in the worst case scenario (see Figure 8). This means that most times we do not need all resources,
or we can use the resources in a more energy efficient way. Thus we can exploit an implementation
trade-off between energy and performance, which often exists.

One way of exploiting scenarios is using DVS (dynamic voltage sealing). For each scenario we lower
the voltage such, th at we can still meet our deadlines [141 . We can also exploit the fact th at correlations
exist between scenarios of different applications. E.g. two video applications can not run at full screen

Sc]

resolution at the same time.
Scenarios play an important role in OoS (Ouality-of
Service) management, especially since many applications
become scala bie (and therefore can run in different
scenarios). The purpose of OoS is to give the best quality
for the available processing and energy resources. Being

f i i • i • i ij i i I i i I I I i , i i i , , i i , •

LOAD

scenario aware allows much better quality for the same
resources. This has a big impact on the design trajeetory.
At design time scenarios have to be discovered and
selected, at run-time scenarios have to be determined or
predicted, and we may have to switch to another
application design point and different platform settings.

l:tIiNiIiI"i1

WHITE
PAPERS
2006

Figure B An applieation load frequeney disnibution
,howing three ,eenano,; Se3 i,!he baekup ,eenario

01<;

020

Composability
So far we talked mainly about mapping a single
application. However, as discussed, embedded
systems may have to run multiple applications
simultaneously. Here we run into a severe problem.
It turns out that we can not simply add Pareto
points, as shown in Figure 9. Note, a design point
(ql,CI), having quality ql and cost Cl, is a Pareto
point if there are no other design points (q,c)
for which q>ql and simultaneously c<c l (i.e.,
there are no solutions which have both better
quality and cost).
If application 1 is designed to be able to run with
quality ql using resources Cl (Pareto point (q I,CI)),
and similarly application 2 can run at (q2, (2), then
it is not guaranteed that you can run them together,
both at the expected quality, even if sufficient
resources are available, i.e. CI+(2 smaller than
available number of resources. This is the com
posability problem. A mapping of multiple applica
tions to a multi-processor platform is composable
if we can reason about the whole system behavior,
including used scheduling policies for shared
resources, based on the analysis of each application
individually. So we do not need to analyze all
(exponential growing) number of use cases.

COST (RESOURCES)
•
\ , , ,

',» Ie'

(ql+ql,d,(ll?

COST (RESOURCES) . , , , ,

Figure 9 (ompOling two applications on one GSM:
do we get the expected quality?

As suggested in section 4, we could virtualize the platform completely (assuming that the platform
architecture can support th iS) to solve this problem. However that would imply that each application
can only consume a tiny part of the total resources, even if it is running alone. It has to assume that all
other applications could be running at the same time. This is clearly not acceptable, both for energy
and performance reasons. What we need here is:
- Architectural support for virtualization, but still allowan application to consume more resources, if

avallabie, than its guaranteed budget.
- Agiobal QoS manager optimizing the global quality, i.e. deciding wh at the quality of each

application should beo

I :;w i r.Iït;I Jii

WHITE
PAPERS
2006

l:;,Jj(lliljIUi

WHITE
PAPERS
2006

Per application alocal QoS manager; this one negotiates with the global manager, and instantiates
the appropriate Pareto point (Quality versus (ost/Resources) for the local application.

- A platform Resource Manager; it can offer guaranteed number of resources to the global manager.
It also enforces appropriate scheduling disciplines for all shared resources.

The most important, however, is to solve the composability problem. Only wh en we solve this the
resource manager can give hard guarantees without having to analyze all possible application use cases.

I 8 Solving the memory wa 11 I

In section 4 we have seen th at large memories are extremely slowand consume a substantial part of
the total energy. The good news was that many applications show sufficient locality. But, how do we
exploit th is locality? A first step, used by many processor and platform vendors is to add an elaborate
cache hierarchy, containing at least 2 levels of caching. (aches are controlled by hardware. For data we
have in addition the register level (usually considered level-O) which is controlled by software (the
register allocator of any good compiler). To reduce energy consumption further and make better use
of memory hierarchies we observe the following trends:

Memory hierarchy become more software controlIabie by either using SPM (scratch-pad memories)
and/or software managed caches.

- The data path and the associated register file are split into clusters. Especially for high IlP
(instruction level parallel) architectures this makes sen se. It reduces the number of ports on the
register file and therefore its energy consumption (and also area and latency).
loop buffers are added, i.e. a level-O cache to the instruction side.

- One step further is to split the loop buffers, like we cluster the data path.
Note that using software controlled on-chip memories has always been favorite in the embedded
world, because of the inherent non-deterministic latencies of a cache based memory hierarchy.

Using all of these measures puts quite some extra burden on the design trajeetory (didn't we have
already enough problems to solve?). Gradually tools become available, however, which do the
necessary source-to-source (-code transformations to relieve the job of the designer [1S], [16]. The
results seem very promising; energy consumption in the memory hierarchy can be reduced with an
order of magnitude.

021

on

I 9 PROGRESS project involvement I
This section describes the research themes of several PROGRESS projects in relation to the embedded
systems design problems. Note th at due to spa ce restrictions we can only treat a few highlights.

MASSIVE Modeling, Mapping and Simulating Scala bie Hierarchical Embedded Signal Processing Systems (lES.5028).

The aim of Massive is to design very complex and high performance signal processing systems, like the
new and gigantic SKA (Square Kilometer Array) telescope, which is used as case study. We talk here
about thousands of processing units. A hierarchical design and modeling approach is needed and
researched in this project, where a clear separation is made between modeling of the control and of
the signal processing part. One of the results is a methodology for high level design which assists into
going from specification to architecture modeling (see Figure 3). It is based on a library containing
parameterized constructs both for architecture and application building blocks in their domain of
interest, and on separating the different aspects of the architecture through different views, while
maintaining consistency between them [17].

AS ES Analysis and synthesis of embedded systems with discrete and continuous control (EES.5173).

As mentioned in section 6 it is needed to make, early in the design flow, an integrated model of the
whole system. To achieve this, the ASES project has focused on the high-level interaction between the
embedded and embedding system. For describing and analyzing this interaction, a common modeling
environment is required to support mode Is from bothllhysics and control (embedding system) and of
computer science (embedded system).ln control the use of hybrid models have been proposed and in
computer science hybrid process algebra. These hybrid models are capable to deal with both time
continuous and time discrete processes and so cross the interface between the embedded and
embedding systems. The project has delivered an identification tooi for modeling hybrid systems
based on measured data and a hybrid extension of process algebra for describing hybrid process
modeis. The results have been applied on a pick-and-place machine of Assembleon.

Development of a Design Framework for Heterogeneous Real Time Embedded Systems (TES.5224).

As mentioned in section 3, embedded systems have a natural concurrency. This project has taken the
concurrent programming model CSp, Communicating Sequential Processes, as bases for describing
embedded systems used as rea I-time controllers and building a design framework. This framework
includes a graphical editor (gCSP), a Java and C ++ implementation of a CSP library, adding priorities
to CSP communication events, and adding several dependability design patterns, like watchdogs and
monitors. Furthermore couplings have been made with formal model checkers, and with the tooi
20-sim (a modeling and simulation package).

I iI1 i{!Xi1il Ui

WHITE
PAPERS
2006

liljNl'IjlUJ

WHITE
PAPERS
2006

HIGH2: High-level Synthesis Tools for High-throughput Digital Signal Processing Applications (TES.5226).

In th is project synthesis techniques of embedded systems for streaming applications are researched,
for which the streams are not fully synchronous (i.e. the samples are not always coming at the same
time interval), or whose behavior and compute requirements are data dependent. The result of the
project is a) a new type of data fiow architecture, and b) a mapping methodology which allows to
determine crucial parameters like latency, throughput, number of required processing units, and
buffer sizes. This project is an example of research where a clear focus in application domain in
combination with appropriate architecture support allows to reason about rea I-time properties,
making designs more predictabie (see section 7).

VIEWCORRECT: Predictabie co-design for distributed embedded mechanic control systems (TES.7020).

This is a recently started project which focuses on the late integration problem (as discussed in section 7),
in particular for the rea I-time control part of mechatronic systems. It proposes a methodology based
on three components:
- Multi-disciplinary modeling. Instead of trying the find the holy grail of one unifying model, this

project tries to let each discipline use its favorite (and weil studied) modeis, but integrates them in
one cooperating framework (compare e.g. Ptolemy2 of Berkeley University [18]). A set of tools, like
consistency checkers (to avoid inconsistencies), work on th is model.
Views. In accordance with the above remark it makes sense to also support different views on the
design, including a control-view, software and hardware views, and a reliability view. These views
mayalso be edited.

- Correctness-preserving code generation. Extend the correct by synthesis approach for control
applications to include also compute intensive tasks and with mapping to a multi-processor
platform.

Other PROGRESS projects with astrong embedded system design component are:
• from the Networks and Connected Embedded Systems theme:

-TES.5410: Development of compositional programming techniques for networked heterogeneous
embedded systems

• from the Networks-on-Chip theme:
- EES.5411: SMARTCAM: Devices for embedded intelligent cameras
- LES.6389: ARTEMISIA: Architecture, programming and exploration of network-on-chip based

embedded system platform: ARTEMIS In Action
- EES.6390: PREMADONA: Predictabie matching of demands on networked architectures
- DES.6392: RCOSY: Reconfigurable compiler system
- DES.6397: SCALP: Programming models and performance evaluation of tile-based architectures

01\

024

• other projects from the Verification and Validation theme:
- EES.5141 : Specification Tooling for embedded software components

Forthese projects we referto their PROGRESS website and to the papers describing their corresponding
themes (7). [19). [10).

110 Summary, conclusions and open issues I
In th is paper we have given a bird's eye view on the complicated world of embedded system design.
Starting with the design pyramid we outlined current design practice, and focused on a few problem
areas having to do with the memory wal!, late integration, and the uncertainties and variability at
application, platform, and VLSllevel. We outlined several key ingredients to alleviate the job of
the designer, namely: high level modeling and early integration, making the design trajeetory
more predictabie and composable, using an automated synthesis approach, and the exploitation
of scenarios.
The embedded system design area is huge. So the reader will not be surprised that there are many
more open issues. Some of them are mentioned in section 9 where we list several PROGRESS project
contributions. We end by listing a few very hot research topics which are closely related but hardly
treated so far:
- Requirement capturing. Requirement capturing and making complete specifications is already

hard for 'standard' products. However, we are heading to a world with numerous ambient intelligent
devices which have to adapt to user needs and environment changes. For these produets the
requirements will not be completely clear at design time. How do we deal with this?
Bridging the gap between specification and architecture modeling (see Figure 3). This is perhaps
one of the most challenging topics. We can only expect to be successful here if we restriet to highly
focused application domains. For these domains we could e.g. build libraries of modeling patterns.
A clear example of th is is the system evaluation methodology developed in the Massive project.

- Application and Architecture model ing. Appropriate models are not only needed at design-time.
In an embedded world where many, even unforeseen, applications have to run on many platforms,
the quality and run-time managers have to take quick run-time mapping decisions. For th is we
need application and architecture models which allow a quick mapping, while still being able to
reason of the quality and guarantees of the mapping.

- Multiple design points. We did not pay much attention to design space exploration (DSE). Typically
designers iteratively map an application to a platform, meanwhile transforming the application
and changing the platform parameters; finally th is gives a single design point.

liIIiNdill'li

WHITE
PAPERS
2006

l:JiltlïtilJi1

WHITE
PAPERS
2006

In the future a single implementation may not suffice. The OoS manager requires options for gracefully
sealing the quality. Even for a given quality it prefers to have multiple mapping options, such th at it
can perform a good overall mapping for all running applications. This means th at during the design
process we have to keep multiple solutions in our design space (unlike in Figure 3). A formal theory
and proper tooling on dealing with multiple Pareto points (a Pareto Algebra) is needed.lnitial results
become available and seem promising.

Automatic and late partitioning. Future embedded system platforms will have a large set of
heterogeneous components including multiple processors. Somewhere in the design trajeetory the
application has to be partitioned among these components; e.g. splitting the application in
different tasks and decide where to run these tasks. SA far partition is done early in the design
trajeetory. Research shows however that many transformations can and should be applied
independently of the partitioning. In fact a good partitioning can not be decided after many
refinement steps have been made. Automatic partitioning is very appealing, since after many
refinement steps the code is far less readable for the designer; in addition it allows exploring a
much bigger design space and would give us multiple implementation options (see previous point).
However fully automated partitioning for arbitrary programs and platforms is still a holy grail. The
good news is that human support tools, doing the dirty work (correct by construction), become
available, like the SPRINT tooi from IMEe. For focused areas, like weakly dynamic programs [201, we
can even automatically generate different Kahn Process Networks.

025

or

References
[1] S. Okada et aL, System on a chip for digital still camera, IEEE Trans. on Consumer

Electronics, Volume 45(3), page 584-590, August 1999.
[2] Edwards, Lavagno, Lee, Sangiovanni et al: "Design of Embedded Systems: Formal

Modeis, Validation and Synthesis'; Proe. of IEEE, Vo1.85, No 3, March 1997, pp. 366-390.
[3] Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified Modeling Language

User Guide, Addison-Wesley, 1999.
[4] Mandar Chitnis, Pravin Tiwari, & Lakshmi Ananthamurthy, UML Overview.

http://www.developer.com/design/article.php/1553851
[5] D. D. Gajski, R. Kuhn, "Guest Editors' Introduction: New VLSI Tools'; IEEE Computer,

vol. 16, no. 12, pp. 11-14, Dec. 1983.
[6] Prof. Dr.-Ing Gerd Dost and Dr.-Ing. Göran Herrman. Entwurf und Technologie von

Mikroprozessoren. In Thomas Beierlein and Olaf Hagenbruch, editors, Taschenbuch
Mikroprozessortechnik, pages 357 - 359, München/Wien, 1999. Fachbuchverlag Leipzig.

[7] Jef van Meerbergen, Networks-on-Chip: A communication-centric approach to
platform-based design, fourth chapter of this publication. p. 67.

[8] http://www.systemc.org/
[9] J. Huang, J. P. M. Voeten, J. Florescu, P. v. d. Putten, and H. Corporaal, Predictability

in Real-Time System Development, book chapter, best of FDL'04, Advances in Design
and Specification Languages for SoCs, Kluwer Academie Publishers, 2005.

[10] Frits Vaandrager, Does it pay off? Model-based verification and validation of
embedded systems, third chapter of this publication, p. 043.

[11] K. C. Shashidhar, Maurice Bruynooghe, FranckyCatthoor, Gerda Janssens. Verification
ofSourceCode TransformationsbyProgram Equivalence Checking.14th International
Conference on Compiler Construction (CCOS), Edinburgh, UK. In LNCS 3443, 2005,
pp.221-236.

[12] Jeroen Voeten, Fundamental limitations of transformational design. ACM
transactions on Design Automation of Electronic Systems, Vol. 6, No 4, Oct. 2001 .

[13] B. D. Theelen, Performance Modeling forSystem-Level Design, PhDthesis, Eindhoven
University ofTechnology, The Netherlands, PhD thesis, Eindhoven, 2004.

[14] S.V. Gheorghita, T. Basten and H. Corporaal, Intra-task Scenario-aware Voltage
Scheduling, Proc. of the International Conference on Compilers, Architecture and
Synthesis for Embedded Systems CASES2005, San Francisco, CA, USA, Sept. 2005.

[15] F. Catthoor, K. Danckaert, C. Kulkarni, E. Broekmeyer, P. G. Kjeldsberg, T. Van Achteren,
and T. Omnes. Data access and storage management for embedded programmabie
processors. Kluwer Academie Publishers, March 2002.

l:fIiltI?lilJi1

WHITE
PAPERS
2006

1:01 iNïIiI Ui
WHITE
PAPERS
2006

[16]

[17]

[18]

[19]

[20]

Murali Jayapala, Francisco Barat, Tom Vander Aa, Francky Catthoor, Henk Corporaal
and Geert Deconinck. Clustered loop Buffer Organization for low Energy VlIW
Embedded Processors, IEEE Trans. on Computers, Vol 54(6l, pages 672-683, 2005.
A bridge from user requirements to forecasted embedded systems technology.
Proceedings of the 5th PROGRESS symposium on Embedded Systems, 2004.
http://ptolemy.eecs.berkeley.edu/
Ignas Niemegeers, Chalienges for Future Networked Embedded Systems, second
chapter of this publication, p. 029.
Converting weakly dynamic programs to equivalent process network specincations.
PhD thesis, leiden University, 2004 (research performed as part of the Artemis project).

OH

1:;):llli'I:IUi

WHITE
PAPERS
2006

ET 0 K D o ED
Ignas Niemegeers
Centre tor Wireless and Personal Communication, TU Delft

Abstract
In this white paper we examine the direction research in embedded networks might take. We first
discuss the technological drivers for the advent of ubiquitous computing and communication, which
will spawn a myriad of networked embedded systems. Next we examine the nature ofthese networked
systems in contrast to the classical telecommunication and data networks. We then argue th at a
number of new research issues need to be addressed.
We discuss the work th at is going on in the Dutch PROGRESS research programme on embedded
systems in th is context and draw some conclusions.

I 1 Introduction I

Network research has traditionally been associated with the field of telecommunications and the
Internet. These have been characterised by infrastructural thinking and long term investments; they
have been influenced by industrial players in particular the large telecommunications and Internet
equipment manufacturers, service providers and operators.
Although the services are evolving from voice and data transport services to a rich portfolio of
personalised and multi-media services, the design philosophy is very much network-centred, i.e.,
networks are highly managed entities that serve as a generic infrastructure for a large variety of
services. Networks are surrounded and supported by organisational entities that are professional and
take care oftechnical and financial management.
The advent of ubiquitous computing and communication has created new perspectives on the field of
network research, leading to new classes of networks such as infrastructureless ad hoc networks,
hybrid networks, sensor networks [1,21, vehicular and inter-vehicle networks [31, ambient networks
[4,51 and personal networks [6,7,8,91. Characteristic for these networks is th at they will be embedded
within systems supporting distributed applications.
Communication does not necessarily involve people, and, although they support the activities of
people, they are deliberately made "invisible" to their users [lOl. Examples of application domains of
these networks are health care, ambient assisted living, transportation, personal networks, future
home networks, vehicle control, traffic management, safety management, security systems, crisis
management, military command and control systems, ete.

019

OiO

In th is white paper we examine the direction research in embedded networks might take. We first
discuss the technological drivers for the advent of ubiquitous computing and communication, which
will spawn a myriad ofnetworked embedded systems. Next we examine the nature of these networked
systems in contrast to the classical networks. We then argue that a number of new research issues
need to be addressed. We discuss the work that is going on in PROGRESS in th is context and draw
some conclusions.

I 2 Drivers tor Change: Semiconductor Technology and Wireless I
Ubiquitous computing and communication is
avision that has come about primarily
because of the evolution of semiconductor
technology. In particular Moore's law is and
has been for already 30 years the primary
driving force. A popular formulation of
Moore's law is that the numberoftransistors
on integrated circuits, which is a rough
measure of computer processing power,
doubles every 18 months [11]. A corollary is
that the price to make an integrated circuit of
a given complexity is bound to drop
dramatically as time goes on. Moore's law is
illustrated in Figure 1 which graphically
shows the growth in complexity of integrated
circuits over a period of thirty years.

.,-------j MOOR E'S LAW

10,00 (1 ,000,000

1,OOO,OOD,lJ()!J

101l,aoo,aOii

1,1)00,000

100,000

10 ,000

1.300

•• ,."1111"111

•

l lno Itn

~ ______ J

As a consequence, one can reliably predict
th at it will soon make sense to equip every Fig.l An illustration of Moore's law

new artefact with computing and com-
munication capabilities, combined with
sensors and actuators. This is confirmed by recent predictions by market researchers. For example,
according to Harbor, by 2010, 40 percent of all potentially networkable electronic or electromechanical
devices will be connected [12]. According to Forrester Research, by the same year, the sales of network
enabling chips are likely to reach a number of 14 billion [13].

These chips will not only find their way in inanimate objects, but wil I also be implanted in humans for
medical and health reasons and in animals for identification and tracking, Medical sensors and

lil iltIiI :Ilii

WHITE
PAPERS
2006

l:IIiN?WIJJ

WHITE
PAPERS
2006

actuators with computing and radio communication are already commercial products. Active and
passive Radio Frequency Identification Tags or RFIDs will, as soon as their reliability is high enough
and a number of non-technical problems are solved, cause a wholesale replacement of bar code labels
to identify and track products. Already now 2.4 billion RFID tags have been deployed up to this year
and another 1.5 billion are expected to be deployed in 2006 alone 114]. This wililead to a huge market
and eventually a revolution in applications.
In 1991 Mark Weiser, described in "The computer for the 21st century" [15), his vision of ubiquitous
computing. We are approaching the age where computer technology is omnipresent but at the same
time"recedes into the background of our lives'~ This omnipresence will happen as a result of economics
and will pose some major scientific challenges in dealing with the problems of mastering the
connectivity and the complexity of such systems. However making sure that this technology recedes
into the background, is a major challenge for research ers, engineers and product developers.
A significant development driving ubiquitous computing, which is related to semiconductor
technology, is the advent of very inexpensive sensors which are able to capture data about physical,
chemical and biologica I phenomena, e.g., temperature, pressure, concentration of harmful chemicals
in the environment, heart rate, ete.
An equally important enabling technology development is the advent of a range of wireless
communication technologies. These are the essential links that interconnect the computing and
sensing devices: on a small scale, through short range radio covering distances of the order of 10 m
(IEEE P802.15 standards), on alocal scale of the order of lOOm, using Wireless Local Area Network
(WLAN) technology (IEEE P802.11 standards), on a metropolitan scale using cellular radio technologies
and fixed wireless access such as the new WIMAX technology (IEEE P802.16 standard), or on an even
grander scale using terrestrial broadcasting systems such as DVB-T, satellite communication or
potentially High Altitude Platforms or HAPs based on stratospheric balloons.
The essence of radio communication is th at it makes it easy to physically interconnect devices; no
infrastructure in the form of wires or optica I fibres needs to be made, and no connectors are needed.
Mobility obviously requires wireless communication. At the same time wired network technology will
also evolve.
The role of wireless networks is threefold:
• Making it convenient to connect devices to infrastructure, e.g., to Internet via WLAN access points
• To allow objects or people to move while staying connected, e.g., 3G networks
The two roles we just mentioned, untethered access to communication and supporting
mobility, are the classica I roles.
• The ad hoc interconnection of devices, without relying on infrastructures.
This role is new and is of particular importance to embedded networks. It makes sense in places and
situations where infrastructure is not available or the right infrastructure from the perspective of cost

03 1

Ol 2

and technical characteristics is not available. The Bluetooth [16] and ZigBee [17] technologies were
intended to make this possible. An example is an embedded network for control of an industrial
complex, where one wishes to interconnect many very low cast devices. These devices are likely to be
battery powered, hence they have to have very low energy consumption, moreover, the computing
and communication chips on-board should be very inexpensive, implying the absence of physical
connectors. An ad hoc (self-organising) wireless network can result here in large cast savings with
respect to an infrastructure network. Devices can be insta lied anywhere by non-specialist personnel;
as long as they are within radio range of neighbours; all devices will organise themselves in an ad hoc
embedded network.
low cost wireless technologies will be a major driver for embedded networks. The developments in
wireless technologies are converging in what is cal led 4G.let us briefly discuss the characteristics and
implications of 4G.

I 3 Fourth Generation Wireless Networking: 4G I

4G is an ill defined concept. 4G refers to a collection of technologies and standards that will find their
way into a range of new ubiquitous computing and communications systems. 4G offers the promise of
allowing entities to connect to the Internet and one anotherthrough a variety of devices and standards

Acms NETWORKS

~ t,-
"" EMERGENCY \

NETWORK ___ •

SEN SOR
NETWORK

AOUO(
f.

NET WORK t

fig. 2 A view of 4G wireless systems

t

I:U'IiI;IUJ

WHITE
PAPERS
2006

lif'liltIitilJiOi

WHITE
PAPERS
2006

anytime, anywhere, and at a wide range of speeds, from narrowband to broadband (Figure 2).
Some important implications of 4G systems are:
• The not ion of ubiquity: the possibility to bI' connected to whoever or whatever we want to bI'

connected to should bI' there.
• The complexity should be hidden to the users of such a system: the end-user and the application

builder. To the human user in particular the network should be invisible.
• It should always be available, so that it can become a substrate for a wide range of new applications

that depend on ubiquitous dependable connectivity.
• It should be secure and safeguard the privacy of its users. This is becoming a major concern.
Let us now discuss the major technologies and technological challenges involved in 4G. We do th is
using the 051 Layered model as a guideline and briefly discuss: the Physical Layer, i.e., radio technology,
the Link Layer technology and the Network and Higher Layers.

I 4 Technologies tor 4G I

Radio Technology
From a technical point of view, what is needed is cost-effective bandwidth over a very wide range of
data transmission rates: from a few bit/s, e.g., in sensor networks, to Gbit/s radio links for transferring
huge files in a short time. Coverage is needed over a wide range of distances: from short-range, indoor
pico-cells to outdoor cellular systems. Mobility of communicating users, objects and vehicles needs to
be supported: from movement within buildings at pedestrian speeds to high-speed vehicle mobility
for cars and trains. Since spectrum is a limited resource due to interference and regulations, better and
cleverer, ways are needed to use and share the spectrum with others.
Some of the promising technologies that are researched to achieve these goals are:
• The use of smart antennas, Space-Time Processing and SOMA to achieve spatial reuse of the

spectrum in a given area.
• The use of low-power short-range Ultra Wide Band or UWB, to operate across parts of the

spectrum that are used by licensed and unlicensed narrowband signais, without significantly
disturbing them.

• The use of line-of-sight mm-wave radio for indoor usage, e.g., at 17 and 60 GHz to achieve very high
data transmission capacities at short range.

• Software Oefined Radio (SOR) and Software Radio (SWR) to reconfigure radios dynamically to
communicate with different radios belonging to other parties, to adapt to available radio
channels, spectrum and different standards, and, to evolving hardware platforms to profit from
Moore's law (SWR)

0) 4

• Cognitive Radio to use the most suitable parts of the spectrum, waveforms, coding, etc. in
cooperation with radios of other parties in order to optimise the temporal and spatial spectral
efficiency, given the requirements of the applications. Cognitive Radio implies th at the radio is able
to sense the spectrum usage, knows the context it is operating in and the needs of the applications
and dynamically accesses the spectrum. lt will be heavily software based.

Link Layer Technology
A large number of Physical and link layer technologies are available or are under development. These
are the subject of standards specified by organisations such as ETsl, 3GPp, for cellular 3G systems, and
in particular IEEE for access networks, local area networks and short range networks. These standards
are a prerequisite for creating mass markets that bring the co st of components down.
some challenges that need to be addressed here are:
• Achieving efficiency in multi-hop wireless communication
• Achieving low-power consumption to allow battery powered devices a long lifetime between

battery replacements, this is in particular crucial for sensor networks which consist of throw-away
or hard-to-reach devices

• supporting Quality-of-service (Qos). which, in particular in ad-hoc networks, is hard to achieve

Network and Higher Layers
The role of the Network layer is to interconneet the different subnetworks consisting of different link
layer technologies. Other functions are routing, support of mobility, and support of Qos. Increasingly
the arena where these technologies are discussed and standardised is the Internet Engineering Task
Force (lEH) and to alesser extent IEEE P802.
some of the prominent technologies that are crucial for constructing 4G systems are:
• Mobile Ad-hoc Networks (lETF Working Group MAN ET), which addresses the network functions in ad

hoc networks, in particular routing
• Network Mobility (IETF Working Group NEMO). addressing the mobility of entire networks with

respect to infrastructure
• Network configuration (lETF Working Group ZeroCon). addressing the issues of automatic

configuration of networks
• Wireless Mesh networks (e.g., IEEE P802.15.5)
• Integration of complementary wireless networks: e.g., Cellular-WlAN-WPAN

At the higher layers (Transport, session and Application) major components are:
• Transport protocols for wireless networks
• Middleware technologies for mobile computing and systems with intermittent connectivity, e.g.,

Migrate [18] and JXTA [19]

l:IIi(.Irtillii

WHITE
PAPERS
2006

l:oJjllIiljJUi

WHITE
PAPERS
2006

• The IEH Session Initiation Protocol (SIP) and Host Identity Protocol (HIP) and crosslayer approaches
to support mobile computing applications

I 5 Distinguishing characteristics of future embedded networks I
Three major characteristics together with a number of user requirements introduce new challenges in
the design of future embedded networks. We focus on the differences with respect to the design of
network infrastructure for classical telecoms applications and data communication. We examine each
of the characteristics and requirements and discuss the ensuing research issues to be addressed.

New characteristics of embedded networks
• The heterogeneity of the networks and their components

Given th at we expect every artefactto be equipped with computing and communication capabilities
and the advent of extremely cheap sensor nodes, we will face a large heterogeneity of the device
capabilities and their energy supply. Already now we have to network systems consisting of
powerful computers on the one hand and large numbers of RFID tags and disposable sensors on the
other hand. The range of processing power, storage capacity, communication interfaces and
functionality will be very wide. Moreover various wired and increasingly wireless link technologies
with very different characteristics will coexist. An example is the set of IEEE 802 standards for wired
and wireless communication which cover a range of very different link performance characteristics
(e.g., data rates, FER and time variation of the performance characteristics).
The design of communication protocols up to now has mainly addressed the communication
between entities with commensurate capabilities and transmission links. Research is needed on
network architectures, protocols and algorithms that explicitly take into account the heterogeneity
of the components. This wililead to asymmetrical protocols, e.g., involving elected functions such
as master devices, agents and gateways, which may change dynamically over time.

• The potentially very large number of devices
Classical telecommunications deals with single end-user devices (e.g., computers and phones) and
networks built from routers and switches. Scalability problems, e.g., in the Internet, arise from the
sheer numbers of end-users and sessions between them.ln embedded networks on the other hand
we have to support the communication of a potentially very large number ofheterogeneous devices
having limited capabilities. An example is sensor networks consisting oflarge numbers of disposable
sensors, physically embedded in buildings and structures. This has led to the coining of the term
"Internet of devices" by Linda Bernardi [201.

Research is needed on the sca[ability of proposed network solutions to very large numbers of

Ol 5

016

energy-poor and limited-capability devices, in the expectation that virtually every artefact will
have computing and communication capabilities, and the advent of extremely cheap sensor nodes.
The emerging RFID tagging is already a harbinger of th is trend. The design of architectures and
protocols for heterogeneous embedded networks that are scala bie to very large numbers of devices
with limited capabilities is an important research topic.

• The dynamics of the system
We are used to think of networks as fairly static infrastructures that are properly configured before
they start operating. Future embedded networks are likely to be dynamic networks, where node
and topology changes are normal occurrences. They will be associated with moving entities, people,
vehicles, robots and machine parts.
Devices will join or leave the network (1) as a result of the role they play in supporting a particular
application, different operating modes (awake, asleep, standby and dead) due to energy
management, movement of the devices causing them to either become connected or disconnected,
and (2) the time varying behaviour of radio links (fading, obstructions, etc.). All th is causes a time
varying topology with changing nodes and links. Moreover the quality of the links will also change
over time.
Mobility has been a much researched theme in networks, and the recent work on ad hoc networks
has addressed some of the issues (e.g., IHF MANET and NEMO). However most of the research has
brought solutions for homogeneous systems as weil regarding the nodes as the links.
New research is needed to address the design and analysis of dynamic networks.ln particular a new
Quality-of-service framework is needed with performance measures, system dynamics modeis,
traffic and mobility models to analyse, simulate, measure and validate the behaviour of dynamic
embedded networh This will also require research on new mathematical models for analyzing
dynamic system behaviour.

New requirements
• The need to be self-organising and self-managing

Systems should be able to be managed with little or no intervention of technically trained people.
The way networks are managed nowadays by specialised system managers is not scala bie to future
networked embedded systems, because ofthe sheer numbers of components, the system dynamics,
the heterogeneity of devices and subsystems, the functional and performance requirements, and
not the least. the cost requirements.
Self-configuration and reconfiguration implies that components are able to bootstrap without
operator intervention, detect their environment (neighbouring components) and context, are able
to connect to other components and organize themselves in a network. This process may, depending
on the complexity and the extent of the physical distribution of the system, have to repeat itself at

l::.til l liUU1

WHITE
PAPERS
2006

liliNê1jlU1

WHITE
PAPERS
2006

a higher level and form overlay networks between components and subnetworks. The system
should be conscious of its purpose, i.e., the applications it has to support and form and configure
itself accordingly.
Self-optimization is a requirement, since the resources in the embedded networks are likely to be
limited (e.g., energy supplies, capacity of radio channelsl, and, operating conditions and system
mission may change in unpredictable ways. Off-line system optimization by trained experts is not
an option, because of interruptions of service cannot be tolerated and cost needs to be low.
Self-healing is for the same reasons a requirement. Moreover it may be difficult or impossible to
carry out maintenance operations. For example in sensorised industrial structures, sensors may not
be accessible to maintenance personnel, hence automatic reconfigurations have to take place to
maintain the system functionality and performance when these components fail.
The system requirements discussed here are also the subject of a new research domain called
autonomous computing systems [21].

• Trustworthiness
Because embedded networks will be essential for supporting many functions for people (e.g.,
ambient assisted living), including critical ones, people will start to rely on them heavily, without
noticing their presence. They will also form the backbone of automated systems, e.g., for vehicle
safety and protection against industrial accidents. They will have to be trustworthy, i.e., they will
have to satisfy stringent requirements regarding dependability, security and, for person oriented
applications, privacy.
This implies the aforementioned self-healing and reconfiguration, but also self-protection against
threats, because of the limits on the response time to threats.

• Context awareness
Networked embedded systems will operate under varying and unpredictable conditions and will
have to adapt themselves without the intervention of trained personnel. This requires th at they are
able to capture and act upon changes in their environment, e.g., car networks may want to sense
the presence of other networks belonging to other cars and, depending on the speed of the car
decide to link up and start up cooperative applications to enhance safety. This behaviour is called
context aware. Context awareness is a very active research theme; however context in relation to
driving the formation and self-organisation of embedded networks is only starting to be
addressed.

• Keep complexity hidden to programmers and users
Embedded networked systems will become widespread and successful only if many applications
can be quickly developed. This requires simple programming interfaces (APl's) which abstract from
the complexities of the underlying system. This in turn asks for research in generic middleware
which provides much of the functionality that takes care of the selforganisation and self-

Ol

038

management and creating trustworthiness, and deals with the characteristics of these systems,
e.g., their dynamics and heterogeneity. Examples from the operating system community are
MIGRATE and JXTA. The work on middleware architectures for mobile distributed systems is also
relevant here. A survey can be found in [221 . This paper also considers hybrid systems, which consist
of mobile ad hoc subsystems and infrastructure-based parts.
low cost
Embedded networks will be components of embedded systems, providing generic functionality
supporting a wide range of applications, including consumer applications. A large scale deployment
of such systems benefits from, but also needs low cost solutions. RFID technology, cheap sensors
and cheap air-interfaces, e.g., IEEE 802.15, are examples thereof. The requirement for low cost also
implies that no trained personnel are needed for operating the systems.

Considerations tor designing protocols and mechanisms
The design of the architectures, protocols and mechanisms for embedded networks will have to take
into account the following considerations:
• The timeliness of the processes directly tied to the application requirements or the user perception;

e.g., how fast is a network aware of changes of its mission and context (e.g., its environment, state
of devices and links) and adapts to it, and how soon can applications take th is into account. There is
a need for a new QoS framework, for measuring, analyzing and testing the dynamic behaviour of
embedded networks.

• The usage of communication bandwidth, since in a radio environment bandwidth will always
be scarce

• The complexity of the protocols and procedures: since many devices have restricted processing and
storage capacities, the code footprint should be small.

• The energy consumption due to processing and communication should be low given that devices
may have very restricted battery capacity.

• Devices may only intermittently be accessible due to mobility, energy conservation, and radio link
characteristics.

liIIiltlîtil1i1

WHITE
PAPERS
2006

I :OIjIIIrt:J Ji1

WHITE
PAPERS
2006

I 6 Positioning ofPROGRESS research in Networks & Connected Embedded Systems I

The PROGRESS research in Networks and eonnected Embedded systems [231 has started to address
some of the issues th at we discussed before. In particular: software radio, energy awareness, context
awareness, network dynamics, network heterogeneity and ease of programming. Some of the work is
resulting in prototypes, an essential element for validating designs.
Lets us briefiy describe the contributions each of the projects in th is domain for intends to make.

Development of a software-radio-based embedded mobile terminal (PROGRESS Project TES.Sl77)
The project researches software defined radio, i.e., radios where all the important radio parameters
are controlled by software. In particular it focuses on the analogue front-end subsystem. This
project concerns a generic basic component of future wireless networks, which should facilitate the
design of dynamic networks that are able to adapt to context, and are able to optimize their
performance under changing conditions, e.g., minimize their energy consumption.
Modeling and performance analysis of telecommunication systems (PROGRESS Project EES.S202)
The focus in this project is on developing techniques for performance modeling and performance
evaluation based on system-Ievel behavior modeis. The resulting techniques are not problem
specific and can be used in different application areas to model, analyse and design complex
systems at a high level of abstraction. Probabilistic extensions of timed process algebras are made
th at allow the expression ofthe concepts and the analysis ofthe properties. The resulting techniques
will be built in the modelling language POOSL and the accompanying software tools will be
extended accordingly. This work brings together qualitative (e.g., correctness) and quantitative
modelling. Both aspects are of great importance for embedded systems.
Development of compositional programming techniques for networked heterogeneous embedded
systems (PROGRESS Project TES.541 0)
This research concerns the program ming of distributed embedded multiprocessors. It is based on
the mathematica I programming language esp. The usability of the esp channel concept has been
investigated and demonstrated for processors interconnected via industrial busses. It allows the
description of rea I-time parallel activities in such systems.
Internet based monitoring and control of embedded systems (PROGRESS Project EES.5413)
The project addresses the issues th at arise when potentially mobile arbitrary embedded systems
are connected to the Internet. From the point of view of a user the value concerns inspecting the
system remotely (monitoring) and controlling it.
Modelling as weil as protocol design are addressed, e.g., by developing prototype systems that
support mobility. Research themes that are addressed are mobility, correctness, distribution,
authorization, security, discovery and self-configuration, Service Oriented Architectures (SOA), and,
design methodology covering both system design and system generation. The methodology

OH

040

focuses on establishing correctness consistency (especially timing constraints) of the system during
the complete development cycle.
Quality of service of in-home digital networks (PROGRESS Project EES.5653)
The project is focussed on resource sharing in networks of consumer devices, more precisely, of
connected rea I-time embedded systems. We regard these networks as contained domains,
meaning that their use is under complete control of its owner. The considered systems are resource
constrained since the difference between worst-case and average-case performance is too large to
be able to afford overdimensioning. In addition, resources cannot always be guaranteed as is the
case, for example, in wireless networks. The shared resources are bandwidth, and, processing power
and memory in devices. The project concentrates on video, since this represents currently the
largest challenge. Because this system must cope with overload situations, it must be possible to
adjust the quality in order to avoid failure. The project addresses this graceful quality adaptation by
1 investigating techniques to change (application) quality;
2 to optimize quality given the circumstances by investigating control architectures th at support

this as weil as taking into account feedback from user-perception;
3 developing methods to analyse and predict resource use such as to support decision procedures
Feather-light Distributed Systems (PROGRESS Project TES.6388)
This project investigates new feather-light distributed mechanisms for networking and distributed
collaboration, and evaluates their feasibility through experimentation. These mechanisms can
operate in a challenging environment of self-organizing collaborative ambient systems where
nodes move, fail, and energy is a scarce resource. The main thrust of the work is towards the
development of new distributed timely system support, taking into account those specific features.
In particular, schemes, which are able to work efficiently and dependably, in the presence oflimited
energy, processing power and memory, are developed.
A structure for maintaining a shared world model in a dynamic environment between
differentiated embedded systems and their interaction with human supervisors (PROGRESS
Project AES.5414)
This project envisages a world consisting of semi-autonomous cooperating and distributed
embedded systerns, exemplified by a set of robots playing a soccer game. The research addresses
the problem ofhow these cooperating/competing systems can form a Shared World Model, needed
for cooperating and how they can interact with human supervisors. This is a generic problem that
will find applications in many complex technical systems where people are involved in the
operation. A case in point is an airplane which has many subsystems (navigation, propulsion, flight
control, climate control, etc.) and pilots that control and supervise the overall operation.

liOJiNrtjl:r;ii

WHITE
PAPERS
2006

lf.I iliXiljlli1

WHITE
PAPERS
2006

I 7 Conclusion I

In this white paper we have examined the direction research in embedded networks might take. We
have argued that the advent of ubiquitous computing and communication will spawn a myriad of
networked embedded systems, with a very wide spectrum of applications. In order to design
economically feasible solutions th at work weil, we argued that a number of issues need to be tackled;
these are different from the ones in classica I telecommunications and data networks. The present
PROGRESS research programme has started to make good contributions in some of these areas.
However, the area is very big and a lot of difficult issues need to be tackled to realise the full potential
of embedded networked systems. On the other hand, European and national network and
telecommunications research programmes have started to tackle these issues seriously; this is due, in
particular to the shift in focus from core and access network research to the communication and
cooperation issues of the huge number of devices that will be communication- and computing
capable. These devices will form, often ad hoc, network structures at the edges of the infrastructure
networks. They will in fact often be embedded networked systems. Therefore we plead for astrong
cooperation oftheembedded systems research programmes and the network and telecommunications
programmes (e.g., Freeband [24] and 10P GenCom [25]) .

References
[1] C. S. Raghavendra, K. M. Sivalingam and T. Znati (Editors), "Wireless Sensor Networks';

Sp~nge~ISBN 1402078838,2005.
[2] S.O. Dulman, "Data-centric Architecture for Wireless Sensor Networks';

PhDDissertation, University ofTwente, ISBN 90-365-2262-5, October 2005.
[3] J. luo and J.P. Hubaux, "A Survey of Inter-Vehicle Communication'; School of Computer and

Communication Sciences, Technical Report 1C/2004/24, EPFl, lausanne, Switzerland, 2004.
[4] S. Marzano and E. Aarts, "The New Everyday View on Ambient Intelligence'; Uitgeverij 010

Publishers, ISBN 90-645-0502-0, February 2003.
[5] ISTAG, "Scenarios for Ambient Intelligence in 2010'; Final Report, EC 200,

http://www.cordis.lu/ist/istag.htm. February 2001 .
[6] l.G. Niemegeers and S.M. Heemstra de Groot, "From Personal Area networks to Personal

Networks: A User -Oriented Approach'; InternationalJournal ofWirelessand Personal Communications,
Springer, Vol. 22 No.2, pp. 175-186, 2002.

[7] l.G. Niemegeers and S.M. Heemstra de Groot, "Research Issues in Ad-Hoc Distributed
Personal Networking'; International Journal ofWireless and Personal Communications, Springer,
Vol. 26, No. 2-3, pp 149-167, 2003.

i14 1

042

(8) Anonymous, "Personal Network Pilot 2004'; Dutch Freeband Project. Project website,
http://wwwJreeband.nl/project.cfm ?id= 530&la ng uage=en.

(9) Anonymous, "MAGNET'; European IST 6th Framework Programme Project, Project
website, http://www. telecom .ece .ntua.gr Imagnet/.

[la] l.G. Niemegeers, "The Invisible Network'; Inaugural Speech, Delft University of Technology,
www.irctr.tudelft.nl click Telecommunications, October 28, 2005.

[11] G. Moore, "Cramming more components onto integrated circuits'; Electronics Magazine,
19, April 1965.

[12) F. Hapgood, "Thousands of"dumb devices" are coming to a network near you'; Swantech Media
Clips, http://www.swantech.com//mediaclip_ci01 .html. 2002.

[13] F. Hapgood, "The Device Internet'; http://fhapgood.fastmail.fm/devices.htm, 2002.
[14] G. Roussos,"Ubiquitous and Pervasive Commerce: New Frontiers for Electronic Business';

Springer SBM, London, 2005.
(15) M. Weiser, "The computer for the 21 st Century'; Scientific American, September 1991 .
(16) J. C. Haartsen, "Bluetooth - The Universal Radio Interface for Ad-hoc Wireless Connectivity';

Ericsson Review, 3:110-117,1998.
[17) ZigBee Alliance, Official website, www.zigbee.org.
[18] MIT, "The Migrate Internet Mobility Project'; MIT,

http://n ms.csa i I. m it.ed u/projects/m ig ratel.
[19] Sun Microsystems, JXTA Technology, http://www.sun.com/software/jxta/.
(20) ConnecTerra, Powerpoint presentation, http://cba.mit.edu/events/02.07.IP/Traub.ppt,

MIT,2002.
(21) A.G. Ganek andlA. Corbi, "The dawning of the autonomic computing era'; IBM Systems Journal,

Vol. 42, No 1, 2003 (Special issue dedicated to this topic).
[22] L. Capra, W. Emmerich, and C. Mascolo, "Middleware for Mobile Computing';

www.cs.ucl.ac.uk/staff/L.Capra/middlewaresurvey.pdf , 2002.
[23] PROGRESS website, www.stw.nl/programmas/progress.
[24] Dutch Ministry of Economic Affairs, BSIK Programme, Freeband website, wwwJreeband.nl.
[25] Dutch Ministry of Economic Affairs, Senter-Novem, IOP GenCom programme website,

www.senternovem.nl/iop-gencom.

l:oJiNMUi

WHITE
PAPERS
2006

Ui{.lrtiJUl

WHITE
PAPERS
2006

OES IT A OFF?

Frits Vaandrager I

SEO E IFIC T
DSVSTE S!

Institute for Computing and Information Sciences
Radboud University Nijmegen

Abstract

A D

An overview is presented of the state-of-the-art in model-based verification and validation of
embedded systems, directed towards an industrial audience. Verification and validation consists in
exploring the current design against properties expressed as part of the requirements.
It includes testing, model checking, runtime verification and fault-diagnosis, and more exploratory
techniques such as the use of theorem proving. During recent years, much progress has been made in
theory, methods and tools for model-based verification and validation. In this paper, I will try to
indicate for what type of practical problems it pays off to apply one of these modern techniques.
Special attention will be paid to the results of six PROGRESS projects in this area.

I 1 Introduction I

Embedded systems are highly specializable, often reactive, sub systems th at provide, unnoticed by
the user, information processing and control tasks to their embedding system. Embedded systems are
omnipresent nowadays and make possible the creation of systems with a functionality th at cannot be
provided by human beings. Example application areas are consumer electronic products (e.g. CD
players, microwave ovens), telecommunication (e.g. mobile phones), medical systems (e.g. pace
makers), traffic control (e.g. intelligent traffic lig hts), driving and car control (e.g. ABS), airborne
equipment (e.g. fiy-by-wire), and plant control (e.g. packaging machines, wafer steppers). The term
embedded system th us encompasses a broad class of systems, ranging from simple microcontrolIers
to large and complex multi-processor and distributed systems. The huge economic importance of
embedded systems is undisputed.
Some characteristics of embedded systems are:

Complex interaction with the environment. Embedded systems can only be designed and analyzed
if one takes the behavior of their environment into account. Frequently this environment is highly
nondeterministic and intrinsically continuous.
A multitude of quantitative constraints. These constraints involve the resources th at a system may

043

use (computation resources, power consumption, memory usage, communication bandwidth,
costs, .. .), assumptions about the environment in which it operates (arrival rates, hybrid behavior),
and requirements on the services that the system has to provide.
High dependability requirements. Besides functional constraints many other aspects play a role in
the design of embedded systems: timeliness, fault tolerance, availability, security, safety, etc..
Design and manufacturing costs are very important.

This combination of factors makes the design of embedded systems in general a very complex task.
Failure of embedded systems often may have serious consequences (Ioss of lives, huge financial
losses), so correctness and reliability are of vital importance. As aresuit it is common for more than
75% of embedded software development costs to go into validation and verification. So there is a lot
of potential for saving money.

Validation and Verification There is quite some confusion in the literature about the meaning of
the terms validation and verification. I prefer to remain consistent with the traditional usage of these
terms [4,21]. Validation aims at increasing confidence in the correct operation of an implementation.
Are we building the right system? Ideally, the desired behavior of a system is fully specified in advance,
but in practice it rarely occurs th at we know exactly how a system should behave under all possible
circumstances. There exist two basic validation strategies, viz. the verification strategy and the
falsification strategy. The objective of verification is to show th at an implementation possesses a
property prescribed by its specification. Are we building the system right? An implementation is
considered correct (or valid) if all properties prescribed by the specifica ti on are present in the
implementation. In falsification the objective is to try and show th at the negation of a specification
requirement holds in an implementation. In th is case an implementation is considered correct if all
attempts to falsify a requirement fail. Note th at therefore in verification an im plementation is rejected
as a correct implementation if it does not posses a prescribed property, whereas in falsification an
implementation is rejected when it does posses the negation of a prescribed property. Ideally,
verification and falsification are complementary notions in the sense th at "falsification equals
verification of the hegation". However, in practice falsification is much weaker than verification (see
e.g. Popper [29]). Both verification and falsification can be used simultaneously for assessing the
correctness of implementations.

Models provide (mathematical) abstractions of a physical system th at allow engineers to reason
about that system by ignoring extraneous details while focusing on relevant ones. All forms of
engineering rely on models to understand complex, real-world systems. Models may be developed as
a precursor to implementing the physical system, or they may be derived from an existing system or a

liliNî1il1l1

WHITE
PAPERS
2006

l:lJiNrtilJi.i

WHITE
PAPERS
2006

system in development as an aid to understanding its behavior. In the software engineering world,
modeling has a rich tradition, dating back to the earliest days of programming. Boosted by the work
of the Object Management Group (OMG) on the Unified Modeling Language (UML) and Model Driven
Architecture (MDA), the role of models during application design, implementation, verification and
validation has become much more important in recent years, and this is a very positive development.
Model-Driven Development (MDD) is a system development technique in which the primary artifact
is a model, which is a collection of views. Ideally, the technique allows engineers to (graphically)
model the requirements, behavior and functionality of computer based systems. The model allows all
the stakeholders to participate in the development process. The design is iteratively analyzed,
validated, and tested throughout the development proces while automatically generated production
quality code can be output in a variety of languages.

The promise of model driven development is to allow definition of machine readable application and
data models which allow long-term fiexibility of:

implementation: different/new implementation infrastructure can be integrated or targeted by
existing designs.
integration and component reuse: since not only the implementation but the design exists at
time of integration, we can automate the production of data integration bridges and the connection to
new integration infrastructures. The availability of interface models of components facilitates reuse.
verification and validation: since the developed models can be used to generate code, they can
equally be validated against requirements, tested against various infrastructures, and can used to
directly simulate the behavior of the system being designed. Formol verification is the process of
mathematically checking that the behavior of a system (component), described using a formal
model, satisfies a given property, also described using a formal model.
maintenance: the availability of the design in a machine-readable form gives developers direct
access to the specification of the system, making maintenance much simpier.

Depending on the role that models play in the design process, we see different types of modeis.
Ideally, there are well -defined relationships between these modeis. Models from which implemen
tations can be generated are typically constructed using commercial tools such as Rational Rose,
Rhapsody and visual-STATE, and usually contain a lot of details, including code fragments.lnterfoce
models focus on the external behavior of systems and components. These models typically are much
more abstract. A useful classification of component specifications (tontrocts'1 has been proposed by
Beugnard et al [31, where a hierarchy is defined consisting of four levels:

Level 1 : Syntactic interface, or signature (i.e. types, fields, methods, signa Is, ports, etc. that consti
tute the interface).

D46

Level 2: Constraints on values of parameters and of persistent state varia bles, expressed e.g., by
pre- and post-conditions and invariants.
Level 3: Synchronization between different services and method calls (e.g., expressed as constraints
on their temporal ordering via state machines or temporallogic).
Level 4: Extra-functional properties (in particular real-time attributes, performance, OoS (i.e.
constraints on response times, throughput, etc.) This level can be separated into two aspects
4a Timing properNes (e.g. absolute time bounds)
4b Ouality of Service properties, typically given by performance measures, often formulated in

stochastic terms (e.g. average response time).

Currently, most component modeling frameworks support only level 1 contracts, while some also
support level 2 and 3 contracts (for instance, the ISpec framework studied in PROGRESS project
EES.S141) . For embedded systems Level 4 properties are important (their specification has been
studied in PROGRESS project TES.4999). Models for verincation and validation, finally, typically focus
on some specific aspects of a systems behavior. They are as abstract as possible in order to make
analysis tractable.

A serious practical question is how much effort to put in building modeis. Constructing good models
is difficult and most software developers dislike writing them. Aiming at the highest quality modeis,
e.g. by using formal specification techniques, is expensive and requires highly ski lied developers.
Spending minimal effort on constructing mode Is can also be expensive mept th at the costs are
incurred later in the systems life cycle by increased maintenance costs, customer dissatisfaction, etc. .
In practice the right balance between these two extremes has to be found. In finding the balance
several issues have to, be taken into account such as the expected lifetime and usage of the modeis,
the skilIs of the readers and writers of the specifications, how critical the interfaces are, ete. [24] .

Simulation remains the ma in tooi to validate modeis, but the importance of formal validation &
verification is growing, especially for safety-critica I embedded systems. Although still in its infancy, it
shows more promise than verification of arbitrary systems, such as generic software programs,
because embedded systems are often specified in a restricted way [161 . Simulation of embedded
systems is challenging because they are heterogeneous. In particular, most contain software and
hardware components th at must be simulated at the same time (this is the co-simulation problem).
Although there is a lot to say about simulation, I will focus in this paper on formal verification, also
because this has been the main research topic of research within the PROGRESS research projects that
I have been asked to discuss.

l:IIjltlï1;IJJi

WHITE
PAPERS
2006

l:I1il1lrtillli

WHITE
PAPERS
2006

I 2 Formal Methods I

Mathematics has always been of great importance in engineering. The term "formal methods" is
cammonly used to refer to the applied mathematics of computer system engineering. Whereas
traditional engineering disciplines rely heavily on continuous mathematics (a na lysis, numerical
computation), the design of dependable computer based systems requires a more discrete style of
mathematical reasoning. These systems are typically modelled as discrete event dynamical systems
(state machines, automata) and their specification and analysis requires the use of mathematicallogic
and advanced search algorithms to enable model checking and theorem proving. But also quantitative
approaches and continuous mathematics are increasingly applied in formal methods, for insta nee in
performance analysis and design of hybrid systems. ln this paper, I will focus my attention to formal
methods for validation and verification.

One only has to open up any book
on algorithms to see that mathe
matics plays a key role in their
verification and analysis. Never
theless, most software engineering
projects hold formal methods at
arm's length unless they involve
critical systems [9, 31J. Is this due
mathfobia? Is it a matter of lack of
training? Or is application of formal
methods simply not cast effective?
In an attempt to answer these
questions, I will discuss a spectrum
of formal methods, ranging from
from cheap and incomplete to
expensive and complete (see Figure
1, adapted from Rushby).

ASSURANCE

I IIMSlIU
fOIIIAl
IlmoDS

MODEL
(~ E(KIN6

Fig. I. A spectrum of formal me!hods.

AUTOMATED
ABSTRACTION

THIORlIl
,ROVING

EFFORT

Berry has suggested to use the term "automatic bug detection" in place of "formal verification" to
underscore that it is too much to hope for a conclusive proof of any nontrivial design.lnstead the goal
offormal verification should be a technology that will help designers preventing problems in deployed

047

O~8

systems. The point is that in most cases a formal model is a rather aggressive abstraction of the real
design that it intends to capture, and similarly a formal specification is typically just an abstraction of
a fragment of the full set of requirements. Therefore, if we manage to formally verify that the model
satisfies its specification we may usually not conclude that the systems meets its requirements.
However, a counterexample found during formal verification often leads to the discovery of a fiaw in
the design. In fact, formal verification turns out to be an extremely effective method for finding bugs.
The paradox is that the verification at the level of the formal model often amounts to falsification of
the real system! Given the fact that people often mix up a model of a system with the system itself,
th is paradox has created an enormous amount of confusion.

A basic idea in formal methods is to use symbolic calculation. A single symbolic calculation can
subsume many individual numeric cases (just as Xl _yl = (x - y) x (x + y) subsumes 36 -16 = 2 xl 0,
49 - 4 = 5 x 9, etc.). By using symbolic calculation, formal methods tools can search huge state
spaces (trillions of reachable states) efficiently. As a result, these tools can be used to find rare error
scenarios as weil as to verify their absence. Symbolic calculation is mechanized using the methods of
automated reasoning: theorem proving, model checking, constraint solving, etc .. There has been
sustained progress in these fields for several decades and they have recently broken though the
barriers to practical application.

2.1 Theorem Provers
As soon as both a system and its specification have been modelled as mathematical entities,
verification essentially amounts to proving a mathematical theorem. Following the pioneering work
of N.G. de Bruijn on Automathl, many proof assistents have been developed: software tools in which
mathematica I theories can be expressed and the correctness proofs of mathematica I theorems can be
checked mechanically and interactively, e.g. PVS, ACL2, HOL, Isabelle, Nuprl and Coq. Use ofinteractive
theorem proving requires great skill and resources but allows one to solve very hard problems.
The most prominent commercial application oftheorem proving has been by Intel Corporation in the
area of hardware verification. Intel wrote off 475 million USD to cover damages for the incident with
the incorrect division in early Pentium Processors (also known as the FDIV bug), which occurred in
1994. A similar problem in current chip designs wou1d be much more costly. Chip designs are getting
more complex, but the associated testing problem is growing even faster in size and complexity.
Traditional testing techniques are not sufficiently powerful and formal verification techniques can
sometimes offer a solution.ln fact, since the FDIV bug formal verification has become almost standard
practice in the hardware industry. Twenty percent of the Pentium IV design was formally verified and
many high-quality bugs were discovered before "first silicon". The HOL light theorem prover was used
by John Harrison and his team to verify the fioating point operations ofthe Itanium processor. As was

'See hnp://automath.webhop.ne1

l:oJiltIrt:IIJ1

WHITE
PAPERS
2006

lililtIrtilUl

WHITE
PAPERS
2006

to be expected, several bugs were found in the design. The verification also increased the problem
understanding, which eventually led to several improvements in the design [271. Within Dutch
universities there is extensive expertise on theorem proving.
The EU IST Verificard project, that was coordinated by the University of Nijmegen, built a verification
tooi called LOOP on top of the theorem prover PVS to verify software for Java Card smartcards. The
European smartcard industry needs this type of technology to obtain security certifications at the
highest levels of the Common Criteria standard, an international standard (150 15408) for computer
security evaluations. The project team found a coding error in a critical smartcard application, enabling
continued trust and reliability in the application in question.
Within PROGRESS project CES.5009, the PVS theorem prover has been used to study transparent
replication of Splice components. A problem with time stamps prevented full transparency of
replication. A solution was proposed by the project (involving the copying of time stamps in certain
situations) and adopted in a newer version of Splice.
Despite these success stories it is fair to say that at the moment direct application ofinteractive theorem
proving tools is not cost-effective for Dutch industry, except possibly for a few small niche areas.1:

One of these niche areas might be the high-level description and analysis of architectures. The higher
order logic languages used by general purpose interactive theorem provers are extremely expressive
and allow for concise description of all the concepts that play a role within an architecture (the input
languages for other verification tools are typically much less expressive). Typically, the number of
concepts involved is not too big, and the central role of an architecture in a design justifies a serious
investement in (formal) validation en verification. Within PROGRESS case studies in this direction have
been carried out by project CES.5009 (Splice) and project TES.4999 (the Itthereal network on chip
[19]) . Theorem provers are also an important area for academic researchers. They are widely used for
verification of complex distributed and real-time algorithms, and on the long run theywill revolutionize
the way mathematicians work. A recent breakthrough was obtained by Benjamin Werner (INRIA) and
Georges Gonthier (Microsoft Research), who succeeded in 2004 to use the Coq proof assistent to create
a surveyable proof of the celebrated four color theorem.

2.2 Model Checking
Model checking is emerging as a practical tooi for automated debugging of complex reactive systems
such as embedded controllers and network protocols. In model checking, specifications about the
system are expressed as (tempora I) logic formulas, and efficient symbolic algorithms are used to
traverse the model defined by the system and check if the specification holds or not. Extremely large
state-spaces can often be traversed in minutes. Model checkers were initially developed to reason
about the logical correctness of discrete state systems (SMV, CADp, SPIN, ~CRL, SAL), but have since
been extended to deal with rea I-time (Uppaall, probabilistic systems (PRISM) and limited forms of

, The basic algorilhmic lechniques and decision procedures used wilhin Iheorem provers (resolulion. BOOs. SAT solving, ...) are applied successfully
in many of tlle invisible formal melhods, to be discussed in Section 2.4.

049

050

hybrid systems (Hytech, PHAVER).
The two greatest advantages of model checking over theorem proving are (1) once a model and a
property are specified, analysis is in principle fully automatic; (2) the ability to produce counterexamples
that can be used in testing, debugging or other analysis. Disadvantages result from the tradeoffs
made to make automation possible: in particular the expressivity of the modelling and specification
languages is limited. Model checking tools face a combinatorial blow up of the state-space, commonly
known as the state explosion problem, that must be addressed to solve most real-world problems.
Building verification models for realistic applications th at are both interesting and traetabie does
require significant expertise and time, and as a result model checking often is not push-botton
technology. Nevertheless, for a large class of problems model checkers are extremely easy to use.
Wh en a group of high school students (age 15-16) visited our university a few years ago to learn about
Computer 5cience, I asked them to analyze and correct a tlawed design of a controller for a simple
railroad crossing using Uppaal. Without any training they discovered how to tackle the problem using
the tooi and at the end of the session some girls even asked where they could download this "cool"
software package to continue playing with it at home. In a first-year mandatory course on Operating
5ystems this semester, after just one hour of training, CS students had no problem to use a model
checker to validate their solution to the concurrency problem of Figure 2.3 Among my students 1 did
not observe any mathfobia or dislike of formal methods. They just appreciated that the tooi helped
them to solve their problem. Of course, applying model checking techniques on real industrial
problems is somewhat more involved.
There have been numerous successful applications of model checking technology to industrial
problems (see e.g. [13, 25, 27] for pointers). In terms of impact, the main application area is again
validation of hardware circuits by companies such as Intel. But also in the field of network and

Travellers (ome tO a taxi stop and wait for a taxi.
Whfq !he taxi arrives. all the waiting travelIers invoke
boInITl~, bUI anyone who arrives while the taxi is
boanIlJig has 10 walt for Ihe next taxi. The capacity of
the laXi is 4 people; if Ihere are more than 4 people
waitIng. som/! wil I have to wait for the next taxi.
When all the walting lJaveliers have boarded, the taxi
Qfl invoke depart. lf lhe taxi arrives wh en there are
no bavellers, 1I should depart immediately.
lilt problem Is to wrile synchronization code that
enfortes all of Ihese (oOItraints using semaphores,
Ind to model and validate the correctness of your
soIUllon wlth !he Uppaal model checker.

Fig. 2. A simple concurrency problem.

I Models of semaphores were made available.

communication protocols model checking has become an
indispensible tooI. Model checking has
been applied successfully to all kinds of scheduling problems
in manufacturing, transportation and rea I-time scheduling.
5ection 2.3 will describe some recent successes in model
checking software. Within PROGRE55, the projects CE5.5008,
CE5.5009, and lES.4999 have applied and further developed
model checking technology. Below I report on some model
checking case studies that were carried out by these projects.
One of the main applications studied by project CE5.5008 was a
system for lifting trucks (lorries, railway carriages, buses and
other vehicles). This system consists of a number of lifts; each lift
supports one wheel of the truck that is being lifted and has its

I iOI ic.Iït;I Ui

WHITE
PAPERS
2006

1:1 ;(111 Uili

WHITE
PAPERS
2006

own microcontroller. The controls of the different lifts are connected by means of a cyclic network. A
special purpose protocol has been developed to let the lifts operate synchronously. When testing the
implementation, the developers found three problems. They solved these problems by trial and error,
partly because the causes of two of the three problems were unclear.
In close collaboration with the developers at Add-Controls, the CES.S008 researchers modeled and
analyzed the system in ~CRL model checker [20]. The three known problems showed up in the model
and in addition a fourth error was found . Solutions for all four problems were proposed and it was
shown that, after incorporating these solutions, the model met all the requirements of the developers.
The overall conclusion was th at the ~CRL model was an efficient tooi to understand the behavior of
th is application. The case study also revealed limitations of the tooiset and worked as a catalyst to
have its capacities enlarged.
One of the case studies carried out by PROGRESS project TES.4999 (HaaST) was initiated by the home
networking group of Philips Research. The study concerned the Zeroconf protocol 4

, an IElF standard
dedicated to the self-configuration of IPv4 network interfaces. The task was to investigate the trade
off between reliability and effectiveness of this protocol. The problem was tackled from different
directions. The group in Twente analyzed a simple stochastic cost model of the protocol, wh ere
reliability is measured in terms of the probability to avoid an address collision after configuration,
while effectiveness is viewed as the average penalty perceived by a user. The solution method was
optimisation of several protocol parameters on minimal co st IS, 6J. The group in Nijmegen developed
a Uppaal model of the protocol in order to analyze functional correctness and real-time behavior [18].

The conclusion was that Uppaal, which combines extended finite state machines, C-like syntax and
concepts from timed automata theory, is able to model Zeroconf in a faithful and intuitive way, using
notations th at are familiar to protocol engineers. The modeling efforts revealed several errors (or at
least ambiguities) in the Internet standard that no one else spotted before. Also a number of points
were identified where Uppaal still can be improved. After applying a number of (manual) abstractions,
Uppaal was able to fully explore the state space of an instance of the model with three hosts, and to
establish some correctness properties.
Another case study carried out by project TES.4999, also proposed by Philips Research, concerned a
distributed algorithm to monitor the availability of nodes in self-configuring networks. The simple
scheme to regularly probe a node - "are you still there?" - may easily lead to over- or underloading.
The essence of the algorithm is therefore to automatically adapt the probing frequency.lt was shown
th at a self-adaptive scheme to control the probe load, originally proposed as an extension to the
UPnPTM (Universal Plug and Play) standard, leads to an unfair treatment of nodes: some nodes probe
fast while others almost starve. A very simpie, alternative distributed algorithm was proposed that
overcomes this problem and that tolerates highly dynamic network topology changes (7J . The analysis
results have been obtained using the MODEST/MOBIUS tooi suite. MODEST is a modeling language

• See www,zeroconf.org

051

0"

with a formal semantics [151 that has been developed within the project. The formality of the language
allows not only for the integration with other formal analysis tools (such as model checkers), but,
more importantly, is essential to carry out semantically sound simulation runs with MOBlUS. This
results in a trustworthy analysis chain (one that can be validated by means of the semanties). Standard
simulation environments are risky to use instead, because they have been found to exhibit contradictory
results (both quantitatively and qualitatively, i.e. difference in behavior) even in simple case studies [121.

Model checking is applied very successfully and on a regular basis by verification experts in several
niche areas.ln many cases there can be no doubt that the technology is cost-effective. Nevertheless,
much more effort is required before model checking will become main stream technology. The
following problems need to be addressed:
1 Scalability. Model checkers must cope with the state space explosion problem. This growth often

renders the mechanica I verification of realistic models practically impossible: there just is not
enough time or memory available. In order to make the models traetabie, abstraction is required,
but finding these abstractions can be a time consuming effort th at requires expertise.

2 Accessibility. Building a good model is difficult bwuse model checkers are mostly academie tools
that lack extensive documentation and require a thorough knowledge of the underlying principles
to build models that are suitable for analysis.5 Thus, in practice, model checking tools are inacces
si bie to people with little or no background in formal verification.

3 Relation between model and system. The relationships between an (abstract) model of a
system and the system itself is typically somewhat obscure. One can verify a high-level design, but
what does that say about the realization ofthat design? As pointed out by Brinksma and Mader 1101,

current research seems to take the construction of verification models more or less for granted,
although their development typically requires a coordinated integration ofthe experience, intuition
and creativity of verification and domain experts. There is a great need for systematic methods for
the construct ion of verification mode Is to move on, and leave the current stage th at can be
characterized as that of "model hacking". The ad-hoc construction of verification models obscures
the relationship between models and the systems that they represent, and undermines the
reliability and relevanee of the verification results that are obtained.

4 Convenience. Model checkers usually are not a part of the development toolchain with the result
that there is little or no automation. Furthermore, many current tools and their input formalisms
lack important features for convenient specifications in an industrial setting. As aresuit, modeling
and analysis require a significant amount of time.

Much research is going on to extend the technology in these directions.

, Thil doel nol apply 10 lome Ipeciali zed in-houle industrial 10011 Ihal incorporale model checking lechniquel.
1:11 iNrtilU1

WHITE
PAPERS
2006

• i:.tjHîljJUi

WHITE
PAPERS
2006

2.3 Automated Abstraction
As explained in the previous subsection, a key problem for model checking is scalability. Even though
model checking technology has become very powerful, it is for instanee typically not possible to fully
explore UML models that are intended for code generation: when you try to do it these models just
explode in your hands.6 To check large systems, abstraction is therefore a key paradigm: the purpose
of an abstract model is to retain those features of a system that are necessary to verify the desired
property, and to omit all unnecessary detail.
For verification of hardware and manually constructed models of embedded systems, many generic
abstractions (e.g. symmetries, data-path, abstract interpretation) have been proven useful. Within
PROGRESS projects CES.5009 and TES.4999 powerful abstraction techniques have been added to the
model checking tools IlCRL and Uppaal, abstract interpretation and symmetry reduction, respectively,
thereby greatly enhancing their applicability.
An even more ambitious approach has been followed by the SAL (Symbolic Analysis Laboratory) project
at SRI [2]. SAL is a framework for combining different tools to calculate properties of concurrent/reactive
systems. The heart of SAL is a language for specifying concurrent systems in a compositional way. The
current implementation of the SAL framework augments PVS with tools for abstraction, invariant
generation, program analysis (su eh as slicing), theorem proving, and model checking to separate
concerns as weil as calculate properties (i.e. perform symbolic analysis) of concurrent systems. Altough
it is still in the prototype stage and its usefulness for tackling industrial problems needs to be
demonstrated, SAL can be viewed as a promissing attempt to bridge the gap between model checking
a nd theorem proving.
Recentlya number of breakthroughs have been achieved Jnd we see, for insta nee, that model-checking
techniques are now being applied to validation of source-code (in particular C and JAVA) - so-called
software validation or run time verinwtion. Noticeable juccesses in this area have been obtained by the
SLAM and Blast projects and tools. A basic technique used by these tools is abstraction-rennement. In
abstraction refinement an initial very course abstraction of a program is computed automatically. In
th is abstraction, for instanee, the only information about an integer variabie th at is preserved is whether
it is zero, positive or negative. Or, alternatively, all valuations of program variables that cannot be
distinguished by any of the Boolean guards that occur in the program are deemed equivalent. Next
exhaustive state space search (model checking) is used to explore the abstract model.lf in the abstract
model no "bad" state can be reached then we know by construction that no bad state can be reached by
the original program. In this case we have established correctness of the program, and we are done.ln
case a bad state can be reached in the abstract model then there are two possibilities:
1 either there is a corresponding execution of the original program that leads to a bad state; this

means th at we have found a bug in the original program,
2 or the bad execution in the abstract model does not correspond to any execution in the original

, This visual description is due to Koos Rooda .

05 1

0\ 4

program; in this case we can use the information about the failed correspondence to construct a
refinement of the abstraction, that is, a new abstraction that is in between the old abstraction and
the program, and we repeat the analysis.

SLAM and Blast have been succesfully applied within the domain of debugging of device drivers
(programs with over 100,000 lines of C code). In his keynote address at WinHec 2002, Bill Gates
referred to the SLAM project as follows:

"Things/ike even software verificatian, this has been the Haly Grail af computer säen(e far many decades
but now in some very key area5, for example, driver verificatian were building tools that can do aaual
praaf about the software and how it works in order ta guarontee the re/iability."

lexpeet eventually it will be possible to apply software model checking also to the analysis of
embedded software and to UML like modeis. Still, scalability remains a key issue and in order to
enable routine use of formal verification techniques in the embedded systems area much further
research is needed.

2.4lnvisible Formal Methods
Even though manual construction of abstract verification models can be very rewarding and helps to
obtain insight and improve a design, practitioners of course prefer to have push-botton verification
technology that can be applied directly to their UML models and software. The concept of types and
the development of automatic algorithms for establishing type correctness is one of the big successes
of formal methods research. The algorithms and their underlying math are completely invisible to the
user, but still the return on investment is excellent. Model-based development provides the artifacts
needed by automated analysis, and this creates some exciting new opportunities for applying
mathematica I analysis techniques. Commercial tools such as Rational Rose (Real-Timel, Rhapsody
and visualSTATE support verification of certain functional correctness properties (e.g. absence of
deadlock). Hidden from the engineersometimes very sophisticated formal methods are being used to
provide these results. For these invisible formal methods, convenience is more important than
generality. They will not find all the bugs in your design but they will find most of them fast and
automatically.

Formal Verification A nice example of invisible formal methods is provided by visuaiSTATE, a suite
of graphical tools for design of embedded systems and event-driven systems developed by lAR
Systems. The tooi uses a sophisticated verification algorithm called compositional backward
reachability analysis to exhaustively verify large industrial applications - comprising more than 1,000

1:1 iNti Ui'"
WHITE
PAPERS
2006

l:<JiNrtU'ii

WHITE
PAPERS
2006

components - in a few minutes on a standard PC [34]. This (patented) technique allows designers to
test that their state machine design model and embedded application does not contain any of the
following problematic properties:
- state, local and system wide deadlock conditions,
- confiicting transitions between states,

unreachable states, i.e. states that cannot be entered by any sequence of events from the environment,
- unused events or signais, i.e. stimuli to the system that is not acted upon,
- unused transitions, i.e. transitions that will never fire, regardless of the event sequence fed into the system,
- unused actions or assignments,
- unused varia bles, parameters and constants.

In the realms of software, analysis tools such as the Extended Statie Checker for Java (ESC/Java, [17]),

turn out to be very effective. ESC/Java is a programming tooi that attempts to find common run-time
errors in JML-annotated Java programs (i.e. Level 2 interface specs according to the classification of
Beugnard et al [3]) by static analysis of the program code and its formal annotations. Users can control
the amount and kinds of checking th at ESC/Java performs by annotating their programs with specially
formatted comments ca lied pragmas. Because ESC/Java abstracts from the full Java semantics it will
not spot all the program bugs that analysis with a theorem prover such as the LOOP tooi will reveal.
But because it is automatic, ESC/Java is in most cases much more effective.

Still the type of properties th at can be verified using invisible formal methods is restricted. From the
point of view of embedded systems, MDD tools have a serious lack of support for predicting real-time
behaviour, resource-consumption and performance in general of the generated code (Level 4 pro
perties). Clearly, much more research is needed in this direction. Given the effectiveness of invisible
verification techniques (see also Figure 1), I consider th is to be an important research direction.

Correctness of Implementations Bridging the gap between high-level modellin or programming
abstractions, and implementation platforms is one of the key challenges for embedded software
research [33,26). Tools such as Rational Rose (Rea I-Time), Rhapsody and visualSTATE allow us to
generate code directly from modeis, but how do we know that this code is actually correct?
In particular, how do we know that the generated code meets hard real-time constraints? An important
step towards supporting quantitative analysis of real-time aspects is provided by the modelling
formalism of timed automata. Since their introduction by Alur and Dill [1] in 1990, several verification
tools for timed automata have been developed, which are now applied routinely to industrial-size
case studies. However, as yet, there is no support for generation of predictabie code from timed
automata models.ln fact, th is is a nontrivial research problem due to the arbitrary precision of clocks

055

056

in timed automata.
The problem of providing a predictabie de5ign trajectory has been discussed at length by Henk Corporaal
in his white paper 1141 and his group has made some important first steps towards a solution [221 . Fully
solving th is problem will require extensive use of formal methods, which in the end will be invisible
to the designer.

Testing Model Based Testing (MBT) aims at the automatic creation, execution and evaluation of test
cases to test software systems. ln most software projects testing is done by hand. There are some tools
th at automate parts of the test process, like test execution and/or test evaluation. The goal of MBT is
to automate the entire test process. The claimed benefits are:

Better coverage of functionality. MBT can create and execute more and better test cases than
humans can. MBT is very thorough, in principal it can cover the entire functionality of the system.
It can for instanee generate test vectors that will drive an implementation through all the states
and transitions of its model.

- Fastertesting. Everything is automated and as a result we can test faster. This is especially important
in the test execution fase, as this fase is close to the delivery deadline and is under a lot of time
pressure.

- Cheaper testing. MBT enables more thorough testing with less people (in less time)

MBT uses a model of the system that is under test (so called SUl: System Under Test). The model
describes (part of) the behavior of the SUT (functional and/or extra-functional behavior, like timing,
performance, etc.).
For testing of (ontrol-dominated 5y5tem5 (i.e. systems with a high degree of interaction with their
environments) there is a rich and well-understood theory of model-based testing (part of which was
developed within the PROGRESS project TES.5417), which has been (partially) implemented in a
number of model-based testing tools such as:
- The Reactis Simulink Tester generates test suites automatically from Simulink or Stateflow diagrams.

Each test consists of a sequence of stimulus/response pairs, where each stimulus assigns an input value
to each in-port in the model and each response records an output value for each out-port. The test
suites are generated from a coverage criteria of the specification, e.g., transition or state coverage.

- The Conformiq Test Generator automatically generates test cases from UML state chart modeis.
Simulations of the models can be used to generate batches of test cases that can later be executed.
Alternatively, the models can be interpreted dynamically to facilitate on-the-fly testing.

- Similarly, the State mate MAGNUM ATG (I -Logix) tooi uses model-checking and simulation
techniques to derive test sequences from state chart modeis.

- RT-Tester (Bremen) and TorX (University ofTwente) are both tools with an underlying formal theory

liAjllXitil1i1

WHITE
PAPERS
2006

1:oJ jNiI il4il1
WHITE
PAPERS
2006

and are rooted in academia. Both tools are for on-the-fiy test generation and execution, where the
specification is continually probed for relevant input stimuli and used to check the validity of output
actions. RT-tester accepts specifications in a mixture of languages, but mainly timed CSP, whereas
TorX accepts Promela or LOTOS.
TGV (lrisa) andTelelogic TestComposer are SDL based test case generators. Given an SDL specification
and a test purpose (or a specification coverage criterion) these tools construct a test case that meets
the test purpose, and stores th is in HCN format. Phact (Philips Research) TestGen (INT, France) also
produce TTCN test suites, but uses FSM checking experiment based test generation.

Tools like TorX and TGV allow for the on-line and off-line generation of sound and complete test suites
from discrete, state-based modeis, such as Labeled Transition Systems, and they can use test purposes
to steer the test derivation algorithms to explore behaviours of the SUT that are more likely to contain
large amounts of bugs. For many systems, however, such simple state-based models are not sufficient.
They require richer modeis, which include quantitative information, such as real-time, continuous or
complex data variables, and stochastic properties (e.g. performance, statistics, probabilities) . Although
some early prototype tools exist that combine control with time, data, or stochastics, e.g. STG, TTG,
UPPAAL Tron, and an extension ofTorX, the theory regarding model-based testing for quantitative
models is still in its infancy. Although there can be no doubt that MBT is a very important and
interesting technique, which eventuallywill find its way intoall major MDDtools, the cost-effectiveness
of current MBT techniques is not evident. Different authors arrive at different conclusions. Campbell et
al [11) report enthousiastically on a MBT tooi Spec Explorer, which is being used daily by several
Microsoft product groups. In one particular setting, their model-based approach helped to discover
10 times more errors than traditional test automation and the kind of bugs discovered were deep
system-Ievel bugs (i .e. bugs that were only found after the system performed many steps), for which
manual test cases would have been hard to construct. This story is in sharp contrast with a report by
Pretchner [30) (presented at the very same meeting), who took a criticallook at MBT and concludes
that, to the best of his knowiedge, there is no published evidence that the promises of MBT are kept.
Although the study by Pretchner is too small to make generic conclusions, it is clear from his
experiments that the benefits of MBT should not be taken for granted. A lot of further research will be
required on MBT to turn it into a mat ure technology. Achallenging question, for instanee, is to find
good measures for coverage.

Using Models tor Diagnosis and Control As human beings we maintain numerous models about
ourselves and the world we live in. We use these models to interpret our observations of reality, to
analyse causes when something goes wrong, to predict the future, and to device strategies for well
being and survival. In this light it is very natural that the models of computer based systems that we

057

construct with MDD tools are not only used to generate software and to predict the future (which is
essentially what verification and validation is about) but also for interpreting observations of
implementations and as a basis for controlling physical systems.
Within con trol theory, model predictive control (also called model based contro\) is an industry proven
solution to complex process control problems that started out in the late 1970s in the refining and
petrochemical industries. At the heart of MPC is a mathematical model of the process that is used to
predict future process behaviour. Using this predictive model the controller is able to calculate an
optimum set of process actuator moves which minimise the error between actual and desired process
behaviour subject to actuator and process constraints.
PROGRESS project DES.7015 uses a model-based approach for fault diagnosis. If a system does not
behave according to its specification, what is the root cause of th is failure, and what can we do about it?
501ving this problem requires sophisticated probabilistic reasoning.

I 3 PROGRESS Proj.ects on Verification and Validation I
In the previous section, several results obtained by PROGRESS projects have already been described.ln
this section, I will briefiy summarize the goals, results and utilisation for each of the six PROGRESS
projects in the verification and validation area. For more information I refer to the project websites,
which are accessible via http://www.stw.nl/programmas/progress/.

3.1 CES.5009: Real-time Distributed Shared Data Spa ce
Goals The main goal of this project was to evaluate the applicability of the ~CRL language and tools
on some large-scale industrial applications, and to improve this verification technologywhere needed.
More specifically, the goals of the project were (1) to develop shared data space architectures, (2) to
formally model such architectures, (3) to verify software applications based upon such architectures,
and (4) to develop the verification technology needed to scale to shared dataspace applications.
Results The following results were obtained:
1 A model for describing systems based on heterogeneous shared dataspace paradigms. Special

instances of the generic model are (the essential core of) Splice (Thales), 4TEC (4TECl, JavaSpaces
(SUN Microsystems). A methodology has been developed and implemented to automatically obtain
distributed prototype implementations from such modeis. Also, a methodology has been developed
and implemented to automatically verify the modeis.

2 A formal model of the JavaSpace architecture. This model includes all relevant features: reading/
writing, transactions, notification, leasing, and timeouts. As aresuit, JavaSpace program models
can now be automatically verified bya model checker.

liIIillIïtilUJ

WHITE
PAPERS
2006

l:tIiNrtillJi

WHITE
PAPERS
2006

3 A line of tools for distributed model checking. This allows us to scale verification methodology by
using clusters of PCS. These tools are now part of the muCRl tooi set.

4 Tools for applying abstract interpretation. Given a default or user-specified abstraction, the tooi
automatically generates a smaller state spa ce. The abstraction tools have been implemented and
integrated in the muCRL tooiset.

Utilisation The analysis of shared data spa ce architectures revealed problems, provided solutions,
and brought a lot of methodology and background knowledge to both companies involved in the
project. The solutions provided by the CWI researchers found their way in subsequent versions of
Splice and 4TEC. Both tools that were developed have been applied in many other projects, including
PROGRESS project CES.SOOS.

3.2 TES.4999: HaaST: Verification of Hard and Softly Timed Systems
Goals The HaaST project aimed at the development and integration of methods and tools for the
verification and analysis of real-time embedded systems, with an emphasis on distributed algorithms
and protocols for consumer electronics applications. The goal was not only to consider "hard" real-time
constraints - those th at require th at a system must react in time - but also so-called "soft" real-time
constraints - those that require th at the system should react in time but occasionally may not.
Results Within HaaST a prototype tooi MOTOR has been developed for model checking stochastic
systems. The project also contributed to the further development of the timed model checker Uppaal.
Verification of hard and softly timed systems is considered as a most important topic by the
international research community, with great societal relevance, and many strong groups are working
on it. It is evident th at during the lifetime of the project enormous progress has been made in this
area, with HaaST active on the front line. With contributions from the HaaST project, the model
checker Uppaal has advanced from an academie proof of concept to a tooi th at is being downloaded
by thousands of researchers both in academia and in industry, and that is now ready for further
industrial development. The MOTOR tooI, which is a true product of the HaaST project, is still very
much in the stage of an academie prototype, but its potential usefulness has been demonstrated
already on some industrial case studies, and clearly further development of this tooi will be most
promising.
Altogether, the results of the HaaST project and the case studies that we re carried out indicate that in
many cases it can be advantageous (and co st effeetivel) to perform formal modelling and analysis of
(timing related or other) properties of embedded systems using these methods. The precise modeling
of the system under consideration often already gives an important benefit, and, the combined
assessment of both quantitative and qualitative system requirements using the same system model
can be of great value.
Utilisation The results of the HaaST project are being used in several European research consortia on

elllbedUe4 JyittmS ut! 19n nehmrk \ lnlj I':lJnrlllctfld - y'Hms ! verl r 1(S f1 gn af'lC vlli !2Jtl Qfl I networ ~~ ~ r e h ' OS9

06U

embedded systems with strong industnal participation, notably the IST-project Advanced methads far
timed systems (AMETIST) and the network of excellence ARTIST. Also at the nationallevel there are
currently several research projects that are strongly related to HaaST and that are (partiaIlY) based on
its results. The model checker Uppaal is used by many researchers both in academia and in industry.
See http://www.uppaal.comfor an incomplete listing of industrial application.

3.3 CES.500S: Improving the Quality ot Embedded Systems Using Formal Design Techniques
Goal To formally model and analyze some embedded systems that were under development by the
company Add-Controls.
Results Besides the succesful modeling and analysis of the system for lifting trucks that was described
in the previous section, also embedded controllers for a staircase elevator and a hydrolic cylinder have
been analyzed. Also a cache coherence protocol that was designed by the parallel systems group at
the Free University has been analyzed, and again a fiaw in the design was found [28J. Quite a number
of other"academic" algorithms and protocols were successfully analyzed using a wide variety of tools:
~CRL, CADp, PVS, Uppaal and PRISM.
Utilisation After completion of the project, Add-Controls remained interested in the use of model
checking technology for analyzing its designs. Under supervision of Wan Fokkink and Jun Pang, an MsC
student from the Radboud University Nijmegen analyzed aredesign from the lift system using Uppaal.

3.4 EES.5141: Specification Tooling tor Embedded Software Components
Goals Component technologies such as DCOM, CORBA and Java Beans are being used in an increasing
number of industrial embedded systems. In component technology, interfaces play a key role; one
component can have more interfaces. Components deliver and use services through explicit interfaces only.
Proper interface specifications are a prerequisite in assuring the interoperability of components within
a system. The goal of this project was to take a mainstream extensible CASE tooi supporting UML
based object-oriented modelling techniques (e.g. Rational Rose), and customize it in such a way that
it provides optimal support for developing and deploying interface specifications for embedded
software components. The customization relied on the ISpec interface specification methodology
developed and used at Philips [23J. The formal underpinning of this template-based methodology,
involving semantics for UML, ISpec and plug-in component decriptions for ISpec templates, was one
of the challenges of this project.
Results Asemantics and a tooi have been developed [32J . The latest version of the tooi, which has
been named Calisto, is available at www.win.tue.nl/calisto. The Arkas Software Engineering Student
Working Group has been involved in the further development of the tooi: it has been converted to the
.NET framework, suitable for use with Visi02003, and weil documented.
Utilisation The tooi is being used at the LaQuSo and within ISpec courses within Philips. The results

Ui{.lïtillii

WHITE
PAPERS
2006

1~:N?W"il

WHITE
PAPERS
2006

and ideas generated by the project have also been used within ITEA-DESS and ITEA-EMPRESS. Possible
applications at Philips Semiconductors, Philips Medical and Qce are being explored. There are also
contacts with ASML.

3.5 TES.5417: Atomyste: Atom Splitting in Embedded Systems Testing
Goal The goal of Atomyste has been to enable changes in the model and in test cases. Atomyste
focusses on specific type of changes, namely "action refinement': Action refinement means th at we
take an (incorrect) action in the model and replace it with correct or better behavior. For example,
suppose our model tells us that we can enter a one euro coin in the SUT and we find out that the
machine also accepts two fifty cent coins. Action refinement enables us to replace the "one euro"
behavior with behavior that also allows two fifty euro cent coins. As a result we can change the model
and then (automatically) make new test cases that refiect the change, or we can directly change
already existing test cases.
Results Atomyste extended the MBT theory to enable action refinement in MBT and implemented
the new theory in a prototype test tooI. The effort that it takes to create and maintain a model is
important for the succes of MBT. Hence the results of Atomyste are important for MBT.
Utilisation Mainly through the ESI project TANGRAM, which has ASML as carrying industrial partner.

3.6 DES.7015: FINESSE: Fault Diagnosis tor Embedded Systems Dependability
Goals The ability to accurately diagnose and recover from faults in complex systems such as the
copiers of Qcé constitutes a crucial element in achieving higher system dependability. As effective
recovery (or repair) fully depends on the accuracy of the fault diagnostic process to determine the root
cause of failure, fault diagnosis (FD) is the key determining factor. Apart from the operational phase,
FD is also beneficia I in the development phase where many system faults occur as aresuit ofimproper
design and/or integration.
The FINESSE project develops and investigates an improved FD strategy, based on a novel FD method
within a model-based approach. The method provides the required diagnostic accuracy to meet the
challenges posed by the complex application carrier. The model-based approach reduces the
embedded FD software development effort since it is also used to generate code. As the modelbased
approach is relatively well-established, the FD method is the centra I theme in FINESSE.
Diagnostic mode Is of complex systems usually allow for many diagnostic solutions, ordered in terms
of probability, while only one of the solutions refiects the actual system health (e.g. the combination
of HW component X and SW componentY is unambiguously at fault).ln orderto radically improve FD
accuracy compared to the current state-of-the-art, the project proposes to (1) improve the quality of
the probabilistic diagnosis ranking process, and (2) to significantly decrease the number of diagnosis
solutions. To address the former, an improved fault probability modeling method is developed to

061

Oli2

estimate the a priori probability of faults occurring in software components, which is much more
complex than hardware component fault probability model ing. To address the latter, an improved FO
algorithm is developed which includes the ability to reason over time at low-cost as weil as to
automatically generate test vectors as part of the diagnosti~ reasoning process. The FO approach will
be implemented in terms of an existing, model-based tooi set based on TUO's system modeling
language Lydia, and validated on a paper handling system (PHS) of Oce in terms of a demonstrator.
The issues that will be investigated include the adequacy of the new FO approach to improve system
dependability during operations, the effort spent in modeling, the computational costs of the FO
approach, all compared to traditional techniques, as weil as architectural development topics such as
the added (dependability) value of improved sensor placement, and improved testability features.
Results No result yet: the project just started.
Utilization Apart from Océ and LogicaCMG, the impact of the research is expected to be very high.
Many manufacturers that produce complex hardwaresoftware artifacts performing functions with a
high economie added value and/or which are life-critical, are facing tremendous problems with
respect to systems dependability, and have traditionally spe nt a huge effort on devising FD
mechanisms. On a national scale examples can be found at industries such as ASML, Philips (Medical
Systems, Consumer Electronics, Semiconductorsl, apart from Océ.

I 4 Conclusion I

Boosted by the advent of UML and MOA, the role of models during the design, implementation,
verification and validation of embedded systems has become much more important in recent years.
This is a very positive development which indicates that very slowly embedded system design is
becoming a mature engineering discipline. Commercial tools for model driven development, such as
Rational Rose, Rhapsody and visuaiSTATE, have gained popularity primarily because they support
automatic code generation from abstract models (various variants of StateChart). By developing
systems at a more abstract level that is (more or less) independent of the specific hardware platform,
reuse becomes possible and this saves money.
Model driven development provides a great opportunity to improve the verification and validation
process through the introduction of formal techniques. The systematic, structured construction of
models by itself already supports validation and verification. In addition, the fact th at models are
available in machine readable form enables the application of a whole range of (mathematical)
techniques for analysis such as theorem proving, model checking, model based testing and runtime
verification. These techniques are still far from main stream technology at the moment, but play an
increasingly important role in certain niche areas [271.lheir economie value is certainly demonstrated

l:oJi{l[îUUJ

WHITE
PAPERS
2006

1:1 j{.liljl Jij

WHITE
PAPERS
2006

in those cases. A general cost/benefit analysis and comparison to other approaches are seldom made or
are at best very limited in scope [25] . One of the problems is th at the whole area is subject to so much
change: by the time you have made a cost/benefit analysis it is outdated. We have e.g. seen enormous
progress on formal verification tools during recent years: scalability, accessibllity, convenience and
realizability have all been drastically improved. Another issue was raised by Gerrit Muller at a recent
ForTIA meeting 127]. He conjectured that (at least at the system design level) the added value of formal
methods are primarily the skills of the people using them: they are analytical, structured, firm in
principle and consistent. Using these ski lis, these individuals can play an important role in an informal
multi-disciplinary process, but not necessarily using mathematical models or applying rigorous analysis
techniques. I believe that Muller's conjecture is wrong (and hope this paper has provided enough
evidence for this): making formal models is a great way offinding ambiguities/mistakes in designs, and
symbolic calculation/search by formal verification and validation tools also helps to find many more
nontrivial bugs. Nevertheless, if one tries to make an objective assessment of the benefits of formal
verification and validation methods, the issue raised by Muller is of course very relevant.

Formal verification is one of the tooi boxes th at can (and sometimes has tol be used in the construction
of embedded systems.ln many situations application offormal verification is not (yet) cost-effective,
but in many other situations it does pay off. The challenge is to recognize these situations. Right now
within most Dutch companies in the embedded systems area there is not too much knowledge about
formal verification technology, although certainly initiatives such as PROGRESS and ESI have helped to
improve things. Still, most companies do not realize how important it is for their own success to be
experts on V&V.lt is essential to have at least a rough feeling concerning what formal verification and
validation can and cannot do. Within Dutch Universities there is much expertise on formal methods
and either directly or through organizations such the Laboratory for Quality Software (LaQuSo, http://
www.laquso.com)oftheUniversitiesofEindhovenandNijmegen.this expertise can be easily used.
When I completed my PhD thesis in 1990, the typical duration for a formal verification case study was
one year. Due to advances in the field it is now often possible to get the first results after one week
(depending on the case study, of course). Big companies such as Intel, Siemens, IBM Lucent and
Microsoft have dedicated groups working on the development and application of formal verification
technology. Within the Netherlands verification specialists are active within e.g. Philips, Imtech and
Chess. My impression is that Pentium bug style disasters will be needed to convince Dutch companies
to set up full-fiedged formal verification groups. Maybe the situation will change within a few years
due to increased use of model driven development, the fact that formal verification technology
becomes more and more powerful, and the integration of model driven development with formal
verification technology. There appears to be a big difference in mental attitude in the hardware and in
the software community. In the former, the use of formal techniques is weil established, possibly

63

06 4

because product liability claims are of real economie significance.ln the software community, product
liability is typically waived and the end-users still seem to accept that fact. Quite likely, the uptake of
formal methods in main stream software engineering is hindered by that. There is evidence that in the
area of embedded software, where the borderline between hard- and software is inherently less
obvious, th is attitude is in fact changing [27] . The quality demands posed on those type of systems, for
example in the automotive domain, are typically identical to hardware, and product liability is indeed
a real concern here, which raises the need for system verification and validation.

Acknowledgements Thanks to the PROGRESS organizers for inviting me to write this overview. I
apologize for the fact that writing it took more time than expected! Thanks to Jaco vd Pol, Ruurd
Kuiper, Erik Poll and Marcel Verhoef for comments on a draft version.

References
(1) R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183-235, 1994.
[2) S. Bensalem, V. Ganesh, Y. Lakhnech, C. Muiioz, S. Owre, H. Rue~, J. Rushby, V. Rusu, H. Saldi, N.

Shankar, E. Singerman, and A. Tiwari. An overview of SAL. In C. Michael Holloway, editor, LFM
2000: Fifth NASA Langley Formal Methods Workshop, pages 187-196, Hampton, VA, jun 2000.
NASA Langley Research Center.

[3) A. Beugnard, J. Jézéquel, and N. Plouzeau. Making components contract aware. IEEE Computer,
32(7):38-45,1999.

[4) BW. Boehm. Software Engineering Economics. Prentice Hall, 1981.
[5) H. Bohnenkamp, H. Hermanns, M. Zhang, and FW. Vaandrager. Cost-optimisation of the IPv4

zeroconf protocol. In Proceedings of the 3rd PROGRESS Workshop on Embedded Systems,
Utrecht, the Netherlands. PROGRESS/STW, 2002. ISBN 90-73461-34-0.

(6) H. Bohnenkamp, P. van der Stok, H. Hermanss, and F.W. Vaandrager. Costoptimisation ofthe IPv4
zeroconf protocol. In Proceedings of the International Conference on Dependable Systems and
Networks (DSN2003), pages 531 -540, Los Alamitos, California, 2003. IEEE Computer Society.

(7) H.C. Bohnepkamp, J. Gorter, J. Guidi, and J.-P. Katoen. Are you still there? - a lightweight
algorithm to monitor node presence in self-configuring networks. In 2005 International
Conference on Dependable Systems and Networks (DSN 2005), 28 June -1 July 2005, Yokohama,
Japan, Proceedings, pages 704-709. IEEE Computer Society, 2005.

[8) B. Bouyssounouse and J. SifakiS, editors. Embedded Systems Design: The ARTIST Roadmap for Research
and Development, volume 3436 of Lecture Notes i ~ ComputerScience. Springer-Verlag, 2005.

[9) J.P. Bowen and M.G. Hinchey. Ten commandments of formal methods ... ten years later. IEEE
Computer, 39(1):40- 48, 2006.

[10) E. Brinksma and A. Mader. On verification modelling of embedded systems. Technical Report

l:IIileI?Uli1

WHITE
PAPERS
2006

1:01 illIct ilJii

WHITE
PAPERS
2006

TR-CTIT-04-03, Centre for Telematics and Information Technology, Univ. of Twente, The
Netherlands, January 2004.

[11] Campbell C. W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and M. Veanes. Testing
concurrent object-oriented systems with spec explorer. In J. Fitzgerald, !.J . Hayes, and A.
Tarlecki, editors, FM 2005: Formal Methods, International Symposium of Formal Methods
Europe, Newcastle, UK, July 18-22, 2005, Proceedings, volume 3582 of Lecture Notes in
Computer Science, pages 542-547. Springer, 2005.

[12] D. Cavin, Y. Sasson, and A. Schiper. On the accuracy of manet simulators. In Proceedings of the
2002 Workshop on Principles of Mobile Computing, POMC 2002, October 30-31,2002, Toulouse,
France, pages 38-43. ACM, 2002.

[13] E.M. Clarke and J.M. Wing. Formal methods: State of the art and future directions. ACM Comput.
Surv., 28(4):626-643, 1996.

[14] Henk Corporaal, Embedded Systems Design" nrst chapter of th is publication, p. 007.
[15] P.R. D'Argenio, H. Hermanns, J.-P. Katoen, and R. Klaren . Modest - a modelling and description

language for stochastic timed systems. ln L. de Alfaro and S. Gilmore, editors, Process Algebra
and Probabilistic Methods, Performance Modeling and Verincation: Joint International
Workshop, PAPM-PROBMIV 2001, Aachen, Germany, September 12-14, 2001, Proceedings,
volume 2165 of Lecture. Notes in Computer Science, pages 87-104. Springer, 2001.

[16] S. Edwards, L. Lavagno, E.A. Lee, and A. Sangiovanni-Vincentelli. Design of embedded systems:
formal modeis, validation, and synthesis. Proceedings ofthe IEEE, 85(3):366-390, March 1987.

[17] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata. Extended statie
checking for Java. In ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation (PLDI'20021. pages 234-245, 2002.

[18] B. Gebremichael, F. W. Vaandrager, and M. Zhang. Analysis of a protocol for dynamic connguration
of IPv4 link local addresses using Uppaal. Report ICISR06016, Institute for Computing and
Information Sciences, Radboud University Nijmegen, 2006.

[19] B. Gebremichael, EW. Vaandrager, M. Zhang, K. Goossens, E. Rijpkema, and A. Radulescu.
Deadlock prevention in the d'thereal protocol. [n D. Borrione and WJ Paul, editors, Correct
Hardware Design and Verincation Methods, 13th IFIP WG 10.5 Advanced Research Working
Conference, CHARME 2005, Saarbrücken, Germany, October 3-6, 2005, Proceedings, volume
3725 ofLecture Notes in Computer Science, pages 345-348. Springer, 2005.

[20] J.F. Groote, J. Pang, and A.G. Wouters. Analysis of a distributed system for lifting trucks. J. Log.
Aigebr. Program., 55(1-2):21-56, 2003.

[21] L. Heerink and E. Brinksma. Validation in context. In P. Dembinski and M. Sredniawa, editors,
Protocol Specincation, Testing and Verincation XV, Proceedings of the Fifteenth IFIP WG6.1
[nternational Symposium on Protocol Specincation, Testing and Verincation, Warsaw, Poland,

065

066

June 1995, volume 38 of IFIP Conference Proceedings, pages 221-236. Chapman & Hall, 1996.
[22) J. Huang, J.P.M. Voeten, O. Florescu, P.H.A. van der Putten, and H. Corporaal. Predictability in

real-time system development. In Advances in Design and Specification Languages for SoCs,
Dordrecht (The Netherlands), 2005. Kluwer Academie Publishers.

[23) H.B.M. Jonkers.lspec: Towards practical and sound interface specifications. ln W. Grieskamp, Th.
Santen, and B. Stoddart, editors, Integrated Formal Methods, Second International Conference,
IFM 2000, Dagstuhl Castie, Germany, November 1-3, 2000, Proceedings, volume 1945 ofLecture
Notes in Compuler Science, pages 116-135. Springer, 2000.

[24) H.B.M. Jonkers. Interface specification: A balancing act (extended abstract). In Ivica Crnkovie,
Judith A. Stafford, HeinzW. Schmidt, and Kurt C. WalInau, editors, Component-Based Software
Engineering, 7th International Symposium, CSSE 2004, Edinburgh, UK, May 24-25, 2004,
Proceedings, volume 3054 of Lecture Notes in Computer Science, pages 5-6. Springer, 2004.

[25) D.R. Kuhn, R. Chandramouli, and R.W. Butler. Co st effective use of formal methods in verification
and validation, 2002. Paper presented at Workshop on Foundations for Modeling and Simulation
(M&S) Verification and Validation (V&V) in the 21st Century (Foundations 02), October 22-24,
2002, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland (USA).

[26) E.A. Lee. What's ahead for embedded software? IEEE Computer, 33(9):18-26, 2000.
[27) T. Margaria, B. Schätz, and M. Verhoef. Formal methods going mainstream - cost, benefits

and experiences, 2006. Report on the ForTIA Industry Day at FM 2005.
[28) J. Pang, W. Fokkink, RJ.H. Hofman, and R. Veldema. Model checking a cache coherence protocol

for a Java DSM implementation. In 17th International Parallel and Distributed Processing
Symposium (IPDPS 2003), 22-26 April 2003, Nice, France, CO-ROM/Abstracts Proceedings, page
238. IEEE Computer Society, 2003.

[29) K.R. Popper. Conjectures and Refutations. Routledge and Kegan Paul, 1963.
(30) A. Pretschner. Model-based testing in practice. [n J. Fitzgerald, I.J. Hayes, and A. Tarlecki, editors,

FM 2005: Formal Methods, International Symposium of Formal Methods Europe, Newcastle,
UK, July 18-22, 2005, Proceedings, volume 3582 of Lecture Notes in Computer Science, pages
537-541. Springer, 2005.

[31) P.E. Ross. The exterminators. IEEE Spectrum, pages 36-41, September 2005.
[32) E.E. Roubtsova, L.C.M. van Gooi, R. Kuiper, and H.B.M. Jonkers. Consistent specification of

interface suites in uml. Software and System Modeling, 1 (2) :98-112, 2002.
[33) S. Sastry, J. Sztipanovits, R. Bajcsy, and H. Gil!. Scanning the issue - special issue on modeling

and design of embedded software. Proceedings ofthe IEEE, 91(1):3- 10,2003.
[341 J. Staunstrup, H.R. Andersen, H. Huigaard, J. Lind-Nielsen, K.G. Larsen, G. Behrmann,

K.J. Kristoffersen, A. Skou, H. Leerberg, and N.B. Theilgaard. PracNcal verification of embedded
software. IEEE Computer, 33(5) :68-75, 2000.

e bedded !iyst!lII:" deliQ_ I "i! t:., orK~ tnd t Ot1necl~d ~ i St!lII. I yo!rlfltutl)l1 IU 'n! v. IM llit l tIJl I Pl 8tW(II r'ks ~ rl ch ip

lillj(IIÎ1iIJJJ

WHITE
PAPERS
2006

1:11 iNdilli1
WHITE
PAPERS
2006

NET 0 so eH P:
PP

Jef van Meerbergen I
Fellow Philips Research

U ICATIO -CENT IC
S D DESIG

Professor Eindhoven University ofTechnology

Abstract
Embedded system implementations must be f1exible, power-efficient and the non-recurring
engineering (NRE) cost must be low. To deal with those conflicting requirements a platform-based
approach is advocated. Three platform generations are identified. The first generation targets
programmabie video applications. Computational performance is the challenge and designs are
optimized for timing. To control the NRE co st Intellectual Property (lP) blocks are reused as much as
possible. In the second generation the bottleneck shifts from computation to communication.
Networks on a chip are introduced including layered services. Since the target application domain
shifts to mobile applications designs are now optimized for power dissipation. ln the third generation
systems become smarter, more adaptive and show a lot of interaction with the environment. New
Deep Sub-micron problems like variability and soft errors make th at designs are now optimized for
yield . The layered network-based approach is weil suited to solve these problems also.

11 Introduction 1

In the foreseeable future it is expected that the sealing towards smaller dimensions as predicted by
Moore's law will continue. The ITRS roadmap [1] wil! not suddenly come to an end in the near future.
On the contrary research on 32 nm and even n nm is started already. This makes the integration
possible of true Systems on a Chip (SoC), i.e. complete systems including not only storage and
processing functions but also peripherals and interfaces for interaction with the outside world. The
interaction is very important because it leads to a whole new generation of applications, which are
aware of their environment. Examples are Ambient Intelligence [7], connected consumer applications
[11], smart camera applications [13], etc. Such systems put people in the foreground thanks to a [ot of
technology hidden in the background. They have stringent constraints on size, power dissipation [111

and co st. From a pure technological point of view these systems can be fabricated.

06 7

06

But the problem shifts from fabrication towards the design of both hardware and software. This poses
some new and unprecedented problems. The non-recurring engineering (NRE) co st can become as
high as 20 Million Euros [1]. Designers are confronted with a wide range of different problems going
from Deep Sub-micron problems, via severallevels of architectures up to application software. In the
past these problems were tackled in different communities. For the new complex SoC systems an
overall global approach is needed which brings together all underlying disciplines. This answer to
those challenges is the so called 'Platform based' approach.

Three platform generations can be distinguished.ln the first generation the emphasis was on reusing
higher level of lP blocks aiming at abstracting from Deep Sub-micron (DSM) problems. Examples are
Nexperia and Omap. Despite the use of genera I purpose cores supported by good compilers it was
learned that programming the platform at the global (multiprocessor) level becamethe main obstacle
because only the re-use of functions, without theirnon-functional requirements (timing, resource
usage, etc.) was addressed. As areaction to this the second generation has been developed in research
and becomes communication centric. The communication infrastructure must be scala bie and easy to
program. Networks on a chip are a promising candidate leading to 'a NoC based SoC The third
generation will pay attention to non-deterministic ·effects, such as synchronization errors between
different doek domains, soft errors due to alpha partieles, noise problems, crosstalk, electromagnetic
interference etc. Furthermore applications will have soft deadlines which can be missed occasionally.
As a consequence stochastic models using average values or varia nee will become important to SoC
design and will have a major impact on the design methodology.

I 2 Deep Sub-micron problems I

There are many Deep Sub-micron (DSM) problems. From a historie perspective they can be classified
in three groups. First, the main focus was on performance requirements. As a consequence timing
issues played a central role. Secondly, power dissipation became the most important constraint.ln the
near future the manufacturing co st becomes a problem due to increased variability and designs must
be optimized for yield.

Many DSM problems are related to the backend or interconneet part of the processing which is
becoming more and more important. This is illustrated by the increasing number of interconneet
levels as predicted in the ITRS roadmap (Tabie 1). A distinction is made between local, intermediate
and global wiring. The global wires are thicker, wider and spa eed further apart. This reduces the
resistance as weil as the capacitance. From a design perspective this has an impact on the timing

l:.JjllIîtjlJJ1

WHITE
PAPERS
2006

Vear of productfon

behaviour since the Re delay of wires is becoming much larger than the gate delay and thus is the
dominant factor in overall chip performance. For example, in the older 1.0 Ilm generation the
transistor delay was -20 ps and the Re delay of a 1 mm line was - 1.0 ps, while in a .035 Ilm
generation the transistor delay will be -1.0 ps, and the Re delay of a 1 mm line will be - 250 ps 11].

This is a dramatic reversal from performance limited by transistor delay to performance limited by
intercon nect delay.

05 06 07 08 09 10 11 12 13

P/lyslcal gate length (nm) 32 28 25 22 20 18 16 14 13

Number of metallevels 11 11 11 12 12 12 12 12 13

RC delay (ps) for a 1 mm Cu lo(al (metall) wire 440 612 767 1044 1388 1792 2392 2857 3451

Re dtlay (ps) for a 1 mm Cu intermediate wire 355 527 682 1039 1413 1825 2436 2784 3504

Re delay (ps) fot" a 1 mm Cu global wire 111 165 209 316 410 523 687 787 977

Table 1 RC delay of local, intermediate and global wires with a length of 1 mm

This has several consequences. First of all there is a problem of timing closure. Many layout iterations
are needed because the timing depends on the placement and the routing of the chip. Secondly, Re
delays in supply lines leads to voltage loss or so called IR-drop associated with current peaks. Finally,
similar effects happen in dock lines, which causes skew problems. Synchronization with a single dock
is no longer possible. A promising solution for the future is globally asynchronous and locally
synchronous (GALS) .

Velr of production 05 06 07 08 09 10 11 12 13
The second design aspect
that has become important
- next to timing - is power
dissipation. Dependent on the
application domain there
are different constraints on
the maximum dissipation.

VDD(Yolt)(Hlgh performan(e) 1.1 1.1 1.1 1.0 1.0 1.0 1.0 0.9 0.9

1:11 :ltIîI ilJli

WHITE
PAPERS
2006

VOD (Volt) (Low power) 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.6

Table 2 Decrease in supply voltage for high performance and low power applicat ions.

While PCs can dissipate up to 100 W the cheaper packages for CE applications lower this constraint to
10 Wand for mobile battery-operated applications even to 1 W. The reduction of power dissipation is
the main reason for a reduction of the power supply voltage. Additional reasons are the reduced

069

OIO

transistor channellength, and the reliability of thinner gate oxides. The trend towards a lower supply
voltage is a major problem for analog and RF design and reduces the noise margin for memory cells.
Furthermore a reduction of power supply voltage has an impact on the dynamic dissipation but not on
the static leakage power dissipation, i.e. substrate currents and sub-threshold currents [8]. Leakage
power depends exponentially on the gate length, oxide thickness and threshold voltage.
Figure 1 shows that the power dissipation due to leakage is rapidly increasing. A crossover is expected
for a 32 nm process.

POWER AND LEAKAGE PER mm2

1000.0000

100.0000

10.0000

1.0000

0.1000

Finally, noise and variability will
have an impact on the yield.
Noise can come from many
sources: the supply, the sub
strate, from inductive effects,
capacitive coupling between
neighboring wires (crosstalk),
from alpha partides or other
forms of radiation that inject
charges. 50ft errors will occur
not only in embedded memories
but also in latches and logic.
Variability means that two tran
sistors that are assumed to be-

0.0100 o Power/mm' (averagt of ultlul
path htq [99J and Jmrtrl< frtq

0.00 10
[J Passlve power per mm l

0.000 1

0.0000

a.Sum O.35um O.25um O.18um 0.1 2um 90nm 6Snm 45nm 32nm

have identically in reality can

Figure 1 Active power dissipation and dissipation due to leakage in mW/mm' for
different techno logies 1201

show a totally different electrical behavior. This increases unpredictability and has a negative impact
on the yield. Designs must become error tolerant and reliable systems must be designed using
unreliable components.

I 3 First generation platforms I

The first generation was driven by programmabie video applications and is designed in 0.35 . . . 0.18 ~m
processes. As a consequence performance is a real challenge and designs are optimized for timing. To
tackle the timing problems without an explosion of the design cost reuse is advocated. The level of
abstraction is raised from standard cells to a higher level of coarser grain reusable Intellectual Property
(lP) blocks. Typical examples are different types of programma bie cores ((PUs and DSPs), memories
and function specific blocks, which are used as interfaces or as accelerators for compute intensive

l:IJi(IIitilJii

WHITE
PAPERS
2006

Tedlnology
Vear
Driver application
DesIgn constraint

Cbaracttristlc

1:tI i(.lït UiJOl

WHITE
PAPERS
2006

kemels, e.g. video. The size of the blocks is small enough such that existing CAD tools can deal with
Deep Sub-micron problems within the blocks. The programma bie cores bring the necessary fiexibility
to the platform, while the efficiency is taking care of by the function specific blocks. Typical examples
are Nexperia!61 and Omap [51. An overview of the th ree generations is given in Table 3. The first
generation is shown in the second column. The second and the third generation are discussed later.

Generation 1
(used in products)
0.35 ... 0.18 ~m

1996 .. . 2001
Video

Timing

ReuseoflP
blocks

(computation)

Generation 2
(available in Research)

0.12 .. . 0.06 ~m
2002 . .. 2007

Mobile
Power

Networks on Chip
with guarantees
(communication)

Generation 3
(future research)

<60nm
>2007

Ambient intelligence
yield

Networks on Chip
with guarantees

and error tolerancy

The most popular interconnect archi
tecture today is a bU5 connecting masters
(initiators of a transaction, e.g. CPUs) to
slaves (targets responding to trans
actions, for example memories) using a
shared set of wires. There can be
multiple masters or a single one in case
of a multilayer bus. Arbitration is do ne
centrally. Examples of weil known bus
protocols are AXI, AHB, APB, PI, ete. ..
For simp Ie (monolayer) buses there is

Table J Overview of three platform generations no concurrency since transactions are
sequentialized. Broadcasting is supported.

Usually more than one bus is used. Different buses can use different protocols and are connected via
bridges (Figure 2). Using multiple bridged buses with different protocols causes many conversion and
end-to-end OoS problems.

Programmabie cores have level 1 caches. Data is communicated via external memory under
5ynchronization con trol of a programmabIe (PU. Communication is centralized and coarse grain in
order not to overload the CPU with interrupt requests. In case of video applications for example, th is
means th at tasks must be defined at the frame level.

This approach has advantages and disadvantages. The ma in advantage is fiexibility. Flexibility is
needed because applications are unknown at design time. Furthermore, it is an extension of well
known computer architectures using shared memory, caches ete. .. adopting a general purpose view.
The disadvantage is the difficult software deevelopment of different applications th at run
simultaneously while sharing resources. The software architecture is organized in layers from lowest
level drivers, via sub-functions (e.g. audio, video rendering ete. . .) up to the level of an operating
system, which arbitrates between synchronization events and which runs on a programmabie core,
e.g. a Trimedia core. Thus the synchronization events, which are low level hardware events, are
propagated to the higher software levels, which are made responsible for resource arbitration.

Ol J

Oll

Different types of resources can be shared between different applications. Examples are processors,
caches, the SDRAM controller, buses ete. .. The question is, how these local arbiters interact with each
other and how one can reason about the global behavior, which means end-to-end behavior of the
application. This is complicated by unpredictable elements in the architecture, like caches, in
combination with applications that have real-time constraints. Timing aspects were treated as an
afterthought. The software integration
and resource arbitration became the
Achilies heel and the real bottleneck. The
software development effort went up to
hundreds of person-years, which is even
larger than the NRE cost predicted in the
JTRS roadmap.

This architecture is also latency sensitive.
If every communication is going via a
cache then every request to memory
becomes a low latency request. If the
number of processors increases then they
all fire low latency requests and they have
to wait for each other. This limits the
scalability of the first generation archi
tecture. ln conclusion, managing task level
concurrency in a predictabie way is the
main challenge. From this perspective,
two metrics are important 141 next to
latency or the time taken by an operation
or a node. The first one is bandwidth or the
rate at which ops are performed and the
second one is cost, which is the impact on
the execution time of the application.

I 4 Second generation platforms I

p.r

M-Des

f igure 2 Example of a Nexperia platform with heterogeneous interconnecl.

In 2002 a 0.12 ~m process became available. This coincided with a growing importance of mobile
applications because they represented a huge market. As a consequence also non-functional

T- DCS

I (,I Mrt jlli1
WHITE
PAPERS
2006

1:<1 jlllt1jlJJJ

WHITE
PAPERS
2006

requirements became more important because power dissipation was added as a constraint next to
timing. As areaction to this problem, the power supply was lowered but th is was not sufficient. Also
the architecture must be revisited because the bottleneck is often not in the computation but in the
communication, e.g. the growing gap between the processing and memory performance [36J. This is
related to the timing as weil as to the power constraint. Therefore the second generation shows a shift
from computation-centric to communication-centric.

A communication-centric approach has impact on the architecture. From a system level perspective the
bandwidth to externaiSDRAM is often a very scarce resource. To reduce the bandwidth, communication
is kept on chip, if possible. This also leads to a reduction of the power dissipation at the expense of more
on chip memory. The on-chip memory will not be centralized but distributed, that means close to the
computation elements or processors for reasons of power dissipation as weil as performance. This leads
to the formation of clusters or til es consisting of computation blocks with an appropriate amount of
local memory, which can be scratchpad or caches. Memory-only til es are also possible and can be used
to create a hierarchical memory system. similarly, specialized 10 til es can be part of the architecture.
Because processors are masters and memories are slaves and because a tile contains both tiles are
masters as weil as slaves.

In the absence of agiobal dock tiles
will become autonomous. The
introduction of Globally Asynchronous
locally synchronous (GAls) techniques
leads to distributed systems on chip.
Also for performance reasons we want
to decouple communication from
computation. Tiles run not only
decoupled from other tiles but also
decoupled from communication
actions. As a consequence a communi
cat ion assist (CA) is introduced which
acts as an initiator of a communication

LW
LW I ' I I PROCillO: I PRO~~SOR

PI

SUI,l STALL

EJ -=
[] El []

...
HETWORK ON (HIP

Figure 3 Bdlic lemplate of the secand generat ion architecture'

action. The CA also arbitrates the access to the memory and can stall the processor. This way
communication and computation concerns are separated.

The communication between tiles is done via an on-chip network. This is motivated more in detail
below. This results in the basictemplate ofthe second generation architecture (Figure 3), a multiprocessor

073

architecture based on NoCs [4]. Note th at this template still offers a lot of freedom, e.g. the use of
scratchpad or caches as local memory. This also corresponds to the third column ofTable 3.

4.1 Networks-on-Chip
A Network-on-Chip is defined by the topology, the routing algorithm, the switching strategy and the
fiow control mechanism.
1 A NoC consists of two components: the routers and the network interfoces (NI). The Nis are the

interface (e.g., AXI or OCP) to the lP modules connected to the NoC and are responsible for
packetization and qepacketization. Nis are complex components [33]. The routers transport packets.
The topology specifies how the routers and Nis are connected. This can be regular (grid, mesh,
tree ...) or irregular for application-specific NoCs.

2 The routing defines which routes or paths messages follow in the topology.
3 The switching strategy defines how the message progresses on the route. There are two basic

strategies: circuit switching and packet switch ing. In circuit switching the route is reserved until
the message is transferred. In packet switching the messa ge is broken into a sequence of packets,
which are individually transported. The scope of this paper is packet switching, which stilileaves
open several possibilities: store-and-forward, wormhole and virtual cut-through.

4 End-to-end flow control for QoS is implemented in the Nis.

4.1.1 Advantages of networks compared to buses
Buses have a number of limitations like limited scalability. When lP blocks are added, performance
degrades due to electrical effects. More lP blocks leads to more contention and increased waiting times

NETWORKS
ON (HIP

I M~STERS

figure 4 Busesare limiled by Ihe number of mallers Ihal (an be
'(live simuhaneously and (oncentralors like PMAN by , limiled

[19]. An example is given in [35]. If a bus has 9 masters each
requiring 10% of the bus bandwidth, the arbitration latency
between request and grant is increased by a factor of 3 on
average and a factor of 10 worst case. Another approach is
optimizing the communication from the external SDRAM
point of view. Nexperia developed a solution for this, called
PMAN, which is a multiplexer or concentrator tree where paths
are programmed from the lP block to the memory. In th is case
many master lP blocks compete for a single si ave.

Unfortunately, when memories become distributed the
single slave situation no longer holds. As described above,
ti/es can be masters as weil as slaves. A solution is needed for
a multi-moster multi-slave prob/em. As shown in Figure 4

1:I;I'11ill$1

WHITE
PAPERS
2006

APPUCAnON

SERVICES/ ARCH ITECTU RE

Networks-on-Chip till this gap. NoCs help to answer some basic Deep
Sub-micron questions because they offer segmented and multi-hop
communication. The advantage of segments is that only those segments
are activated that are actually used in the communication. 50 only those
segments dissipate power. Multi-hop is needed because the transport
delay from sou ree to destination can become longer than the clock
period. Another advantage is that a NoC approach structures the top
level wires in a chip, and facilitates modular design. Structured wiring
results in predictabie electrical parameters, such as crosstalk, ete. NoCs
also help to answer some architecture questions. New blocks can be
easily added without changing the existing ones. NoCs also provide
concurrency, i.e. several transactions can be dealt with simultaneously.
This can be used to reduce the interference between different
applications, which leads to compositionality and virtualization. Finally,
the set of buses and bridges of the previous generation can already be
considered as a poor man's network. Networks-on-Chip play a centra I
role in many PROGRESS projects [11][151.

IM PlEME NTATION

Figure 5 Services are defined at the transport layer and are the
interf.ce between software programming and me implementation.

I ïI jltItt illil

WHITE
PAPERS
2006

4.1.2 Services
Similar to buses, transactions are the basic concept for NoCs. A transaction is a one-way transfer from a
buffer in the sou ree NI to a buffer in the destination NI. There are two types of transactions: a request
message from the master (command, address, write data) and an optional response message from the
slave (read data, acknowledgement). The differences with buses are that there are no direct wires and
no global arbitration and that a large number of transactions may be in progress simultaneously. This
triggers some questions. How does the sou ree know that the transaction has reached the destination?
When did it arrive? What about the order of arrival? How to
avoid deadlock? To tackle these questions a layered approach,
e.g. the 051 staek, can be followed. While transactions are
detined at the 051 network layer the above questions relate to
the transport layer, which is one layer up.

The detinition of services at the transport layer can be seen as a
meet-in-the-middle strategy or a specitication level, which
detines the interface between the software and the hardware
(Figure 5). Services are offered to the software development
(the higher layers in the 051 staek) and can have a major impact

Propertjes Commitment

Data integrity Correctness

Transaction ordering

TransactilIn completion Completion

Aowcontrol

Delivery bounds (throughput,

Latency, jitter ...) Time bounds

Table 4 Services are properties that are moei.ted with
eonnections and that express some form of eommitment.

07S

076

on the development co st. At the other hand the services have to be implemented in hardware (the
lower layers in the OSI staek). Those services play a role in the multi-processor architecture similar to the
role of an instruction set definition in a single processor context. Services don't have to be the same for
the whole network but can be differentiated by offering them on connections that can be configured
individually for different services. So services are properties that are associated with connections and
that express some forrlll of commitment.
Different types of servi€es can be defined ranging from best effort (BE) to different degrees of guarantees
(Tabie 4). Because the NOC is made up of a number of distributed arbiters (the routers), giving global
(end-to-end) performance guarantees is challenging [22)[23J . A number of different approaches to
offering guaranteed services (GS) have emerged:

circuit switching, whereby the links on path in the NOC are fully reserved for a single connection
(Metro [24], SOCBus [25J). Router buffers are minimal, but offering guaranteed services requires
many disjoint paths in the NOC (increasing wire cost) . Latency is minimal.
virtual circuit switching, whereby the links on a pa th are reserved but shared with others, using
virtual channels [26)[27][28J. A one-fijt buffer is required for every virtual channel in every router. A
fijt (flow control unit) is the unit of synchronization. Latency depends on the link scheduling, and
falls between the pure circuit switching and contention-free approaches.
contention-free approaches that include JEthereal [29], Nostrum [30J and aSOC [31J. Although links

GENERATE PARETO OPTIMAL
MAPPINGS AT DESIGN TIME

APPLICATION 1

~'L
(ql, cl)

CO ST (resources)

RTOS

RECONF YIN

GLOBAL MGR

R QMIN RECONF
QMAX .----

Fi9ure 6 Design time mappings are input to the run time mapping consisting of agiobal and a local manager.

l:;tjNrtjlJi1

WHITE
PAPERS
2006

uiHrtilUJ

WHITE
PAPERS
2006

are shared, contention is avoided, usually by use of time-division multiple access (TMDA) virtual
circuit switching. No virtual channels are required, reducing router buffer sizes to one flit, at the cost
of higher average latency.

132][28][29][301 offer a combination of both types of services, i.e. best-effort (BE) as weil as
guaranteed services (G5).
The RT05 starts a new application on a platform while other applications are already running.
Applications are independent from each other but they share the same platform resources. The global
manager has an overview over all applications that are active and also knows which resources are free.
50 this is the place where the above negotiation process happens. To take a proper decision it uses a
set of Pareto-optimal mappings (quality vs. resources), which are pre-computed at design time. The
global manager selects a Pareto point as an operation point dependent on the run-time status of the
platform. The output is sent to the local manager and includes a resource budget and the corresponding
quality target.
The scope of the local manager is a single application. 5ince the resource usage is varia bie there might
be a budget leftover. The local manager can use this to maximize the quality or to minimize a co st
function, for example power dissipation. But the given budget may never be exceeded. Another task
of the local manager is to send a reconfiguration request to the global manager in case a minimum
quality level cannot be delivered.

4.2 Optimization tor streaming
50 far no assumptions have been made with respect to the applications except th at applications are
unknown at design time, which advocates a general purpose approach. This statement is maybe too
strong. The exact applications and features th at will hit the market might be unknown but maybe
characteristics of an application domain can be defined and the platform can be optimized for them.
5uch a characteristic is streaming. It is an important domain and often the strategie part in embedded
applications. Optimizing for streaming doesn't mean that non-streaming functions cannot be
executed. They can still be implemented correctly but possibly suboptimal. 5treaming should be
considered as the common case, comparable to the definition of an instruction set architecture, which
is optimized for the most frequently used instructions.lt will be shown that NoC architectures can be
optimized for streaming.
Let's first define streaming more precisely, because it is sometimes interpreted as (strictly) periodic. A
much more relaxed definition can be given. The main characteristic is a repetition of the same function
over and over again on new input data. The function can show data dependent behaviour. 5treaming
applications are conveniently represented as graphs, e.g. dataflow graphs. An important characteristic
is an explicit separation of variables in internal variables, which are local to the computation in the
node and external varia bles, which are communicated over the edges. Data abstraction in the form of

017

Oi~

tokens is possible. For example for video applications tokens can be pixels, blocks, lines, stripes,
frames, ete. .. Tokens are produced and consumed in fifo order. Random access is still possible within
a token and also to the local state. Dynamic applications and bursty behaviour can be modeled using
dynamic datafiow (DDF). As aresuit many dynamic applications can be modeled, e.g. coding, motion
compensation, graphics, ete. It is not streaming anymore if random access is needed to a dataset,
which is too large to fit in local memory and thus must be stored in SDRAM. An example is H264 wh ere
motion vectors must be detected in 5 frames.

Because of the repetitive characteristic of streaming there is a natural link with (re)configuration.
A fiowgraph corresponds to a configuration, which is implemented via programming connections in
the network. Thecharacteristicsofstreaming are exploited in the architecture. Sincethecommunication
variables belong to a channel, which is a point-ta-point connection, we only have to check if the data
is valid. This means that we have to solve a synchronization problem and not a genera I memory
consistency problem. Synchronization can often be done using a fine grain size. Latency can often be
hidden via buffering. A distributed strategy can be implemented by storing tokens locally, i.e. at the
producer and consumer side. For local memories scratchpad memories are preferred above caches
since data is read just once. The producer can write if space is locally available, otherwise it blocks. The
same holds at the consumer side, dependent on the availability of data tokens. As soon as all data
elements of a token are produced, it is available for transport via the network. For the application
programmer this happens automatically thanks to the underlying end-ta-end credit system and the
communication assist. Programming becomes easier since the communication code is not mixed with
the functional code. In a streaming context prefetching is very natural. This is a big difference with
caches for example. When caches are used, first an event is generated (a miss) befare the action can
start and hence the delay of agiobal communication must be incurred . Hence it is latency critical
while streaming is latency tolerant.
The control and configuration of the streaming part is implemented as a separate subsystem with a
genera I pur pose SMP-type of architecture. The two parts run quite different software. On the control
part there are the operating systems, aften standardized, state-oriented software using a shared
address space model. But aften with relaxed timing constraints.
Guaranteed services have a major impact on the design process. A quality of service approach implies
that you first state which service you want (the negotiation phase), next having the provider either to
commit or reject your request, and renegotiate when your requirements change. If the request is
committed a configuration is set. Connections can be opened or closed and resources are reserved in
accordance with the properties th at are associated with the connection.
The impact on the design process is shown in Figure 6. There are two run-time managers, which have a
different scope but are closely cooperating: agiobal one and alocal one.

li,ljItldillli

WHITE
PAPERS
2006

I iIIiltI!1iI Ui
WHITE
PAPERS
2006

I 5 PROGRESS contributions I

The PROGRESS embedded systems roadmap 2002 [34] notes th at its highest priarity is to 'promote,
develop and facilitate the reuse af lP blacks' as a major factor in an effort to reduce the design
complexity gap. Many PROGRESS projects were active in this area and have had major contributions to
the state of the art. Reconfigurable architectures for streaming applications are a central theme, both
within the tile as weil as between tiles.

5.1 Reconfigurability within a ti Ie
The Chameleon project [11] has developed a MONTIUM processor (Figure 7), which uses coarse-grain
reconfigurability techniques to reduce the power dissipation while still offering enough fiexibility.lt is
a powerful core. For example, a 4 finger Rake receiver for UMTS can be implemented. The dissipation
is only 500 flW/MHz and the area 1.8 mm 2 in a 0.13 flm process. The core is tuned to a wide range of
OSP algorithms in the area of mobile and ambient applications.
The datapath is 16 bits wide and consists of five identical ALUs and ten memories of 8Kb each. Each
memory has its own Address Generation Unit. A single ALU has four inputs and two outputs. Each
input has a private input register file that can store up to four operands. Input registers can be written
by various sources via a reconfigurable interconnect to which also both outputs are connected.
Neighbouring ALUs can also communicate directly. The Communication and Configuration unit is
responsible for the external communication and
for the configuration of the datapath to imple
ment a particular algorithm.

Another example of the use of reconfigurability
within a tile is the Rcosy project. This project
develops a compiler for the Molen processor,
which extends a general purpose core with a
reconfigurable unit. Both parts share the same
data and instruction memory. The reconfigurable
unit is used as an accelerator for application
specific user -defined function s, typically function s
like OCT and SAO for applications like MJPEG,
MPEG-2, and MPEG-4. Under those assumptions
speed-up factors of 2 . .. 2.5 have been reported
in [21] . The architecture is implemented on a
Xilinx Virtex 11 PrdM

•

r (OMMUNICATION and CONFIGURAnON UNIT

figure 7 The MONTIUM archileCiure

1179

080

In order to focus on the relevant problems it is important to use concrete applications as a driver.
A project that is doing this explicitly is the Smartcam project [13). Smart Cameras are cameras with
on-board programmabie image processing logic. This allows them to be used in stand-alone
applications such as robotics, industrial inspection, and security systems. The added intelligence
enables functions like positioning, fault detection and face recognition. These applications require
high performance and have rea I-time constraints. Therefore the project explores data-level parallelism
(DLP) and instruction-Ievel parallelism (lLP) in an SIMDNLlW processor context.lt is found that most
interesting points have 4-64 PEs, one or two ALUs per PE with local register files.

5.2 Reconfigurability between tiles (System level)
PreMaDoNA's major research objective is to be able to design NoC -based real-time systems in a
predictabie way, such that we can guarantee non-functional requirements, while being able to
dynamically match quality versus available resources [151 . PreMaDoNA proposes a solution based on
the removal and/or software control of unpredictable elements in the architectures in combination
with a predictabie mapping methodology that supports reasoning about throughput. PreMaDoNA is
centered around three themes: a specifica ti on of the architecture in terms of services (APis). methods
for predictabie design for NoC -based systems, and demonstrating the result for highly dynamic real
time applications such as video object-coding (MPEG-4).

The focus of the Artemis project (12) and its successor Artemisia [14) is on the mapping of streaming
applications. A workbench was developed to map applications onto SoC -based multiprocessor
architectures. The bus based interconnect of Artemis was replaced by a network in Artemisia. The
Compaan tooi was developed to transform the sequential application specification into a Kahn Process
Network (KPN). Performance analysis is based on simulation after mapping. An important element is
the high level of abstraction. To provide accurate performance estimations of individual processes
(i.e., code segments) the Artemis workbench uses the Laura tooi-set and the Molen architect ure. More
general parallel programming models based on SP (series-parallel) graphs are studied in the SCALP
project [17]. This offers significant advantages with regard to the ease of programming, portability,
and performance predictability

I 6 Third generation: the future I

In the third generation variability and soft errors will become real issues. Variability increases the level
of unpredictability. After design for area, followed by the design for timing and low power, we have to
design for yield. The goal is to maximize the parametric yield, i.e. the number ofsystems that meet the

e bp-ddl'~ 'yH~1ft omtOl. I tt ... o:"' ~ \ IM r.onnocte4 Sy)te1:i:t ! verlr1cniOn tlnd di l ldaUtln I nlH ... Öl · ~ Cln (hi p

I ::'1;11 Xii il Jii

WHITE
PAPERS
2006

liJ iNït Ui"1
WHITE
PAPERS
2006

application requirements with respect to timing. Two approaches can be taken. The first one is
a design time technique based on worst case parameters. It was used in the past but it becomes
increasingly more costly because it leads to oversized circuits. The second option is based on
runtime techniques. Timing violations are detected by monitors and the operation of the system is
adapted accordingly.

Within the scope of the runtime techniques there are several possibilities. The best-known strategy is
to adapt the supply voltage orthe dock frequency. This can be very efficient but the impact is expected
to decrease with each new technology with a lower VDD. This is specially the case for low power
processes (Tabie 2).
Therefore in [9] another technique is proposed. The design of a memory block is taken as an example.
Different designs are possible: a faster memory with a high dissipation or a slower memory with a low
dissipation. lfthe design can be made configurable in such a way that the selection is made at runtime
based on monitors then th is is also an answer to the variability problem. This is very similar to the flow
of Figure 6. Indeed, the different configurations span a whole design space comparable to the Pareto
space in Figure 6. This way designs can be made robust, i.e. the design of reliable systems using
unreliable components becomes possible.

Soft errors are even more dynamic and can be reduced by (simpie) error correcting codes and byadding
redundancy.lt is obvious th at not all errors can be corrected. Therefore, the higher levels (e.g. software)
must be fault tolerant. This perfectly fits the layered design approach, which was already introduced
together with on-chip networks in the second generation. This significantly changes the nature of
every design step but results in designs becoming adaptive and self-correcting or self-repairing.

I 7 Conclusions I

This paperdiscusses past, present and future of a platform-based approach forthe design of embedded
systems in silicon. The main conclusion is that the integration of IPs to a working system is the real
bottleneck from a hardware as weil as from a software perspective. Networks on chip have great
promise to lift existing platform-based design from computation-centric to communication-centric
design. Networks on chip do 50 by 1) addressing Deep Sub-micron challenges (global wires, global
timing dosure, etc.), and 2) offering a structured view on communication between IPs inspired by
protocol stacks. In particular, networks on chip that offer guaranteed communication services make
systems on chip more robust, easier to design and easier to program with a much lower NRE cost. But
it requires a change with respect to the way of designing.

081

DSI

Acknowledgements
The author wishes to thank all the researchers involved in the JEthereal and Hijdra projects at Philips
Research and the PreMaDoNA project at the TU Eindhoven. More specifically I want to thank Kees
Goossens, Marco Bekooij, Henk Corporaal and Bart Mesman. I am also grateful to Albert van der Werf
and Gerard Beenker from Philips Research for their support and for creating an environment where
this type of research was possible.1 want to thank Eric van Utteren, Frank Karelse and Wim Hendriksen
of PROGRESS for their feedback and support.

References
(1] ITRS roadmap, http://public.itrs.net
(2] Luca Benini, Giovanni De Micheli, "Networks on Chip: A New SoC Paradigm'; IEEE Computer,

January 2002, pp. 70-78.
[3] J. Rabaey,"Communication-based Design for Network-on-Chip'; in Interconnect-centric Design

for Advanced SoC and NoC; ed. J. Nurmi, H. Tenhunen, J. lsoaho and A. Jantsch, Kluwer, Januaari
2004, pp. 3-24.

[4] David E. Culler and Jaswinder Pal Singh, "Parallel Computer Architecture: A Hardware/Software
Approach'; ISBN 1-55860-343-3

[5] The Omap platform, http://www.omap.com
[6] T. Claasen, "First-Time-Right Silicon, but to the Right Specification, Keynote presentation,

Proceedings DAC, Los Angeles, June 2000.
[7] F. Boekhorst, "Ambient Intelligence, the Next Paradigm for Consumer Electronics'; Keynote

presentation, Proceedings ISSCC, San Francisco, February 2002.
[8] H. Veendrick, "Deep-submicron CMOS ICs: from Basics to ASICs'; ISBN 9055761281, Kluwer,

Deventer, 1998.
[9] A. Papanikolaou, F. Lobmaier, H. Wang, M. Miranda and F. Catthoor,"A System-Ievel Methodology

for Fully Compensating Process Variability Impact of Memory Organisation in Periodic
Applications'; CODES+ISSS'05, New Jersey, Sept. 2005.

[10] K. Goossens et al, "Interconnect and memory organization in SOCs for advanced set-top boxes
and TV,". in "Interconnect-Centric Design for advanced SoC and NoC" J. Nurmi, et al. (edsl,
KI uwer, 2004

[11] TES.5004: CHAMELEON: Reconfigurable computing in hand-held multimedia computers,
http://chameleon.ctit.utwente.nl/

[12] AES.5021 : ARTEMIS: ARchitectures and meThods for Embedded Media Systems
[13] EES.5411: SMARTCAM: Devices for embedded intelligent cameras
[14] LES.6389: ARTEMISIA: Architecture, programming and exploration of network-on-chip based

embedded system platform: ARTEMIS In Action

1:1 iNî1;IIi1

WHITE
PAPERS
2006

[15)

[16)

[17)

[18)

[19)

[20)

[21)

[22)

[23J

[24)

[25)

[26J

[27)

[28)

[29)

[30)

[31)

[32)

[33)

l~iItI1IiIU)

WHITE
PAPERS
2006 ""ho

EES.6390: PreMaDoNa: Predictabie matching of demands on networked architectures
DES.6392: RCOSY: Reconfigurable compiler system
DES.6397: SCALP: Programming models and performance evaluation of tile-based architectures
http://www.recoresystems.com/
David Siguenza-Tortosa and Juri Nurmnrom Buses to Networks'; in Interconnect-centric
Design for Advanced SoC and Noc'; ed. J. Nurmi, H. Tenhunen, J. lsoaho and A. Jantsch, Kluwer,
Januaari 2004, pp. 231-252.
H. Veendrick, private communication.
G.l . Kuzmanov, G.N. Gaydadjiev, S. Vassiliasis, "The Molen Media Processor: Design and
Evaluation'; Proceedings of the International Workshop on Application Specific Processors,
WASP 2005, pp. 26--33, New Vork Metropolitan Area, USA, September 2005
Hui lhang. Service disciplines for guaranteed performance service in packet-switching
networks. Proceedings ofthe IEEE, 83(10):1374-96, October 1995.
Jennifer Rexford, John Hall, and Kang G. Shin. A router architecture for real-time communication
in multicomputer networks. IEEE Transactions on omputers, 47(10):1088-1101 , October 1998.
Frederic Chong, et al. Metro: A router architecture for high-performance, short-ha ui routing
networks.ln Int'l Symposium on Computer Architecture, April 1994.
D. Wiklund and Dake Liu. Socbus: switched network on chip for hard real time embedded
systems. In IPDPS, 2003.
Tomaz Felicijan. Ouality of Service (005) for Asynchronous On-Chip Networks. PhD thesis,
Department of Computer Science, Faculty of Science and Engineering, University of
Manchester, 2004.
Pascal T. Wolkotte, et al. An energy-efficient reconfigurable circuit switched network-on-chip.
In RAW, April 2005 .
Tobias Bjerregaard and Jens Sparso. A router architecture for connection-oriented service
guarantees in the MANGO clockless network-on-chip. In DATE, March 2005.
E. Rijpkema, et al. Trade offs in the design of a router with both guaranteed and best effort
services for networks on chip. lEE Proceedings: Computers and Digital Technique, 150(5):294-302,
September 2003.
Mikael Millberg, et al. Guaranteed bandwidth using looped containers in temporally disjoint
networks within the Nostrum network on chip. In DATE, 2004.
Andrew Laffely, et al. Adaptive systems on a chip (aSoC) for low-power signa I processing. In
Proe. of the Asilomar Conference on Signais, Systems, and Computers, 2001.
K. Goossens, J. van Meerbergen, A. Peeters, and PWielage. Networks on silicon: Combining
best-effort and guaranteed services. In DATE, pages 423-425, March 2002.
Andrei Rädulescu, et al. An efficient on-chip network interface offering guaranteed services,

83

shared-memory abstraction, and fiexible network programming. IEEE Transactions on CAD of
Integrated Circuits and Systems, 24(1): 4-17, January 2005.

[34] Embedded Systems Roadmap 2002: Vision on technology for the future of PROGRESS, edited by
Ludwig DJ. Eggermont, March 2002.

[35] Philippe Martin, "A comparison of Network-on-Chip and Busses'; Chip Design Magazine.
[36] Henk Corporaal, "Embedded System Design'; first chapter of th is publication, p. 007.
[37] M. Bekooij, O. Moreira, P. Poplavko, B. Mesman, M. Pastrnak and J. van Meerbergen, "Predictabie

embedded multiprocessor design'; Proceedings International Workshop on Software and
Compilers for Embedded Systems (SCOPES), September 2004.

Abbreviations

AlU Arithmetic logic Unit MPEG Video compression standard
AXI, AHB, APB bus standards NoC Network on Chip
API Application Programmers Interface OCP Open Core Protocol, a bus standard
BE Best Eftort PE Processing Element
CA Communication Assist PI a bus standard
CAD Computer Aided Design pMAN Circuit based interconnect for video
DCT Discrete Cosine Transform streaming
DDf dynamic dataflow OoS Ouality of Service
DLP data-level parallelism RC delay delay in interconnect Iines
DSM Deep Sub-micron Rf design Radio frequency design
DSP Digital Signal Processor RTOS Real-Time Operating System
flit flow control unit, i.e. the unit of 'SAD Sum of Absolute Difterences

synchronization SDRAM Synchronous Dynamic Random ÄCcm
GALS globally asynchronous and locally Memory

synchronous SIMD Single Instruction Multiple Data
NI Network Interface SoC System on Chip
NRE non-recurring engineering SMP Symmetric Multiprocessor
H264 recent Video compression standard SPgraph series-parallel graph
ILP instruction-Ievel parallelism TDMA Time Division Multiple Access
lP Intellectual Property UMTS Universal Mobile Telecommunications
IR-drop Voltage drop in the supply lines System
ITRS International Technology Roadmap for VDD supply voltage

Semiconductor VLlW Very Long Instruction Word
KPN Kahn Process Network

I!tnDedd!.d . ys:te:ms dUlgn I ne 0(":\ dnd Co.Mecteu l.'fllfA1' I l' ii! r1rlcltlon iH'a I/ illldiition I netwurks. on ("IC

I iA i{ltït;l Jij
WHITE
PAPERS
2006

U1e tectwtl8Clle unÎllefslI01 MdlOllefl

~?:~M~i-~~;4 =1I11111l111l1='IIIIIIIIII=IIIIIIlIIII"~ I;=-:II~IIIIIII~llll' ~
200911062 ---

The Progress White Papers 2006

PROGRESS, Program for Research on Embedded Systems and Software, started 2S research projects

since 1998 in which over 60 academie researchers collaborated with industrial colleagues. Through

its set-up and its results PROGRESS has become a landmark on demand-drivenacademic research in

The Netherlands.

This booklet is unique in the way it surveys bath the present state of the Dutch academie embedded

systems research and the contributions of the projects to that. It presents white papers written by

exponents of Dutch academia on the four themes that unite the projects. The white papers were

the starting point of symposia on these themes in spring 2006. This combination gave rise to

excellent technical discuss ions between industry and academia, resulting in deepening of the

PROGRESS outreach program.

From these white papers one can quickly gain insight in eight years of PROGRESS research and get

inspiration for a future research agenda on embedded systems. Moreover those interested wil! enjoy the

excellent technicaloverview.

ISBN -la: 90-73461-00 -6
ISBN-13: 978 -90-73461-00-0

