
UAV SWARM COORDINATION AND CONTROL FOR

ESTABLISHING WIRELESS CONNECTIVITY

ACHUDHAN SIVAKUMAR

NATIONAL UNIVERSITY OF SINGAPORE

2011





UAV SWARM COORDINATION AND CONTROL FOR

ESTABLISHING WIRELESS CONNECTIVITY

ACHUDHAN SIVAKUMAR

Bachelor of Computing (Computer Engineering)

School of Computing, National University of Singapore

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2011





Abstract

This thesis addresses the vital problem of enabling communications in a disaster

struck area. Emphasis is placed on the need for data communication between var-

ious points on the ground, which cannot be effectively established in a short time

frame using existing methods. We propose the use of completely autonomous Un-

manned Aerial Vehicles (UAVs) mounted with wireless equipment to accomplish

this goal by coordinating themselves to build a wireless backbone for communi-

cation. The problem then becomes one of coverage, search and tethering, where

a swarm of UAVs (agents) are required to cooperatively cover a given area and

search for ground nodes while also relaying packets between already found ground

nodes. In this thesis, we explore the above problem from two main perspectives - 1)

A theoretical perspective that identifies what can be done with complete a priori

information, and 2) A realistic, practical perspective that demands a decentralized

solution under realistic networking and environmental conditions.

For the theoretical perspective, we take a geometric approach to design paths for

agents with the aim of minimizing maximum latency in the network. We propose

Bounded Edge-Count Diametric Latency Minimizing Steiner Tree (BECDLMST)

as a solution structure capable of achieving very low maximum latency. The con-

cept of BECDLMST is based on the concept of minimal Steiner trees in geometry,

which are known to provide the shortest interconnect between any given set of

nodes. BECDLMST builds on this idea to generate agent paths such that agent
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travel distances are lowered, which in turn lower maximum network latency. We

go on to show that finding the optimal BECDLMST is an NP-hard problem. So

we first provide an exact exponential algorithm to find the best BECDLMST, and

then devise an efficient approximation through an anytime heuristic. Although ex-

ponential in nature, the exact algorithm ensures that the solution space is pruned

as much as possible at every step. The approximation on the other hand utilizes

ideas from particle swarm optimization to generate a near optimal BECDLMST

in quadratic time. As such, a Minimum Diameter Steiner Tree (MDST) is it-

eratively evolved to produce a network structure that minimizes the maximum

latency. Experimental results on computation time and resulting network latency

are presented for both algorithms. The contribution of the theoretical analysis is

a solution structure that can be the target as well as the basis for comparison for

other decentralized algorithms.

In looking at the problem from a practical perspective, we identify a number of

challenges to be addressed, namely: 1) Lack of global information in online agent

planning, 2) Intermittent and mobile ground nodes, 3) Opposing trade-offs in a

dynamic environment, 4) Limited communication bandwidth, and 5) Adverse wind

effects. To this end, we propose a suitable hierarchical, decentralized control and

coordination architecture. A robust control algorithm is developed to ensure pre-

cise waypoint navigation of UAVs. This in turn is shown to lay the foundation for

a multiagent coordination algorithm that can afford to not consider adverse wind

effects within operational limits. A communication-realistic, dynamically adap-

tive, completely decentralized, agent-count-and-node-count-independent coordina-

tion algorithm is presented that has been empirically shown to non-monotonically

increase a performance metric, Q, through time. The performance metric, Q, takes

into consideration, the average cell visit frequency, average node service time, and

packet latency to determine the performance of the system. The approach taken is
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“near-decision-theoretic”, in the sense that each agent tries to maximize a scoring

function, without a fixed horizon and with the lack of stochastic models to de-

scribe the environment. The decision algorithm for relaying packets is designed so

that agent paths mimic certain characteristics of BECDLMST. Simulations show

that the decentralized control and coordination algorithm achieves very promising

latency results that are inferior to the centralized version by only 10-50%. Exper-

imental results illustrating the adaptive behavior of the agents and the resulting

performance in terms of network latency and search quality are presented.

Given that one of the main aims of this thesis is to develop a solution that can

be practically deployed, we perform field tests to prove the performance of our

autonomous control system as well as the viability of air-to-ground and air-to-

air communication, which forms the very basis for our proposed solution. Apart

from numerous successful flight tests, hardware-in-the-loop simulations are also

conducted to evaluate performance in a controlled manner.
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Chapter 1

Introduction

1.1 Motivation

The response phase in disaster management plays a key role in mitigating possi-

ble adverse effects including loss of lives. Part of the response phase involves the

dispatch of rescue teams (on ground) into the disaster area to survey the dam-

age and find survivors. These rescue teams often need to send data back to the

base station or to other rescue teams in the area, including information like images,

videos, or even calls for additional support. Moreover, communication between the

rescue teams and with the base station can greatly enhance coordination between

the various teams. Unfortunately, in a disaster situation, normal communication

infrastructure tends to be damaged or destroyed. Traditionally, push-to-talk ser-

vices [1] have been used for voice communication between base stations and rescue

teams. However, such services are not designed to handle data communications

involving images, videos, sensor readings, etc., that require higher bandwidths in

the order of a few Mbits per second. Attempts have been made to use satellite

communications for exchange of information between first responders [2]. However,

satellite communications through services like Iridium [3] provide very low band-



2

widths in the range of 10kbps. This scarce bandwidth would have to be shared by

multiple rescue teams in the same area, thus making the available bandwidth for

each team, extremely small. The problem then requires a solution that:

1. Can establish communications with minimal setup time

2. Costs little and can be built easily

3. Handles the bandwidth requirements of data communication

We believe that WiFi-mounted Unmanned Aerial Vehicles (UAVs) have the po-

tential to provide a feasible solution to the above problem. The challenge as to

how this can be done is what motivates this thesis. We suggest and work with

WiFi as opposed to other communication modes owing to their ease of availability

off-the-shelf and common presence in numerous devices. Theoretically WiFi could

be replaced with other wireless means of communication such as 3G and GPRS as

well.

1.2 Delay Tolerant Networking and UAVs

Disaster struck regions tend to span huge areas with survivors and rescuers dis-

persed in a sparse manner. Now building a fully connected wireless network over

the entire area would need immense resources and would not be practically feasible.

Numerous routing algorithms such as Dynamic Source Routing [4] and Location

Aided Routing [5] have been developed for data delivery in wireless ad hoc net-

works. The current algorithms make the assumption that the network graph is

connected and fail to route messages if there is not a complete route from source
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to destination at the time of sending. Under these conditions, most existing rout-

ing algorithms will fail to deliver messages to their destinations since no route is

found due to network partition.

As a result, we turn to Delay Tolerant Networking (DTN) [6], which is a rela-

tively new paradigm of networking that deals with scenarios involving the lack of

continuous connectivity between packet sources and packet destinations. DTNs

were originally introduced as a solution to communication in space. However,

many of the ideas have been directly applied to earthbound networks that exhibit

a lack of continuous connectivity. DTNs have been an area of intense interest

in the networking community with numerous works proposing and studying rout-

ing mechanisms at all the various networking layers for different network mobility

models ([7] provides a detailed survey). DTN routing methods are referred to as

mobility-assisted routing [8] that employs the Store-Carry-Forward model. The

basic requirement for the viability of DTNs is mobility and usually at least one of

the following two cases of mobility is assumed:

1. Nodes in the network are mobile and come in contact with other nodes from

time to time

2. Special mobile agents physically carry-store-relay-and-deliver packets

In our problem context, there is a need to proactively build a communications

backbone and not depend on the movement of ground nodes. As a result, the

second of the above two categories of mobility would be the appropriate match.

The special mobile agents in this case need to be able to maneuver in a disaster

struck area and at preferably high speeds. We believe Unmanned Aerial Vehicles

(UAVs) would be ideal candidates to act as mobile agents as they are airborne

and agile. The envisioned solution would then be to deploy a set of UAVs, each
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mounted with a wireless communication device like a WiFi antenna, so as to build

a wireless backbone over which various entities on the ground such as rescue teams,

relief agencies, survivors, first responders, etc. can communicate. The use of UAVs

for this purpose is further motivated by recent works that have shown UAVs to

be effective for complex tasks such as diffuse gas and plume detection [9, 10],

coordinated search and reconnaissance [11, 12], in situ atmospheric sensing [13,

14], and as agents in the battlefield [15, 16]. These works have highlighted the

advantages of using cooperative teams of autonomous UAVs, namely:

• parallel functioning to accomplish a task in shorter time and provide greater

sensor coverage

• robustness and fault-tolerance even in cases of vehicle loss

• low cost of groups of small UAVs as compared to larger aircrafts or satellites

We believe the same advantages would apply to the task of establishing communi-

cation between multiple ground nodes. In fact, the use of UAVs as communication

relays is further justified and thus motivated by works that have used real experi-

ments to prove the viability of air-to-ground communication through commercial

off-the-shelf (COTS) 802.11 equipment (demonstrated in [17] as well as our field

tests detailed in Chapter 10).

In the envisioned solution, a system of UAVs would provide a mobile ad hoc net-

work (MANET) connecting ground devices like laptops, PDAs, cell phones, and

any other communication device capable of wireless communication. It would be

desirable to have the UAVs function autonomously and coordinate among them-

selves to establish one such communications network that can support high band-

width data communications. In the event of a disaster, it should be possible to

deploy a number of UAVs into the area and restore WiFi connectivity to both
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survivors and rescuers within minutes. Although the motivating application is the

enabling of communications between multiple ground nodes over a disaster struck

area, we believe the solution can be directly applied to other scenarios like data

relay for sparse wireless sensor networks and battlefield communications.

1.3 Research objective

The broad objective of this research is to study and explore the problem of how

to move the UAVs so as to build a network. The specific questions we address are

as follows:

1. What is the best course of action if the locations of ground nodes were known

a priori?

2. If the locations were unknown, how can the combined problem of search and

tethering (i.e. enabling ground node access to the network) be addressed?

3. How to coordinate among the UAVs in a decentralized manner with commu-

nication limitations for practical deployment?

4. How to achieve accurate navigation and control of UAVs to execute move-

ment decisions?

The aim of this thesis then is to study and present policies and algorithms for the

UAVs to autonomously control and coordinate themselves, so as to establish an

efficient wireless communications backbone. The metric in particular that we are

concerned with, is the maximum pairwise latency in the network. By minimizing

this quantity, we aim to lower the upper bound on network latency. The motivation

for dealing with maximum latency as opposed to average latency, is that a number
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of networking applications such as streaming, can benefit from knowing the exact

upper bound on latency. In the case of multimedia streaming for example, the

upper bound on latency can be used to determine how long to buffer before ensuring

a smooth playback at the receiver. If the upper bound on latency is lowered, the

buffer time is also effectively lowered.

1.4 Overview of the Thesis

In this thesis, we try to explore the problem from different perspectives. In par-

ticular two perspectives are considered - 1) A theoretical perspective that explores

centralized solutions with complete a priori information, and 2) A practical per-

spective that explores decentralized solutions with no a priori information and

under realistic constraints. As far as possible, the aim is to provide a complete

study of the problem and its applicable solutions. In our theoretical analysis, we

propose a solution structure to minimize maximum network latency as well as two

algorithms (exact and approximate) to derive it. Subsequently, we discuss how the

problem expands into one with a lot more challenges when considered in a realistic

scenario. We then go on to address these challenges and design a complete control

and coordination system that is deployment-ready. We conclude the thesis with

results on real flight tests that were performed to validate the system.

1.5 Thesis Contributions

1. Solution structure giving agent paths for minimizing maximum la-

tency in a network of sparsely located stationary ground nodes.

We approach the problem of establishing a network from the theoretical per-

spective and derive a centralized solution had the ground node locations
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been known a priori (i.e. with perfect information). The novel proposed

solution structure, termed Bounded-Edge Count Diametric Latency Mini-

mizing Steiner Tree (BECDLMST) is shown to achieve network latencies far

lower than existing methods. An exact exponential algorithm is presented

to find such a solution for any given ground node setting.

2. Efficient anytime heuristic to determine the BECDLMST for any

given set of nodes and agents. An efficient approximating algorithm is

presented as a practical alternative to the exponential algorithm mentioned in

the first contribution. As a result, this thesis contributes an efficient central-

ized method (that is also anytime in nature) to generate latency minimizing

agent paths when ground node locations are known.

3. An efficient solution for the novel problem of coverage, search and

tethering, combined, under realistic wind conditions and commu-

nication limitations. We provide a control and coordination solution that

balances the tasks of search and relay, while minimizing latency and max-

imizing visit frequency. Importantly, this is achieved in a realistic setting

with decentralized control, without global information at each agent, regard-

less of intermittency of ground stations, in the presence of winds, and under

realistic communication limitations.

4. A reactive control system capable of achieving accurate waypoint

navigation despite adverse crosswind effects. The control component

presented in the thesis introduces a novel system that works reactively using

the normally-unused cross-track parameter along with a neural network, as

opposed to existing solutions that require hard-to-obtain measurements of

wind speed and direction. It allows for realistic implementation of other

higher level coordination algorithms that use waypoint navigation but do

not consider wind effects.
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5. A method to realize the idea of using UAVs to build a wireless

backbone for multiple ground stations. This is a practical contribution

of this thesis. The control and coordination algorithms are deployment-ready

owing to the consideration of realistic conditions. The control algorithms as

well as air-air and air-ground communication are field tested and proven to

be viable. Further testing might be required for swarm-scale UAVs, but no

restrictions on this approach have be discovered.

6. A bandwidth-minimizing belief exchange mechanism for UAV-based

multiagent coordination. The belief exchange mechanism proposed as

part of our coordination algorithm can be applied to many other applica-

tions using UAV swarms. The novel idea of using the limitations of UAV

motion in choosing grid cells that encompass enough information to interpo-

late missing cell information is applicable to situations other than the specific

problem considered in this thesis.

1.6 Thesis Outline

The chapters of this thesis are organized as follows:

Chapter 2 presents a formal definition of the agent path design problem for min-

imizing network latency without consideration for practical aspects such as wind

or network imperfections. It is essentially a formal translation of the question of

what can be done if complete information was available a priori. The problem is

presented more formally as one requiring an algorithmic solution.

Chapter 3 discusses solutions to the problem described in Chapter 2. Existing lit-

erature comprising works related to this problem are first discussed. Subsequently,
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our proposed solution structure, termed the Bounded Edge Count Diametric La-

tency Minimizing Steiner Tree (BECDLMST), is introduced. The BECDLMST is

described in detail and certain advantages of its characteristics are discussed.

Chapter 4 then introduces an exact exponential algorithm to find the optimal

BECDLMST. The algorithm for converting the problem at hand to one of Weighted

Set Cover is discussed in detail.

Chapter 5 presents the algorithm proposed to overcome the exponential time com-

plexity of the exact algorithm discussed in chapter 4. It deals with approximating

the BECDLMST using techniques that run in polynomial time. An efficient any-

time heuristic that utilizes ideas from Particle Swarm Optimization is presented

to find near-optimal BECDLMSTs in quadratic time.

Chapter 6 proceeds with expanding the problem originally described in Chapter

2. Following the discussion of what can be done under perfect information, this

chapter presents the challenges introduced by considering the same problem under

realistic conditions. The problem first described in Chapter 2 is now modified and

expanded to incorporate the additional challenges.

Chapter 7 discusses the solution overview and compares it against other work in

this area. A hierarchical control and coordination architecture is proposed and

presented here.

Chapter 8 delves into the control aspect of the problem and discusses the part

of the solution that enables precise navigation. A method using neural networks

(specifically, Dynamic Cell Structures) to correct for wind effects is proposed and

described in depth.

Chapter 9 then details the proposed multiagent coordination scheme for enabling
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the wireless backbone in the context of the problem described in Chapter 6. A de-

centralized realistic solution using a near-decision-theoretic approach is discussed.

Chapter 10 details the real life experiments that were conducted to validate the

control component and UAV-UAV and UAV-ground communications. Methods

used in deploying our algorithms on the aircraft are discussed and results from

field tests are presented.

Chapter 11 concludes the thesis and presents possible directions for future work.



Chapter 2

Problem Definition

The overall objective of this thesis as laid out in Section 1.3 is addressed in phases.

We first consider the problem from a theoretical standpoint to explore what can

be done if ground node locations were known a priori and node intermittency and

movement and network imperfections and control challenges by winds were absent.

Nomenclature:

M number of agents

N number of ground nodes

gi position of ith ground node ∀i = 1, 2, . . .N

nh number of hops (edges) on maximum latency path

λh maximum hop length in the entire network

MEC Minimum Enclosing Circle around all ground nodes

rM radius of MEC

cM center of MEC

vmax maximum speed of any given agent

We consider a network of N sparsely-located, stationary ground nodes where pack-

ets can be sent from any node to any other node. Ground nodes are represented
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as points on a 2-D plane. M agents are available that can freely move on the

2-D plane and physically carry and deliver packets. Agent-agent, node-agent, and

agent-node packet transfers are allowed when they meet. Points where agents

meet and exchange packets are referred to as rendezvous points (RPs). Latency

of a packet is defined as the duration between its generation and its delivery, and

is given by the sum of wait time at source, tw, and transit time on the path from

source to destination, tp. We then define,

Problem1 : To find movement policies for each agent m, such that the maximum

latency for any packet in the network is minimized.

We assume a sparse DTN wherein inter-node distances are large, thus making

wireless communication ranges negligible. Packet transmission times are also con-

sidered to be negligible in comparison to transit time along path from source to

destination. Although each ground node is represented as a point on a 2-D plane,

it could refer to a gateway node in a fully-connected cluster of close nodes. We also

assume a homogeneous set of agents capable of speeds up to vmax. For simplicity,

we shall use the term network latency to refer to maximum latency in the network,

for the rest of this thesis.

2.0.1 Network Traffic Model

For network traffic, we consider the worst case where every ground node is equally

interested in communicating with every other ground node. Packets can be sent

from any node to any other node at any time with equal probability. As a result,

none of the node-node pairs can be ignored in the solution. Worst case maximum

latency in the network is the maximum latency if every node was continuously

sending packets to every other node. Such a network traffic model is referred to as

the uniform traffic model [18].



Chapter 3

Solution characterization under

perfect information

In this chapter we analyze the characteristics of a solution to the agent path design

problem described in Chapter 2. We first take a look at approaches that have

been presented in related literature. Subsequently, we approach the problem from

a geometric perspective and describe a solution structure that can give us the

required agent paths. The characteristics identified in this chapter are later used

in devising algorithms (exact and approximate) in Chapters 4 and 5.

3.1 Motivation

There are two reasons for analyzing the problem under perfect information. It

presents the best case scenario in terms of uncertainty and studies the network

performance that can be achieved under such circumstances. The results then

provide a target and a scale for comparison for our online solution (as well as

others’ solutions) that work with incomplete information.
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The second reason is that if a solution structure can be determined for the problem

under perfect information, applicable characteristics from this solution can be ap-

plied to the problem under imperfect information. In other words, we believe that

the offline solution with a priori information can provide insight into designing an

online solution.

3.2 Related work

In this section, we shall explore works in the area of offline agent path planning

under perfect information. The case of online solutions under changing and imper-

fect information is discussed in Chapter 9, with related works explored in Section

9.1. Offline solutions are often characterized based on how packets are relayed on

their paths from source to destination. In particular, three such categories have

been identified:

1. No relay - Packets travel from source to destination on the same agent with-

out any transfers

2. Node relay - Agents interact with each other indirectly through ground nodes.

Ground nodes buffer and relay packets between ferries

3. Agent relay - Agents interact with each other directly by transferring packets

between each other when they rendezvous

The works under each of the categories are discussed in more detail below.
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3.2.1 No relay

Solutions that use no relaying mechanism originated in the context of single agent

situations. A number of past works have dealt with the use of a single agent (also

known as message ferry [19, 20, 21, 22, 23] or mobile element [24, 25, 26, 27, 28])

to forward messages in DTNs. We know that given a number of sparsely located

ground nodes and a single agent, the fastest way to traverse through all the nodes,

is given by the corresponding Travelling Salesman Problem (TSP) tour. However

a number of these works consider scenarios where ground nodes are located close

enough that wireless communication range cannot be ignored. The problem then

gets transformed to that of clustering and connecting the clusters using the single

ferry [29]. On the other hand, a number of works in this category deal solely

with wireless sensor networks where a single mobile element collects data from all

sensors and delivers it to a single sink node. The nature of this problem varies

from our problem where all pairwise communications are possible.

When extending the single agent solution to incorporate multiple agents, one of

the approaches used is to retain the same path design and add more agents along

the single agent path [30, 23]. These approaches do not utilize the advantages

of relaying and distribution of load. In general, such solutions are categorized as

single route (SRT) solutions. The main disadvantage of SRT solutions is the non-

utilization of possible interactions between agents. They often lead to extremely

high packet latencies in sparse DTNs.

3.2.2 Node relay

The usage of ground nodes to buffer and relay packets is an approach that a

number of works use to allay the complexities of synchronization. When a ground
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node buffers a packet, it can hold on to it until the appropriate agent picks it

up. The complexity of having to choose rendezvous points for agents to meet is

eliminated. Essentially, ground node locations are treated as rendezvous points

that do not need synchronized meetings between agents. The specific approaches

under this category differ in their assumptions about the ground nodes and their

locations. The three most prominent works that use the node relay approach are

Node-Relay-Algorithm (NRA) [23], Multiple-Routes-Topology (MRT) [30], and

Density-Aware-Route-Design (DARD) [31].

NRA first divides the entire area into a grid of an arbitrary number of rows and

columns such that at least one agent is available for each occupied grid cell. The

nearest nodes to each edge in the grid cells act as the relay point between the two

cells. MRT’s approach to division of the area is slightly different from that of NRA.

They start dividing the area using vertical and horizontal slices such that each slice

divides a given cell in a balanced manner w.r.t. number of nodes in the cell. The

process is repeated until there’s only agent available per cell. Choosing of relay

nodes uses one of 2 options: MRT-Tree or MRT-Grid. MRT-Tree ensures that only

one path exists from any given cell to any other cell. MRT-Grid goes along the

lines of NRA to provide a relay node every 2 adjacent cells. Finally, DARD divides

the nodes into clusters using the k-means algorithm and assigns one agent to each

cluster. Considering each cluster as a individual vertex, a minimum spanning tree

is built connecting the clusters. Gateway nodes are chosen to connect 2 adjacent

clusters. Figure 3.1 illustrates what agent paths look like as generated by NRA,

MRT and DARD respectively.

In these methods that use nodes as relays, the ground nodes are expected to

be aware of the delay tolerant nature of the network and actively participate in

buffering packets. In our motivating scenario, ground nodes can potentially be

survivors with devices designed for regular wireless communication protocols. The
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(a)  NRA

(d)  DARD

Ground node Agent path

(b)  MRT-Tree

(c)  MRT-Grid

Figure 3.1: Agent paths as generated by (a)NRA[23], (b)MRT-Tree[30], (c)MRT-
Grid[30], and (d)DARD[31] for a sample ground node configuration. The perimeter
of each shaded region represents the path of an agent. The ground node at the
intersection of 2 adjacent shaded areas acts as the relay between the 2 agents.
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other main problem that affects the above methods is that although the burden of

synchronization between agents is reduced, huge packet delays are introduced at

each node. Nodes might not be the most strategic locations to exchange packets

between agents. The time spent by a packet waiting at an intermediate node could

have been spent moving closer to the destination to a more strategically chosen

rendezvous point. This is where the agent relay approach comes in.

3.2.3 Agent relay

The agent relay approach refers to methods where agents directly exchange packets

with another agent when they meet. Typically points where agents come in contact

with each other are referred to as rendezvous points. Since both agents need to

be present at a specified rendezvous point at the same time, the agents need to

synchronize their visits to said rendezvous point. In order for one agent to not

adversely affect another agent, rendezvous points must be intelligently determined.

The two most prominent works in this area are logarithmic-Store Carry Forward

Routing (l -SCFR) [32], and Ferry Relay Algorithm (FRA) [23].

l -SCFR treats the 2D space as a k × k mesh, where k is a arbitrary power of 2

dependent on the problem instance. Agents travel along the edges of the mesh and

only intersection points on the mesh can act as rendezvous points. Agents adopt

one of two roles - keeper or ferry. The keeper role is introduced to have stationary

agents that hold packets at the rendezvous point until another agent picks it up.

Agents switch between the two roles dynamically.

FRA, like NRA, divides the entire area into a grid. Subsequently, the midpoint of

every cell edge is chosen as a rendezvous point. Each cell is serviced by one agent

that passes through all nodes within that cell as well as the midpoints of its cell
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Figure 3.2: Agent paths as generated by (a)l -SCFR[32], (b)FRA[23] for a sample
ground node configuration. The perimeter of each shaded region represents the
path of an agent. The points where shaded areas meet are rendezvous points.

edges. The time taken between two consecutive rendezvous points is the same for

every agent for the sake of synchronization. This also means that the bottleneck is

the longest path between any 2 consecutive rendezvous points in any of the cells.

Figure 3.2 shows examples of agent paths as generated by l -SCFR and FRA for a

random ground node setting.

l -SCFR leads to either huge delays or the use of excessive agents owing to the

need for keeper agents and the restricted movement along mesh edges. Owing to

this restriction, packet latencies in l -SCFR tend to be higher than in FRA [23].

FRA suffers from unequal path lengths assigned for agents. The agent with the

longest path length between consecutive rendezvous points acts as the bottleneck

and slows all other agents down. In general, the main disadvantage of both these
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methods is that rendezvous points are chosen arbitrarily.

3.2.4 Summary of related work

We saw existing methods that fall into one of the following three categories: No-

relay, Node-relay, and Agent-relay. The discussion above showed us that of the

three categories, Agent-relay based methods achieve lower network latencies than

the other two categories. The reason is that in methods that do not use relaying,

packets are never forwarded and thus every agent has to visit every single ground

node, which leads to long paths. In methods that use node-relay, the node essen-

tially acts as the rendezvous point for agents. Since node positions are fixed, the

quality of rendezvous points is also fixed. Packets have high wait times at these

ground nodes waiting for the next agent to pick them up. Agent-relay based meth-

ods overcome these problems by allowing packets to be forwarded from one agent

to another. This way, packets are continuously moving from the time they are

picked up at source, all the way until they are dropped off at destination. Of the

two existing Agent-relay based methods, we saw how FRA provides networks with

lower latencies as compared to l -SCFR owing to rectilinear agent movement and

forced stationary agents in l -SCFR. Of all the methods studied, we conclude that

FRA currently provides the best performance. The offline methods we propose in

this thesis (Chapters 3-5) are therefore compared against FRA.

With the current agent-relay based methods, the problem we observed is that

rendezvous points are chosen arbitrarily. In the first part of this thesis, we have

taken up the task of determining strategic locations for such rendezvous points that

can minimize maximum latency. We first present our proposed solution structure

for the problem at hand. Subsequently, we provide an exact exponential algorithm

as well as a heuristic based on ideas from Particle Swarm Optimization to closely
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approximate the proposed solution structure.

3.3 Proposed solution structure

This section presents characteristics of our proposed solution structure that pro-

vides a set of agent paths that minimize maximum latency. We note that when

inter-node distances are large, the main contributing factor to latency is the dis-

tance travelled by agents. The longer the distance, the more the time spent by

a packet on the agent as well as time spent by a packet waiting for said agent.

Briefly stated, the aim is then to reduce the distances traveled by agents.

Our proposed solution derives inspiration from the concept of Euclidean Steiner

trees in geometry. For ease of reading, we shall refer to Euclidean Steiner tree

as just Steiner tree for the rest of this thesis. Given a set, G, of N points on a

2D plane, we know that the Steiner tree is a spanning tree with a set of vertices,

V = G ∪ S, where S is any number of additional intermediate vertices known as

Steiner points. Figure 3.3 shows an example of a Steiner tree. A minimal Steiner

tree is one where the total cost of all edges (cost = Euclidean edge length) is

minimized. It has been proven that a minimal Steiner tree provides the shortest

possible interconnect between any set of points [33].

Steiner point

Node

Figure 3.3: Example of a Steiner tree

We realize that in the problem at hand (described in Chapter 2), agents are required

to span all N ground nodes, while traveling as little as possible. They are free to
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rendezvous with other agents and exchange packets. These requirements have

similar characteristics to the problem solved by the minimal Steiner tree. If the

edges on the Steiner tree represented agent paths and the Steiner points represented

rendezvous points, the minimal Steiner tree would represent the solution where the

sum of distances traveled by all agents is minimized, while all ground nodes are

serviced. However, the problem at hand has its differences, because rendezvous of

agents needs to be synchronized and because the number of agents is M , which

can be higher or lower than the number of edges in the minimal Steiner tree.

Using these observations we propose the Bounded-Edge Count Diametric Latency

Minimizing Steiner Tree (BECDLMST) as the solution to the problem described

in Chapter 2. The next section describes in detail what the BECDLMST is.

3.3.1 BECDLMST

Description of BECDLMST

Our proposed solution is a Steiner tree that spans across all N ground nodes,

with additional Steiner points representing rendezvous points. We know that the

number of available agents is fixed atM and that each agent can potentially service

more than one ground node. We therefore expand the traditional notion of an edge

to “a path with one end at an intermediate vertex and another end at either an

intermediate vertex or a ground node, that passes through zero or more ground

nodes without any branches in between”. With this notion of an edge, we say

that every agent is assigned one edge, which is the path that it traverses back and

forth, repeatedly and indefinitely. Every time a packet is picked up by an agent

and dropped off to another agent or destination ground node, the packet is said to

have traversed one hop. This definition of hop coincides with the notion of an edge

(which is also an agent path), and hence these terms are used interchangeably. As
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max(tw)
tp

Source Destination
Ground node Rendezvous point

k=4

Agent1 Agent2 Agent3 Agent4

Path

Figure 3.4: Maximum latency along a path [illustration uses k=4]

a result, what we are looking for is the Steiner tree that satisfies the limit on edge

count (given by M) and minimizes maximum latency in the network.

Latency of a packet is defined as the duration between its generation and its

delivery, and is given by the sum of wait time at source, tw, and transit time on

the path from source to destination, tp. tp depends on the number of hops the

packet needs to travel and time spent on each hop. Referring to Figure 3.4, let a

packet travel from Source to Destination using 4 hops. The maximum wait time

(max(tw)), is given by the time taken by Agent 1 to complete one full back and

forth cycle, which would have occurred if the packet was generated right after

the agent left Source. tp would be given by the sum of time taken along the 4

hops. Whenever an agent reaches a rendezvous point, it has to wait until the other

agent(s) also reach the same rendezvous point so that packets can be transferred.

In other words, rendezvous point visits must be synchronized between every two

adjacent agents. As a result, the frequency at which each agent traverses its

assigned path must be the same as the frequency at which its neighboring agents

traverse their assigned paths. Since the Steiner tree is fully connected, that would

mean that the traversal frequency of every agent in the entire tree has to be the

same. Since all agents are assumed to be homogeneous with a maximum speed of

vmax, the highest possible traversal frequency is limited by the bottleneck edge and

given by, vmax

λh
, where λh is the length of the longest edge/hop in the entire tree.

Maximum latency (also called network latency), τ , can then be derived as follows:
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Define,

tw : Packet wait time at source

tp : Packet propagation time along path from source to destination

nh : number of edges/hops along the diameter of the tree

λh : length of the longest edge/hop in tree

vmax : maximum agent speed

τ : Maximum latency (network latency)

Then,

max (tw) = 2λh

vmax

max (tp) = nhλh

vmax

τ = max (tw) + max (tp)

So we have,

τ =
1

vmax

(nhλh + 2λh) (3.1)

where nh is the number of edges/hops along the diameter of the tree.

Note: The diameter of a tree is the largest of all shortest-path distances between

any two leaves in the tree.

Putting the above definitions together, we can say that BECDLMST for any N

given ground nodes and M given agents, is the Steiner tree spanning all N nodes

with at most M edges, such that maximum latency (i.e. diametric latency or

latency along the tree diameter), τ as defined in Equation 3.1, is minimized.

Figure 3.5 shows examples of BECDLMSTs to illustrate the above described con-

cept.
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Figure 3.5: BECDLMST for random configurations of varying number of ground
nodes and agents
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Supporting characteristics of BECDLMST

We now take a look at some of the additional reasons why we propose BECDLMST

as the solution structure for Problem1 described in Chapter 2. Essentially we

show that a tree-like structure does not compromise on solution quality when

compared to solutions with agent paths containing simple cycles.

Note: A simple cycle or circuit is a closed path where no vertex or edge is repeated

except for the starting and ending vertex.

1. The first reason is that for any pair of nodes, A and B, the path for packets

from A to B, combined with the path for packets from B to A, need not

contain simple cycles. The reasoning is that if there was a simple cycle, then

the two paths, A → B and B → A are different and one could possibly be

longer than the other. But the maximum latency still depends on the longer

of the paths, which is the bottleneck. Therefore, the presence of the simple

cycle does not provide an advantage. Below is a formal proof to this claim.

Claim 3.3.1 For any pair of nodes, A and B, the path for packets from A to

B, combined with the path for packets from B to A, need not contain simple

cycles.

Proof: Let us assume that the packet originating at node A, destined for

node B has to pass through a set of nodes GAB and a set of rendezvous

points VAB, both of which could potentially be empty. Along the path A

to B, the maximum latency occurs for the packet starting at A and ending

at B. The path that minimizes this maximum latency would then be given

by the corresponding TSP solution, which we know cannot contain cycles.

If the path from A to B were followed in the opposite direction for packets
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originating at B and destined for A, the maximum inter-node latency among

all pairs in {A,B} ∪ GAB would remain unaltered at latency of A-B, thus

not increasing the maximum latency. ⊔⊓

It follows from Claim 3.3.1 that there is no advantage to the quality of a

solution in assigning cyclic agent paths. This supports the fact that agents

are assigned acyclic paths that are traversed back and forth in BECDLMST.

2. Now, even if each agent was assigned an acyclic path, the combination of

paths assigned to multiple agents, could potentially lead to graphs that have

simple cycles. However, our proposed solution is a tree. We now show that

using a tree-like solution structure does not compromise on solution quality

(in terms of network latency) as compared to those with simple cycles in

them.

Firstly, from [34], we have:

Theorem 3.3.2 [Proof in [34]]. For a given set of points, the Steiner tree

(i.e. the spanning tree with additional allowed points) that minimizes the

diameter of the tree (i.e. the longest path in the tree), is constructed by

introducing a single Steiner point at the center of the minimum enclosing

circle (MEC), and connecting each point to the Steiner point. The length of

the minimum diameter of the Steiner tree is the diameter of the MEC.

Claim 3.3.3 For every solution where the combination of paths assigned to

agents contains a simple cycle, an equally good or better solution exists that

does not contain simple cycles.

Proof: Let us consider a set of k agent paths, {A1-A2, A2-A3, . . . , Ak−1-Ak, Ak-A1},

that form a simple cycle. Each agent travels back and forth along its assigned

path, thus keeping in line with Claim 3.3.1. We argue that replacing the sim-

ple cycle with a tree can reduce maximum latency. The tree that minimizes
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node-node path length while allowing the addition of rendezvous points, is the

minimum diameter Steiner tree (MDST) [34]. According to Theorem 3.3.2,

we can build an MDST here by introducing a rendezvous/Steiner point, R

at the center of the MEC of A1 . . . Ak [34]. The new set of k agent paths

would then be {A1-R,A2-R, . . . , Ak-R}. The longest path then has a length

equal to the diameter of the MEC, regardless of k. However, in the simple

cycle, the longest path would increase with k. Therefore the best case for the

simple cycle would be when k = 3, in which case, the maximum path length

is given by the longest pairwise distance between A1, A2, A3. According to

the classical result from Jung’s theorem [35], the longest pairwise distance

in any group of points has a lower bound of
√
3rM , where rM is the radius

of the MEC. This would happen when A1A2A3 form an equilateral triangle.

The lowest possible maximum latency for the case with a simple cycle is then

along one of the sides of the equilateral triangle and given by:

Simple cycle : Latency, τ = tw + tp

= 2
√
3 rM
vmax

+
√
3 rM
vmax

= 3
√
3 rM
vmax

The maximum latency in the MDST however is caused by the path of length

2rM , passing through R. Using Equation 3.1, the maximum latency for the

MDST is then given by:

MDST : Latency, τ = tw + tp

= 2 rM
vmax

+ 2 rM
vmax

= 4 rM
vmax

We know that 4 rM
vmax

is less than 3
√
3 rM
vmax

. The case of the equilateral tri-

angle (i.e. best case involving a simple cycle) is illustrated in Figure 3.6.
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Figure 3.6: Replacing the simple cycle with an MDST in the case of an equilateral
triangle

Therefore, even in the best case for the simple cycle, the MDST presents a

lower maximum latency. As a result, any occurrence of a simple cycle can

be replaced by the corresponding MDST. ⊔⊓

Finding the BECDLMST

The task of Problem1 is now reduced to finding the BECDLMST for any given

configuration of N ground nodes with M agents. In other words we need to

construct the Steiner tree spanning all ground nodes by determining rendezvous

points (RPs) and correspondingM agent paths (edges), such that network latency,

τ , is minimized.

Finding the optimal BECDLMST as such is an NP optimization problem. The

decision version of the problem, which we term Dec-BECDLMST, will have to

determine whether a Steiner tree with at most M edges can be constructed with

an upper bound on nh (i.e. number of hops on tree diameter) and λh (i.e. length of
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longest edge/hop in tree). Dec-BECDLMST is similar to the Bounded Diameter

Bounded Cost Spanning Tree (BDBCST) problem, that has been proven to be NP

complete [34]. Dec-BECDLMST is easy to visualize using the following analogy:

Imagine a bulletin board with N pins stuck on it at various locations. You are

given M pieces of thread each of length λh. You are allowed to shorten any of the

threads by any amount if required. If two threads are to be connected, they can only

be connected end to end (i.e. one thread cannot connect to the middle of another

thread). The problem then is to determine if it is possible to connect all the pins to

each other with the given threads such that the path between no two pins requires

more than nh threads.

Dec-BECDLMST can be reduced from the Travelling Salesman Problem (TSP) as

shown below.

Theorem 3.3.4 Dec-BECDLMST, which is the problem of determining whether

a Steiner tree can be built for any given N nodes under the constraints of nh, λh

and M , is NP-hard.

Proof: We use a many-one reduction from the decision version of the Travelling

Salesman Problem to show that Dec-BECDLMST is NP hard. Given any instance

of the TSP problem with N nodes and L as the limit on path length, an equivalent

Dec-BECDLMST instance can be constructed by considering the same N nodes

and setting nh = 1, M = 1, and λh = L. In other words, any TSP problem is the

same as using a single agent to cover all the given nodes with an agent path length

smaller than or equal to L. Since every instance of TSP can be reduced to some

instance of Dec-BECDLMST, we have proven that Dec-BECDLMST is at least as

hard as TSP, and hence NP-hard. ⊔⊓



31

In actual fact, Dec-BECDLMST is a lot harder than TSP especially when M 6= 1.

The part of the problem resembling TSP is the one where potential agent paths

of length λh are sought after. After generating the set of feasible rendezvous

points, the problem becomes similar to the Weighted Set Cover problem which is

also NP hard. This notion is better understood in the next chapter (Chapter 4)

that describes an exact exponential algorithm for finding the optimal BECDLMST.

Observing that finding the optimal BECDLMST takes exponential time, we explore

efficient methods to approximate the BECDLMST. Our proposed heuristic to find

near optimal BECDLMSTs is presented in Chapter 5

3.4 Summary and Contributions

This chapter discussed the solution structure for the agent path design problem

described in Chapter 2. Based on the fact that minimal Steiner trees provide the

shortest interconnect between any number of points on a plane, we proposed using

BECDLMST to provide agent paths that minimize network latency. We described

the properties of BECDLMST and showed that using a tree-like structure for agent

paths does not compromise on network latency when compared to solutions that

contain simple cycles. Finally, we showed that finding the BECDLMST is an

NP-hard problem.

The main contribution of this chapter is a novel solution structure for the agent

path design problem aimed at minimizing maximum latency in a network (i.e.

network latency). It is based on the concept of Steiner trees in geometry.





Chapter 4

Exact exponential algorithm

Having proposed BECDLMST as the solution structure for the problem laid out

in Chapter 2, we now take up the task of finding the optimal BECDLMST for any

given configuration of N ground nodes with M agents. In the previous chapter,

we showed that finding the optimal BECDLMST is an NP-hard problem. In

this chapter, we present an exact exponential algorithm to generate the optimal

BECDLMST for any given problem setting. Although exponential in nature, the

algorithm is designed to prune the solution space as much as possible at every step

so as to minimize computation time.

The problem as such is a hard one that requires determining the optimal values for

nh (i.e. number of hops on tree diameter), and λh (i.e. length of longest edge/hop

in tree), as well as the corresponding tree for any given ground node configuration.

Determining valid nh and λh values that minimize network latency, τ , with onlyM

agents is a complex task. We propose an iterative method of updating nh and λh

until converging at the minimum τ achievable withM agents. For this purpose, we

first design an algorithm to solve Dec-BECDLMST. In other words, the algorithm

answers whether a Steiner tree can be built with at most M edges, where the tree
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diameter has at most nh edges and no edge in the entire tree has a length greater

than λh. Our proposed algorithm to solve Dec-BECDLMST is presented in the

next section before detailing how the input to this problem is varied to find a

solution to BECDLMST in section 4.2.

4.1 Decision subproblem (Dec-BECDLMST)

To reiterate, Dec-BECDLMST is the problem where we aim to determine whether

a Steiner tree with at most M edges can be constructed with an upper bound on

nh (i.e. number of hops on tree diameter) and λh (i.e. length of longest edge/hop

in tree). The algorithm for Dec-BECDLMST uses the simple idea of generating

the set of potential rendezvous points and agent paths, and then checking if there

exists a subset that satisfies the requirements of the problem.

Inputs for Dec-BECDLMST are as follows:

M number of agents

N number of ground nodes

gi position of ith ground node ∀i = 1, 2, . . .N

nh number of hops (edges) on maximum latency path

λh maximum hop length in the entire network

MEC Minimum Enclosing Circle around all ground nodes

rM radius of MEC

cM center of MEC

vmax maximum speed of any given agent

Note that the nh and λh values received as input are upper bounds and we are

trying to determine if a tree can be constructed within these bounds.
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4.1.1 Sub-hop-paths

In trying to solve this problem we use the characteristics laid out in Section 3.3.

We first introduce the concept of a sub-hop-path. A sub-hop-path is defined as a

path through ground nodes starting at either a ground node or a rendezvous point

that has a length ≤ λh. A sub-hop-path can potentially be assigned to 1 agent.

Sub-hop-paths that start at ground nodes are referred to as terminal or level 0 sub-

hop-paths, and form the outermost edges in the Steiner tree. We recall here that

an edge in the context of BECDLMST is a path with one end at an intermediate

vertex and another end at either an intermediate vertex or a ground node, that

passes through zero or more ground nodes without any branches in between. Note

that the center of the diameter of the tree is considered to be the root/pole. If

number of hops on the tree diameter, nh, is even, the tree is monopolar with a

single rendezvous point considered as the root. If nh is odd, the tree is dipolar with

two roots. In every sub-hop-path, the first node is the furthest from the root and

the last node, the closest. The level of a sub-hop-path is given by the maximum

number of rendezvous points along any path starting from this sub-hop-path and

moving away from the root. The maximum/deepest level possible is ⌊nh

2
⌋− 1. We

define:

P j = set of sub-hop-paths, p, at level j

p[k] = kth point in the sub-hop-path, p

len(p) = length of sub-hop-path, p

From Theorem 3.3.2, we know that the lower bound on path length of the diameter

of the tree is given by the diameter of the MEC. The nh and λh values received as

input could be such that nhλh ≥ 2rM . This would mean that the diameter of the

tree does not have to be a straight line. We then define slack of the problem, δ, as

follows:

δ =

√

(nh

2
λh

)2

− rM 2 (4.1)
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δ specifies the maximum distance of the root from the center of the MEC. The

function f is defined over all x ∈ R2 to give the maximum distance between x and

any ground node, as follows:

f(x) = max
i
‖x− gi‖ (4.2)

We then define two functions:

For all points, x ∈ R2, and j ∈ N,

lim1(x, j) = λh

(nh

2
− j

)

+ δ − ‖x− cM‖ (4.3)

lim2(x, j) = λh(nh − j)− f(x) (4.4)

The following constraint is then defined to determine the validity of sub-hop-paths.

∀p ∈ P j len(p) ≤ min( lim1(p[last], j),

lim2(p[last], j),

λh)

(4.5)

Note that j in Equation 4.5 refers to the level of sub-hop-paths being considered.

The condition in Equation 4.5 represents the necessary limiting condition on the

length of a sub-hop-path to ensure validity. The condition len(p) ≤ lim1(p[last], j),

represents the fact that the sub-hop-path needs to, at the least, be able to reach

the closest possible root in nh

2
hops. The maximum possible offset of the root from

cM is given by δ and hence the closest possible root to p[last] is the point at a

distance δ from cM towards p[last]. An illustration of this is shown in Figure 4.1.

The second condition len(p) ≤ lim2(p[last], j), says that the path length from

p[0] to the furthest point from p[last] should not exceed nhλh. The third condition

len(p) ≤ λh, is the basic requirement that length of the sub-hop-path cannot exceed

λh.
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p[0]

MEC

len(p)
p[last]

nhλh

2

δ
f (

p[la
st]

)
cM

Closest possible root

Sub-hop-path

Ground node

Figure 4.1: Necessary conditions for valid sub-hop-path
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The first step in the algorithm now is to find all valid terminal sub-hop-paths.

This is done by generating all possible acyclic paths starting at each ground node,

subject to the constraint in Equation 4.5. In trying to generate terminal sub-hop-

paths, for each path, q, that fails to meet the lim1 condition, we take note of the

margin of failure and maintain the minimum of all such values. We use the term

µ to represent this minimum and express it as follows:

µ = min

q∈
tested terminal paths

that failed Equation 4.5

len(q) + ‖q[last]− cM‖ (4.6)

µ is not used in the solution to Dec-BECDLMST. Its usage in finding the optimal

BECDLMST is detailed in Section 4.2.

4.1.2 Rendezvous points

Rendezvous points are where agents meet. They are the non-leaf vertices in the

Steiner tree. Sub-hop-paths are edges in the tree that are connected to each other

through rendezvous points. We assign levels to rendezvous points depending on

how close they are to the root. The outermost rendezvous points have a level of 0,

and this level increases the closer they are to the root, thus making the root, the

rendezvous point with the highest level of ⌊nh

2
⌋ − 1 . More formally, the starting

point, p[0], of a level k+1 sub-hop-path is a level k rendezvous point. We define

RP k as the set of rendezvous points at level k. Two types of rendezvous points

are identified:

1. Merging rendezvous point (MRP) : MRPs are vertices in the Steiner tree with

more than one child. They are enumerated by considering pairs of sub-hop-

paths and generating feasible points that can act as parents/ancestors with
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each sub-hop-path lying on different subtrees of said parent. The points to

be considered for each pair of sub-hop-paths are the points of intersection of

circles centered at p[last] of both sub-hop-paths, with radii chosen according

to the rendezvous level being filled (discussed below).

2. Linking rendezvous point (LRP) : LRPs are vertices in the Steiner tree with

a single child. They connect a sub-hop-path of a lower level with a sub-hop-

path of a higher level. But when generating rendezvous points at level k, we

do not have the set of level k+1 sub-hop-paths available. So we generate a

level k+1 sub-hop-path while generating a level k LRP. For the new level k+1

sub-hop-path, the starting point p[0] would then be the LRP. The remainder

of the sub-hop-path given by p[1] to p[last] would have to be ground nodes.

The set of paths that could possibly make up p[1] to p[last] is then the set

of level 0 sub-hop-paths. Formally, if p1 is a level 0 sub-hop-path, and p2 a

level j sub-hop-path, the point of intersection of the line joining p1[0] and

p2[last], with the circle of radius λh(1 + k− j)− len(p2) centered at p2[last],

is a potential LRP.

We define the operator, ⊲⊳ , as follows: If C(x, r) represents the circle of radius r,

centered at the point x,

C(x, r1) ⊲⊳ C(y, r2) = Set of points of intersection

of C(x, r1) and C(y, r2)

Algorithm 1 is then applied to populate all the sets of sub-hop-paths and rendezvous

points. The first seven stages in Figure 4.2 show an example run of the algorithm

on a given ground node configuration of 7 nodes, with inputs, nh = 4 and λh = rM
2
,

where rM is the radius of the MEC.
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Every shaded ellipse is

a level-0 sub-hop-path

Starting state: 7 ground nodes

nh=4,  λh=rM/2
Every point of intersection

between any 2 circles is a

potential level-0 MRP that is

tested if it can be a valid

zero-length level-1 sub-hop-path

only

valid

MRP

only

valid

LRP

The one valid level-0 LRP

is shown. Other potential LRPs

that are tested are not shown

because the illustration would

be cluttered

Every shaded ellipse is

a level-1 sub-hop-path

Every point of intersection

between any 2 circles is a

potential level-1 MRP that is

tested if it can be a valid

zero-length level-2 sub-hop-path

only

valid

level-1

MRP

(root)

Only one of the intersection points

is a valid level-1 MRP. There are no

valid LRPs.

Root specific

RPs

Root specific RPs generated for

the one and only root

Running weighted set cover

reveals that at least 9 agents

are required

MEC

Ground node Lvl-0 MRP Lvl-0 LRP Lvl-1 MRP Lvl-0 sub-hop-path Lvl-1 sub-hop-path

Figure 4.2: Example run of Algorithm 1 and generation of root-specific rendezvous
points
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Algorithm 1 Populate sub-hop-paths, MRPs and LRPs

for k = 0 to ⌊nh

2
⌋ − 1 do {Note: k is level}

#Generate level k sub-hop-paths
if k = 0 then
for all g ∈ Ground nodes do
Generate acyclic paths starting at g, running through ground nodes, sub-
ject to constraint in Equation 4.5 and add them to P 0

end for
else
for all r ∈ RP k−1 do
Generate acyclic paths starting at r, running through ground nodes, sub-
ject to constraint in Equation 4.5 and add them to P k

end for
end if

#Generate level k MRPs
for all p1 ∈

⋃

0≤i≤k P
i, p2 ∈

⋃

0≤j≤k P
j, c ∈ {i . . . k} do

if p1 6= p2 then
r1 ← λh(1 + k − c)− len(p1)
r2 ← λh(1 + k − j)− len(p2)
for all x ∈ C(p1[last], r1) ⊲⊳ C(p2[last], r2) do
if lim1(x, k + 1) ≥ 0 ∧ lim2(x, k + 1) ≥ 0 then
Add x to RP k

end if
end for

end if
end for

#Generate level k LRPs
for all p1 ∈ P 0, p2 ∈

⋃

0≤j≤k P
j do

if p1 6= p2 then
x← p2[last] +

λh(1+k−j)−len(p2)
‖p1[0]−p2[last]‖

(p1[0]− p2[last])
if lim1(x, k + 1) ≥ 0 ∧ lim2(x, k + 1) ≥ 0 then
Add x to RP k

end if
end if

end for

end for
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For MRP generation in Algorithm 1, r2, the radius for the circle centered at p2[last]

is set such that the level of the rendezvous point being generated is maintained.

For example, if k = 2 and p2 was a level 0 sub-hop-path, the new rendezvous

point should be exactly 2 hops away from the immediate next rendezvous point.

When p2 ensures the level of the new rendezvous point, p1 is free to have a radius

given by any number of hops less than or equal to the number of hops required

for p1 to ensure level k for the new rendezvous point. Every intersection point

thus generated is subject to limiting conditions similar to those in Equation 4.5 by

viewing the new level k rendezvous point as a zero-length, level k+1 sub-hop-path.

Claim 4.1.1 In algorithm 1, considering C(p1[last], r1) and C(p2[last], r2), al-

though any point in the overlapping region of the circles is a potential rendezvous

point, it is sufficient to test-and-add just the points of intersection as MRPs.

Proof: Let us say the final optimal BECDLMST required an MRP, x, to connect

a set of sub-hop-paths {pa1, pa2 . . . pab}. Let rendezvous point, y, be the immediate

parent of x in the tree. The requirement is therefore that x has to lie within the

appropriate ranges of the last nodes of each of {pa1 . . . paz} as well as y. So x lies

in the region of overlap of (z + 1) circles, one for each sub-hop-path served and

one for y. Within this region, x can be moved anywhere without a loss in solution

quality. Every corner in this region is definitely a point of intersection between

some pair of circles. Since we consider every pair of sub-hop-paths, an intersection

point given by at least one such pair is bound to satisfy x. ⊔⊓

In the context of the above proof, MRPs would have taken care of the first z

circles. The (z + 1)th circle is indirectly considered in the case of LRPs as well as

in the next section. Figure 4.3 illustrates the algorithm thus far on another sample
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g1

g2

g3

g4

g5

g6

g7

Lvl 0 MRP

Lvl 1 MRP (root)

Lvl 0 LRP

Lvl 0 sub-hop-path
Lvl 1 sub-hop-path

Figure 4.3: Rendezvous points for a sample node configuration (nh = 4, λh = rM
4
)

Notes: 1) The circles drawn show all the circles that are intersected with each
other to generate RPs. 2) Notice that all level 1 sub-hop-paths start from a level
0 RP. 3) The LRP above is at the intersection of the line joining g4 and g5 and
the circle centered at g4. 3) Only valid rendezvous points and sub-hop-paths are
shown.

configuration of ground nodes. All valid rendezvous points generated using the

algorithm up to this point are shown.

4.1.3 Root-specific rendezvous points

Let,

γ = ⌊nh

2
⌋ − 1

Now RP γ holds the set of feasible roots for the Steiner tree. If nh was even, the tree

would be monopolar. In fact if nhλh = 2rM , we are assured that |RP γ| = 1. On

the other hand, if nh was odd, the tree would be dipolar, with separation between
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the roots ≤ λh.

We define the set Sroots as follows:

If nh is even

Sroots = {S : S ⊆ RP γ ∧ |S| = 1}

If nh is odd

Sroots = {S : S ⊆ RP γ ∧ |S| = 2

∧(x ∈ S ∧ y ∈ S → ‖x− y‖ ≤ λh)}

(4.7)

The next step is to determine if any of the elements in Sroots can be used to

achieve the requirement posed by nh and λh using just M agents. We consider

each element, Γ ∈ Sroots, one by one and terminate when the answer to the decision

problem (Dec-BECDLMST) is found.

We know that members of Γ must have originated as the MRP for some two sub-

hop-paths. This means that the chosen rendezvous points in Γ might not have

links to some of the other sub-hop-paths. We do a simple breadth-first traversal

starting from the rendezvous points in Γ and moving 1 hop at a time to generate a

connected graph of sub-hop-paths, GΓ. Rendezvous points must now be introduced

to link the unlinked sub-hop-paths if possible. In order to have the least number of

agents, the unlinked sub-hop-paths must be linked to the existing graph using the

least number of hops. After graph GΓ is generated, for each unlinked sub-hop-path,

p1, we find the closest sub-hop-path, p2, in GΓ (determined by ‖p1[last] − p2[0]‖)

that satisfies the following condition:

p1 ∈ P i ∧ p2 ∈ P j

∧ j > i ∧ len(p1) + ‖p1[last]− p2[0]‖ ≤ λh(j − i)
(4.8)

If no such p2 exists, p1 is just ignored and termed unreachable. The ground nodes

covered by p1 will definitely still be reachable through other sub-hop-paths. If p2 is
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found, p1[last] and p2[0] are connected by introducing a series of rendezvous points

along the line connecting them. For each new rendezvous point, the corresponding

zero-length sub-hop-path starting at that rendezvous path, is added to the appro-

priate level sub-hop-path set. These rendezvous points are however temporary and

not used once Γ is changed. Figure 4.4 illustrates root-specific rendezvous points

introduced in continuation from Figure 4.3. The eighth stage in Figure 4.2 is also

an illustration of what root-specific rendezvous points are.

4.1.4 Set Cover for any root, Γ

Having enumerated the possible rendezvous points, we now need to determine if a

combination of less than M connected sub-hop-paths exists, such that all ground

nodes are covered. Solving this portion of the problem could potentially use a

branch and bound algorithm that starts at the members of Γ and branches out

towards the lower level sub-hop-paths. However, the nature of the problem would

make that expensive because the ground nodes are, for the most part, on terminal

sub-hop-paths. The benefit of branch and bound would be lost. Instead we choose

to work from the leaves towards the root. We define a weighted node cover subset

(WNCS), as a set of ground nodes with a corresponding integer weight. The integer

weight is used to represent the number of agents required. We start by creating

one single-weighted WNCS per reachable sub-hop-path containing the ground nodes

covered by the corresponding sub-hop-path.

∀p ∈ P 0 WNCS(p) = {p[0], p[1] . . . p[last]}1

∀j ∈ {1 . . . γ} ∀p ∈ P j WNCS(p) = {p[1] . . . p[last]}1

Note: WNCS weight represented using right subscript
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Next we define the bucket, B, of a sub-hop-path as the set of possible WNCSs it

provides to the next sub-hop-path along its route towards the root.

∀p ∈ P 0 B(p) = {∅,WNCS(p)}

The set of immediately reachable lower level sub-hop-paths for sub-hop-path, p, is

represented as children(p). Buckets for each reachable sub-hop-path, p, are gen-

erated using the buckets of children(p). We define the commutative, associative,

binary operator ⊎, on buckets, as follows:

B1 ⊎ B2 = {Sw : Sw = S1w1
∪ S2w2

and w = w1 + w2

where S1 ∈ B1, S2 ∈ B2}

Using the ⊎ operator, we trickle the WNCSs from the terminal sub-hop-paths

towards the root. Let,

B̂(p) = {(WNCS(p) ∪ Sw)w+1 : Sw ∈ ⊎q∈children(p)B(q)}

Then B(p) is the largest possible subset of B̂(p) subject to the condition:

S1, S2 ∈ B̂(p) ∧ S1 ⊆ S2 ∧ weight(S1) ≥ weight(S2)

→ S1 /∈ B(p)
(4.9)

The rule in Equation 4.9 ensures that all inferior solutions are weeded out early.

Only the best possible buckets are passed from one sub-hop-path to the next. At

the end, all the children of the root, children(Γ), would present their buckets to

the root. At this point, the problem becomes the Weighted Set Cover decision

problem. The problem can be stated as:

Given the subsets contained in buckets B(q)∀q ∈ children(Γ), is there a combina-

tion of subsets with not more than one occurring from each bucket, such that every
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g4

g5

g6

g7

Root-specific rendezvous pts

Figure 4.4: Agent paths with M = 8 for same node configuration as in Figure 4.3
(nh = 4, λh = rM

4
)

ground node occurs in at least one of the chosen subsets, and the sum of weights

of all chosen subsets does not exceed M , the number of agents.

The above is a slightly restrictive version of Weighted Set Cover with a smaller

search space, owing to the condition that only one subset can be chosen from each

bucket. A standard branch and bound algorithm is applied here to obtain the

answer. If the answer is no, the steps in section 4.1.3 and 4.1.4 are repeated for

the next Γ ∈ Sroots. If all elements in Sroots are exhausted and the answer is still

no, the answer to Dec-BECDLMST is returned as no.

The agent paths determined by one of the set covers for the node configuration

used in Figure 4.3 is shown in Figure 4.4.

4.2 Determining the optimal BECDLMST

We now describe the algorithm that uses the solution to Problem1 in an iterative

fashion to arrive at the optimal BECDLMST. From Theorem 3.3.2, we know that

the lower bound on nhλh is 2rM , where nh is the number of hops on the tree

diameter and λh is the length of the longest edge in the tree. The plot of maximum

latency, τ , against λh for different values of nh is shown in Figure 4.5. It is based

on the equation: τ = 1
vmax

(nhλh + 2λh)
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Figure 4.5: Plot of τ against λh for different values of nh

If we fixed nhλh = 2rM , increasing nh reduces τ but increases the number of agents

required. The strategy we employ is: while maintaining λh at the valid minimum,

increase nh at every iteration, until Dec-BECDLMST returns a no. Once this

happens, we fix nh and increase λh as long as the corresponding τ value does not

exceed the lowest possible with nh − 1. An example run might look like this when

visualized in Figure 4.5: Assume we start at nh = 2, i.e. the lowest point on the

line for nh = 2. We then jump to the lowest point on the line for nh = 3 and so

on until Dec-BECDLMST returns a no. Assume this happens at nh = 5. We then

start climbing along the line for nh = 5 as long as τ stays below the lowest point

on nh = 4. Along the climb, the first λh that gets a yes from Dec-BECDLMST

is then our solution. If no valid λh is found, the solution is the lowest point for

nh = 4.

To determine nh[0], i.e. the value of nh in the first iteration, we consider the

MDST built with a single rendezvous point at the center of the MEC. On this

tree, it would be possible to assign
⌊

M
N

⌋

number of agents on each edge, effectively

making nh = 2
⌊

M
N

⌋

easily satisfiable with M agents. As a result, the starting
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value for nh is given by:

nh[0] = max

(

2, 2

⌊

M

N

⌋

+ 1

)

(4.10)

The above expression also sets the minimum limit for nh to 2 because if M = 1,

the solution is just the TSP tour. Our algorithm is meant for M > 1, in which

case nh has to be at least 2.

As for λh, the strategy is to always use the lowest possible value corresponding to

nh. It is only when the algorithm to Dec-BECDLMST returns a no, that we fix

nh and increase λh. Determining the minimum hop length for nh, λ
nh

hmin
, depends

on whether nh is odd or even. When nh is even, the root is a single rendezvous

point. Considering the property of MECs stating that the arc length between no

two consecutive nodes on the MEC can exceed half the length of the circumference,

the optimal location of the root that minimizes the maximum path length between

any pair of outliers, is the center of the MEC. As a result, the smallest possible

λnh

hmin
for an even nh is given by 2rM

nh
.

In the case of odd nh, the root is a pair of rendezvous points located such that

distance between them is ≤ λnh

hmin
. So we need to partition the outliers such that

one partition connects to one of the root nodes and the other partition connects

to the other root node. To reduce the distance between a given root node and the

partition that connects to it, we identify the 2 largest arcs on the circumference,

each caused by any 2 consecutive nodes. Let us label the nodes responsible for the

first arc, x1 and x2, and the nodes responsible for the second arc, x3 and x4 while

moving along the same direction around the MEC (refer to Figure 4.6). We want

to find xΓ[1] and xΓ[2] such that λh is minimized and the hop constraints are met.
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Figure 4.6: λnh

hmin
when nh is odd (above: nh = 3)
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This is treated as a simple constraint optimization problem described as follows:

find xγ[1] and xγ[2] to minimize λh

subject to
⌊

nh

2

⌋

λh = |x1 − xγ[1]| = |x4 − xγ[1]|

= |x2 − xγ[2]| = |x3 − xγ[2]|

λh ≥ |xγ[1] − xγ[2]|

Graphically, finding the solution can be viewed as starting from the midpoints

of x1 → x4 and x2 → x3 and moving towards each other along lines l1 and l2

(refer to figure 4.6), while maintaining the equality constraint, until the inequality

constraint is met. x1 and x4 could possibly be the same point. Similarly, x2 and

x3 could possibly be the same point.

As we increase the value of nh at each iteration, the corresponding λnh

hmin
is com-

puted and presented as input to Dec-BECDLMST. At the first instance that Dec-

BECDLMST returns a no, nh is fixed as nhf
and λh is increased. The only way the

number of agents required can be decreased with the same maximum number of

hops is by increasing the number of ground nodes handled by some agent in order

to render at least one other agent useless and thus eliminate it. So, at least one

of the terminal sub-hop-paths must be increased in size by 1. In other words, we

have to increase the slack, δ, by increasing λh to incorporate the path that failed

to qualify as a terminal sub-hop-path by the smallest margin. This is where we use

the term µ that was computed in Equation 4.6. Using equations 4.1, 4.3, 4.5, and

4.6, we derive an expression for the new hop length:

λ
nhf

hnew
=
µ2 + r2M
nhf

µ
(4.11)

λ
nhf

hnew
and nhf

are now used as input to the algorithm for Dec-BECDLMST. If the

answer is a no, the process is repeated with the new value for µ obtained from the
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last run. Through every such iteration, λ
nhf

hnew
is consistently increased as long as

the following condition is satisfied:

λ
nhf

hnew
<

2 + nhf
− 1

2 + nhf

λ
(nhf

−1)

hmin
(4.12)

In other words, the latency being tested, should not be higher than the one that was

achieved using nhf
− 1 hops. If Dec-BECDLMST returns a yes before the above

condition fails, our final optimal BECDLMST is held by the subsets chosen by

Weighted Set Cover in the last run. If the condition fails before Dec-BECDLMST

returns a yes, the final optimal BECDLMST is held by the subsets chosen by the

algorithm with inputs, nhf
− 1 and λ

nhf
−1

hmin
.

4.3 Correctness and Complexity

The correctness of the algorithm lies in its exhaustive nature. Section 4.2 describes

how the values of nh and λh are varied to reach the lowest valid point on the plot

in Figure 4.5. Since M is finite, there will be a value for nh that causes Dec-

BECDLMST to return a no. Subsequently, λh is incremented every iteration.

Since λh has an upper bound (Equation 4.12), the algorithm will terminate with

an answer in finite time. The solution to Dec-BECDLMST ensures that all valid

options are explored before concluding. Sub-hop-paths are generated in a fully

exhaustive manner with a validity check ensuring only feasible paths are explored.

Rendezvous points are categorized as having one child or more than one child,

which is exhaustive. Every possible pair of sub-hop-paths is considered to generate

rendezvous points. The proof to Claim 4.1.1 shows how no potentially optimal

rendezvous points are missed. As a result, the complete set of potential agent

paths is presented to the Weighted Set Cover algorithm before deciding yes or no.
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Given that the Weighted Set Cover algorithm is used as a subroutine, the complex-

ity of the algorithm is definitely exponential. However, following the discussion in

Section 3.3, only those solutions that conform to the tree structure are searched.

It is a huge improvement over any path planning approach that does not use this

property. We do a quick complexity analysis of each step to give a fuller picture.

If n, is the number of ground nodes, the first step of finding the MEC has an O(n)

algorithm [36]. Finding the sub-hop-paths depends on how clustered the ground

nodes are. If k is the expected average distance to nearest neighbor in a random

distribution of points within the MEC, the complexity of determining sub-hop-

paths is nothing but O(n
λh
k ). Although k is not a constant, the exponent for n is

severely limited by λh. Determining rendezvous points does a pair-wise compari-

son of nodes repeatedly for each hop level. Thus complexity for this step can be

written as O(n2nh ) where nh is constant for one instance of Dec-BECDLMST. For

m agents, the maximum value for nh is O(logm) because nh is proportional to the

depth of the tree. The worst case complexity for determining rendezvous points

can be rewritten as O(nm). However, the empirical results of algorithm run-time

in table 4.2 show that the rate of increase in time is much smaller owing to the con-

straints that prune the search space at each step of generating rendezvous points.

Finally, generating the subset list for Weighted Set Cover, starts from the leaves of

the tree and heads towards the root, looking at each tree-node once. As a result,

the complexity for this step is linear in the number of rendezvous points and can

be expressed to be the same as rendezvous point generation, O(nm). Although the

above analysis provides the worst case complexities, the strict constraints applied

at every stage tend to keep the problem size in check.
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4.4 Results

We run our algorithm on random ground node configurations for varying values of

N and M . Table 4.1 shows the normalized average and standard deviation values

for τ (the maximum pairwaise latency) achieved over multiple runs of different

configurations for each (N,M) scenario. For each case of N , 50 different random

node configurations are generated and for each such configuration, different number

of agents (M) are applied. As such, values for N run through 3, 5, 10, 20, and

30 while the number of agents applied are varied between 3, 5, 10, 20, 30 and 40.

Note that the values for τ 4.1 are normalized and presented as coefficients of rM
vmax

.

Table 4.1: Normalized network latency, τ , for various N,M with comparison
against latency achieved by FRA [23]

M=3 M=5

N Normalized Normalized Percent Normalized Normalized Percent
τFRA τBECDLMST improvement τFRA τBECDLMST improvement

3 17.05±5.06 4.00±0.00 76.53 - 3.23±0.34 -
5 13.71±2.77 5.78±1.33 57.84 13.38±2.79 3.66±0.42 72.65
10 13.51±1.53 8.84±2.29 34.57 12.01±1.59 4.65±0.78 61.28
20 15.97±1.50 12.14±3.92 23.98 13.60±1.50 7.19±1.31 47.13
30 21.65±1.54 18.48±7.20 14.64 15.71±1.54 8.12±2.02 48.31

M=10 M=20

N Normalized Normalized Percent Normalized Normalized Percent
τFRA τBECDLMST improvement τFRA τBECDLMST improvement

3 - 2.60±0.15 - - 2.32±0.08 -
5 - 2.81±0.16 - - 2.37±0.09 -
10 11.51±1.93 3.44±0.38 70.11 - 2.70±0.15 -
20 10.93±1.66 4.06±0.43 62.85 10.35±1.74 3.17±0.40 69.37
30 11.61±1.31 5.62±0.88 51.59 10.36±1.83 3.88±0.56 62.55

M=30 M=40

N Normalized Normalized Percent Normalized Normalized Percent
τFRA τBECDLMST improvement τFRA τBECDLMST improvement

3 - 2.11±0.06 - - 2.07±0.03 -
5 - 2.18±0.08 - - 2.12±0.06 -
10 - 2.24±0.10 - - 2.19±0.08 -
20 - - - - - -
30 10.36±1.83 - - - - -

We observe that τ decreases with an increase in number of agents, but after a

certain point, addition of agents makes very little difference. This phenomenon
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is caused by the fact that regardless of the number of agents, the distance along

the tree diameter has to be travelled. We know from Theorem 3.3.2 that the

lower bound on the tree diameter is given by the diameter of the MEC. Therefore

τ values cannot go below 2 rM
vmax

. As a result, the table shows values that tend

asymptotically towards 2 with an increase in M . In actual fact, with an extremely

huge number of agents, our initial assumptions on negligible communication range

and transmission time would cease to hold. However, we consider sparse networks

where communication ranges can safely be assumed to be negligible compared to

inter-node distances. We also observe that for any given number of agents, M , the

latency τ increases with an increase in N , but the rate of increase is higher when

M is lower.

In Table 4.1, we also present a comparison between network latencies achieved by

BECDLMST against those achieved by FRA. As discussed earlier, FRA can be

cited as the algorithm that achieves the best performance among existing works

[Refer to Section 3.2 for a discussion on related work]. Our comparison shows that

the optimal BECDLMST, albeit taking exponential time to compute, generates so-

lutions that far outperform FRA. It is important to note that unlike BECDLMST,

FRA is only capable of handling problem situations with N > M . The results

show an improvement in performance up to 76% especially for smaller values of

N . We notice that the difference in performance drops as the number of ground

nodes increases mainly for small values of M (number of agents). This behavior

can be attributed to the fact that when M is small, the number of rendezvous

points is very limited. Network latency then mainly depends on the sub-hop-paths,

which will have to be shortest paths through the nodes they serve. As a result, for

low M and high N situations, the advantage of strategic placement of rendezvous

points is minimized. Hence performance of FRA gets closer to BECDLMST as N

increases for small values of M .
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Table 4.2: Average run-times of the exact exponential algorithm for various N,M
pairs

N M=3 M=5 M=10 M=20 M=30 M=40

3 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
5 ∼ 0 ∼ 0 ∼ 0 ∼ 0 2 4
10 ∼ 0 ∼ 0 2 67 357 982
20 2 9 294 2216 - -
30 7 42 592 4291 - -

Table 4.2 now presents the execution time taken (in seconds) to find the BECDLMST

in each experiment. The algorithm run-times shown are averages over multiple runs

of different node configurations on the same system equipped with a 2.33GHz Core

2 Duo processor. We observe that the algorithm run-time increases exponentially

with increase in N . The result adheres to our prior knowledge that WEIGHTED

SET COVER is a proven NP-complete problem with an exponential complexity.

As a result we omit the prohibitively long cases of high N and high M . We note

that the algorithm run-time increases at a higher rate with respect to N as op-

posed to M . The values indicate that in actual fact N has a stronger effect on the

algorithm complexity than M .

Figure 4.7 provides a visual comparison of paths generated by BECDLMST, FRA

and a single route solution (SRT). We present a randomly generated ground node

configuration with 20 nodes and compare the paths generated by each algorithm

for the same configuration. With a single route solution, the TSP tour would have

amounted to a final maximum latency of 7.72rM including waiting time as shown

in Figure 4.7(a). Figure 4.7(b) on the other hand shows how FRA[23] manages to

cap maximum latency at 5.152rM . FRA uses a grid-based approach to determine

contact points and synchronizes using the longest path between consecutive contact

points. We let M = 12 to support their algorithm. Finally, the set of agent paths

generated by BECDLMST is shown in Figure 4.7(c). As described in Section

3.3, each agent moves back and forth along its assigned path. Agent motions are

synchronized with respect to the rendezvous points they visit. For every RP, at
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FRA : 12 agents  [1 per cell] agent path

maximum latency path

Figure 4.7: Agent paths as generated by: (a) an SRT solution (b) FRA [23] (c)
Exact exponential algorithm for BECDLMST, for a random configuration of 20
ground nodes with 12 available agents
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any given time, all agents that meet at that RP, are either moving towards it or

away from it. M was limited to 12 so as to use no more agents than that required

by FRA. The optimal solution gives us a 3-hop tree diameter with a maximum

hop length of 0.688rM and achieves a maximum latency of 3.443rM . The example

here illustrates what the final set of agent paths look like in our solution and show

how strategically picking the rendezvous points can lead to lower latency achieving

agent paths.

4.5 Summary and Contributions

We presented an exact exponential algorithm to determine the optimal BECDLMST

that was described in Section 3.3. The paths generated by the algorithm, showed

how given N ground nodes and M agents, strategically placing rendezvous points

can lower the worst case latency. The algorithm enumerated the feasible ren-

dezvous points and constructed a set of paths to turn it into the Weighted Set

Cover problem. The exponential nature of the algorithm comes as a limitation but

the paths generated provide much lower latencies than existing methods. Empirical

results showed that BECDLMST provided network latencies that were consider-

ably lower (up to 76%) than those by the existing best solution of FRA. In the next

chapter we shall offset the limitation of computational complexity by presenting

an efficient heuristic to approximate the BECDLMST.

The main contribution of this chapter is the algorithm to derive the optimal

BECDLMST for any given ground node configuration with M agents. It provides

completeness to the previous chapter which proposes BECDLMST, by presenting

a method to find it.



Chapter 5

Near-optimal efficient heuristic

In this chapter we present an anytime heuristic to find a near optimal solution

to BECDLMST. Considering how the exact exponential algorithm can be infea-

sible for large datasets, we turn to methods capable of producing near-optimal

solutions but with much faster computation times. Such optimization techniques

are commonly referred to as heuristic algorithms. In order to devise an efficient

approximation algorithm for BECDLMST, we first look at the standard meta-

heuristic algorithms, i.e. heuristics that do not utilize the specific structure of the

problem at hand. In the following section we present a survey of few such algo-

rithms and study their applicability to the problem at hand. We finally use ideas

from Particle Swarm Optimization and devise our own heuristic that is tailored to

BECDLMST.



60

5.1 Survey of classical metaheuristics and their

applicability

5.1.1 Simulated annealing

Simulated annealing (SA) is a generic probabilistic metaheuristic algorithm for the

global optimization problem, namely locating a good approximation to the global

optimum of a given function in a large search space [37]. It starts with a solution,

x, to the problem at hand. This solution is then assigned a value using a scoring

function denoted by f(x). Subsequently, one solution in the neighbourhood, N(x),

of x is evaluated. If the new solution, x̄, is better than x, it is chosen as the current

solution and the next iteration is commenced. However if x̄ happens to be worse

than x, then x̄ is chosen with a probability of P (f(x), f(x̄), T ), where T stands

for temperature. Temperature here is a value that consistently decreases in each

iteration and represents the idea of metal cooling down in the smithing process

(hence the annealing part of the name). The probability P generally decreases

with a decrease in T . In other words, the search through the solution space is

more likely to jump to a worse solution at the beginning of the search as opposed

to towards the end. The ability to jump to a solution of lower quality effectively

minimizes the tendency to get stuck at a local optimum.

Applicability

Simulated annealing is often used when the search space is discrete (e.g., all tours

that visit a given set of cities), whereas BECDLMST is a problem with a continuous

solution space. Moreover, the concept of solution neighborhood is hard to define in

BECDLMST. For a given tree structure, the position of each rendezvous point is
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a variable that can be changed on the continuous 2D plane. Moreover, changes in

tree structure are hard to categorize under the neighborhood relationship, mainly

because simple changes would not usually lead to valid solutions under the given

constraints. As a result, simulated annealing is not chosen for the problem at hand.

5.1.2 Genetic Algorithms

Genetic algorithms (GAs) are search algorithms based on the mechanics on natural

selection and natural genetics [38, 39]. In GAs, a population of strings, which

encode candidate solutions (called individuals) to an optimization problem, are

evolved towards better solutions. A fitness function is used determine the quality

of a candidate solution. The algorithm begins with a population of randomly

generated candidate solutions following which evolution begins. A simple genetic

algorithm that yields good results in many practical problems is composed of three

operators are applied at each iteration (generation) [38] :

• Selection: The selection operator determines those individuals in the popu-

lation that survive to participate in the production of the next population.

Selection is based on the value of the fitness function, or the fitness of indi-

vidual members of the population, such that members with greater fitness

levels tend to survive.

• Crossover: Crossover recombines traits of the selected individuals in the hope

of producing a child with better fitness levels than its parents. Crossover is

accomplished by swapping parts of strings representing two individuals in

the population.

• Mutation: mutation, introduces some sort of modification in the population

members and prevents the search of the space from becoming too narrow.
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Evolution strategies topology natural evolution by asexual reproduction with

mutation and selection.

Genetic algorithms are different from more normal optimization and search proce-

dures in four ways :

• GAs work with a coding of the parameter set, not the parameters themselves,

• GAs search from a population of points, not a single point,

• GAs use payoff (objective function) information, not derivativess or other

auxiliary knowledge,

• GAs use probabilistic transition rules, not deterministic rules.

Applicability

The problem with the use of GAs for BECDLMST is the need for encoding can-

didate solutions. Since rendezvous points exist in a continuous space, encoding

a solution isn’t straightforward. On the other hand, it would be possible to en-

code a tree structure. However, even in the latter case, any mutation or crossover

applied would very likely yield an invalid solution that does not conform to the

constraints. In other words, it would be quite impossible to have an encoding of

the tree that covers all possibilities while ensuring all (or most) permutations of

the string represent valid solutions. Moreover, if an encoding simply represented

the tree structure alone, it would be computationally expensive to evaluate its

fitness (given by the best possible rendezvous point locations for said structure).

As a result, we choose not to employ GA based methods.
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5.1.3 Particle swarm optimization

The particle swarm optimization (PSO) algorithm was introduced by [40] and it is

based on the social behavior of biological organisms that move in groups such as

birds and fishes. It also has some ties to evolutionary algorithms such as GA and

was originally developed to solve nonlinear optimization problems.

The basic element of PSO is a particle, which can fly throughout the search space

towards an optimum by using its own information as well as that provided by

other particles comprising its neighborhood. In PSO, a particle’s neighborhood

is the subset of particles which it is able to communicate with. Depending on

how the neighborhood is determined, the PSO algorithm may embody the gbest

topology, where each particle is connected to every other particle in the swarm so

that it can obtain information from them. In other words, the neighborhood of a

particle is the entire swarm. Alternatively, in the lbest topology a particle is not

able to communicate with all other particles but only with some of them. The

most simple lbest topology, also known as ring topology, connects each particle to

only two other particles in the swarm, usually the nearest ones.

Each particle is a D dimensional vector Xi and has a velocity Vi. Some objective

function f (fitness) is given.

Pi : so far best position of particle i

Pg = maxi{Pi}

Evolution equation:

Vi(k + 1) = wVi(k) + c1r1(Pi −Xi(k)) + c2r2(Pg −Xi(k))

Xi(k + 1) = Xi(k) + Vi(k + 1)

with w ∈ [0, 1], c1 > 0, c2 > 0 being constants and r1, r2 being random numbers in

[0, 1]. Iteration terminates after some time or after f(Pg) reaches some value.
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Applicability

The advantage of PSO is that the classical version was designed to operate in a

continuous search space. Given that BECDLMST involves rendezvous points lo-

cated on a continuous 2D plane, we choose to employ ideas from PSO to solve the

problem at hand. We know that a solution to BECDLMST comprises of the entire

tree structure along with positions for the rendezvous points. As such if PSO were

to be applied directly, one particle would represent an entire candidate solution,

whose dimensionality would be fairly huge. Instead, we choose to represent every

rendezvous point as a particle capable of moving on the 2D plane. The complete

set of particles along with connections between them would then represent a can-

didate solution. Particles interact with each other and cause each other to move

at certain velocities dictated by an appropriate policy. Particles also perform the

additional function of connecting/disconnecting from other particles to restruc-

ture the tree. The solution therefore evolves with each iteration to lead to a near

optimal BECDLMST. The algorithm is presented in detail in the following section.

5.2 Evolutionary PSO-like algorithm

This section describes the proposed anytime heuristic to find a near optimal so-

lution to BECDLMST. The algorithm causes rendezvous points to demonstrate a

self-organizing behavior much like in Particle Swarm Optimization. The idea we

use is to start with a Steiner tree that meets the agent count restriction, i.e., M

edges on the tree. The positions of the RPs are then iteratively updated to lead

to a lower latency network. Restructuring of the network is also performed by

adding/removing RPs and re-attaching vertices in the tree. All updates performed

within an iteration always ensure that the tree provides exactly M agent paths
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connecting all N ground nodes at the end of each iteration, thus making it an

anytime algorithm. Definitions:

G ⊂ R2 := set of ground nodes

gi ∈ G := ithground node

V ⊂ R2 := set of RPs

5.2.1 Starting configuration

Let the Minimum Enclosing Circle (MEC) for G be centered at cM and have a

radius of rM . We use cM as root to construct the MDST as it minimizes the

diameter of the tree and serves as a good starting point. We start with the least

possible number of RPs for a given N,M combination. Edge-count is bounded by

M and is always 1 less than number of vertices in the tree. Each leaf vertex can

be one or more ground nodes (if more than one, the edge connecting this vertex to

the tree is the path from the parent RP through the group of ground nodes). The

notion of multiple ground nodes in one leaf vertex can be better understood by

observing Figure 4.7(c) which shows branches with multiple ground nodes serviced

by the same agent. All ground nodes on one such branch would be part of the

same leaf vertex. As a result, the bound on number of RPs is given by:

max(1,M − (N − 1)) ≤ |V| ≤M − 1 (5.1)

Note that we do not consider the trivial case of M = 1 for which the solution is

the TSP tour. So we always introduce at least 1 RP. We now have 2 classes of

N,M configurations that need to be handled differently.

1. M ≥ N : In this case, for least number of RPs, every ground node is treated

as a single vertex. The first RP is introduced at cM . All remaining RPs
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are distributed proportionately along the edges connecting the cM to each

ground node. More formally, let µ(gi) = ‖gi−cM‖∑
i ‖gi−cM‖

(M − N) represent gi’s

share of RPs. If sortedNodes is the list of ground nodes sorted in descending

order by (µ(gi)− ⌊µ(gi)⌋), the number of RPs between cM and gi is given

by ⌊µ(gi)⌋ + 1 for the first M − N −∑

i ⌊µ(gi)⌋ nodes in sortedNodes, and

⌊µ(gi)⌋ for the remaining.

2. M < N : Only 1 RP can be inserted in this case and is placed at cM . The

ground nodes however need to be partitioned into M groups (one for each

agent), such that the longest agent path is minimized. The smaller the M ,

the more the problem turns into a TSP problem. For the sake of speed, we

choose to use a heuristic that works reasonably well for bigger M
N

ratios. The

MEC is divided into M sectors, each with either ⌊N
M
⌋ or ⌊N

M
⌋ − 1 ground

nodes, such that every ground node belongs to exactly one sector. For each

sector, a path is then drawn from cM through the ground nodes in increasing

order of distance from cM .

Although case dependent, the average maximum latency in the starting configu-

ration can be estimated at (2 + 2N
M
) rM
vmax

.

5.2.2 Iterative Tree Evolution

The initial tree that was built is evolved iteratively to lower the network latency.

Each iteration performs a series of updates to the structure of the tree by mov-

ing/introducing/deleting RPs such that at the end of each iteration the tree still

provides exactlyM agent paths connecting all N ground nodes. The algorithms for

each kind of update performed are laid out in Algorithms 2 - 6. Here we describe

the rationale behind each step and its effects. 3 kinds of updates are performed in

each iteration:
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Modify positions of vertices without affecting structure of tree

Algorithm 2 RP Position Update

for each v ∈ V do
fv := furthest neighbor of v
sv := second furthest neighbor of v
Starting η at 0.1 and reducing it exponentially, compute
vnew ← v + η(fv − v + sv − v)
until ‖fvnew

− vnew‖ ≤ ‖fv − v‖ becomes true
v ← vnew

end for

This category refers to the first step in the iteration - RP position update - as

detailed in Algorithm 2. In this step, every RP is moved in order to minimize the

maximum distance from any neighbor (i.e. any child or parent). For each RP, its

two furthest neighbors apply an attractive force on the RP, proportional to the

length of edges connecting them to the RP. The effect of the forces is dampened

by a factor of η such that distance to the furthest neighbor does not increase after

the update. For a given tree structure, the RP positions always converge to a

stable state such that η ≈ 0 for all RP position updates in an iteration. When this

happens, we consider the structure to have settled, giving the lowest possible λh

for that structure. It is only on settling, that the structure of the tree is modified

with the following steps.

Modify structure of tree without increasing nh or λh

This category includes the next 2 steps in the iteration - Re-attaching ground

nodes and RPs - as detailed in Algorithms 3 and 4. Each leaf vertex (could be one

or more ground nodes) is re-attached to its closest RP. If the leaf vertex is the only

child of its parent, it tries to attach itself to any other RP (not necessarily closest)

without increasing λh so that the parent RP is freed. For each ground node, g, we
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Algorithm 3 Re-attach Ground Nodes

for each g ∈ G directly connected to some v1 ∈ V do
if g is only child of v1 then
Doing a breadth-first traversal of the tree, find the first v2 ∈ V that satisfies
‖v2 − g‖+ rlen(g) ≤ λh

else
v2 ← argmin

v∈V
‖v − g‖

end if
if v2 6= v1 then
Detach g from v1 and attach as child to v2

end if
end for

Algorithm 4 Re-attach Rendezvous Points

for each v ∈ V do
Doing a breadth-first traversal of the tree, find the first v2 ∈ V such that
height(v2) > height(v) ∧ ‖v2 − v‖ < ‖parent(v)− v‖
if valid v2 is found then
Detach v from parent(v) and attach as child to v2

end if
end for

define two partial lengths of the edge through g, that are used in the algorithm:

rlen(g) := partial edge length from g to outermost

ground node

plen(g) := partial edge length from g to parent RP

On the other hand, each RP is re-attached to any other closer, yet viable parent.

An RP, v2, is deemed a viable parent of v1, if height(v2) > height(v1), where

height(v) is defined as the height of the subtree rooted at v. Neither of the re-

attaching steps increases nh or λh. The new structure however, could potentially

reduce λh through RP position updates.

Modify structure of tree increasing/decreasing number of RPs, possibly

affecting nh and λh
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Algorithm 5 Group Ground Nodes

for each g1 ∈ G directly connected to some v ∈ V do
Find closest g2 ∈ G with rlen(g2) = 0 such that rlen(g1) + plen(g2) + ‖g1 −
g2‖ ≤ λh
if valid g2 found then
Detach g1 from v and attach to g2
Insert new RP in the middle of longest edge in tree
Break from loop

end if
end for

Algorithm 6 Ungroup Ground Nodes

for each g ∈ G with rlen(g) = 0 and not directly connected to an RP do
if plen(g) = λh then
newParent← argmin

v∈V
‖v − g‖

Detach g from parent(g) and attach as child to newParent
vRem← argmin

v∈children(vroot)

‖v − vroot‖

Detach all children(vRem) from vRem and attach as children to vroot. De-
tach vRem from vroot, delete vRem, and break from loop

end if
end for

This category includes the last 2 updates in the iteration - Grouping and ungroup-

ing of ground nodes - as detailed in Algorithms 5 and 6. Grouping is done by

considering each leaf vertex and checking if it can be grouped with, and attached

to the end of another leaf vertex without increasing λh. We know that grouping

ground nodes into a leaf vertex has the effect of reducing the number of edges

in the tree. For every edge that is removed by grouping, a new edge has to be

introduced so that the total number of edges remains constant. A new edge is

therefore introduced by adding an RP right in the middle of the longest edge in

the tree (λh length) with preference to the one closest to the root (i.e. the closest

bottleneck edge to the root).

Ungrouping is done only when no more grouping is possible. We look for an edge,

e, that passes through more than one ground node, and has a length of λh. Con-

sidering e to be the network’s bottleneck, we remove the outermost ground node
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on e from its group and connect it to its closest RP, thus increasing the number

of edges. In order to bring back the number of edges to M , the closest RP to the

root, vRem, is deleted and all of vRem’s children are attached to the root.

At the end of each iteration, we check if any childless RP exists due to grouping

and move it to the middle of the longest edge in the network.

Now, increasing the number of RPs, could increase nh without decreasing λh,

while decreasing the number of RPs, could increase λh without decreasing nh.

For this reason, only one change is performed in this step for any iteration and

subsequently, the network is allowed to settle. The first change that caused an

increase in network latency is recorded and the state of the tree before the change

is saved. After N + M consecutive changes that fail to lower network latency

below that of the saved state, the saved tree is restored and the first of the N +M

changes is never performed again.

The algorithm comes to an end when the same tree is restored N +M times, or

if absolutely no change occurs in an iteration. The sequence of steps within one

iteration are laid out in Algorithm 7.

Algorithm 7 Steps in an iteration

RP Position Update
if η ≈ 0 for all position updates, i.e. settled then
Re-attach Ground Nodes
Re-attach Rendezvous Points
Group Ground Nodes
Ungroup Ground Nodes
Move childless RP to middle of longest edge in tree

end if

Figure 5.1 shows the algorithm running on one ground node configuration instance.

The example shown uses N = 10,M = 10. Using κ to represent the number of

iterations, three snapshots of the tree at different stages of evolution are shown:
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(a) κ = 0

nh = 2,  λh = rM,  τ = 4rM  

Figure 5.1: (a,b,c) Tree at different stages in the proposed algorithm for a sample
ground node configuration (N = 10,M = 10) (d) Optimal BECDLMST generated
by exhaustive exponential algorithm (Chapter 4) for same ground node configura-
tion
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(a) Starting configuration at κ = 0 iterations.

(b) An intermediate stage (κ = 20) where re-attaching and grouping of ground

nodes has taken place. As discussed earlier, steps that change the structure

have the potential to increase network latency. Whether the increase is tem-

porary will be known on settling.

(c) Final tree structure at algorithm termination (κ = 372)

Figure 5.1(d) shows the optimal BECDLMST for the exact same ground node

configuration computed using the exact exponential algorithm from Chapter 4.

5.3 Results

Table 5.1: Experimental results using heuristic for small N,M with comparison
against optimal BECDLMST

M=3 M=5

N Normalized τf
τf
τopt

κ1.05τf Normalized τf
τf
τopt

κ1.05τf

3 4.00±0.00 1.00±0.00 1±0 3.23±0.34 1.00±0.00 13±10
5 5.90±1.35 1.02±0.03 17±12 3.85±0.25 1.05±0.10 10±17
10 9.37±2.26 1.06±0.10 13±11 4.98±0.83 1.07±0.03 45±44
20 14.70±3.81 1.11±0.15 20±15 7.84±1.20 1.09±0.11 17±19

M=10 M=20

N Normalized τf
τf
τopt

κ1.05τf Normalized τf
τf
τopt

κ1.05τf

3 2.60±0.15 1.00±0.00 55±33 2.32±0.08 1.00±0.00 159±122
5 2.87±0.15 1.02±0.02 26±28 2.40±0.08 1.01±0.02 120±73
10 3.58±0.29 1.04±0.08 156±248 2.73±0.14 1.01±0.02 87±69
20 4.27±0.38 1.05±0.06 78±80 3.31±0.27 1.04±0.10 466±411

We run our algorithm on numerous ground node configurations to test the quality

of solutions produced as compared to the optimal BECDLMST as well as observe

the number of iterations taken to produce acceptable results. For every value of

N , we generate 50 different random ground node configurations. For every con-

figuration, we apply our algorithm with different values of M . So for each N,M
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combination we have 50 experiments. In each experiment, we record 2 pieces of

information: 1) τf , final network latency when the algorithm terminates, and 2)

κ1.05τf , number of iterations taken to reach a network latency 5% away from τf .

The number of iterations for the algorithm to terminate is usually much larger

than κ1.05τf . However, the benefit of an anytime algorithm allows us to stop ear-

lier for practical purposes. κ1.05τf represents the number of iterations at which

the algorithm could have been stopped to achieve a network latency very close

to the final achievable network latency. The optimal BECDLMST is then found

using the exact exponential algorithm laid out earlier in Chapter 4. As described,

the exact exponential algorithm enumerates all possible rendezvous points for any

given ground node configuration and finds the combination with minimum net-

work latency. The network latency achieved by the optimal BECDLMST, τopt, is

compared against τf , and the ratio
τf
τopt

is recorded.
τf
τopt

signifies the offset of the

tree generated by the heuristic from the optimal BECDLMST. Since finding the

optimal BECDLMST takes exponential time, the data set sizes for which compar-

ison is done are kept small. We run N and M through four different values of 3,

5, 10 and 20, the results for which are shown in Table 5.1. The values in the table

show the mean and standard deviation over 50 runs for each N,M setting. Note

that τf is normalized and presented as a co-efficient of rM
vmax

.

In order to assess the scalability and robustness of the algorithm, we run the same

experiments with much larger data sets with a wider range of N
M

ratios. N is

varied from 50 to 10000 and M is varied from 50 to 1000. For these data sets

however, comparison with the optimal solution is infeasible. The results obtained

are presented in Table 5.2.

We observe that network latency consistently increases with increase in N and

decreases with increase in M . Additionally, for the same N
M

ratio, network latency

reduces with an increase in N orM , which suggests thatM has a stronger effect on
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Table 5.2: Experimental results for large N,M

M=50 M=100 M=1000

N Normalized κ1.05τf Normalized κ1.05τf Normalized κ1.05τf

τf τf τf

50 3.25±0.13 3047±1163 3.06±0.05 1544±884 2.09±0.01 52±69
100 3.90±0.07 637±105 3.20±0.18 3515±977 2.17±0.01 842±921
1000 5.46±0.09 812±241 4.17±0.02 2311±1809 3.24±0.08 4390±657
10000 23.73±0.24 150±42 8.05±0.11 714±722 4.00±0.00 5199±3942

network latency as compared to N . As for proximity to optimality, our algorithm

performs very well when the N
M

ratio is small. The reason for this is that for

large N
M

ratios, the number of rendezvous points in the tree is small, thus making

the problem more of a TSP problem than a rendezvous point placement problem.

Since grouping of ground nodes is done in a greedy fashion in our algorithm (for

the sake of speed), the quality of the solution obtained for large N
M

ratios is limited.

However, in general, for the data sizes tested, our algorithm produced solutions

with network latencies within 15% in excess of τopt, which is a small loss in solution

quality for a significant improvement in computation time.

From the algorithm, we know each iteration on its own has O(N2+M2) time com-

plexity. The number of such iterations required to achieve convergence, represented

by κ1.05τf , generally increases with an increase in N or M . However, the highest

values occur as the N
M

ratio gets closer to 1. While running our experiments, we

observed that the number of feasible structural changes to the tree was higher for

N
M

ratios close to 1, thus leading to more number of iterations. For small values

of N
M
, ground nodes did not have to be grouped, and most were already connected

to their nearest RP. The tree structure stabilized fairly quickly. For large values

of N
M
, each group of ground nodes was huge, and any change in structure usually

resulted in an increase in λh. As a result, the number of feasible changes was low.

The end result is that the algorithm is capable of producing near optimal results

on completion. Convergence to a latency close to τf happens much earlier and for
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practical purposes, the anytime nature of the algorithm allows early termination.

Although tables 5.1 and 5.2 present algorithm runtimes using the system inde-

pendent metric - number of iterations, actual time data can sometimes prove

to be useful. To provide a ballpark, on our 2.3GHz Core 2 Duo system, the

(N = 20,M = 20) case took 10s on average to complete all iterations and less

than 1s to reach 1.05τf . The (N = 100,M = 100) case on average took about 500s

for all iterations and 70s to reach 1.05τf .

Table 5.3: Comparison of normalized τ (network latency), as produced by our
heuristic and FRA [23] for small N,M values

M=3 M=5

N Normalized Normalized Percent Normalized Normalized Percent
τFRA τf improvement τFRA τf improvement

3 17.05±5.06 4.00±0.00 76.53 - 3.23±0.34 -
5 13.71±2.77 5.90±1.35 56.96 13.38±2.79 3.85±0.25 71.22
10 13.51±1.53 9.37±2.26 30.64 12.01±1.59 4.98±0.83 58.53
20 15.97±1.50 14.70±3.81 7.95 13.60±1.50 7.84±1.20 42.35

M=10 M=20

N Normalized Normalized Percent Normalized Normalized Percent
τFRA τf improvement τFRA τf improvement

3 - 2.60±0.15 - - 2.32±0.08 -
5 - 2.87±0.15 - - 2.40±0.08 -
10 11.51±1.93 3.58±0.29 68.90 - 2.73±0.14 -
20 10.93±1.66 4.27±0.38 60.93 10.35±1.74 3.31±0.27 68.01

In addition to a comparison against the optimal BECDLMST, the heuristic pre-

sented in this chapter is also compared against FRA. Table 5.3 presents comparison

of results for small values of N,M ranging between 3 and 20. Table 5.4 on the

other hand presents a comparison for very large values of N,M ranging up to

10000 nodes and 1000 agents. We observe that the network latencies achieved by

the approximation to BECDLMST, still outperform FRA considerably. In partic-

ular, we notice that for high values of M , our heuristic achieves significantly lower

network latencies regardless of number of ground nodes. We believe the reason is

that with a high number of agents, there is far greater opportunity to strategically

place rendezvous points, which is the advantage that BECDLMST has over FRA.
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Table 5.4: Comparison of normalized τ (network latency), as produced by our
heuristic and FRA [23] for large N,M values

M=50 M=100

N Normalized Normalized Percent Normalized Normalized Percent
τFRA τf improvement τFRA τf improvement

50 9.77±1.36 3.25±0.13 66.73 - 3.06±0.05 -
100 9.62±1.16 3.90±0.07 59.46 9.63±1.18 3.20±0.18 66.77
1000 19.87±1.61 5.46±0.09 72.52 14.86±0.96 4.17±0.02 71.94
10000 92.25±1.79 23.73±0.24 74.27 54.67±2.56 8.05±0.11 85.27

M=1000

N Normalized Normalized Percent
τFRA τf improvement

50 - 2.09±0.01 -
100 - 2.17±0.01 -
1000 9.71±0.56 3.24±0.08 68.90
10000 14.98±0.69 4.00±0.00 73.30

5.4 Summary and Contributions

An anytime heuristic using update rules and tree evolution strategies was pre-

sented that enabled the self-organization of rendezvous points to generate close

approximations of the BECDLMST. The algorithm was designed such that at the

end of every iteration, the tree satisfied the edge and rendezvous point constraints,

thus giving a valid solution and allowing an anytime termination. Experiments

showed that the algorithm was capable of handling very large data sets in terms of

ground nodes and agents. In general, the algorithm performed better with more

agents available.

The main contribution of this chapter is the utilization of ideas from PSO to serve

in closely approximating the BECDLMST. The heuristic brings the computation

complexity from an exponential one down to a quadratic one. Moreover, the

heuristic is designed to be anytime in nature, so that early termination is an

option. In all, the ideas presented in this chapter, make BECDLMST a feasible

solution to the problem described in Chapter 2.



Chapter 6

Problem Expansion under

realistic conditions

The first half of the thesis talked about the agent path planning problem under

the context of complete information. The locations of ground nodes were known

beforehand and ground nodes were assumed to be stationary. However, when

realism is brought into the picture, a number of assumptions that were laid out in

the original problem definition (Chapter 2) cease to hold.

In a realistic situation, agents might not know the locations of ground nodes be-

forehand. Ground nodes will need to be searched for under such circumstances.

While this can be done by listening for wireless signals, ground nodes cannot be

expected to transmit signals continuously. The reason is that ground nodes, who

can potentially be survivors or rescuers, can turn wireless off and on anytime for

saving battery or any other purpose. A wireless signal that is continuously on,

cannot be assumed of the ground nodes. In other words, ground nodes can poten-

tially be intermittent. What were originally considered to be nameless agents in

the theoretical sense, will now have to be UAVs mounted with wireless equipment.
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This introduces the problem of autonomous control of the UAVs, with the addi-

tional challenge of accurate navigation under harsh weather conditions. Wireless

equipment carried by these UAVs would have realistic communication limitations

in terms of range, packet loss, etc. The challenges posed by the above mentioned

factors can be listed out as follows.

6.1 Challenges

The key challenges that need to be addressed in trying to solve this problem are:

1. Lack of global information in agent planning : Each UAV has a limited com-

munication range. As a result, the only information that a given agent can

have is its own local information and information obtained from neighboring

agents. Action decisions at each agent have to be made based on this partial

information.

2. Intermittent and mobile ground nodes : In order to incorporate survivors,

who could be on the move and not necessarily have their WiFi turned on at all

times, we model these ground nodes as intermittent and mobile radio sources.

As a result, the coverage problem gets extended to become a persistent search

problem.

3. Opposing trade-offs in a dynamic environment : Visit frequency provides

a measure for search quality while packet latency provides a measure for

tethering quality. When one is emphasized, the other suffers. Moreover,

the environment, which constitutes the position of ground nodes, number of

UAVs on the field, etc., is dynamic in nature. The challenge then is to balance

the trade-offs and at the same time, adapt with changes in the environment.
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4. Limited communication bandwidth : Information exchange for coordination

has to take place over wireless links between UAVs. The bandwidth of such

links is limited and is to be shared with data communication between ground

nodes. Therefore, there is a need to minimize the amount of information

exchanged between agents.

5. Adverse wind effects : UAV control should be capable of handling wind

effects that often lead to path drift. The problem here is that small UAVs

are much more easily affected by winds and the challenge is overcome these

effects to provide precise navigation.

6.2 Problem Redefinition

To incorporate the above challenges, we redefine the problem as a control and

coordination problem requiring a decentralized solution where every UAV thinks

and acts based on its own and locally exchanged information.

Let us assume an X × Y grid representing the disaster struck area. A set of K

agents (UAVs) are dispatched to start operations from random positions in the

grid. To account for the worst case scenario, agents are assumed not to have

a priori information about positions of rescue teams and survivors. The agents

however have knowledge of the base node’s position, which is along one of the

edges of the grid, bordering the disaster struck area. All ground nodes are capable

of movement, and are assumed to remain within the boundaries of the grid (which

can be chosen to be large enough to ensure the validity of this statement). Ground

nodes are assumed to have a maximum speed of 10ms−1 and are not expected

to transmit signals all the time. In other words, a given ground node could be

an intermittent signal emitter. The task of the agents then is to constantly keep
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searching for ground nodes, and establish communications between those that have

already been found. We shall use the term tethering to refer to the task of enabling

communications for ground nodes via UAVs. The challenge is to maximize both

search frequency (of the entire area) as well as bandwidth available to each ground

node while minimizing the latency for packet delivery. The bandwidth available

to a ground node can be considered to be directly proportional to the amount of

time it has an agent within communication range, also known as service duration.

Since every ground node has only one transmitting radio and since the data rate

is capped by the constant wireless link capacity, the only variable that affects the

amount of data transmitted per unit time is service duration. As a result, the aim

is to maximize quality, Q, of the search and relay operation,

Q =
favgsavg

τ
(6.1)

where favg = average visit frequency for all grid cells

measured over the last TW time units

= 1
XY

X
∑

i=1

Y
∑

j=1

fi,j

savg = average service time over the last TW

time units for ground nodes

= 1
|G|

∑

i∈G

si

τ = network latency (more accurately maximum latency for all

packets delivered in the last TW time units)

=
P

max
i=1

τi

Now, the problem of maximizing Q is already a complex one owing to the tradeoff

between visit frequency and packet latency as well as the intermittent and mobile

nature of ground nodes. The combined problem of coverage, search and tethering



81

is a novel one. When subject to real life situations of wind and communication

constraints, the problem gets even harder, especially in the control domain. Precise

navigation of each aircraft despite wind conditions involving crosswinds, gusts and

turbulence, becomes an important issue when trying to coordinate multiple UAVs.

If UAVs get displaced from their intended paths, the coordination algorithm will

also suffer. As a result, the control component has the additional problem of

adapting to wind effects, specifically lateral displacement caused by crosswinds.

Communication restrictions on the other hand make it impractical to use a cen-

tralized solution. As a result the problem requires a decentralized solution wherein

each agent makes decisions based on local and partial information.

In summary, the aim is to devise a complete solution to the above described com-

bined problem of coverage, search and tethering, incorporating both aspects of

control and coordination under realistic communications and wind conditions.





Chapter 7

Control and Coordination

architecture

In this chapter we explore the possible architectures for designing the control and

coordination system to be deployed on UAVs. We look at related work in this area

and subsequently present our proposed architecture. The aim of this chapter is to

present a bird’s eye view of the system that is described in detail in Chapters 8

and 9.

7.1 Related work

In the multiagent control and coordination literature, although there have been

works on the individual tasks of coverage, search and tethering there has been no

work that considers the combined problem of all three tasks, let alone in realistic

conditions with winds and communication limitations. In the control domain,

precise waypoint navigation is receiving increased attention owing to the increase

in lightweight UAV applications. Recent work in the controls area is discussed in
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Figure 7.1: UAV team control & coordination architecture

more detail in Section 8.2. In the coordination domain, although the problem of

coverage and search has been studied in the multiagent literature, little has been

done in the area of tethering. Existing works catering to each of the individual tasks

are discussed in more detail in Section 9.1. As for the overall architecture, there

have been ideas proposed for other types of UAV-based control and coordination

tasks. We shall take a look at some of the most relevant ones here.

Numerous works [41, 42, 43] use a hierarchical control and coordination architec-

ture which is generally represented as shown in Figure 7.1. The mission manage-

ment layer contains the mission objectives which could possibly be specified by a

human operator. At the team management layer, each team is given one or more

objectives. These objectives are then decomposed into a sequence of tasks, which

are then assigned to individual vehicles. The team management layer is responsi-

ble for allocating, scheduling and possibly redistributing resources for each task.

Having received the task(s), the UAV control layer has 3 hierarchical layers within

itself to achieve the task(s). Task management executes the task(s) assigned to

the UAV. The path planner layer is given the job of navigating the UAV in the

operational environment in an optimal manner, avoiding obstacles and minimizing

threat risks. At the lowest level, the autopilot takes care of flight control and
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generally receives as input, path segments represented by GPS waypoints or yaw

turn rate commands, from the path planner layer. The sensor management layer is

responsible for handling issues specific to the sensors carried by the aircraft, such

as onboard camera, etc. , depending on the nature of the mission.

The above architecture is a generalized version where each layer down until the

path planner could be centralized or decentralized. In the centralized version

[44, 45, 46, 47], all the state information from the distributed vehicles or agents

is sent to a centralized agent, where it is operated on by a large decision and

control program. The resultant individual plans and assignments are disseminated

to the respective vehicles to be executed. Although centralized planning gives the

advantage of complete information and hence more likely optimal control, this

approach can lack significant robustness, is computationally complex, and does

not scale well [48]. Realistic limitations on communication tend to make such

centralized architectures impractical.

Decentralized versions [49, 50, 51, 52] using techniques such as distributed con-

straint satisfaction and stochastic dynamic programming have been proposed to

overcome such limitations. A more detailed control and coordination architecture

for the decentralized case as presented by Cole et al. [53] is shown in Figure 7.2.

Here, the cooperative control and path planning module is equivalent to the mis-

sion management, team management, task management and path planning layers

combined. The information exchanged between neighboring agents combined with

the local state information is used to determine control commands.

Within these above architectures, the problem of wind effects can be solved at

different layers. Although most works on UAV control and coordination ignore

this issue, it is a pertinent one that has received recent attention owing to an

increase in number of lightweight UAV swarm applications. A large number of
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Figure 7.2: Decentralized control and coordination architecture (adapted from
[53])

works address the issue of wind effects, by introducing a wind frame of reference

[54, 55]. A conversion from the standard inertial frame to the “wind frame” is

provided so that existing control algorithms that ignore winds will function in the

presence of winds. However, the downside to this approach is the need for accurate

wind speed and direction measurements. Due to the uncertain nature of winds and

the inability to measure it accurately in flight, some works have opted to tackle the

problem at the task management and path planner layers. For example, in [56],

a “wind-robust” task assignment algorithm is designed to adapt task assignment

and path planning to accommodate for wind uncertainty. Although this approach

is reactive and does not require wind speed measurements, it becomes highly task

dependent. The architecture becomes rigid in the sense that one layer cannot be

easily modified without affecting the other. Any change in any of the layers will

have to also account for wind effects.
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Figure 7.3: Proposed control and coordination architecture

7.2 Overall architecture

The architecture we use to tackle the expanded problem described in Chapter 6 is

a decentralized hierarchical one very similar to that proposed in [53]. Figure 7.3

gives a clear idea of the proposed control and coordination architecture. From the

larger perspective, it can be observed that the multiagent coordination component

is built over the UAV control component. The coordination component assumes the

job of producing an action (represented as a target waypoint). The action decision

is based on current environment belief information and local state information.

The local state information would include all data read by sensors onboard the

aircraft such as GPS coordinates, heading, roll and pitch, ground speed, etc. The

environment belief information on the other hand would include data about the

entire search area obtained by fusing local belief information with that obtained
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from neighboring agents. The adaptive finite state machine (FSM) is used to

intelligently choose a task to perform. The task thus chosen would drive the

cooperative path planner to decide on where the aircraft should head in order to

achieve the commanded task. The reasoning done by the coordination component

is thus reduced to a waypoint command value. A detailed explanation of the

proposed coordination component is presented in Chapter 9.

By passing a waypoint command to the control component, the coordination com-

ponent expects precise navigation to be achieved. Similar to how the higher layers

did not have to compensate for wind effects in the “wind frame”-based solution,

the coordination component can afford to ignore wind effects. In order for this

assumption of precise navigation to be valid, the control component then needs to

handle wind effects. But unlike the “wind frame”-based solution which requires

hard-to-obtain, wind speed and direction measurements, we propose an intelli-

gent, reactive controller using a neural network based cross-track error corrector.

A detailed explanation of the proposed control component is presented in Chapter

8.

7.3 Summary

We presented the overall architecture of the system aimed at controlling individ-

ual UAVs and coordinating with other UAVs for the purpose of building a wireless

backbone in a decentralized manner. We proposed a hierarchical structure where

a coordination component performed communications and made higher level deci-

sions to command a lower level control system.



Chapter 8

Robust UAV Control

In this chapter, we discuss the control algorithm for precise navigation of lightweight

UAVs. In particular, we address the most prominent issue that affects control of

lightweight UAVs, namely winds. We approach the problem by devising methods

to handle the inherent nonlinearity of control and response of an aircraft in windy

situations. In particular, we propose the use of neural networks that use cross-track

error as the input parameter for making control decisions that minimize deviation

from the intended flight path.

8.1 UAV Control basics

We first provide a quick look at the basics of aircraft control and introduce related

terminology. Any aircraft has three axes of rotation, namely, the longitudinal

axis, the vertical axis, and the lateral axis as shown in Figure 8.1. The axis

that extends lengthwise (nose through tail) is called the longitudinal axis, and the

rotation about this axis is called roll. Ailerons are used to control roll rate. They

are attached to the wing and controlled in a manner that ensures one aileron will
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Figure 8.1: Axes of an aircraft

deflect downward when the other is deflected upward. When an aileron is not in

perfect alignment with the total wing, it changes the wing’s lift characteristics.

To make a wing move upward, the aileron on that wing must move downward. A

downward aileron produces more lift and an upward aileron upward reduces lift,

thus causing the aircraft to roll.

The axis that extends crosswise (wing tip through wing tip) is called the lateral

axis, and rotation about this axis is called pitch. Pitch is controlled using the

elevator which is attached to the horizontal stabilizer (tail of aircraft). The elevator

can be deflected up or down. With an upward elevator, the relative wind striking

the top surface of the raised elevator pushes the tail downward. As the tail moves

(pitches) downward, the nose moves (pitches) upward and the aircraft climbs.

Similarly, a downward elevator causes the aircraft to pitch down and descend.

The axis that passes vertically through the center of gravity (when the aircraft

is in level flight) is called the vertical axis, and rotation about this axis is called



91

P

I

D

xtarget

xcurrent

+
_

ex

Kpex(t)

Ki∫ex(τ)dτ

Kd
dex
dt

P

I

D

Kpey(t)

Ki∫ey(τ)dτ

Kd
dey
dt

+
+
+

ytarget

ycurrent

+_

ey +
+
+

control
output

Process

sensor
feedback

Figure 8.2: Dual PID Loop controller (Standard autopilot)

yaw. Yaw is controlled using the rudder. The rudder is a movable control surface

attached to the vertical fin of the tail assembly. Considering the point of view

from behind the aircraft, a leftwards rudder deflects the relative wind to the left,

causing the tail to move to the right and the nose of the aircraft to yaw to the left.

Similarly, a rightwards rudder causes the aircraft to yaw to the right.

The power control (throttle in piston-engined aircraft and electronic speed con-

troller in motor-powered UAV) is used to change the amount of thrust from the

engine. Adding power makes the aircraft speed up and reducing power makes the

aircraft slow down. In essence, there are 3 actuators and the engine that can be

used to control a UAV, the command values for which will need to be provided

by the control system. The standard flight control system is a dual loop system

as shown in Figure 8.2, where the inner loop is responsible for the fast dynamics

associated with roll angle, pitch angle and yaw angle tracking. In other words, the

inner loop is responsible to achieve a commanded angle in any of the 3 axes. The

outer loop takes care of slower dynamics. The parameter controlled by the outer

loop depends on the application the control system is built for. For the standard

autopilot, it is associated with altitude hold, heading, etc. Both loops are built

using proportional integral derivative (PID) controllers. A PID controller consists

of a linear feedback control loop that takes a target system state and the current

system state as input to produce a corresponding control output. Considering the

first (i.e. outer) PID loop in Figure 8.2, ex is the error in system state that is used
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to generate three components - proportional, integral and derivative - which are

then summed up to give the control output. In the dual loop system, output of

the outer loop PID is treated as the target state for the inner loop PID.

8.2 Related work

The problem of precise waypoint navigation in the presence of winds has been a

generally untouched area owing to the fact that large aircrafts are not severely

affected by winds. As far as navigation towards a given waypoint is concerned, the

de facto method has been to maintain aircraft heading towards the target waypoint.

The heading hold is usually achieved through a proportional-integral-derivative

(PID) controller [57, 58, 59]. In the case of lightweight UAVs (≈4kgs), the effects

of wind become far more pronounced. The component of wind parallel to the flight

path, known as head wind has the effect of decelerating or accelerating (and at

the same time changing the altitude of) the aircraft depending on its direction.

On the other hand, the wind component perpendicular to flight path, known as

crosswinds, tend to deflect the flight path in the direction of the wind. As for

lightweight UAVs, they are more likely to be deflected away from their intended

flight path even by winds of moderate speeds (10 - 30kts). With the typical heading

hold approach, such UAVs will most certainly miss the target waypoint as shown

in Figure 8.3(a). Had the UAV taken a crab like approach in which the nose of the

aircraft is pointed into the oncoming wind, the effective flight path could have been

maintained so as to reach the target waypoint. The physics behind the crabbing

approach for landing has been well studied [60] and an illustration of the way it

works is shown in Figure 8.3(b).

A second drawback to many existing approaches is the linear nature of their con-

trollers. For example, in [61], the feedback control provided by a PID controller
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Figure 8.3: Heading hold vs Crabbing

and a disturbance observer/estimator is used to generate linear-adaptive guidance.

Now PID controllers are linear by nature and have difficulties in the presence of

non-linearities. On the other hand, the forces and moments produced by a vehi-

cle’s aerodynamic control surfaces are often nonlinear functions of control surface

deflection [62]. The effect of crosswinds worsens this non-linear nature of the

control response by adding the component of uncertainty. One of the methods

used to tackle the problem of non-linearity is to use gain-scheduling, wherein the

gains associated with the linear PID controller are scheduled (i.e. changed) based

on a parameter. The parameter determines the operating region and as a result

determines the gains to be used. In the context of winds, the parameter that de-

termines the operating region is the wind speed and direction. However, we know

that measuring wind speed and direction accurately on an aircraft is very hard

using existing technology. We propose a reactive approach to the control problem

without the need for wind speed/direction measurements. The following sections

in this chapter shall discuss our proposed solution to achieve precise waypoint

navigation in the presence of crosswinds.
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8.3 Proposed controller overview

The function of the controller is to enable navigation of the UAV towards the

waypoint commanded by the coordination component as shown earlier in Figure

7.3. We represent this target waypoint as point B, whose latitude and longitude

are given by λB and φB. Let us also define λA and φA to be the latitude and

longitude of A, the point at which the controller received the waypoint command.

Finally, λC and φC shall be used to represent the latitude and longitude of point

C, the current position of the UAV. We then obtain the cross-track distance, χ, as

follows:

dA→C = arccos (sinλC sinλA + cosλC cosλA cos (φC − φA)) (8.1)

dA→B = arccos (sin λB sinλA + cosλB cosλA cos (φB − φA)) (8.2)

ψA→C =











arccos
(

sinλC−sinλA cos (dA→C )
sin (dA→C) cosλA

)

if sin (φC − φA) < 0

2π − arccos
(

sinλC−sinλA cos (dA→C)
sin (dA→C ) cosλA

)

if sin (φC − φA) ≥ 0
(8.3)

ψA→B =











arccos
(

sinλB−sinλA cos (dA→B)
sin (dA→B) cosλA

)

if sin (φB − φA) < 0

2π − arccos
(

sinλB−sinλA cos (dA→B)
sin (dA→B) cosλA

)

if sin (φB − φA) ≥ 0
(8.4)

χ = arcsin (sin (dA→C) sin (ψA→C − ψA→B)) (8.5)

The meaning of χ is illustrated in Figure 8.4. We propose the use of this above

computed cross-track distance, χ, as the parameter for lateral control as opposed

to the heading. The aim of the controller is now to asymptotically minimize χ to

0. The block diagram of the controller we propose for this purpose is shown in

Figure 8.5.
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Figure 8.4: Cross-track distance, χ

Figure 8.5: Dynamic Cell Structure (DCS) based Lateral Controller
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8.4 Inner loop control

We treat the aircraft as a second order nonlinear system. The inner loop is a

classical roll/pitch/yaw-tracking non-linear dynamic inversion (NDI) controller as

shown in Figure 8.5. It uses the plant information along with the roll, pitch and

yaw commands received from the outer loop to generate control surface deflections.

Dynamic inversion is a technique used to provide desired dynamic response to a

control system. It has been widely used in flight control systems because of the

usefulness of its highly effective feedback linearization system. Works that have

used the NDI controller for the inner loop include NASA’s Intelligent Flight Control

System (IFCS) [63], space-to-air re-entry vehicle flight control [64], etc. Isidori

provides a detailed explanation and background knowledge on dynamic inversion

in [65]. Essentially, it allows us to abstract away lower level, detailed dynamics.

The equations of motion employed in the NDI implementation are as follows:
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where Iij = moment of inertia about axes x, y, and z

L = aerodynamic rolling moment

M = aerodynamic pitching moment

N = aerodynamic yawing moment

p = roll rate

q = pitch rate

r = yaw rate

α = angle of attack

β = side slip angle

δe = aileron deflection angles

δa = elevator deflection angles

δr = rudder deflection angles

Equation 8.6 reflects the two modifications we have made to the classic NDI con-

troller in order to make roll-tracking more accurate:

1. We identify the singularity problem associated with an ineffective control

matrix just as in [64]. In order to bypass this problem, a two-time scale

approach has been employed. The multiple time-scale approach separates

the NDI controller into a fast dynamics control part and a slow dynamics

control part. The fast dynamics portion handles variables such as pitch rate,

roll rate and yaw rate, which respond quickly to control surface deflections.

The slow dynamics portion on the other hand, handles variables such as

angle-of-attack, sideslip and bank angle, which respond slowly to control

surface deflections.

2. We also replace the classic gain controller that is normally used to obtain

ṗd, q̇d, ṙd, from perr, qerr and rerr respectively, with a PID controller. This
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modification shortened the convergence time of χ to 0, as compared to a

design using classic gain controller.

Although the NDI is capable of providing very accurate roll/pitch/yaw-tracking,

matrix inversion can be rather computationally intensive. In our experiments, we

test performance using both, the traditional PID, and the NDI for the inner control

loop. The results are presented in Section 8.6.

8.5 Outer loop control

Our novel contribution towards the control design mainly lies in the outer loop.

For the outer loop shown in Figure 8.5, we use a class of neural networks known as

Dynamic Cell Structure (DCS) for lateral control. The altitude hold component,

which is a PID controller, also forms part of the outer loop control. The purpose

of the DCS is to obtain the appropriate roll angle command, Φcmd, based on the

current χ regardless of wind conditions. We shall now take a look at the DCS, the

modifications made to it and the training process used.

8.5.1 Dynamic Cell Structure (DCS)

The original DCS was proposed by Bruske and Sommer in [66]. It is essentially

an RBF neural network with lateral connections between neurons. In their work,

Bruske and Sommer chose an RBF representation to concurrently learn and use

perfectly topology preserving feature maps (PTPM). The network applied Hebbian

learning to adjust topological connections and a Kohonen-like learning rule to

adjust node positions during training [66]. A graphical representation of the DCS

is as shown in 8.6. Formally, the DCS network is defined as follows [67]:
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Figure 8.6: Dynamic Cell Structure [66]

Given an input manifold I ⊂ ℜn and output manifold O ⊂ ℜm, with n usually

> m, a DCS network is a collection of points:

n = (c, w,R, y) ∈ I ×O × [0, 1]× ℜ≥0 (8.7)

where : c = center of a point in ℜn

w = weight in I associated with the point

R = function weighting the influence of n as a function of distance

y = error value associated with the estimation value of n as a graph

G = (N,L, S) (8.8)
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where : N ⊂ I × O × [0, 1]× ℜ≥0 is a set of nodes

L ⊂ {{a, b} | a, b ∈ N, a 6= b} are links between nodes

S : L→ ℜ≥0 is a lateral connection strength function of

an adjacency matrix C

C ∈ ℜ|N |×|N | for which:

Cii = 0 ∀ i ∈ {1, 2, 3, . . . , |N |}

Cij = 0 ∀ i, j not connected

0 ≤ Cij ≤ 1 if i, j connected with strength Cij , and

A connection strength function S is defined using a Hebbian rule:

Cij(t+ 1) =























max{yi, yj, Cij(t)} : yiyj ≥ ykyl ∀ (1 ≤ k, l ≤ N)

0 : Cij(t) < θ ∀ (1 ≤ k, l ≤ N)

γCij : otherwise

(8.9)

where :

γ ∈ (0, 1) is a forgetting constant

θ ∈ (0, 1) is a deletion threshold for weak lateral connections

yi =
‖u−w‖

n
∑

i=1

‖u − wi‖
is the normalized distance to u

where, wi is the center of a neuron’s receptive field and

u is a training pattern’s coordinate location in I ⊂ ℜn

For a given input, the best matching unit (bmu) is the center that is closest in

distance to this input. Learning uses a standard Kohonen-like rule in which wbmu

and its topological neighbors are adjusted according to:

∆wbmu = εbmu(u − wbmu) (8.10)

∆wNh(j) = εNh(j)(u − wNh(j)) (8.11)
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where Nh(j) of unit j is defined as

Nh(j) = {i|(Cji 6= 0, 1 ≤ I ≤ N)} (8.12)

Only the best matching unit and only its connected topological neighbors are

adjusted during each learning cycle. Bruske and Sommer used insertion of nodes

based on accumulated error [68]. They followed Martinetz’s use of competitive

Hebbian learning to adjust connection strengths while at the same time preserving

topological mapping constraints. Nodes are added incrementally to the network

during training after every ρ iterations (ρ is chosen arbitrarily). They are selected

from areas with maximum estimation error. New nodes are placed between a node

having the highest error and its topological neighbor having the second highest

error. The location of the center of the receptive field for a new node wnew is

calculated according to a ratio of error values ewmax
and ew

2ndmax
where wmax and

w2ndmax are the nodes with the highest and second highest error in the topological

neighborhood respectively. The error of units wmax and w2ndmax are redistributed

among wnew, wmax and w2ndmax. The equations defining this distribution are as

follows:

Define : e1 = ewmax

Define : e2 = ew
2ndmax

then,

r = e1
e1+e2

∆e1 = (1−r)e1
2

∆e2 = e2r
2
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And finally we get,

wnew = wmax + r(w2ndmax − wmax) (8.13)

ewnew
= ∆e1 +∆e2 (8.14)

ewmax
= ewmax

−∆e1 (8.15)

ew
2ndmax

= ew
2ndmax

−∆e2 (8.16)

These equations redistribute error equally among the three nodes and reduce over-

all error level in the region of maximum deviation from the tree function distribu-

tion. The connection strengths between the new node and the other two nodes are

then adjusted. This is accomplished by setting:

Cnew,2ndmax = 1

Cnew,max = 1

Cmax,2ndmax = 0

The description thus far, has talked about the network of nodes and interconnec-

tions. Additionally, there is also an output, oi, attached to every node to facilitate

supervised learning. For a given input, u , the output is given by,

Output(u) =
∑

i∈{bmu∪Nh(bmu)}

aioi (8.17)

where, ai is the activation of neuron i, on stimulus u

ai =
1

σ‖u − wi‖2 + 1
(8.18)

with σ > 0, representing the size of the receptive fields.

For every input received, the output associated with the bmu and its neighbors
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are modified based on a delta rule. The delta rule below is derived by attempting

to minimize the error in output through gradient descent.

∆oj = ηaj × (Error in output) (8.19)

where, η is a constant that represents rate of descent.

8.5.2 DCS Training

The DCS is used for lateral control primarily due to its ability to map the behavior

of multiple systems while being able to differentiate between them (through lateral

neuron connections) and interpolate between them (neural network characteristic).

The idea is to use a few systems, each catered to specific constant wind speed

situations and have the DCS learn all of their behaviors. The systems that generate

the data for the DCS will have to handle the situation assigned to each of them,

successfully. For this purpose, the DCS is replaced by a PID in the controller

shown in 8.5. So the PID takes χ as its input and produces a Φcmd as output

to achieve the target of χ → 0. Four sets of gains are generated for each of the

wind speeds of 0, 10, 20, and 30 kts. This is possible because wind speed can be

set to a constant on the simulator and the gains can be tuned for that particular

scenario. Each gain set is used to generate data for the DCS by running it in its

corresponding fixed wind scenario. Each data point thus generated, consists of 3

values:

1. χ = cross-track error

2. ∆χ = χ(t)− χ(t− 1)

3. Φcmd = commanded roll angle
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Figure 8.7: Average |error| against training iterations (original DCS)

The first two, χ and ∆χ, serve as inputs to the DCS, while Φcmd is the output

produced by the DCS. When a 3 valued data point is presented to the DCS, it

learns what output it should be producing given that particular input. The number

of input parameters is kept minimal and restricted to the important ones in order

to reduce the dimensionality of the network. Considering that the controller would

eventually be implemented on an embedded system with resource constraints, it is

important to maintain low dimensionality.

The final data set consisting of 32748 inputs is then used to train the DCS through

supervised learning. For training purposes, the DCS constants are set as follows:

Kohonen constants, εbmu = 0.2

εNh = 0.2

Connection decay, γ = 0.99993

Connection threshold, θ = 0.01

Rate of gradient descent in output, η = 0.3

After every iteration of training, the network is tested against the same data set.

The magnitude of error is averaged and plotted as shown in Figure 8.7. The

network learned by the original DCS at the end of 480 iterations consisted of 3029

neurons.
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8.5.3 DCS modifications

The output of the DCS is Φcmd, the scaled target roll angle, and 0.01 equates to

1 degree in roll angle. So an error of 0.03 was unacceptable in terms of accuracy.

To increase accuracy and reduce training time, 3 changes were made to the DCS:

1. New rule for neuron addition: We noticed that the original DCS added a

neuron every ρ iterations between the two neurons with the highest accu-

mulated error. This prevented the network from reaching the outer edges of

the input space. The network expanded very slowly using the Kohonen rule.

To overcome this problem, a new neuron is added when the activity of the

bmu (given by the radial basis function of the distance between the weights

of the node and the input) is not sufficiently high and the error in estimation

is not sufficiently low. In particular, when the network receives an input,

whose distance from the bmu is higher than a threshold of 0.1, and whose

estimated output has an error higher than a threshold of 0.1, a new neuron

is added at the received input point. New connections are made between the

new neuron and its bmu and the 2ndbmu. The output associated with this

new neuron is set at one-third the desired output owing to a neighborhood of

3. As a result, the network grows faster and reduces the average error much

faster.

2. Incorporate neighborhood information in delta rule: The original delta rule

shown in Equation 8.19 does not take into consideration, the number of

neighbors involved in changing the output. In other words, whether there

were 2 or 20 neighbors, a given node would increase its output by the same

number. The new proposed delta rule is given as follows:

∆oj =
aj × (Error in output)

(Number of neighbors of bmu)
(8.20)
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Figure 8.8: Average |error| against training iterations (modified DCS)

3. Hebbian decay constant: The hebbian decay constant is determined using

γ = θ
1
2n (8.21)

where θ is the deletion threshold and n is size of dataset.

With the above modifications, the DCS is trained again with the same initial

dataset. The magnitude of error is averaged and plotted as shown in Figure 8.8.

As can be observed, the average |error| now falls to approximately 0.003 in just

50 iterations. The number of neurons in the network at the end of 85 iterations

is 2942, which is a little less than the number using the original DCS. Effectively,

the modified DCS learned a 10 times more accurate representation in about 1
6
th

the time.

8.6 Experimental results

8.6.1 Setup

The X-plane 8.64 simulator is used for testing controller performance. X-Plane is

chosen primarily because of its modeling accuracy achieved by a process known as



107

“blade element theory” which breaks the aircraft down into many small elements

and then finds the forces on each little element multiple times each second. The pre-

loaded aircraft chosen for experiments is the PT-60 RC Plane which very closely

models our real UAVs: Hangar 9 Alpha 60 and a scaled down version of the Pilatus

PC-6 Porter. Multiple experiments are run with different wind profiles for each

controller. In particular 5 controllers are compared against each other:

1. DCS-NDI

2. DCS-PID

3. PID-NDI with separately tuned outer loop PID for each wind speed scenario

4. Cascaded PID with separately tuned outer loop PID for each wind speed

scenario

5. X-Plane Autopilot (Standard baseline)

At the beginning of each experiment, the aircraft is placed at a fixed waypoint A

with a heading towards waypoint B, which is 2km away from A. Waypoint B is

set as the target for the aircraft. A crosswind is then introduced perpendicular to

the line segment AB (refer Figure 8.4). After about 65s, by which time χ is settled

at 0, wind direction is switched 180 ◦ from original direction. The wind direction

switch while keeping wind speed constant essentially tests the step response of the

controller. The cross-track error, χ, i.e. perpendicular distance of the aircraft from

line segment AB, is recorded through the course of each experiment.

8.6.2 Results and discussion

Figure 8.9 shows the performance of the various controllers at wind speeds of 10kts,

30kts, and 50kts.
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Tables 8.1 and 8.2 show the maximum and average values of cross-track error

achieved by the different controllers.

Table 8.1: Comparison of maximum cross-track error for various controllers

Wind

Speed

Maximum χ

DCS-NDI DCS-PID PID-NDI
Cascaded X-Plane

PID Autopilot

50 kts 10.0 47.5 12.1 49.5 113.5
30 kts 6.8 8.9 6.3 9.3 52.5
10 kts 4.0 4.7 4.3 3.8 17.0

Table 8.2: Comparison of average cross-track error for various controllers

Wind

Speed

Average χ

DCS-NDI DCS-PID PID-NDI
Cascaded X-Plane

PID Autopilot

50 kts 1.8 8.3 2.3 10.6 66.8
30 kts 0.9 2.1 1.1 2.2 35.4
10 kts 0.6 0.8 1.0 0.9 9.2

We observe that typical linear approaches tend to have higher maximum cross-

track error, χ, and higher settling times. In particular, performance of the baseline

PID controller (X-Plane autopilot) deteriorates substantially with increase in wind

speed. The two controllers that used the DCS for the outer loop outperformed the

other controllers. The average cross-track errors in the cases of both, the DCS-NDI

and DCS-PID controllers, are around 90% lesser than that of the X-Plane autopilot

for all wind speeds tested. The DCS-NDI controller has the lowest average cross-

track error at all wind speeds, which can be attributed to its faster convergence

to the desired flight path (i.e. line segment AB). It is closely followed by the

PID-NDI, the DCS-PID and the dual-PID in that order.

The DCS effectively accounts for the non-linear nature of flight control response

under crosswind conditions. The difference between using a traditional PID and an

NDI for the inner loop is found to be minimal. The NDI does provide an increase

in performance owing to dynamic gain scheduling. In fact, for our final control and

coordination experiments, the NDI is used for the inner loop. However, in light
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of the computational requirement, a PID for the inner loop might be the feasible

choice when implemented for real flight.

The experimental results on simulation have thus proven the feasibility and the

effectiveness of a reactive control system to account for wind effects without the

need for wind speed and direction measurements. In that respect, our approach has

the upper hand in comparison to “wind-frame” based methods [54, 55]. They also

eliminate the need for restrictive mechanisms to handle wind at higher layers [56].

Our approach makes it possible for the higher layer coordination mechanism to

assume precise waypoint navigation. A discussion of the controllers’ performance

on real flight tests is presented in Chapter 10.

8.7 Summary and Contributions

We presented a control system that uses the idea of crabbing to correct for cross-

wind effects. A dual loop controller was designed with the outer loop consisting

of a dynamic cell structure (DCS) to generate roll angle commands for the inner

loop. The inner loop consisted of a nonlinear dynamic inversion (NDI) component

to generate appropriate control surface deflections. The DCS in particular was

modified to enhance learning accuracy and speed without an increase in number of

neurons. Experiments showed that the proposed controller (and a few variations)

managed to substantially outperform a standard autopilot.

The main contribution of this chapter is a reactive control system capable of achiev-

ing accurate waypoint navigation despite adverse crosswind effects. The control

component presented in this chapter introduces a novel system that works reac-

tively using the normally-unused cross-track parameter along with a neural net-

work, as opposed to existing solutions that require hard-to-obtain measurements
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of wind speed and direction. It allows for realistic implementation of other higher

level coordination algorithms that use waypoint navigation but do not consider

wind effects.





Chapter 9

Multiagent Coordination

Chapter 8 covered the control component of the solution. In this chapter we look

at the coordination component that makes higher level decisions and commands

the control component. We tackle the combined problem of coverage, search and

tethering as described earlier in Chapter 6. In particular, the decision-making

process at each UAV and method of interaction and information exchange between

UAVs so as to coordinate their effort towards search and relay, is presented in this

chapter.

9.1 Related work

The combined problem of coverage, search and tethering as such is a new one. The

sub-problem that has received the least attention is tethering whereas coverage and

search have been studied to a good extent. We shall now look at related work in

these areas.
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9.1.1 Coverage and Search

The problems of coverage and search are very closely related. The coverage problem

requires the deployment of stationary or mobile agents with the ultimate aim of

maximizing the sensing area of the robots combined [69]. The problem of search

requires the exploration of an area by mobile agents seeking to find one or more

targets. The search problem usually includes the need for completing the search in

a minimum amount of time or with a minimal overlap of covered areas by different

agents. The search problem when combined with the coverage problem requires an

exploration of the entire area. Further, in the case of persistent search, the search

operation can never come to an end.

The earliest works on coverage dealt with the problem of planning the motion of

a single agent in order to completely explore a given area. This was when the idea

of grid based discretization of an environment was introduced. The approach of

dividing an area into a grid of cells has become the most commonly used method

for representing a search area [70]. In [71], Ge and Fua focus on limiting repeated

coverage of areas that have already been explored by multi-robot teams. They do

this by maintaining some unexplored regions around all of the explored areas and

obstacles. They provide an upper bound for the time required to complete the

task of exploring the area. However, in the worst case, this upper bound is the

same as that of the single-robot scenario.

In [70], Kong et al. present an algorithm for dynamic exploration of an environment

with obstacles using multiple agents. Information about new discoveries by one

agent, including obstacles and cell-accessibility information, is communicated to

other agents via a commonly shared adjacency graph. However, the main drawback

of the solution provided is the assumption of unlimited communication capabilities.

Rekleitis et al. [72] extend the single robot coverage algorithm to multiple robots.
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Although they restrict communications to line-of-sight connections, they assume

no limitations on communication range.

Many papers addressing coverage and search have looked at it as a sensor placement

problem. They assume not all areas of the environment can be covered, and

try to achieve information-theoretic goals such as minimizing entropy of possibly

some parameter that needs to be estimated in the environment. One of the key

contributors in this area is Guestrin et al. [73, 74], who exploit the concept of

submodularity and locality in determining a near-optimal sensor placement plan.

Other theoretical works on search have dealt with robot path planning, where the

paths are planned a priori with minimal adaptability. For example, in [75], Sim-

mons et al. present a greedy heuristic algorithm to plan paths of robots capable

of keeping the robots well separated. They do not consider communication capa-

bilities of agents and thus have no information exchange. The resulting solution is

a rigid one without the ability to handle much uncertainty.

Decentralized Multiagent Partially Observable Markov Decision Processes (Dec-

POMDP) are a popular model of multiagent systems with uncertainty [76]. Dec-

POMDP-based techniques have also been discussed in the cooperative search com-

munity. These approaches use probabilistic models of states and state transitions

and observations. Usually rewards are assigned to actions and the task is to find

a policy of actions that maximizes the expected reward over a finite time hori-

zon [77]. The downside to these approaches is that a probabilistic model of the

environment is required, which is not always available. Also, the computational

complexity of finding a policy is high, especially with multiple agents and many

state variables. Even in works as recent as 2008 [77], computation of the plan is

centralized, while only execution is decentralized.
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9.1.2 Tethering

In the tethering domain, much emphasis has been given to techniques for main-

taining a fully connected network of agents at all times. For example, in [78], a

chain of UAVs is maintained at all times so that a given UAV may communicate

with any other UAV using multi-hop ad hoc routing. Basu et al. [79] take a

similar approach and propose a flocking mechanism to maintain a swarm of UAVs

interconnected and move them to the centroid of ground nodes. Correspondingly,

numerous ad hoc routing protocols have been proposed for rapidly changing net-

work configurations [80]. However, often there are not enough UAVs to establish

a continuous link between two points on the ground and this is a problem for

solutions that require a fully connected UAV mesh.

The notion of a continuous link between end-points is meaningful when the relays

are stationary. Mobile relays on the other hand, can act as ferries to deliver

packets, thus eliminating the need for a continuous link. In order to support such

mobile relays, a new class of routing protocols have emerged for what are known

as Delay Tolerant Networks (DTNs). The concept of delay tolerance is directly

applicable when using UAVs as communication relays. Research on DTNs has

been extensive over the last few years. However, little work has been done on

cooperatively controlling UAVs to physically establish such DTNs.

A few fixed trajectory solutions have been proposed that utilize DTNs for estab-

lishing communication between mutually unreachable ground nodes. All methods

discussed in Section 3.2, namely SRT, NRA [23], MRT [30], DARD [31], FRA [23],

l -SCFR [32], and FRA [23], fall under this category. The one work that addresses

a similar problem and specifically uses UAVs is that by Frew et al. [81]. However

in their work, Frew et al. tackle the case with only two ground nodes. They use

one of two configurations: chain-relay or conveyor belt [81]. However, neither is



117

directly scalable for scenarios with a number of ground nodes scattered in a given

area. In fact, all these fixed trajectory solutions would cease to work with the

introduction of mobile ground nodes. Moreover, if communication is to be estab-

lished for survivors too, searching the area would be a necessity that cannot be

achieved with fixed trajectory solutions.

In one of the most recent works in this area, Liu et al. [82] study the use of

POMDPs to generate policies for the single agent scenario. They assume a stochas-

tic model for node mobility and try to generate a policy for the single agent that

ferries packets between these nodes. The policy is used for finding a node within a

given small portion of the entire area. The policy for choosing which node to visit

however is predetermined.

9.2 Assumptions

The expanded problem definition was earlier stated in Chapter 6. Given the chal-

lenges discussed in Section 6.1, the only assumptions we make in trying to solve

the problem are as follows:

1. Localization: Every UAV is assumed to be equipped with a GPS receiver for

position information. The error in GPS position estimate is considered to be

negligible with respect to inter-node distances and is not explicity addressed.

2. Communication: Each UAV is also mounted with an omni-directional WiFi

antenna with a transmitting power of 20dBm, which gives a theoretical com-

munication range of ∼ 350m. We assume a practical communication range

of 150m air-to-ground and 200m air-to-air.
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3. Lower layer capability: The coordination component assumes the presence

of an accurate waypoint navigation layer below. This has been covered in

Chapter 8.

9.3 Coordination Architecture

The coordination architecture we propose is a distributed one, wherein each agent

makes decisions independently, using information from own sensors and from com-

municating with neighboring agents. Each agent’s belief of the world is represented

using two data structures:

1. An integer matrix, Tk for every agent k: We call it the Visit Map as it holds

timing information for last visit for all grid cells. Essentially,

∀(i, j),Tkij = time elapsed since any agent last visited grid cell (i, j)

This is different from the belief map that many other papers on multi-agent

target search use. In many works, the belief map is a probability distribution

giving the probability of finding a target in a given grid cell[83]. We however

use elapsed time in order to enable the hybrid state where an agent performs

the search operation as well as relaying of packets between ground nodes.

The behavior of an agent in this hybrid state is detailed in section 9.4.3. The

use of Tk also makes data fusion easier as it has age information embedded

in it. The update rule for the matrix with time is as follows:

∀(i, j),Tkij (t+ 1) =











Tkij (t) + 1 if (i, j) 6= xk(t)

0 otherwise
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where xk(t) is the the current position of agent k

As a result, the value for each matrix cell is incremented by 1 at every time

step. When the agent flies over a particular grid cell (i, j), the corresponding

value for that matrix cell is reset to 0.

2. A set of coordinates, Gk, held by agent k, containing currently known posi-

tions (in grid coordinates) for ground nodes, called the Position List: This

set, Gk, is updated when the agent k detects a wireless signal from a ground

source when flying over a grid cell. It is also updated when information is

received from neighboring agents.

The behavior of an agent using this belief information is determined by an adaptive

finite state machine, described in Section 9.4. Belief information is exchanged

between agents when they come within communication range of each other. Both,

Gk and Tk are exchanged between neighboring agents. Received data is fused with

local belief information at the Environment Estimator block in Figure 7.3. The

details of what entails an information exchange is provided in section 9.5.

9.4 Adaptive Finite State Machine

Every agent, at its core is a behavior-based control system. At the higher level

though, every agent is capable of operating in one of the following 4 states: search

(SR), relay (RL), search and relay hybrid (HB), and proxy (PR). The adaptive

finite state machine (FSM) as shown in Figure 7.3 is responsible for deciding the

operational state of an agent. The behavior of an agent within a given state would

be a part of the Cooperative Path Planner block in Figure 7.3. We now take a

look at the behavior of an agent in each of the 4 states and how the adaptive FSM

makes its decisions.
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9.4.1 Search State

In the search state, an agent flies around the entire grid looking for wireless signals

from a ground source. We do not use predetermined search patterns like those

mentioned in [84] so that UAVs can be added or removed from the multi-agent

system at any time. This is essential because in a realistic setting, UAVs may

run out of power or fuel, or may suffer failures in mid-air that require their with-

drawal and replacement. In other words, an agent’s decision cannot depend on the

knowledge of number of UAVs on the field. Moreover, since ground nodes can emit

signals intermittently, the search operation can never come to an end. In other

words, the agents need to revisit each grid cell repeatedly through time. Keep-

ing these requirements in mind, we aim to design a cooperative search mechanism

where behaviors of each agent combine to provide an emergent behavior wherein

the multiagent system spreads out to search the entire area.

Traditional decision-theoretic approaches try to find a near-optimal policy using a

stochastic model of the environment. They try to maximize a reward over a finite

horizon in order to come up with the decision policy. However it is not always

possible to obtain an a priori stochastic model, as is the case in our problem.

There is absolutely no knowledge of where and for how long ground nodes might

appear. We take an approach that is “near-decision-theoretic”, in the sense that

agents try to maximize a scoring function with the aim of increasing cell visit

frequencies. The scoring function is chosen such that it can also be used for the

purpose of lowering packet latency. At every instance when an agent moves from

one grid cell to another, it recomputes its action. When an agent wants to compute

its action, it applies a scoring function to every cell in the grid as shown in Equation

9.1. The destination, yk, is then determined by picking the cell with the highest

score.

ζk(i, j) = wktTkij + wkhH(hkpref − hk→ij) + wkdF (dkij − dkopt) (9.1)
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yk = argmax
(i,j)

ζk(i, j) (9.2)

In the above equation, ζk(i, j) is the score assigned by agent k to grid cell (i, j). It

is computed as a summation of three components. The first is wktTkij where wkt

is a positive weight. This term represents the desire of each agent to visit the grid

cell that has not been visited in the longest while, i.e. the grid cell with the highest

value in the matrix, Tk. This is essential because the validity of information about

a cell decays with time. As a result, the cell with the highest elapsed time, is the

one about which there is least certain information. The second term in Equation

9.1 is wkhH(hkpref − hk→ij) where wkh is a positive weight and hk→ij is the heading

from xk to the center of grid cell (i, j). hkpref refers to the preferred heading of

agent k and is given by

hkpref =











hkcurr if N(k) = ∅
1

|N(k)|

∑

i∈N(k) hi→k otherwise
(9.3)

where hi→k is heading from agent i to agent k

N(k) = {i| agent i is in range of agent k}

Equation 9.3 means that the preferred heading of an agent is its current heading,

unless there are neighboring agents within communication range. Essentially, every

agent desires to move forward where forward is defined as any direction falling

within π
4
radians from the current heading as can be visualized in Figure 9.1. In the

presence of neighbors, the preferred heading of an agent is the average of the set of

headings away from every neighboring agent. This mechanism mainly achieves the

spread of agents in opposite directions. On the other hand, it also achieves collision

avoidance if the communication range is higher than the minimum turn radius.

However, if packet losses occur, collision avoidance cannot be guaranteed. One

viable option to ensure collision avoidance is to use redundant long distance radios

along with algorithms that have been proposed to guarantee collision avoidance
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using multiple altitudes [85]. The difference between hkpref and hk→ij is fed as input

to function, H(x), which is a combination of two Gaussian functions given by

H(x) =











e−
x2

2 if |x| ≤ π
4

5e−
x2

c if |x| > π
4
.

(9.4)

with c =
2π2

32 ln 5 + π2

As a result, the second term in Equation 9.1 has the highest value when the

difference between hkpref and hk→ij is 0 and gradually decreases until the magnitude

of this difference hits π
4
. When the magnitude of the difference increases beyond π

4
,

the value of the second term in Equation 9.1 drops steeply towards 0. All in all, the

second term represents the desire of an agent to continue flying along the preferred

heading (preferably within π
4
radians of hkpref ) which would be plain forward in the

absence of neighboring agents and away from all neighboring agents, if there were

any.

The third term in Equation 9.1 represents the fact that each agent in general

concerns itself with the cells closest to it and gives them more importance as

compared to cells that are farther. It is given by wkdF (dkij − dkopt) where wkd is a

positive weight and dkij is the distance between xk and the center of grid cell (i, j).

dkopt is given by

dkopt =
√
2rk (9.5)

where rk = minimum turn radius of agent k

In order to understand the reason behind Equation 9.5, let us imagine a situation

where agent k is at the center of grid cell (5, 5) and heading towards (5, 6). The

score for grid cell (5, 7), ζk(5, 7), would be high even though it might be impossible

to reach (5, 7) with a simple bank maneuver owing to the minimum turn radius
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Figure 9.1: Optimal distance, dkopt

of a UAV. As a result the optimal distance to look ahead for an agent should be

the distance of the intersection of the UAV’s trajectory with maximum bank angle

and the line emanating from the agent at an angle of π
4
from the current heading

as shown in Figure 9.1. The angle of π
4
is chosen so as to fall in line with the

definition of forward. The difference between dkij and dkopt is fed as input to the

function F (x), which is a Gaussian function given by

F (x) = e−
(x)2

2σ2 (9.6)

with σ =
dmax

√

2 ln (100)

where dmax is the maximum possible distance between two points on the grid (the

diagonal if it is a rectangle). As a result, the third term peaks when dkij = dkopt

and drops as the difference between the two increases.

The three weights wkt , wkh, and wkd are chosen based on the following rules:

1. Considering cells (i1, j1) and (i2, j2) at a fixed distance from the agent, if

hkpref − hk→i1j1 = 0 and if hkpref − hk→i2j2 = π
4
, then a difference in elapsed

time of Tki2j2
− Tki1j1

= Ct should make the scores for both equal.



124

wkTkij

+ wkh
 H(hkpref

 - hk→ij)

+ wkd
 G(dkij

 - dkopt
)

Figure 9.2: Scoring function applied incrementally - darker cell represents a higher
score and the cell with the red dot represents the chosen cell
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2. Considering cells (i1, j1) and (i2, j2) with the same elapsed time value in Tk,

if hkpref − hk→i1j1 = 0 and hkpref − hk→i2j2 = π
4
and dki2j2 = dkopt, then a

difference in distance of dki1j1 − dki2j2 = Cd should make the scores for both

equal.

Using these 2 rules and setting ∀k(wkt = 1), we get

wkh =
Ct

1− e−π2

32

and,wkd =
Ct

1− e−
C2
d

2σ2

Ct and Cd are constants that have an explicit meaning as defined in the rules

above and can be given values based on preference. For the experiments discussed

in Section 9.6, we use Ct =100s and Cd =500m.

The effects of each of the components in the scoring function (Equation 9.1) when

applied incrementally is shown in Figure 9.2. The figure considers the grid as seen

right at the start when the agent sets out. The cells are shaded to represent their

relative scores. Darker the cell, higher the score.

9.4.2 Relay State

In the relay state, the agent does not concern itself with the search operation and

dedicates itself to relaying packets between ground nodes. Ideally, agents in the

RL state should follow paths generated by the solution to BECDLMST (Chapters

4 and 5). However, BECDLMST is a centralized solution requiring knowledge

of all ground node locations and number of agents involved. In a decentralized

scenario with limited knowledge, each agent is likely to have a different view of the

environment (i.e. set of ground nodes and their locations, states of other agents).

Generating the same tree at each agent would be improbable. As a result we

choose to employ a method that tries to partially mimic the BECDLMST.
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In devising a decision method for RL agents, we take a look at the chain-relay

architecture, which is a fixed trajectory latency minimizing solution for 2 ground

nodes, discussed by Frew et al. in [81]. The chain relay architecture is illustrated

in Figure 9.3.

Figure 9.3: Chain-relay architecture

Firstly, we notice that BECDLMST can be viewed as an extension of the chain-

relay architecture applied to more than 2 ground nodes. In the case of 2 ground

nodes, the decision method that would give rise to the chain-relay architecture is

as follows:

1. Move towards ground node A until ground node A or another agent is en-

countered

2. Move towards ground node B until ground node B or another agent is en-

countered

3. Go back to step 1

We extend this idea to the case of multiple ground nodes in order to approximate

an extended chain-relay architecture, i.e. the BECDLMST. As opposed to simply

switching between two ground nodes, the multiple ground node scenario will require

agents to put in more thought when deciding their next target ground node. Here

we apply the same idea as in the SR state. When it comes to deciding on the next

action, the agent applies the scoring function, ζk(i, j), only to ground node cells,

i.e. (i, j) ∈ Gk. As a result, the agent picks the ground node that obtains the

highest score and heads towards it. If an agent k were to meet any other agent m

in the RL or HB state (i.e. m ∈ NRL,HB(k)), it immediately resets Tkij = 0, for
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GS1 GS2 GS3

Grid as scored by agent 0

Figure 9.4: Example of agent in relay (RL) state

the ground node cells that are closer to the neighboring agent and recomputes its

action. As a result, the following proposition holds true.

∀(i, j) ∈ Gk

(

∃m
(

m ∈ NRL,HB(k) ∧ dmij
< dkij

)

→ Tkij = 0
)

(9.7)

The above rule is applied because the agent that is closer to a given ground node

should be in charge of delivering packets to that ground node, and there is no point

in sending more than one agent, moving together, towards the same ground node.

As an effect of this rule, the emergent behavior is a multi-node extension of the

latency minimizing chain-relay architecture illustrated in Figure 9.3. An example

of an agent in the RL state is shown in Figure 9.4.
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9.4.3 Hybrid Search and Relay State

In the hybrid search and relay state, the agent performs the search operation as

well as relaying of packets between ground nodes. Every time the agent needs to

compute its next action, it scores all cells in the entire grid using the formula in

Equation 9.1. In other words, it performs all the steps laid out in section 9.4.1.

However, when computing scores for ground node cells, the first term corresponding

to elapsed time is given a lot more importance. In particular, wktTkij becomes

wkt(Tkij )
2 so as to represent the higher visit frequency requirement of ground

node cells. When a ground node cell gets chosen based on highest score, the agent

implicitly works on relaying packets. In a similar manner to the RL state, whenever

the agent gets within communication range of another agent in RL or HB state,

the rule in Equation 9.7 is applied.

9.4.4 Proxy State

In the proxy state, the agent moves in a circular motion with minimum turn radius

over the ground node for which it acts as proxy. Having a proxy for every ground

node is essential in order to maintain the DTN protocol implementation on the

agents, transparent to the ground node. Equipment held by survivors and rescuers

would in most likelihood use standard IP networking protocols. IP is not designed

to be delay tolerant and lacks the key features of a DTN protocol: buffering, and

opportunistic forwarding [6]. IP would simply drop all packets if no route existed

to the destination. The proxy agent is used to stop IP from doing that by letting

the ground node know that a route exists. On receiving packets from the ground

node, the PR agent would only need to buffer all received packets and forward

them when an RL or HB agent comes by. As a result of using proxy agents, the

service time, sg in Equation 6.1, is maximized for each ground node, g, that has a
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GS1 GS2 GS3

Grid as scored by agent 0

Figure 9.5: Example of agents in proxy (PR) state

proxy. The other task of the agent in PR state is to keep track of the ground node

it is in charge of. While flying in circles, the agent tries to maintain connectivity

with the ground node at all times. It maintains an estimate of the ground node’s

position and circles around this point. Therefore, if it ever discovers that a part of

the circle is beyond the range of the ground node, it updates the position estimate

by moving it a small distance directly away from the arc that fell out of range.

The proxy agent for a given ground node has complete authority over the position

information for that ground node. It is the only agent allowed to make changes

to the position estimate for that particular ground node, and when the estimate

changes, the proxy agent informs the change to all agents that pass by. Figure 9.5

shows examples of agents in the PR state.

Every proxy agent also maintains the average visit frequency for the ground node

over the past TW time units. If this average visit frequency drops below a threshold,

ν +∆ν, the agent decides to recruit an RL agent. Once the decision to recruit is
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made, the first agent that comes into contact with the PR agent is recruited as

an RL agent. If recruitment is unsuccessful even after Trecruit time units, the PR

agent decides to personally forward the packets to the next closest known proxy

agent (or base station) and informs the other agent to recruit an RL agent. The

PR agent then returns to its corresponding ground node and waits. If at any point

the average visit frequency goes above ν + ∆ν, the PR agent decides to dismiss

an RL agent. The minimum time period between two consecutive recruitments or

dismissals is TW .

Since ground nodes can be intermittent, proxy agents continue circling for a fixed

period of time, TC , when the ground node disappears. If the agent does not

receive any wireless signal from the ground node within TC , the agent considers

the possibility that the ground node might have moved. It then begins spiraling

outwards up to a distance beyond which the ground node could not have traveled

given a maximum speed of 10ms−1. If the ground node is still not found, the

agent assumes the ground node is lost and switches its operational state to HB. It

then spreads the information about the missing ground node to other agents, thus

causing them to delete the corresponding element in Gk.

9.4.5 State transitions

The state transitions are based on the state diagram shown in Figure 9.6. All

agents start out in the HB state, which is equivalent to the SR state when no

ground nodes have been found. An agent k in the HB state decides to switch to

the SR state, if max(i,j) Tkij becomes higher than ρ + ∆ρ. A high value in the

Tk matrix means the search is slow and the average visit frequency is low, thus

requiring a more dedicated search effort. Once the dedicated search manages to

increase the average visit frequency, the SR agent should be able to switch back to
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Figure 9.6: State Diagram

HB. The switch from SR to HB takes place when max(i,j)Tkij becomes lower than

ρ+∆ρ.

The transition to the PR state can take place from any other state. When an

agent spots a ground node that does not already have a proxy agent, the agent

immediately switches to the PR state and becomes in charge of that ground node.

If an agent mistakenly became the proxy agent of a ground node with an existing

proxy agent, the newer one reverts to the HB state and gives way to the original

proxy for that ground node. Otherwise, an agent in the PR state switches to the

HB state only if the ground node has been deemed lost as per section 9.4.4. The

only way any agent can enter the RL state, is being recruited by a proxy agent.

The recruitment process has been discussed in section 9.4.4. The transition from

the RL state to the HB state happens only when the RL agent gets dismissed by

a PR agent.
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Adaptive state transition

The thresholds for state transitions are represented as ρ + ∆ρ and ν + ∆ν so

that ρ and ν can be kept constant while updating ∆ρ and ∆ν to manipulate the

thresholds. These thresholds indirectly determine the ratio of number of agents in

the RL, HB and SR states. The ratios in turn affect the value of Q that we try to

maximize. We reiterate the definition of Q here for easy reference:

Q =
favgsavg

τ
(9.8)

We know that savg is maximized as a result of having proxy agents. Consequently,

the two factors that remain variable are τ , and favg. τ can be reduced by increas-

ing the number of RL agents. However, that would adversely affect the search

operation and reduce favg . The key is to balance them out so as to maximize

Q. However, latency is highly dependent on the relative positions of the ground

nodes (possibly mobile), and average visit frequency is dependent on the number

of agents on field, both of which are not known for certain and are dynamic. In

other words, the values of ρ + ∆ρ and ν + ∆ν also need to be dynamic so as to

update the ratios of agents in different states, appropriately.

The correct way would be to evaluate Q from time to time and adapt the threshold

values. However, in order to obtain values for τ and favg, global knowledge would

be necessary. To overcome this problem, we propose the use of estimates for Q

derived at each agent. The estimates can then be passed on to the base station

if and when the agent comes in contact with the base. Using multiple estimates,

the base station can make an informed decision as to how to update the threshold

values. The updated values can be disseminated through agents that pass by. To

be able to produce an estimate for Q, the agents need to perform 2 additional

tasks:
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1. Maintain a set TSij for each grid cell that holds timestamps of all the times

when the value in the cell drops. Any element in the set that has a timestamp

earlier than TW time units prior to current time is discarded.
|TSij |

TW
then gives

the visit frequency for cell (i,j) over the last TW units.

2. Update the timing information on the DTN protocol header (this field is

assumed on the header, but even otherwise it is a single integer that is added

to the header) by adding the duration for which the agent held the packet.

As a result, every agent would have its own version of favg. The agent that delivers

a packet to the destination would have latency information for that packet. Using

the latency information for all packets delivered in the last TW time units, the

agent can generate an estimate for maximum latency, τ . If and when an agent k

passes by the base station, it delivers f̂avgk and τ̂k, which are estimates by agent

k for favg and τ in Equation 9.8. An agent never modifies its trajectory with

the aim of delivering these values to the base, because it is of lower importance

than other operations and there is bound to be some agent that delivers packets

to the base station that can provide its estimate. Finally, the two values can be

used by the base to generate Q̂k, an estimate for Q. The base uses a reference

value for the product of latency and average visit frequency. The reference value,

ϕ, is calculated by the base station using its current knowledge of ground node

positions. ϕ is given by

ϕ =

∑

g1,g2∈G,g16=g2 dg1→g2

XY
(9.9)

The idea is that τ should in general be proportional to the sum of distances between

any pair of ground nodes, and inversely proportional to UAV speed and number

of UAVs if all agents were involved in relaying packets. Similarly, favg should be

inversely proportional to area of the grid and directly proportional to UAV speed



134

and number of UAVs if all agents were involved in the search operation. The

product of the two should cancel out UAV speed and number of UAVs to give

Equation 9.9. This is a combination of 2 individually optimal cases for latency

and visit frequency. So the product is a reference value for the situation where

equal numbers of agents are involved in each of search and relay operations. The

base can then compute f̂avg τ̂ to get an idea of relative distribution of SR and RL

agents. This information as well as the trend in Q can be used to obtain the update

rule for ∆ρ and ∆ν as follows:

b(Q̂) = slope of regression line through estimates of Q over past TW time units

(9.10)

∆ρ(t) =
ρ

ϕ

(

f̂avg τ̂ − ϕ
)

+∆ρ(t− 1)b(Q̂) (9.11)

∆ν(t) =
ν

ϕ

(

f̂avg τ̂ − ϕ
)

+∆ν(t− 1)b(Q̂) (9.12)

Updates for both ρ and ν are derived similarly. In Equation 9.11, the new ∆ρ

depends on the previous ∆ρ, as well as the deviation in the fτ product from the

reference value (scaled to the same order as ρ), and finally, b(Q̂), which determines

whether to switch the sign of ∆ρ.

9.5 Belief Information Exchange (Environment

Estimator)

Belief information, i.e. Gk and Tk are exchanged when any two agents come within

communication range of each other. It is important for every agent to know the

locations of all ground nodes. This necessitates the full exchange of Gk. When an

agent receives a neighbor’s list of ground node locations, it simply merges its own
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list with the received list

Gk =
⋃

i∈(k∪N(k))

Gi

As for Tk, a full exchange would mean that each message would contain XY num-

ber of integer values, which would require a high bandwidth. In fact the bandwidth

issue is a prominent one in the general cooperative target search problem. One

approach to address it is suggested by De Lima et al. in [86] where they propose

the exchange of only recently updated cell information. This very often turns out

to be only those cells that lie in the recent flight path of the sender. Since any cell

can be on the list, the sender would also need to include co-ordinate information

for each cell whose information is sent, thus tripling the number of bytes required

to represent the information for 1 cell. Some others have suggested the exchange

of last known positions of other agents along with their destinations [87, 83]. How-

ever, this would require each agent to maintain the history for all other agents.

Moreover, if the destination of an agent is chosen as a relatively close point to

current location, as in our case, there is very little information embedded.

We propose the use of neural networks to estimate the values of grid cells given

some intelligently chosen partial information. We utilize the general tendency of

agents to move in straight lines and the minimum turn radius of UAVs to come

up with a pattern of cells whose information would be sufficient to obtain a good

estimate of the remaining cells. The pattern we propose is the one in Figure 9.7.

The effect is that any straight path taken by agents would intersect with a shaded

cell at least once every 5 cells. Moreover, the minimum turn radius of the UAVs

wouldn’t allow them to fly in a circle without cutting across a shaded cell. In

reality though, no agent in a non-PR state would fly in circles.

Essentially, this pattern would require only 3
8
th the information for the entire grid.

However, the packet size would increase linearly with respect to grid area and
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Figure 9.7: Pattern of cells chosen for exchange

that is quadratic with respect to a given side, if it is a square. To overcome this

problem, we divide the grid into horizontal strips each 8 cells thick, as shown in

Figure 9.7. Each strip has an index number starting from 0 for the first strip.

When a neighboring agent sends a packet, it specifies the index number and a

sequence of integers giving values corresponding to shaded cells alone. The co-

ordinate information is not required because the receiving agent knows exactly

which cell each value corresponds to in the fixed pattern. Since the thickness

of each strip is fixed, packet size would increase linearly with respect to one of

the sides of the grid. The sending agent would first send the strip that contains

the receiving agent. This would have information pertaining to the immediate

environment of the receiving agent. Following this, the sending agent sends strips

that are increasingly far away from the receiving agent on either side (above or

below). The last strip sent would be the furthest from the receiving agent and

would be of least immediate relevance.

Having received a packet, the agent estimates the values for the remaining cells

using Dynamic Cell Structures (DCSs), which are discussed in detail in Section

8.5.1. The DCS is chosen because it is capable of differentiating between different



137

Figure 9.8: Types of blocks handled by each DCS

situations by using lateral connections between neurons that are related. The

hypothesis is that the DCS should be able to distinguish between different cases

when an agent flies across the block horizontally or vertically, etc., and interpolate

correctly. In order to avoid the curse of dimensionality, we extract 4 × 4 blocks

from the grid, each of which serves as a data point. We identify 2 types of 4 × 4

blocks where each pattern in a type is only a rotated version of the corresponding

block shown in Figure 9.8(a) and 9.8(b). To be more specific,

∀i, j ((i+ j) is even) ,
⌊

(i+j+2)mod 8
4

⌋

≡ i(mod 2)→ Bij ∈ TYPE1
⌊

(i+j+2)mod 8
4

⌋

6≡ i(mod 2)→ Bij ∈ TYPE2

where, Bij is the block with top left corner at (i, j)

Therefore, DCS1, after learning, takes a 7-tuple as its input corresponding to

the shaded cells in Figure 9.8(a) and produces a 9-tuple output corresponding to

estimates of the unshaded cells. Similarly, DCS2 takes a 5-tuple as its input and

produces a 11-tuple output. The data to train the two DCSs is obtained by running

simulations with full communications (full exchange of Tk). From one snapshot of

the 20× 20 grid on one agent, 73 data points are produced for DCS1 and 72 data

points are produced for DCS2. The simulation is run for 30 minutes to generate

millions of data points to train the DCS. Subsequent to supervised learning offline,

DCS1 (93 neurons, 7% estimation error) and DCS2 (129 neurons, 7% estimation

error) are used on every agent to estimate missing cells in information received

from neighbors.
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9.6 Simulation and Results

9.6.1 Centralized heuristic vs. decentralized RL state be-

havior

Our first set of experiments is designed to test the performance of agents in the RL

state. The aim is to compare the performance of decentralized wireless backbone

formation (using only locally exchanged information) to that of BECDLMST using

the heuristic algorithm discussed in Chapter 5. We study the loss in performance

when moving from an all-knowing oracle to a realistic scenario. JSBSim 1.0 is

used to simulate the behavior of each aircraft. Each agent is a standalone instance

of JSBSim running on a single node of a computing cluster. The cluster used for

experiments consisted of 22 nodes, with a mixture of CentOS and Solaris based

quadcore server-grade computers. Agents communicate with each other over the

network. A separate compute node simulates ground nodes.

Setup

1. Area: 2km×2km divided into a 20× 20 grid

2. Ground nodes: N nodes located randomly [stationary and non-intermittent]

3. Agents:

• Maximum speed = 25ms−1

• Controller : DCS-PID

• Every ground node cell has a PR agent [not counted as part of the

M agents so that both cases have the same number of agents free to

perform store-carry-forward routing]

• Start from the center of bottom edge of grid
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For the first set of experiments, we make the conditions in the simulation as similar

as possible to the assumptions in the centralized heuristic algorithm. In particular

the following three conditions are enforced:

1. Ground nodes are considered to be stationary and non-intermittent

2. AllM agents are placed in the RL state from beginning to end [i.e. searching

is not performed]

3. Communication range is assumed to be ∼ 10m so that it is negligible in com-

parison to the dimensions of the grid. We do not use the realistic communi-

cation range of 200m, because that would not be negligible in comparison to

2km and would result in a considerably lower latency for the decentralized

simulation.

The number of ground nodes, N , and number of agentsM are varied, and for each

N,M combination, 20 runs of the experiment are conducted each with a random

node configuration. The average for each N,M combination, using both simulation

and the centralized heuristic, are presented in Table 9.1.

Table 9.1: Comparison of network latency using centralized heuristic and RL state
simulation for various N,M combinations

Network latency (seconds) for M=3 Network latency (seconds) for M=5

N Heuristic RL % difference Heuristic RL % difference

3 134 162 20.9 124 148 19.4
5 292 417 42.8 191 278 45.5
10 605 837 38.3 292 449 53.8
20 1050 1328 26.5 498 704 41.4

Network latency (seconds) for M=10 Network latency (seconds) for M=20

N Heuristic RL % difference Heuristic RL % difference

3 95 111 16.8 81 90 11.1
5 142 187 31.7 127 139 9.4
10 224 325 45.1 166 201 21.1
20 265 389 46.8 249 296 18.9

The results show that decentralized coordination in the RL state leads to network

latencies that are in the range of 10-50% higher than that achieved using the
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centralized heuristic. We notice that in general, with an increase in the number of

agents, the difference between results obtained the two methods tends to decrease.

This can be attributed to the fact that in the decentralized method, agents tend to

meet more often if there were more agents on the field. It should however be noted

that the communication range is forced to be extremely low in the decentralized

simulation so as to match the assumption in the centralized heuristic.

9.6.2 Experiments with complete system

Now we look at experiments to test performance of the complete system performing

coverage, search and tethering. For all the following experiments, the entire system

described in Sections 9.3-9.5 is used. Also, the communication range of the UAVs

is now set to the realistic value of 150m air-to-ground and 200m air-to-air.

Effects of increasing agent count for same ground node setting

In this section, we perform experiments to study how the variation of agent count

affects the network performance for a given ground node setting. Experiments

for this purpose were conducted using a combination of 2 simulators: X-Plane

8.64 for realistic UAV control and Qualnet 4.5 for realistic communications. Any

communication between 2 UAVs goes through Qualnet, which determines whether

the wireless transmission was a success based on its communication model. UAVs

in this simulation have a maximum speed of 25ms−1.

We again use a 2km×2km disaster area for all experiments. The agents start out

at random positions on the field with no prior knowledge of ground nodes except

for the base station. Three ground nodes are used of which 1 is stationary and

continuously emitting, while the other 2 are intermittent with one being mobile
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Figure 9.9: Positions of ground node and path of mobile ground node

and the other, stationary. The initial positions of all ground nodes and the path

for the mobile ground node is as shown in Figure 9.9. The mobile ground node

stops emitting wireless signals for very short durations. Ground node 2 on the

other hand, only appears after 100s through the simulation and disappears again at

400s, before reappearing at 600s. Every ground node generates packet streams of 10

packets/second towards every other ground node, including the base station. Every

experiment is run for 15 minutes and repeated 5 times to ensure no anomalous

behavior. The parameter varied between each experiment is number of agents.

We start with 5 agents so that there are at least 2 agents remaining when 3 of

them become proxy agents. We increase the number of UAVs until 10. Figure

9.10(a) plots τ over time for one sample run of each experiment. The value for τ

at any instance in time is the maximum latency of all packets delivered in the last

TW before the time instance. TW is chosen to be time taken by an agent to traverse

half the distance from edge to edge, which is 40s. We notice that τ spikes up from

time to time, but the number of spikes and the height of the spikes reduces with

an increase in number of agents. The spikes are caused by packets having to wait

at source for longer durations when fewer agents are available. However, such long

latencies would affect the value of ν thus causing more agents to be recruited into
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the RL state. As a result, maximum latency is lowered fairly quickly. In the case

of lower values for M , we notice that the oscillation of latency values is higher.

This can be attributed to the fact that agents tend to transform back and forth

between the RL and SR state often in order to balance between the search and

relay operations. With a higher number of agents, the balance is easier to achieve

and more agents tend to stay in the HB state thus causing lesser oscillation in

latency values.

We also plot the average latency over time to study how it differs from maximum

latency through time. We observe the general tendency of latency to reduce with

increase in number of agents. Also, average latency tends to be considerably lower

than maximum latency. The interesting behavior though is the sudden spikes

in latency at times when a new ground node is found. This can be attributed

to the fact that the new PR agent would have begun buffering packets from the

new ground node, but stayed unable to forward them until another agent came

in contact with this PR agent. However, the adaptive state transition mechanism

ensures that RL agents are introduced to minimize this latency. Within each

experiment, we also observe that latency generally decreases. This is a direct

consequence of trying to maximize Q in Equation 9.8, which is plotted in Figure

9.10(b) and shown to be generally increasing in value, albeit non-monotonically.

In Figure 9.11, we observe the relative distribution of agents in different states

through time. We see how SR agents slowly become unnecessary with increase

in number of agents because HB agents can already provide a satisfactory search

effort. The consistently changing SR:HB:RL ratios we observe can be attributed

to the effective adaptive state transition mechanism that modulates ∆ρ and ∆ν

to maintain a positive slope for Q.

The values of maximum Tij from the global version of the visit map, are plotted

in Figure 9.12. The longest any cell had to wait for a re-visit is very low for all
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Figure 9.11: Distribution of UAVs in the 4 states through time for each experiment
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the experiments considering 3 of the agents would have been in PR state. The

observation that actually goes to show the effectiveness of the search method laid

out in section 9.4.1, is the time taken to find all ground nodes (shown in Figure

9.12). The spread of a search needs to be wide with minimal overlaps to have a

low find time. The results here go to show that the scoring mechanism in Equation

9.1 achieves exactly this. Finally, a relatively low average network latency implies

that the emergent network architecture is a latency minimizing one.

9.7 Summary and Contributions

We presented a novel cooperative control mechanism to coordinate a swarm of

UAVs and establish a wireless communications backbone connecting multiple ground

stations. In particular, 4 states of operation were introduced with an adaptive

state transition mechanism. The adaptive update rule modified the behavior of

the swarm based on the current state, so as to minimize packet latency and maxi-

mize cell visit frequency. The search operation was designed in such a way that the

same data structures could be used for the relay operation as well, thus enabling

a hybrid search and relay state. We also considered the bandwidth limitations of

wireless links and presented a novel solution to acquire fairly accurate information

from neighboring agents despite using little bandwidth (specifically 3
8
th). To this

end, a DCS-based state estimation procedure was proposed that utilizes knowledge

of UAV dynamics, restrictions, and the general behavior of an agent. Empirical

results showed that the proposed mechanism was not only able to perform both

the search and relay operation efficiently but also adapt to changing situations

such as addition or loss of ground stations.

The main contribution of this chapter is an efficient solution for the novel problem

of coverage, search and tethering, combined, under realistic wind conditions and
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communication limitations. We provide a control and coordination solution that

balances the tasks of search and relay, while minimizing latency and maximizing

visit frequency. Importantly, this is achieved in a realistic setting with decentral-

ized control, without global information at each agent, regardless of intermittency

of ground stations, in the presence of winds, and under realistic communication

limitations.

Another contribution of this chapter is the belief exchange mechanism proposed as

part of the coordination algorithm that can be applied to many other applications

using UAV swarms. The idea of using the limitations of UAV motion in choosing

grid cells that encompass enough information to interpolate missing cell informa-

tion is applicable to situations other than the specific problem considered in this

thesis.



Chapter 10

Practical implementation and

testing

In this chapter, we present flight tests conducted with real aircrafts to validate the

control algorithms and the viability of air-air and air-ground communications.

10.1 Hardware

The hardware chosen for experiments were off-the-shelf equipment so as to assure

ease of availability and reproduction. A number of concerns were addressed in

choosing the appropriate airframe and the electronics that went inside, such as:

1. Payload capability of aircraft - need to be able to carry autopilot, separate

onboard processor, wireless router and antenna.

2. Stall speed of aircraft to be kept low for safety

3. Weight of autopilot, sensors, onboard processor and other electronics to be

kept low
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4. Provide hardware-based failsafe for manual override

5. Autopilot code needs to be modifiable down to the control loop

10.1.1 Airframe

Two kinds of airframes were used in the tests conducted. One was chosen to be big

enough for carrying all required payload (onboard processor, wireless router and

antenna) for data communication. A different, much lighter airframe (i.e. more

susceptible to winds) was chosen to test the performance of the control algorithms.

Specifications of both airframes are provided below:

Pilatus PC-6 Porter Scale 150

A custom built scaled down version of the 1/150 scale Pilatus PC-6 Porter, called

the Pilatus PC-6 Porter Scale 150 [88], was used for tests conducted to validate

air-air and air-ground communication. This was the bigger of the two airframes

mentioned above. Figure 10.1 shows the aircraft on the field. Below are the aircraft

specifications:

• Length: 1.96m

• Wingspan: 2.64m

• Height: 0.57m

• Wing area: 0.84m2

• Airfoil: NACA2415

• Wing loading: 9.76kg/m2

• Weight: 8.4kg
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Figure 10.1: Pilatus PC-6 Porter Scale 150

The airframe ensured sufficient space for loading all the required electronics. The

payload capacity of the Pilatus is about 5kg which gives enough room for additional

sensors and equipment. The propeller is powered by a gasoline engine with a 1

litre fuel tank that allows for half an hour of flight time.

Multiplex Mentor

The Multiplex Mentor is a lightweight foam aircraft with just sufficient space to

hold the autopilot unit. This airframe was chosen to test the control algorithm,

owing to its high susceptibility to winds. Figure 10.2 shows the aircraft on the

field. Below are the aircraft specifications:

• Length: 1.17m

• Wingspan: 1.63m

• Wing area: 0.45m2

• Airfoil: Flat bottom high-wing placement



150

Figure 10.2: Multiplex Mentor

• Wing loading: 4.45kg/m2

• Weight: 2.0kg

The propeller is powered by a 3-cell LiPo battery that allows for 10 minute flight

time.

10.1.2 Autopilot unit

The Ardupilot Mega [89] microcontroller board and its accompanying ArduIMU

Shield (sensor board) were used to implement our control algorithms. The reason

for choosing the Ardupilot Mega is its functionality and availability of open-source

support. The Ardupilot Mega controller board is shown in Figure 10.3. The

Ardupilot Mega is based on the 16MHz Atmega1280 microcontroller. It has a

processing power of up to 32MIPS. The onboard memory includes 128k of program

flash, 8K SRAM and 4K EEPROM. A separate circuit with a multiplexer and

an Atmega328 processor is used to transfer control from the RC system to the

autopilot and back.
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Figure 10.3: Arudpilot Mega controller w/ Atmega1280

Figure 10.4: ArduIMU Shield

The board’s I/O capabilities include 16 analog inputs (sensors), 40 digital I/O

pins, 4 serial ports, 8 RC channels, 8 PWM outputs, 1 6-pin (EM406 standard)

GPS input.

The ArduIMU Shield holds a number of required sensors such as a triple-axis

gyroscope, an ADX330 accelerometer and an Absolute Bosch pressure sensor (for

altitude). A dedicated I2C channel allows the connection of several more sensors

through a “Daisy chain board”. The onboard 12-bit ADC is used for converting

all analog sensor values to high precision digital values to be fed as input to the

Atmega1280. The IMU shield also extends one of the serial ports to a USB port

via an FTDI adapter. Figure 10.4 shows an ArduIMU Shield and figure 10.5 shows
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Figure 10.5: Ardupilot Mega controller connected to an ArduIMU Shield

the Ardupilot Mega controller connected to the IMU Shield.

10.1.3 External sensors

GPS unit

A GS407 Helical GPS Receiver is used for localization and navigation. The GS407

hosts a U-Blox LEA 5H chipset. The GPS unit provides a 2Hz positional update.

It is connected to the Ardupilot controller through a U-Blox adapter that converts

the GS407 connector to an EM406 connector. The GPS unit and the adapter are

shown side by side in Figure 10.6.

Airspeed sensor

An MPXV7002 airspeed sensor along with the corresponding pitot-static tube

setup is used to measure the forward speed of the aircraft with respect to air. The

speed measurement is mixed with the speed measurement obtained from GPS data

to derive the aircraft’s speed. Figure 10.7a shows the airspeed sensor used onboard

the aircraft.
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Figure 10.6: GS407 Helical U-blox GPS Receiver and Adapter

(a) MPXV7002 airspeed sensor (b) Xbee Pro 2.4GHz telemetry unit

Figure 10.7: Airspeed sensor and Telemetry unit

10.1.4 Telemetry

An XBee Pro 2.4GHz telemetry unit is used to relay real-time information to the

base station that can be used to track the status of the aircraft. The radio has a

10mW output giving a theoretical line-of-sight range of 1 mile. These modules use

the IEEE 802.15.4 networking protocol for communication. Figure 10.7b shows

the telemetry unit.
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Figure 10.8: Advantech PCM3386 embedded computer

10.1.5 Onboard computer and wireless equipment

We use an Advantech PCM3386 embedded computer for implementing the DTN

protocol stack and interfacing between the wireless equipment and the autopilot.

The PCM3386 is based on the PC/104 standard and has an Intel Celeron M

1GHz CPU. It is connected to the Ardupilot Mega via USB. A standard off-the-

shelf 802.11g router is connected using ethernet. Figure 10.8 shows the PCM3386

board. We run a stripped down version of Linux on the PCM3386. The programs

use serial communication to receive and send data to the autopilot. Standard

socket programming is used to access the underlying implementation of the DTN

protocol. The onboard computer and the network stack were implemented by our

project collaborators. The implemented DTN protocol which uses Reliable UDP

[90] is detailed in their publication at [91].
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Figure 10.9: Ardupilot Mega with various connections
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Figure 10.10: Overall system architecture
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10.1.6 Overall system architecture

The overall system architecture is presented in Figure 10.10. The Ardupilot Mega

connected to the various sensors and other connecting wires is shown in Figure

10.9.

10.2 Experiments for data communication

We use the hardware setup described in Section 10.1 on the 1/150 scale Pilatus

PC-6 Porter Scale 150 to test the viability of air-to-ground and air-to-air commu-

nication. The PID based control system was used on the Ardupilot Mega. Two

UAVs were flown to act as relays between the base station and another distant

target point on the ground. The aim was to collect data from a data source placed

at the target point and relay it back to the base station using store-carry-forward

routing on the UAVs. Experimental results showed a Packet Delivery Rate of 100%

at a bitrate of over 1Mbps.

10.3 Experiments for control system

We use the hardware setup described in Section 10.1 on the Multiplex Mentor to

test and validate the effectiveness of the control system described in Chapter 8.

The system architecture used was the same as the one illustrated in Figure 10.10,

except without the PCM3386 and the router. Using this setup, we conducted two

sets of experiments:

1. To test controller performance in straight line tracking (i.e. waypoint navi-

gation)
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2. To test controller performance in circular trajectory tracking (for PR state

behavior [refer to Section 9.4.4])

For both sets of experiments, we conducted Hardware-in-the-loop (HWIL) tests

as well as real flight tests. HWIL tests were performed to conduct controlled

experiments where the controller’s performance could be tested under different

wind scenarios. One of the disadvantages with field tests is the inability to measure

wind speed and direction accurately, let alone the inability to control wind speeds.

In order to study the performance of the controller as implemented on actual

hardware, but under controlled environmental settings, we use the Ardupilot Mega

to control an aircraft within the X-Plane 9 simulator. In HWIL simulation, the

controller (Ardupilot Mega) receives emulated sensor readings from the X-Plane

9 simulator, generates control decisions, and sends control commands back to the

simulator, which then simulates the behavior of the aircraft. The setup is achieved

through the use of ArduSim [92], which is a software that acts as a bridge between

X-Plane and Ardupilot. The setup for HWIL tests is shown in Figure 10.11.

10.3.1 Straight line tracking

The controller used for straight line tracking is the exact same as the one described

in Chapter 8. The DCS was trained using data from simulation using the default

PID based controller on the Ardupilot Mega, tuned separately for 3 different fixed

wind speeds - 0, 10, and 20kts. The DCS training constants were set such that

the resulting DCS network had no more than 40 neurons. The reason for this was

the limited memory (8K) on the Atmega1280. We tested the memory capacity by

adding arbitrary neurons to verify the point of overflow. With any more than 40

neurons, the Atmega1280 ended up with a memory overflow. The final set of DCS
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Figure 10.11: HWIL setup

constants used were:

Kohonen constants, εbmu = 0.08

εNh = 0.012

Connection decay, γ = 0.952

Connection threshold, θ = 0.01

Rate of gradient descent in output, η = 0.08

The resulting DCS network consisted of 34 neurons. The number of neurons in the

learned network is a result of neuron additions, interactions and deletions through

hundreds of iterations. Getting this number to an exact 40 would have been near to

impossible. As a result, we settle with the DCS network consisting of 34 neurons.

The average absolute error achieved in terms of commanded roll angle when the

DCS was tested against the training data was 4.22 degrees (in roll angle command).
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Table 10.1: Comparison of average absolute cross-track error for the two controllers
under different wind conditions

Wind Direction Wind Average Average Improvement
Speed cross-track cross-track

error (PID) error (DCS)
(Degrees) (Knots) (ft) (ft) (%)

100◦,
1 average 11.06 11.00 0.59switch to 300◦

at t=200s
100◦,

10 average 30.38 21.52 29.16switch to 300◦

at t=200s
100◦,

20 average 97.34 57.94 40.48switch to 300◦

at t=200s
0◦ − 359◦

15 average 81.81 51.17 37.45
sinusoidal

Results from HWIL simulation

The HWIL simulations were first performed with the default PID based controller

on the Ardupilot Mega followed by the DCS based controller for 4 different wind

speed and direction settings. Table 10.1 shows the various wind conditions and

results obtained. The results show a consistent improvement in performance by

the DCS as compared to the PID based controller. The percentage improvement is

higher at higher wind speeds, which can be attributed to the fact that the default

PID controller on the Ardupilot is unable to correct for crosswinds.

Results from real flight tests

The tests were conducted over a 2 hour period between 7.20 am and 9.20 am, on

a very light-weight foam-built Multiplex Mentor electric RC airplane. The flight

timings were constrained by air traffic rules to the early morning period. The

weather was clear, and as is typical of early morning weather in Singapore on a
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clear day, winds started off fairly still at the beginning and picked up in intensity

as the sun rose. As it is not possible to measure the wind speed and direction at

cruise altitude (and even less so to control them), three runs of two tests (one with

default Ardupilot PID and one with DCS) were conducted with each test lasting

about 10 minutes (i.e. 20 minutes per run) to mitigate the varying wind conditions.

The PID and DCS tests were also run alternately to further minimize differences.

The pattern flown by the aircraft is illustrated in Figures 10.12-10.14. The aircraft

was required to follow a line segment of length 1000ft. At the end of the line

segment on either side, the aircraft was required to circle around and follow the

line segment in the opposite direction. Experimental results are presented below.

1. First run:

The first run took place in moderately calm winds at an altitude of 130m.

The PID showed an average deviation from the line segment of 29.61 feet,

while the DCS showed an average deviation of 23.76 feet, an improvement of

19.76%. Figure 10.12 shows the telemetry plot obtained from the Ardupilot

Megas onboard logs. The DCS flight path is shown in yellow while the PID

flight path is shown in blue.

2. During the second run, the wind conditions had not changed much. Con-

ditions were still calm. The PID showed an average deviation of 24.54 feet

while the DCS showed a deviation of 24.10 feet, an improvement of 1.79%.

Figure 10.13 shows the corresponding telemetry plot.

3. Winds started to pick up at about 8.45 am, and were fairly strong by the third

tests conducted at 8.55 am (PID) and 9.10 am (DCS). The PID controller had

an average deviation of 41.04 feet while the DCS had an average deviation of

29.54 feet, an improvement of 28.02%. Figure 10.19b shows the corresponding

telemetry plot.
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Figure 10.12: Telemetry plot of flight paths with PID (blue) and DCS (yellow)
based controllers for first run in straight line tracking tests

Figure 10.13: Telemetry plot of flight paths with PID (blue) and DCS (yellow)
based controllers for second run in straight line tracking tests
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Figure 10.14: Telemetry plot of flight paths with PID (blue) and DCS (yellow)
based controllers for third run in straight line tracking tests

Table 10.2: Comparison of average absolute cross-track error achieved by the two
controllers for the 3 straight line tracking tests

Average Average Improvement
cross-track cross-track
error (PID) error (DCS)

(ft) (ft) (%)

First run 29.61 23.76 19.76
Second run 24.54 24.10 1.79
Third run 41.04 29.54 28.02
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The consolidated results of the real flight tests are shown in Table 10.2. We notice

that under calm winds, the DCS based controller provides little improvement over

the PID based controller. However with winds in effect, the PID deteriorates

substantially whereas the DCS manages to maintain a low cross-track error, thus

giving an improved performance by 28%. Given that a distance of 1000ft is actually

short for an aircraft moving at 15m/s, thus giving it very little time to settle in

to the line segment, we believe the deviation results are an indication of successful

crosswind correction by the DCS.

10.3.2 Circular trajectory tracking

The DCS based controller used for circular trajectory tracking was the same as

that described in Chapter 8. However, the controller used to train the DCS was

different owing to the difference in required behavior. The behavior of the PID

based controller used to train the DCS is shown in Figures 10.15a and 10.15b.

RC

Target heading

d
A→

C

(dA→C+R) 

2

χ

(a) Aircraft outside the circle

RC

Target heading

χ
d
A→

C

Tangential heading

(b) Aircraft inside the circle

Figure 10.15: Control mechanism of PID based controller for circular trajectory
tracking

The function of the controller is to enable navigation of the UAV along a required

circle of radius, r, centered at a point C, whose latitude and longitude are given
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by λC and φC . Let us also define λA and φA to be the latitude and longitude of

the current position of the aircraft, A. We then obtain the cross-track distance, χ,

as follows (standard distance formula using GPS coordinates [93]):

dA→C = arccos( sin λC sinλA

+cosλC cosλA cos (φC − φA))

χ = dA→C − R

The meaning of χ is illustrated in Figures 10.15a and 10.15b. We use this above

computed cross-track distance, χ, as the parameter for lateral control. The aim of

the controller is now to asymptotically minimize χ to 0.

The controller determines and achieves the target course. Note that target course

refers to the direction in which the aircraft GPS course should head and not neces-

sarily the direction in which the aircraft’s nose points. When the aircraft is outside

the desired circle, the aircraft aims to fly along the tangent connecting it to a circle

of radius dA→C+R
2

. The result is that aircraft converges to the desired circle with

an exponential decay where the error drops faster initially and converges smoothly.

When the aircraft is inside the circle, the target course is given by a PID compo-

nent that uses χ, the cross-track error, to produce the target course. The target

course is then achieved by the underlying dual-loop PID controller. The structure

of the PID based controller is shown in Figure 10.16. The shaded region in Figure

10.16 represents the portion of the controller that is wind dependent and that is

what is replaced by the DCS after training.

The PID gains for the wind dependent outer loop components (i.e. shaded region

in Figure 10.16) are tuned separately for 3 different fixed wind speed situations.

Three sets of gains are generated for each of the wind speeds of 0, 10, and 20kts.

The final data set consisting of 4500 inputs is then used to train the DCS through
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Figure 10.16: Block diagram of PID based controller

supervised learning. For training purposes, the DCS constants are set as follows:

Kohonen constants, εbmu = 0.08

εNh = 0.012

Connection decay, γ = 0.952

Connection threshold, θ = 0.01

Rate of gradient descent in output, η = 0.08

The number of neurons in the network at the end of training is 37. The average

absolute error achieved when the DCS is tested against the training data is 3.47

degrees (in roll angle command).

Results from HWIL simulation

The HWIL simulations are first performed with the default PID based controller

on the Ardupilot Mega followed by the DCS based controller for 4 different wind

speed and direction settings. Table 10.3 shows the various wind conditions and

results obtained. The results show a consistent improvement of between 37.28%
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and 60.58%.

Table 10.3: Comparison of average absolute cross-track error for the two controllers
under different wind conditions

Wind Direction Wind Average Average Improvement
Speed cross-track cross-track

error (PID) error (DCS)
(Degrees) (Knots) (ft) (ft) (%)

100◦,
1 average 2.79 1.75 37.28switch to 300◦

at t=200s
100◦,

10 average 48.35 19.06 60.58switch to 300◦

at t=200s
100◦,

20 average 90.51 55.71 38.45switch to 300◦

at t=200s
0◦ − 359◦

15 average 50.41 25.02 50.37
sinusoidal

Results from real flight tests

The tests were conducted over a 1.5 hour period between 8.05 am and 9.35 am, on

a very light-weight foam-built Multiplex Mentor electric RC airplane. The flight

timings were constrained by air traffic rules to the early morning period. The

weather was clear, and as is typical of early morning weather in Singapore on a

clear day, winds started off fairly still at the beginning and picked up in intensity

as the sun rose. As it is not possible to measure the wind speed and direction at

cruise altitude (and even less so to control them), three runs of two tests (one with

default Ardupilot PID and one with DCS) were conducted with each test lasting

about 6 minutes (i.e. 12 minutes per run) to mitigate the varying wind conditions.

The PID and DCS tests were also run alternately to further minimize differences.

1. First run:
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Table 10.4: Comparison of average absolute cross-track error achieved by the two
controllers for the 3 flight tests

Average Average Improvement
cross-track cross-track
error (PID) error (DCS)

(ft) (ft) (%)

First run 51.7 18.5 64.2
Second run 73.8 36.8 50.1
Third run 80.8 33.9 58.0

The first run took place in moderately calm winds at an altitude of 50m.

The PID showed an average deviation from the circle of 51.7 feet, while the

DCS showed an average deviation of 18.5 feet, an improvement of 64.2%.

Figure 10.17a shows a plot of cross-track error against time for the first run.

Figure 10.17b shows the telemetry plot obtained from the Ardupilot Megas

onboard logs. The DCS flight path is shown in yellow while the PID flight

path is shown in blue.

2. The second run took place in moderate winds. The PID showed an average

deviation of 73.8 feet while the DCS showed a deviation of 36.8 feet, an

improvement of 50.1%. Figure 10.18a shows a plot of cross-track error against

time for the second run. Figure 10.18b shows the corresponding telemetry

plot.

3. Winds started to pick up at about 8.55 am, and were fairly strong by the third

tests conducted at 9.07 am (PID) and 9.20 am (DCS). The PID controller had

an average deviation of 80.8 feet while the DCS had an average deviation of

33.9 feet, an improvement of 58%. Figure 10.19a shows a plot of cross-track

error against time for the second run. Figure 10.19b shows the corresponding

telemetry plot.

The consolidated results of the real flight tests are shown in Table 10.4. In all three

runs the DCS improved performance by between 50 and 64%, validating the lab test
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(a) Cross-track error against time

(b) Telemetry plot of flight paths with PID (blue) and DCS (yellow) based
controllers

Figure 10.17: Results from first run for circular trajectory tracking
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(a) Cross-track error against time

(b) Telemetry plot of flight paths with PID (blue) and DCS (yellow) based
controllers

Figure 10.18: Results from second run for circular trajectory tracking
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(a) Cross-track error against time

(b) Telemetry plot of flight paths with PID (blue) and DCS (yellow) based
controllers

Figure 10.19: Results from third run for circular trajectory tracking
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results and that the DCS greatly improves tracking performance in cross-winds.

The deviations are fairly large (up to 80 feet for the PID controlled autopilot and

37 feet for the DCS controlled autopilot), due to the very light Multiplex Mentor

foam platform that was used.

10.4 Summary and Contributions

In this chapter we detailed the field tests and HWIL tests that were performed

to validate the control system behavior and prove the viability of air-ground and

air-air communication. Details of the equipment and platforms used were laid

out for reference and for easy future deployment. We showed that the DCS im-

plemented on an Ardupilot Mega platform managed to successfully correct for

crosswind effects and maneuver the aircraft along the desired path. Accurate con-

trol and ability to communicate are the basic building blocks for the entire control

and coordination mechanism proposed in Chapters 7-9. We believe that these are

two components that are affected the most when moved from simulation to real-

ity. Having shown the practical viability of both, simulation of the higher level

mechanisms makes it sufficient to show the feasibility of the entire system.

The main contribution of this chapter is the deployment ready implementation

of the proposed algorithms. Results from practical field tests serve to show the

applicability and viability of everything else that has been discussed in this thesis.





Chapter 11

Conclusion

11.1 Summary of the Thesis

In this thesis, we addressed the problem of using UAVs to autonomously build

a wireless communications backbone. We studied the problem from a theoretical

perspective with the aim of determining paths for M agents so as to minimize the

worst case latency in a DTN of N ground nodes. To this end, we proposed the

Bounded-Edge Count Diametric Latency Minimizing Steiner Tree (BECDLMST)

as the solution for the agent path design problem with complete a priori informa-

tion. Finding the optimal BECDLMST was proven to be NP-hard. Subsequently

an exact exponential algorithm for BECDLMST was presented, that was designed

to prune the solution space as much as possible at every step so as to minimize

computation time. Experiments showed that the algorithm was capable of han-

dling up to 30 ground stations and 40 agents. Comparisons were also made against

FRA, which provides the better of performances among existing methods. The re-

sults showed a considerable improvement in maximum network latency achieved

by BECDLMST as compared to FRA. Apart from providing a centralized solution

for the case with perfect information, the theoretical analysis provided insight into
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designing decision mechanisms in a decentralized situation. Noting the exponential

complexity of the exact algorithm, we proposed an anytime heuristic to generate

near-optimal BECDLMSTs. The heuristic used update rules and iterative tree

evolution strategies that enabled the self-organization of rendezvous points. The

algorithm ensured that at the end of every iteration, the tree satisfied a valid so-

lution, thus allowing anytime termination. Empirical results were used to prove

that the algorithm was capable of handling very large data sets in terms of ground

nodes and agents. The heuristic brought the computation complexity from an

exponential one down to a quadratic one, thereby making BECDLMST a feasible

solution to the agent path design problem.

Following the theoretical analysis, we embarked on the combined problem of cov-

erage, search and tethering under realistic winds and communication limitations.

We proposed a decentralized, hierarchical architecture for control and coordina-

tion. The control component of the system looked into the issue of wind effects,

specifically crosswinds that deflect lightweight UAVs from their intended paths. A

DCS-NDI controller capable of correcting for such crosswind effects was presented.

We showed how the traditional heading parameter is unsuitable in the presence of

winds and introduce the use of cross-track error, χ, as the control parameter. The

DCS-based approach was shown to be capable of controlling the nonlinear system,

by learning the behaviors of individually tuned PID-controllers and interpolating

between them to achieve accurate waypoint navigation. The DCS in particular

was modified to learn more accurately and faster as compared to the original DCS

(specifically a 10 times better representation in about 1
6
th the time for the dataset

we used). Simulation results showed the controller achieved a maximum deflection

of ≈ 10ft from the intended flight path in the presence of winds with speeds up to

30kts. The controller thus proved the viability of a reactive system for crosswind

correction without the need for wind speed and direction measurements. It also al-
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lowed more flexibility at the upper coordination layer by letting it not consider the

adverse effects of wind. At the higher layer, for the multiagent coordination prob-

lem, a “near-decision-theoretic” approach was taken in which an agent’s decision

depended on maximizing a scoring function. The uncertainty and complete lack of

a priori information called for an adaptive solution, which in our case was achieved

through the presented adaptive finite state machine. The belief information used

within the operational states, was chosen such that the same information could be

used for search as well as relay state decisions, thus enabling a hybrid search and

relay state. The behavior of agents in the relay state was designed to produce an

emergent chain relay architecture, in an effort to mimic the BECDLMST solution

structure derived using theoretical analysis. Comparisons were also made between

network latencies achieved by the decentralized solution with relay state agents and

the centralized heuristic, to show that decentralizing the solution only resulted in

a 10-50% increase in latency. An effective neural-network-based belief information

exchange mechanism was proposed in order to use minimal bandwidth, thus al-

lowing ground station related data transmission to utilize higher bandwidth. The

novel coordination mechanism thus proposed, was empirically shown to be capa-

ble of achieving a non-monotonic increase in Q, which is a metric that increases

with higher cell visit frequency and lower packet latency. Results also showed the

resilience of the coordination algorithm to changing situations such as addition or

loss of ground stations.

Finally, we provided results from real flight tests conducted using the proposed

controller. The effectiveness of the controller and the viability of air-to-ground

and air-to-air communication were proven. Although the number of flight tests

performed was of a small order, each test experienced different wind conditions.

Within each test, the straight line or circular trajectory was repeatedly followed a

number of times thus making each test a collection of a number of samples. The
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varying wind conditions with sun rise on the other hand, accounted for a reason-

able spread in test conditions, thus making it representative of normal Singapore

weather. The results obtained were therefore statistically representative of control

behavior in general Singapore weather.

11.2 Future work

Future research in this area could explore the use of rigid UAV formations to

represent a single agent, resulting in agents with much larger sensing areas. The

trade-off between assigning a UAV to a formation and treating it as an individual

agent could provide further insight into the problem.

As opposed to only fixed-wing UAVs, future research could explore the use of a

combination of rotary wing aircrafts and fixed wing aircrafts. The benefit of rotary

wing aircrafts is their high maneuverability and their ability to hover, whereas fixed

wing aircrafts can achieve higher speeds. A heterogeneous set of aircrafts could

utilize the benefits of both. The problem would then likely involve a component

that is similar to the problem of sensor placement.

This thesis considered areas that were fully accessible without any obstacles. How-

ever, the presence of obstacles is likely in areas with tall buildings. Future research

could explore the same problem with inaccessible regions in a given area and study

how that would affect both, the centralized solution as well as the decentralized

one.
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