4,645 research outputs found

    Service and device discovery of nodes in a wireless sensor network

    Get PDF
    Emerging wireless communication standards and more capable sensors and actuators have pushed further development of wireless sensor networks. Deploying a large number of sensor\ud nodes requires a high-level framework enabling the devices to present themselves and the resources they hold. The device and the resources can be described as services, and in this paper, we review a number of well-known service discovery protocols. Bonjour stands out with its auto-configuration, distributed architecture, and sharing of resources. We also present a lightweight implementation in order to demonstrate that an emerging standards-based device and service discovery protocol can actually be deployed on small wireless sensor nodes

    Overview of technologies for building robots in the classroom

    Get PDF
    This paper aims to give an overview of technologies that can be used to implement robotics within an educational context. We discuss complete robotics systems as well as projects that implement only certain elements of a robotics system, such as electronics, hardware, or software. We believe that Maker Movement and DIY trends offers many new opportunities for teaching and feel that they will become much more prominent in the future. Products and projects discussed in this paper are: Mindstorms, Vex, Arduino, Dwengo, Raspberry Pi, MakeBlock, OpenBeam, BitBeam, Scratch, Blockly and ArduBlock

    Design of Real Time Heart Rate Monitoring System With ARDUINO UNO R3 Based on Android Application

    Get PDF
    The heart is an important organ for humans. Heart disease has claimed many lives. It happened because not everyone can do regular heart checks. High cost and time wasted could be the reason. Even a lot of heart disease is detected when a disease was so severe that treatment be late. Though the heart is the organ that affects other organs, in other words, the good performance of the heart as the source of much-needed work of other organs. One of the things that can be done is to check regularly to determine the condition of the heart through a number of heartbeats per minute. By knowing the condition of the heart then anyone can change the pattern of life and maintain food intake better, so that the heart will change to a more healthy condition. Therefore the heart rate monitoring system application to be made. Only by writing gender and age, everyone can use it and do not have to wait for a medical expert. The application can determine the condition of the heart in good condition, weak or bad through the calculation of the number of heartbeats using easy way, so that they can consult with medical experts and of course heart health can be maintained without taking expensive and complicated way, simply by changing lifestyle and exercise regularly. This application runs on Android based smartphones that connected to ARDUINO UNO R3 modul to detect heart rate. Keywords-heart rate; heart condition; android; arduin

    A Low-Overhead Script Language for Tiny Networked Embedded Systems

    Get PDF
    With sensor networks starting to get mainstream acceptance, programmability is of increasing importance. Customers and field engineers will need to reprogram existing deployments and software developers will need to test and debug software in network testbeds. Script languages, which are a popular mechanism for reprogramming in general-purpose computing, have not been considered for wireless sensor networks because of the perceived overhead of interpreting a script language on tiny sensor nodes. In this paper we show that a structured script language is both feasible and efficient for programming tiny sensor nodes. We present a structured script language, SCript, and develop an interpreter for the language. To reduce program distribution energy the SCript interpreter stores a tokenized representation of the scripts which is distributed through the wireless network. The ROM and RAM footprint of the interpreter is similar to that of existing virtual machines for sensor networks. We show that the interpretation overhead of our language is on par with that of existing virtual machines. Thus script languages, previously considered as too expensive for tiny sensor nodes, are a viable alternative to virtual machines

    Remote Control and Monitoring of Smart Home Facilities via Smartphone with Wi-Fly

    Get PDF
    Due to the widespread ownership of smartphone devices, the application of mobile technologies to enhance the monitoring and control of smart home facilities has attracted much academic attention. This study indicates that tools already in the possession of the end user can be a significant part of the specific context-aware system in the smart home. The behaviour of the system in the context of existing systems will reflect the intention of the client. This model system offers a diverse architectural concept for Wireless Sensor Actuator Mobile Computing in a Smart Home (WiSAMCinSH) and consists of sensors and actuators in various communication channels, with different capacities, paradigms, costs and degree of communication reliability. This paper focuses on the utilization of end users’ smartphone applications to control home devices, and to enable monitoring of the context-aware environment in the smart home to fulfil the needs of the ageing population. It investigates the application of an iPhone to supervise smart home monitoring and control electrical devices, and through this approach, after initial setup of the mobile application, a user can control devices in the smart home from different locations and over various distances

    Sensor System for Rescue Robots

    Get PDF
    A majority of rescue worker fatalities are a result of on-scene responses. Existing technologies help assist the first responders in scenarios of no light, and there even exist robots that can navigate radioactive areas. However, none are able to be both quickly deployable and enter hard to reach or unsafe areas in an emergency event such as an earthquake or storm that damages a structure. In this project we created a sensor platform system to augment existing robotic solutions so that rescue workers can search for people in danger while avoiding preventable injury or death and saving time and resources. Our results showed that we were able to map out a 2D map of the room with updates for robot motion on a display while also showing a live thermal image in front of the system. The system is also capable of taking a digital picture from a triggering event and then displaying it on the computer screen. We discovered that data transfer plays a huge role in making different programs like Arduino and Processing interact with each other. Consequently, this needs to be accounted for when improving our project. In particular our project is wired right now but should deliver data wirelessly to be of any practical use. Furthermore, we dipped our feet into SLAM technologies and if our project were to become autonomous, more research into the algorithms would make this autonomy feasible

    Development of Economic Water Usage Sensor and Cyber-Physical Systems Co-Simulation Platform for Home Energy Saving

    Get PDF
    In this thesis, two Cyber-Physical Systems (CPS) approaches were considered to reduce residential building energy consumption. First, a flow sensor was developed for residential gas and electric storage water heaters. The sensor utilizes unique temperature changes of tank inlet and outlet pipes upon water draw to provide occupant hot water usage. Post processing of measured pipe temperature data was able to detect water draw events. Conservation of energy was applied to heater pipes to determine relative internal water flow rate based on transient temperature measurements. Correlations between calculated flow and actual flow were significant at a 95% confidence level. Using this methodology, a CPS water heater controller can activate existing residential storage water heaters according to occupant hot water demand. The second CPS approach integrated an open-source building simulation tool, EnergyPlus, into a CPS simulation platform developed by the National Institute of Standards and Technology (NIST). The NIST platform utilizes the High Level Architecture (HLA) co-simulation protocol for logical timing control and data communication. By modifying existing EnergyPlus co-simulation capabilities, NIST’s open-source platform was able to execute an uninterrupted simulation between a residential house in EnergyPlus and an externally connected thermostat controller. The developed EnergyPlus wrapper for HLA co-simulation can allow active replacement of traditional real-time data collection for building CPS development. As such, occupant sensors and simple home CPS product can allow greater residential participation in energy saving practices, saving up to 33% on home energy consumption nationally
    • …
    corecore