1,307 research outputs found

    Control for Localization and Visibility Maintenance of an Independent Agent using Robotic Teams

    Get PDF
    Given a non-cooperative agent, we seek to formulate a control strategy to enable a team of robots to localize and track the agent in a complex but known environment while maintaining a continuously optimized line-of-sight communication chain to a fixed base station. We focus on two aspects of the problem. First, we investigate the estimation of the agent\u27s location by using nonlinear sensing modalities, in particular that of range-only sensing, and formulate a control strategy based on improving this estimation using one or more robots working to independently gather information. Second, we develop methods to plan and sequence robot deployments that will establish and maintain line-of-sight chains for communication between the independent agent and the fixed base station using a minimum number of robots. These methods will lead to feedback control laws that can realize this plan and ensure proper navigation and collision avoidance

    UAV swarm coordination and control for establishing wireless connectivity

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Space-Time Continuous Models of Swarm Robotic Systems: Supporting Global-to-Local Programming

    Get PDF
    A generic model in as far as possible mathematical closed-form was developed that predicts the behavior of large self-organizing robot groups (robot swarms) based on their control algorithm. In addition, an extensive subsumption of the relatively young and distinctive interdisciplinary research field of swarm robotics is emphasized. The connection to many related fields is highlighted and the concepts and methods borrowed from these fields are described shortly

    Geometric Problems in Robot Exploration

    Get PDF
    Robots are increasingly utilized to perform tasks in today\u27s world. This has varied from vacuuming to building advanced structures. With robots being used for tasks such as these, new challenges are introduced. Problems that have been previously researched to be performed, either theoretically or implemented, need to be redesigned to be able to better handle these challenges. In this thesis, I will discuss multiple problems that have previously been researched and I have redesigned to be possible to be implemented by robots or that I have developed a new way for the robots to solve the problem. I focus on geometric areas and robots tasked with performing exploration in the area. Exploration is a task in which an unknown area is completely traversed. In this work, I have develop multiple algorithms to perform online tasks that can be implemented by robots. With robots performing exploration, a limited viewing range and communication range increase difficulty. These algorithms are focused on utilizing robots to perform Exploration and Concave Decomposition. The results from this thesis are such that the Exploration algorithm that given a fleet of robots k, the total area n can be explored in O(n/k) time with all agents having work O(n/k). The Concave decomposition task has multiple algorithms focusing on a different aspect. In the first, with an online algorithm, with r reflex points, I perform the decomposition generating r + 1 convex areas. The other two online algorithms focus on interior cut length, which previously has not been researched. In response, have developed an algorithm which maintains interior length relative to the perimeter

    Enforcing High-Performance Operation of Multi-hop Wireless Networks With MIMO Relays

    Get PDF
    Abstract-In multi-hop wireless networks where links are prone to be broken or degraded, it is important to guarantee the network connectivity as well as satisfy the performance requirements. Observing the promising features of MultipleInput Multiple-Output (MIMO) techniques for improving the transmission capacity and reliability, in this paper, we make the very first attempt to deploy MIMO nodes as relays to assist weak links in wireless networks, with the aim of reducing the number of relay nodes and providing performance provisioning. We identify the specific constraints of MIMO relay nodes for assisting weak links, and take advantage of the MIMO ability to flexibly select among different transmission strategies. The constrains and flexibility, however, make the MIMO deployment problem different from conventional single-antenna deployment schemes and much more challenging. Based on the constraints, we formulate the MIMO relay deployment problem, and provide a polynomial-time approximation scheme (PTAS) algorithm, as well as a distributed heuristic algorithm. The performance of the proposed algorithms is evaluated through simulations and demonstrated to be very effective
    corecore