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ABSTRACT

CONTROL FOR LOCALIZATION AND VISIBILITY MAINTENANCE OF AN

INDEPENDENT AGENT USING ROBOTIC TEAMS

Ethan Stump

Vijay Kumar

Given a non-cooperative agent, we seek to formulate a control strategy to enable a

team of robots to localize and track the agent in a complex but known environment

while maintaining a continuously optimized line-of-sight communication chain to a

fixed base station. We focus on two aspects of the problem. First, we investigate the

estimation of the agent’s location by using nonlinear sensing modalities, in particular

that of range-only sensing, and formulate a control strategy based on improving this

estimation using one or more robots working to independently gather information.

Second, we develop methods to plan and sequence robot deployments that will estab-

lish and maintain line-of-sight chains for communication between the independent

agent and the fixed base station using a minimum number of robots. These meth-

ods will lead to feedback control laws that can realize this plan and ensure proper

navigation and collision avoidance.
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Chapter 1

Introduction

In this thesis, we will approach the problem of using mobility as an enabling concept

in the localization and communication-maintenance of deployments of robots. This

is a reversal of traditional considerations: usually localization and communications

are subproblems that are addressed or delegated in order to facilitate the main

objective of getting robots to go somewhere of interest. However, this is part of a

larger philosophical shift in using robots as a building block for information-gathering

systems where we are not concerned with how the robots accomplish the gathering,

just that they do so in a way that maximizes the quality of the information. Robots

represent a unique way of accomplishing this because they provide a means to reduce

the cost of information or scale the information-gathering to boost the quality.

In order to make this statement clear and motivate our problem, we will consider

the use of robots in First Responder emergency teams [53]. Whenever a disaster

occurs, an appropriate response is to contain the damage and search and extract

survivors, and this search-and-rescue task is handled by a First Responders such as

a unit of firefighters. The primary mission is to find survivors as quickly as possible,

but this is complicated by the fact that environmental dangers such as gas leaks, un-

stable structures, and open flame all represent safety hazards for the rescue workers.

Because of this, the underlying task for the rescue mission is information, not only of
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the survivor locations but also of the environmental conditions, but this information

is costly because gathering it means putting people in harm’s way. Robots provide a

way to lower the cost of information because the loss of a robot is insignificant com-

pared to the loss of a human life, and they provide a way to enhance the quality of

information because they can be deployed in large enough numbers to explore quickly

and establish networks for constant environmental monitoring. In this way, robots

are instrumental in providing situational awareness for the emergency personnel.

Accomplishing this requires: organizing robot teams sufficiently enough to provide

communications, information integration, and relative positioning information; en-

dowing them with sensors and algorithms for measuring and tracking environmental

changes, creating and relaying maps, and searching for survivors.

In [53], three main challenges are identified. First, robots need a way to local-

ize themselves and others since the tasks required (mapping, tracking, etc.) are

impossible without some notion of location. Because of environmental conditions,

cameras are not a reliable sensor, so the proposed solution is to deploy a network

of radio beacons that provide distance information. Doing so introduces the need

for algorithms that can perform localization using only range measurements, and the

complexities of this will be discussed later. Second, we need a way to understand the

flow of information in the system. This means understanding how to place sensors

optimally in order to measure and track environment conditions such as temperature

and also how to route the information that these sensors provide back to the emer-

gency personnel who need to use it. Third, we need network control, or the ability

to coordinate teams of robots to move through the environment while maintaining

formations.

We will address parts of the first and third of these challenges but with some

variations. In the challenge of localization, the major thrust is focused on how to

make use of an established radio beacon network to perform the localization but

misses the problem of placing this radio beacon network in the first place. If we

2



insist on using the same ranging technology to localize as we traverse the environment

before beacons are placed, then we can no longer use simple, memoryless approaches

such as triangulation and instead must create and maintain state estimates that are

shaped by measurements taken through motion. In this case, the localization is only

possible with motion since static measurements do not have enough information

to find a solution. Also overlooked in the presentation but inherent in all of the

tasks is the challenge of communication. Without a way to communicate it back to

emergency personnel, the information gathered by the robots is useless. With this

in mind, we could imagine that the purpose of robot formations in the solution of

the third challenge is specifically to address the needs of communication.

This returns us to the original goal of using mobility to enable localization and

communications: for our application, localization is impossible without mobility, and

we need mobility to establish formations for communication, so the benefit is clear.

1.1 Objective

We will focus on the single objective of localizing and tracking an agent in a complex

but known environment while maintaining communications with a fixed base station.

We will consider this agent to be an abstraction of a more general user participation

in directing the information-gathering action; perhaps it could be a human being

entering the environment to perform a rescue or another robot guided by an operator

to locations of interest. In accordance with the earlier discussion, we split this

problem into two parts: localization and communications.

First, we will estimate the agent’s location by using nonlinear sensing modalities,

in particular that of range-only sensing, and formulate a control strategy based on

improving this estimation using one or more robots working to independently gather

information.

Second, we will plan and sequence robot deployments that will establish and

3



maintain line-of-sight chains between the independent agent and the fixed base sta-

tion. We choose line-of-sight as a simplification of the communication process for

reasons we will discuss later, but our approach could encompass a more general

model. These methods will lead to feedback control laws that can realize this plan

and ensure proper navigation and collision avoidance.

1.2 Literature Review

In order to justify our approach, we must investigate existing solutions to our stated

problem. This is an ambitious undertaking because the problem set cuts across a

wide swath of existing research. We will first consider how to use range measure-

ments to solve the nonlinear estimation problem and how to choose control actions

to improve estimate quality. Beyond this, our main focus will be on solving the task

of deploying and moving formations of robots to maintain communications by main-

taining line-of-sight. We will insist on line-of-sight after considering more general

communications models. Two basic approaches will be investigated: viewing this is

a formation-control problem, and viewing this as a pursuer-evader problem where

we must keep a potentially adversarial target within our visibility region. Along the

way, we will see some connections with research in active sensor network deployment

and introduce Steiner trees as a tool from graph theory applied to our problem of

finding formations.

1.2.1 Localization

Practical estimation tasks require us to deal with nonlinearities that are inherent

in process dynamics and observation models. Common solutions to deal with such

nonlinear state transition and measurement models require linearization of at least

some portion of the problem. The concern is that linearization can lead to inconsis-

tent error handling, removes the ability to directly represent ambiguous confidence

4



sets, and cannot be applied when the underlying state is unobservable. As a targeted

example, consider our use of range-only measurements as seen in Figure 1. The po-

sition of the target relative to the observer can be anywhere in an annulus around

the observer, but using a linearized technique requires us to choose one particular

position to linearize around. Any such position will necessitate throwing away most

of the potential target locations, and so without good initialization, the filter will

quickly become inconsistent.Setup, Prior Work: Linearized Filtering

- Standard Linearized 
Techniques:

- EKF

- UKF

- Will fail for Range-only 
measurements without good 
initialization

Parrot: Sensor 
network for ranging 

information

Sunday, November 22, 2009

Figure 1: With only range information, a target could be located anywhere within an

annulus around the observer. However, using a linearized technique would force us to

choose a particular location to linearize about, discarding most of the potential target

locations and quickly leading to inconsistencies unless we have good initialization.

Many techniques have been proposed to either avoid or delay linearization. Some

of the most popular in recent years are sampling-based approaches such as Monte

Carlo Localization [28]. They rely on estimating a probability distribution for the

system state, but instead of maintaining a simple parameterized distribution, which
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may require linearization, the distribution is discretely sampled to allow for arbi-

trary densities. Further refinements have allowed the fusion of sampled representa-

tions with standard parameterized ones to solve more challenging problems such as

simultaneous localization and mapping tasks [71].

The opposite approach is to delay linearization by simply storing all measurement

and state updates until a later time when the larger data base allows for the use

of consistency to improve the estimates. The GraphSLAM algorithm [101] is an

example of such a technique; after several measurements have been taken, an estimate

is formed by iteratively linearizing the state propagation and measurement equations

and solving a least squares problem to maximize agreement with measurements and

problem dynamics. Several different variations on this theme have been used [27, 49].

The disadvantage of such delayed measurement integration is that best estimates

are not available during data acquisition, making it impossible to knowledgeably

improve the collection process. As a compromise, the Sparse Extended Information

Filter [101] has been proposed to proactively incorporate each measurement as it is

taken while being able to explicitly manage the information links between different

entities formed through measurements and motion. The final picture allows for

intuitive identification of how features are related but still requires linearization.

For many applications, such linearization may prove to be acceptable, but not for

our current application of localization using range-only measurements. In the most

general form of this problem, there is no sense of direction and so any attempt to

linearize a range measurement will likely result in crippling inconsistency after further

measurements and motion. Compelling sampling-based estimation approaches to

this problem have been demonstrated [23], but such implementations may require

large numbers of samples making them computationally unattractive.

An important evolution in the methodology of Information-type filters was pre-

sented in [38]. The central idea is a nonlinear embedding, sometimes referred to

as an over-parameterization, that maps the system states into a extended state
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space in a way such that the measurement equations become linear. The result-

ing framework lends itself to the application of the methodology introduced in [88]

for the field of dynamic estimation under bounded noise. Successful application of

such set-based estimation techniques to static localization tasks involving range-only

measurements and relative bearing measurements are demonstrated in [11]. While

set-based techniques have been investigated by other researchers [4, 65, 39, 90], the

over-parameterization allows exact representations in the extended state space.

This over-parameterization technique does have other presentations in the lit-

erature. In [59], the Non-Minimal-State Kalman Filter is presented as a tool very

similar to the extended state space. They continue to deal with Gaussian distribu-

tions, whereas this work adopts set-based conventions, but the basic idea of aug-

menting the state with extra nonlinear terms to make the system equations linear

remains. In a related vein, by considering the underlying partial dynamic equations

governing the evolution of probability distributions in dynamic systems, In [18], a

class of Kalman-like filters are derived that use different sufficient statistics than the

traditional mean and covariance in order to capture more exotic distributions that

arise under nonlinear systems. The sufficient statistics that are found end up looking

remarkably similar to the over-parameterized or augmented-state filters presented in

this work and the others above.

In a system where we have control over some of the sources of estimation, it

is natural to ask how we can apply control actions to maximize the acquisition of

information about the unknown states. In [35], the mutual information gain of

a particular control action was used as a metric to determine the desirability of

that action. Maximizing this metric at each step resulted in rapid shrinking of

the estimation uncertainty. Moreover, when the estimate state was shared between

multiple sensing agents, the application of this local, greedy control action to each

agent resulted in cooperative behavior with no explicit coordination. When it came

time for each agent to make a decision, it would naturally try to move to provide
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information in directions that other agents were not able to.

1.2.2 Communications-Maintenance

Though wireless communications are ubiquitous in mobile robot applications, any

radio communications methodology presents a host of difficulties that are rarely ad-

dressed and poorly understood. Though we care only about information transmis-

sion, the transmission capacity of a link is fundamentally tied to the strength of its

wireless signal, and this signal strength is in turn affected by a variety of effects span-

ning the conceptually simple, such as range-based power loss, to the truly bizarre,

such as multi-path cancellation and boosting [92]. The result is that signal strength

can change dramatically when the receivers are moved by only several centimeters

and practitioners prefer to understand such effects using statistical models such as

Rayleigh fading [78]. It is important to note that these models are most applicable

when the sender and receiver do not have direct line-of-sight. In the robotics com-

munity, usually these small-scale effects are abstracted away, but [63] devises a way

to sample the Rayleigh distribution around a point of interest by driving a receiver

through defined patterns. In [62], the problem is shifted slightly by working with

a fixed trajectory but modulating the velocity along this trajectory to slow down

during periods where the signal strength is strong in order to pass along information

that was buffered during periods where the signal strength was too poor to allow

meaningful reports.

One common theme is to consider communications as an unknown function,

dependent on the positions of the agents involved, that must be optimized but can

only be sampled. We can consider a generic example of representing this, given by

[31], where an indicator function R(i, j) ∈ {0, 1} signifies if there is a communications

route between agents i and j and Q(i, j) measures the quality of communication

between them. The total communications utility of a deployment of robots is found
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by:

U =
∑
i

∑
j

[αR(i, j)Q(i, j)− β¬R(i, j)]

and so the quality depends on the sum of the qualities of all point-to-point routes

but is penalized whenever robots are unable to communicate. This problem is hard

to optimize explicitly because the decision of whether a route exists and the quality

of the route can depend on the states of agents deep within the network, leading to

the need to search for solutions combinatorially. In [31], they appeal to research on

distributed constraint optimization [64, 69] and auction-based techniques.

In [22], rather than treating the communications as a complete black-box, they

assume a model where unknown point sources create localized signal degradation.

In order to optimize the communications, they perform local function optimization

based on Extremum-Seeking control [2], a technique that provides a control the-

ory foundation for the question of how to choose controls to optimize an unknown

function. They were specifically considering implementations on UAVs, so the explo-

ration of functional values near a set point was accomplished automatically by the

necessary orbiting that airplanes must perform for station-keeping, but they recog-

nize that for ground robot applications, such constant motion could lead to excessive

power drain.

Measuring an unknown spatial function is a common application for sensor net-

works. Their utility for the First Responder scenario has already been identified [47].

Though the literature on sensor networks is vast, we will focus on the direction of

leveraging mobility to improve the function estimation. An early technique involved

agents deploying to optimally cover a known function by balancing the integral of the

function over the Voronoi region enclosing the robot [17]. Though the details were

complicated, the concept was simple: in regions where the function was strong, more

robots would be deployed to cover since the integral would be higher even though

each robot’s zone of influence (points closer to that robot than any other robot) was
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smaller. Such a technique was used experimentally in [85] to cause small Swarm-

Bots to converge around a light source. In [84], the previous solution was recognized

to be suboptimal if the function was multi-modal, but a “Ladybug” controller was

proposed where control directions orthogonal to the desired direction were randomly

applied in order to facilitate exploration of the functional space. This technique

brings to mind the Extremum-Seeking controller of [2] with oscillatory perturba-

tions applied by [22]. This controller could also address the problem of covering

unknown functions, and this line of research was made more rigorous in [86], where

the problem was cast as one of finding the parameters of a functional approximation

using adaptive control while simultaneously optimizing the coverage.

Other solutions to the communication optimization problem tended towards even

simpler communications models but applied to larger networks. A particular heuris-

tic was one of characterizing shorter communication links as inherently better, such

as that applied in [81], where each robot would move to the average location of all of

its neighbors in an attempt to equalize all of the communication distances. In [33], a

similar approach was used but the neighbors were weighted according to their com-

munications capacity. Such a technique is very reminiscent of the formation control

problem of rendezvous, where a team of robots is trying to all move to a single lo-

cation while maintaining distance-based communication links with each other. The

best results were obtained using a local controller that drove to circumcenter of all

neighboring robots [16, 61]. These results lead to discussion on formation control

involving making formal statements about global controllers using local controllers

and understanding of the graph relationship of the robots to each other, but we will

return to this later.

One particularly notable paper considers the problem of fault-tolerant communi-

cations networks [8] by requiring that the graph describing the available communi-

cations between agents be biconnected: that is, it remains connected even if a single

vertex is removed. Their approach identifies which sets of agents have a biconnected
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communications graph already and then shifts these blocks towards each other in

order to form new connections and create biconnectivity of the full system.

Another interesting direction is to consider the communications problem not as

one of positioning but as one of routing, and in particular using mobility not to

find better places to communicate from but to actually treat the robots as “active

packets” that seek to drive from source to destination or perform shorter trips that

pass the packets between several mobile robots [60]. In [7], this was implemented

on a large scale by placing wireless communication nodes on city buses and then

routing messages between distant pieces of wireless infrastructure by buffering them

on buses whose routes passed through both regions.

An even further simplification is to consider the problem over discretized posi-

tions. In [50], a very large team of robots, on the order of one hundred, is used to

first map and then cover an environment while maintaining communications. Their

communication model is to require visibility and limiting the range between agents,

and they accomplish this by enumerating all possible robot locations as positions

along the Generalized Voronoi Graph (GVG) of the environment. The GVG is a 1-

dimensional set of points in a planar environment that are equal distance from all the

walls, as in Figure 2. It is readily computed for 2D and 3D environments [14, 74, 103]

and it provides a convenient topological representation of the environment that is

useful for a motion planning technique known as retraction planning [55]. With the

GVG computed and broken up into equally-spaced “slots”, each possible robot slot

has its visibility and distance checked to all others, and the robots are deployed only

in slots which are connected.

Such a discretization was also used in [100] in order to allow for the problem of

communications-maintenance to be cast as a dynamic program. The authors delib-

erately provide no communications model but only assume that one could be applied

to decide if communication were possible between two points of the discretization.

They then solve two problems: first to move robots to allow an agent to remain
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Figure 2: An example of the Generalized Voronoi Graph (GVG) for an environment. It is

a 1-dimensional graph consisting of points whose set of closest wall points is size two or

larger. The result provides a convenient topological representation of the space.

in communication at all times, and second to plan trajectories that maximize the

escape time for an agent to leave communications, effectively bounding against the

worst possible agent motions. What they have developed is essentially an approach

for solving the pursuer-evader problem with a generic connectivity model; we will

return to pursuer-evader problems later.

As we found by considering realistic radio models and applications involving

the optimization of unknown communication-quality functions, communicating is

difficult. We are best served by using a simple communications model because re-

alistic models require a lot of tuning and sampling. Of the models typically used,

range-based and visibility-based, only visibility-based is appropriate for the sorts

of environments we are interested in since it is non-line-of-sight effects that create

the problem. All of the research involving range-based models is taking place in

open-field environments where the researchers can conveniently ignore this fact.
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Formation Control

As was hinted at before, in recent years, there has been a great deal of research

centered around developing controllers for groups of agents where inter-agent rela-

tionships form an explicit basis for action. The general theme of the research is

to model the inter-agent relationships as edges in a graph structure describing the

group and then make statements about stability of actions of the ensemble where

control actions are chosen locally by considering only an agent’s direct neighbors.

This methodical transition from local-to-global in the context of proving global

properties from local relationships had some genesis in the study of coupled non-

linear oscillators [54] (“Kuramoto oscillators”) and the observation that arbitrary

interconnections between oscillators enable them to synchronize phase provided that

the graph structure describing the connections is connected (see for example [45]).

The consideration of phase led naturally to consideration of the heading of moving

agents and so attention turned to “flocking” behaviors of agents seeking to synchro-

nize their heading and velocity [44]. Further work established the properties of such

control schemes for fixed and dynamic topologies [99, 97, 98] and for 3D heading

control [70]. The fundamental message of this work is that formation stability can

be obtained if each agent looks at the velocities of its neighbors and then steadily

modifies its velocity to match theirs; the use of leaders that dictate the heading and

velocity of the formation is natural since they are simply agents that do not employ

a feedback law.

Though the provable transition from local controls to global properties is useful,

it is desirable to make statements about goals more sophisticated than synchronizing

headings. From this desire came the idea of what we shall refer to as network graph

control, or control arising from optimization or maintenance of a property expressed

over a graph structure. This is analogous to a traditional potential field or Lyapunov

control approach but where the controls applied are local and we make use of the

established theoretical machinery in order to make statements about their effect on
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the global property.

The standard setup is as follows: consider a set of robot agents, {Vi} ⊂ V , a

mapping, m : V → R2, that indicates where each agent is located in space, and

then a rule that dictates whom each agent may interact with. A typical rule is a

distance-based one:

Aij =

 1 ‖m(Vi)−m(Vj)‖ ≤ R

0 ‖m(Vi)−m(Vj)‖ > R

where Aij indicates the adjacency of robot i to robot j, with 1 meaning adjacent. R

is an interaction radius. The interaction rule leads to an abstract graph structure,

G = (V,E), with interactions creating edges (E) between nodes (V ) denoting agents.

A generic control strategy would be to first define some quantity cG(mk) based

on the graph structure and the current embedding mk at time k. Then control

actions uk will modify mk (and perhaps the structure) and we seek to either opti-

mize cG (maxuk
cG(mk+1(uk))) or constrain it (choose uk s.t. cG(mk+1(uk)) ≥ 0).

All of the following references use different choices of cG or multiple versions of cG

simultaneously.

One option is to control the connectivity of the graph structure by considering

powers of the adjacency matrix formed from the Aij entries describing the interaction

of agents. If the entries of Ak are all non-zero, then any two agents in the system

interact through k or less intermediary interactions. Put another way, any two agents

are connected through k or less hops. In this case, define cG = AK and choose actions

that constrain Ak � 0 (greater than 0 in all entries). In [106], the authors accomplish

this approach by smoothing out the adjacency definitions with sigmoids to make the

terms differentiable and then find control directions that prevent the system from

losing connectivity.

Another option is to control the connectivity of the graph structure by controlling

the eigenvalues of the graph Laplacian (specifically the 2nd-smallest eigenvalue λ2,

also known as the Fiedler value). The Graph Laplacian is defined as L = D − A,

where D is a diagonal matrix of the row-sums of A. When λ2 = 0, the graph is
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Figure 3: An interaction function based on distance between two agents.

not connected, and the magnitude of λ2 indicates the connectedness of the graph

in terms of number of connections and their distribution (bottlenecks reduce the

Fiedler value, for example). However, if the adjacency matrix takes on values on

a continuum between 0 and 1, then we have a weighted graph Laplacian, and then

Fielder value λ2(L) now expresses not only the degree of connectivity of the graph

but also the aggregate quality of the connection [32]. Such an approach allows

for interaction quality to be incorporated; this could be useful for expressing that

a certain radio communication channel has more throughput when the agents are

closer together (value is 1) but becomes less useful as their distance increases, until

no communication is possible beyond a certain cutoff radius (value is 0). With such a

quality indication in place, we can ask questions about the quality of communication

for the entire network of communication channels.

An example of an interaction function leading to a weighted Laplacian is seen in

Fig. 3, used in [20]. With such a weighted function dictating the entries of the adja-

cency matrix, as λ2 increases, either the amount of interconnectedness increases or

the individual connections become higher quality. In [20], λ2 is found as a continuous

function of the entries of L (and hence the relative positions of the agents) and so

is maximized directly with the added twist of being able to calculate the derivatives
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of the state-dependent λ2 using distributed consensus [10].

An alternate formulation of a control based on maximizing λ2 is in [48] where the

authors use semi-definite programming at discrete intervals to solve for agent position

updates to maximize the state-dependent λ2. There is an important connection here

with sensor networks because [48] is addressing the problem of placing the nodes of

a sensor network to enhance the total communications capabilities by increasing the

connectivity.

In [107], the authors take a middle approach: they are interested in λ2 but

only to make sure it is non-zero. To this end, they define the quantity det(P TLP ),

yielding the product of eigenvalues
∏N

i=2 λi(L). The first-smallest eigenvalue of L is

always zero and corresponds to the eigenvector of all ones, 1; because of this, the

Laplacian has this spectral component removed by choosing P such that the columns

are orthogonal to 1 and each other. Because λ2 = 0 implies that det(P TLP ) = 0,

they seek to minimize the potential function φc = 1/det(P TLP )a using a simple

gradient control law; in this way they indirectly maximize λ2 while ensuring that λ2

never goes to zero because otherwise the potential function would go to infinity.

In [93], the precursor work to this thesis, a combination of these approaches

is used, specifically using the criteria of both [20] and [106], maximizing λ2 while

constraining that the system remain connected. It was necessary to use both because

loss of connection was observed using only a λ2-maximizing controller in the context

considered. The problem was to maintain a connected network between two leader

agents, one that moves and one that stays in a fixed location. With the pure gradient

control, the agents would prefer to just clump around the fixed node and make fully

connected network, only to realize that the moving node was breaking connection

after it was already too late to react. The problems were further complicated since

the formulation was taking place inside a maze-like environment and the walls were

providing further motion constraints. However, there was no explicit planning, and

the greedy approach quickly failed when the agents would get stuck in local minima
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arising from the wall constraints. Such a sequence is seen in Fig. 4.

Figure 4: Six snapshots of the robot team motion explored in [93], starting from the initial

configuration in the upper-left panel and proceeding from left-to-right in chronological

order. Note that in panels 4 and 5, connectivity was lost because of the robots getting

stuck against walls. The control is a combination of the λ2-maximizing controller of [20]

and the k-connectivity maintenance of [106], with additional motion constraints from the

walls.

As a maturation of their previous work in [106, 107], the authors of [108] en-

visioned an explicit topology-controlled system. Given a graph that indicates the

desired interactions between agents, each pairwise interaction is given a potential

function based on the distance between the two agents:

φij(rij) =
1

‖rij‖2 +
1

R2 − ‖rij‖2
and controls are chosen to follow the negative gradient of the total potential summed

over all edges of the graph: φ =
∑

(i,j)∈E φij. However, the key component is the
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ability for the system to modify its own topology and ensure connectivity. From the

potential above, the value R places a maximum allowable distance between agents,

but the authors define a new radius ρ < R where new links are created between

agents if they happen to get closer than ρ. Any links with length between ρ and

R are candidates for deletion, and the network of agents uses an online auction

procedure to decide one-by-one which links are safe to delete. The difference in

distance between when links are added and when they are considered dead provides

a hysteresis that prevents links from being continuously added and then negotiated

away. The total control strategy splits nicely between two layers: a layer that chooses

actions to maintain the current graph structure, and a layer that negotiates with the

other agents to modify the graph structure.

Most importantly, this scheme was shown to work in experiments [68], overcom-

ing the challenges of implementing a distributed auction with real communications

delays.

The formation control literature forms an important foundation for addressing

any problem involving control of teams of robots, but as a basis for implementing

communication controls, there are two very fundamental pieces missing. First of all,

the interaction models are entirely radial-based, and there is no attempt to expand

beyond this simplification. A simple modification would be to replace the interaction

function of 3 with one based on visibility, but this function does not enjoy all the same

benefits of differentiability or even continuity. Second of all, most of the emphasis is

on obtaining theoretical results of stability and similar qualities, and considerations

of the effects of obstacles, other than the robots themselves, are not addressed. We

have attempted [93] to rectify this deficiency but obviously an approach consisting

of only local controls cannot always solve a global problem. We need to directly

address the question of choosing motions to maintain visibility and also incorporate

techniques of robot motion planning to handle obstacles.
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Pursuit-Evasion and Visual Tracking

Planning robot motions to ensure visibility between different agents has close con-

nections to the topic of pursuit-evasion problems [1, 37, 43, 95]. In such problems,

a pursuer and evader are placed in a complex environment, often with velocity con-

straints, and the question is asked: Can the evader escape from line-of-sight of the

pursuer? Different researchers pose the problem in different ways; sometimes the de-

cision problem is tackled, other times constructive paths are desired, and sometimes

we are more interested in what the pursuer must do to avoid escape.

One example of the decidability problem is presented in [72]. The authors con-

sider a pursuer that is required to keep visibility to the evader and keep its distance

within given lower and upper bounds. The problem is elegantly treated as one of

trying to move a variable-length rod through a polygonal environment, a specializa-

tion of the classic Piano Movers’ Problem. Solution techniques for the fixed-length

rod problem were first presented in [87], and were integrated into the larger picture

of robotic motion planning in [55]. Their techniques begin by representing the con-

figuration space as the (x, y) position of one end together with the θ angle of the

rod. Environment obstacles and walls create constraints on the configuration space,

limiting the available angles when the rod is in certain positions or barring the po-

sition altogether if it lies within an obstacle. The key realization was that there

are certain curve boundaries within the (x, y)-space where the angular constraints

appear and disappear; these critical curves emanate from environment polygon seg-

ments and vertices in different combinations and were all classified by type. These

curves separate the environment into non-critical regions where the topology of the

boundary constraints remains fixed. By overlaying all of the critical curves of an

environment and splitting it into all non-critical regions, the configuration space can

be discretized in terms of these regions, and a graph can be constructed where the

nodes are the pieces of configuration space and edges join pieces where it is possible

for the fixed-length rod to move from one configuration to the other smoothly. The
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pursuer-evader problem is then reduced to determining if there is a “dead-end” in

this region graph.

The authors of [72] were then able to fold in the concept of a variable-length

rod by making the observation that the region graph only changes at a finite set

of rod lengths corresponding to the times when new critical curves appeared and

disappeared. By finding the region graphs for lengths between each of these special

lengths, all of the graphs can be tied together into one larger graph that takes

into account not only position and orientation, but also rod length. The decidability

problem is then similarly answered by searching for “dead-ends” in this larger graph.

The authors then go on to relate velocity constraints on the pursuer/evader to limits

on the rate of angular change of the rod and tie these in to the question of escapability.

In [56], cases of evaders with known and unknown trajectories are covered. For

known evader trajectories, the environment is discretized and the sequence of moves

that the pursuer must take to maintain visibility is found using dynamic program-

ming. For unknown trajectories, the authors assume that the evader’s motion at

least has a probabilistic model. At each step, the pursuer seeks to maximize the

probability that it will be able to see the evader at the next time step. An example

is given of a simple bounded velocity model, where the motion model is a probability

function of uniform density over a disc centered at the current evader position. The

pursuer maximizes the probability of future detection by moving to maximize the

area of this disc that is covered by its sensor visibility. We already saw that [100]

was another version of this dynamic programming approach that considered a more

generic communications-maintenance task.

However, this brought a new paradigm into use: working directly with the

visibility-constrained sensor footprint of the observer. In [56] this footprint was

used to cover as much of the evader’s potential motion as possible, but the authors

suggested as future research the use of escape time as a possible metric to work

with. This concept was explored more fully in [34]. The escape time of the evader is
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a measure of the shortest amount of time it would take the evader to leave the sensor

footprint of the observer. For a constant-speed evader, this is usually interpreted as

the shortest distance to a gap in the sensor footprint. In [34], the authors derive

a simple derivative for this shortest distance and then use a gradient controller to

continually increase the escape distance for the evader at each time step.

The gradient control of escape time is explored in more depth in [6]. The authors

note that gaps in the sensor footprint always originate from a vertex in the environ-

ment, and that when the shortest escape path to a gap is found, the motion with

respect to its corresponding vertex is of primary importance. There are two com-

peting goals at play: by “swinging around” the vertex, the shortest path length is

increased, but by moving closer to the vertex, any future “swinging” motions will in-

crease the path length faster. The key contribution was a more carefully constructed

controller that balances short-term payoffs of path length increases with long-term

payoffs of better path length increases.

Finally, [9] is a culmination of the investigation of the dynamics of a pursuer and

evader maneuvering around a corner. They provide a detailed decomposition of the

space around a single corner and provide optimal strategies for both the pursuer

and evader for each region and conclude that there is only one configuration where

the evader can definitely escape. Though the problem is completely decided for a

single corner, they recognize that doing such an analysis for multiple corners remains

an open problem. However, researchers have already started looking to implement

similar escape time techniques in 3D [5].

A random-sampling approach to the gradient schemes was presented in [73]. At

each step, a number of candidate moves for the observer are generated according to a

suitable motion model. For each of these moves, the new sensor footprints are found

and the minimum escape time of the evader is calculated for each one. The candidate

move with the highest such escape time is chosen for execution. Their approach was

demonstrated on fairly large-scale environments with thousands of vertices but they
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managed real-time performance thanks to a number of pre-computation optimiza-

tions. In particular, they discretized the environment with a very fine grid and found

the visibility polygons from each of these positions. However, they laid a larger grid

over the environment, and only the environment features within the larger bin were

used for the visibility polygon computation at each point, in order to reduce the

complexity. Once each sample was generated, its corresponding visibility polygon

was then simply found from the lookup table of pre-computed polygons.

Another reactive approach was suggested by [3], where they build upon their

behavior-based robotic control architecture by adding behaviors that allow the robot

to drive towards its goal only until it is about to break visibility with another agent.

Such a technique will suffer the local minima problems of [93] because there is look-

ahead capability to put agents in places that will benefit future visibility.

The decidability of the pursuer-evader problem was once again tackled in [72]

but with the goal of finding complexity results rather than an explicit algorithm

for decidability. The authors constructed a coarse model of the visibility within the

region and then reduced the problem of deciding if there was a path that the pursuer

could use to prevent evader escape into a bottleneck traveling salesman problem, which

is known to be NP-complete.

Their environment decomposition is especially relevant to the topics of this thesis.

They used a modified aspect decomposition of the environment, taken from literature

on aspect graphs for object recognition [76]. What is striking is that the curves

introduced to partition the environment are exactly those used as some of the critical

curves for splitting up the configuration space of the fixed-rod motion planning

problem [55]. In particular, both the type 3 and type 4 curves are used. In fact,

the resulting partition is what would be used when solving a problem for the motion

planning of a rod that had unbounded length. The authors of [72] make one addition

by including the segments connecting the bitangent vertices of the type 3 curves.

With the partition in hand, the visibility problem is discretized by connecting
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regions that share mutual visibility. Further discussion of this topic is presented later

in this thesis.

The resulting decomposition has a very important topological connection, espe-

cially in light of the research done on sensor footprints and escape distances to gaps.

Every region in the aspect decomposition represents a fixed topology of obstacles and

gaps in the sensor footprint. Perhaps the research that most exemplifies this line of

thought is that on Gap-Navigation Trees [102]. The authors imagine a sensor that

does a ranging sweep of the surrounding area and only reports on discontinuities in

range: what is elsewhere considered gaps in the sensor footprint. They then go on to

argue that exploration and mapping of the environment can be done entirely in terms

of the topological description, i.e. number and ordering, of these gaps. Topological

shifts in the gap sensing occur when gaps join and split, and these joins and splits

occur precisely when the observer crosses aspect lines in the environment. Thus each

region in the aspect decomposition occupies the same position in the Gap-Navigation

Tree.

A related problem is that of the Art Gallery. Whereas in our case we are interested

in placing robots to maintain mutual visibility and keep known targets in sight, the

Art Gallery problem is generally a problem of placing guards in the environment to

ensure that any point of the environment is visible to at least one guard. Further

variants specify the nature of the environment and whether the guards are required

to be able to see each other. The celebrated Art Gallery Theorem [15] says that

for a polygonal environment with n vertices, then bn/3c guards are sufficient and

sometimes necessary to cover the environment. For orthogonal environments, this

bound can be reduced to bn/4c [46]. It is interesting to consider that an art gallery

problem is like an optimal sensor network deployment problem where the sensor

footprint is limited by visibility.
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In the context of deploying robots while maintaining visibility, [30] is an impor-

tant development. They take simple polygonal environments and devise a decen-

tralized control scheme that drives agents to cover individual pieces of a star-shaped

decomposition while maintaining line-of-sight, all without requiring the environment

to be specified beforehand. The procedure relies on the inherent tree-topology of

the simple environment, however, and they make no attempts to generalize to en-

vironments with holes. It would be possible to create tree-like decompositions of

environments with holes if there were a mechanism for splitting the region with di-

agonals, but this raises questions of how to do this optimally. It may be possible to

do this with a greedy online approach where splits are created automatically as soon

as robots discover that they have closed a topological loop.

However, fundamentally, we do not have an Art Gallery problem because our

target set is limited and mobile. Although a full Art Gallery deployment would solve

the problem, a solution requiring less observers should be possible. For example, the

Maze environment, seen in Figure 40 of Chapter 4, has 82 vertices, leading to a need

for up to 27 robots to cover the visibility for the full environment according to the Art

Gallery Theorem [15]. However, using the decomposition of [30] and calculating the

mutual visibility graph, as we will discuss in Chapter 3, we find that the graph has

a diameter of 6, implying that we can conservatively connect any two points in the

environment with 4 intermediary robots. Since we are only interested in retaining

visibility to a single agent at a time, using the Art Gallery deployment is too costly

in general.

Though pursuit-evasion techniques and visual tracking have provided a more di-

rected solution to the task of maintaining visibility, there are still deficiencies. The

chief problem is that all of the presented research is concerned with keeping a single

target in sight of a single robot, but does not evaluate the capabilities of these ap-

proaches to handle the case when this robot is itself being tracked by another robot

or if we have even longer chains of tracking. Moreover, most of these approaches are
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still ultimately reactive, only performing next-best-move considerations or actions in

a limited scope to deal with the current corner. Some, such as [100] begin to address

the planning problem by considering the entire space but require additional modi-

fications to handle problems like requiring that there be a chain of communications

from the agent back to the base station rather than just ensuring that at least one

robot can see the agent. However, the decompositions of [72] seem to offer a way to

do both: use a discretization of the environment that is meaningful for visibility yet

coarse enough to perform exhaustive search on.

1.2.3 Steiner Trees

Here we must introduce Steiner trees, a tool which will prove useful for finding

visibility-maintaining formations in the discretized environment. From graph theory,

a tree is any graph where there is only one path from any vertex to another, or

equivalently a graph that has no cycles. Given a graph G = (V,E) of vertices V

and edges E connecting the vertices, and a set of terminals K ⊂ V , then a Steiner

tree T is any subgraph of G that is a tree and whose vertices contain K. Usually we

are interested in minimizing some quantity, so a minimal Steiner tree is one with a

minimal edge weight sum. Any vertex of T that is not part of the terminal set K is

called a Steiner vertex and can be thought of as helping to provide a link between

the terminals of K. In this way we can think of Steiner tree as an extension of the

well-known concept of a shortest path in a graph; in fact, the shortest path is the

minimal Steiner tree for a terminal set of size two. Steiner trees are also used to

solve the problem of how to draw the minimal-length lines to connect a set of points

in the plane. The problem is referred to as a Euclidean, rectilinear, or octilinear

Steiner tree if the lines are unconstrained, constrained to ninety-degree increments,

or constrained to forty-five degree increments, respectively; these are also referred to

as geometric Steiner tree problems. Excellent overviews of the Steiner tree problem

and discussions of the algorithms and approximations for solving all of these versions
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of the problem are available in [42, 80]. We will discuss a few developments here.

The problem is known to be NP-complete. This may be somewhat surprising

considering that the shortest path can be found efficiently, but since a tree can have

a great variety of topologies, the combinatorial nature of the Steiner tree problem

is clear. The Dreyfus-Wagner algorithm [24] is one technique for find the optimal

Steiner tree and is based on dynamic programming. We will make use of this algo-

rithm later, and it will be presented more fully in Chapter 3.

Many approximate algorithms have been developed to solve the problem. One

early algorithm [96] builds a tree by starting with the shortest path between two

terminals and then adding in the shortest path from other terminals one-by-one.

Another approach [51] computes the distance network over the terminals: a complete

graph where the length of each edge corresponds to the length of the shortest path

between the corresponding terminals, essentially a compression of the geometry of

the original graph into a graph that contains only information about the terminals

of interest. Then a Minimum-Spanning Tree [52, 77] is computed over this network

and the corresponding edges expanded back into the original graph and pruned to

create a tree. A variation of this [66] uses a reduced distance network where we

do not included edges in the network between terminals that are far apart in the

original graph since they will not end up being connected in the final graph anyways.

A more sophisticated approach similar to the full dynamic programming of [24] is

found in [82] and uses hypergraphs, or graphs were edges are allowed to be between

more than two vertices, in order to build up larger and larger terminal sets up until

a fixed precision. In [79], randomization is used to speed up the process.

Some variations of the Steiner tree problem have been proposed and explored.

For instance, the degree of a graph is the maximum number of edges connected to a

single vertex, and finding the Steiner tree with minimum degree is explored in [29].

For solving the geometric versions, the problem of building a tree in the presence

of obstacles was exhibited in [26]. Interestingly, it relies on performing a triangular
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decomposition of the space in order to help discretize the problem. Another early

geometric algorithm is that of Melzak [67]. A notable feature is that it requires the

topology to be specified beforehand and then the optimal tree for this topology can

be quickly found. In fact, it can be found in linear time [41]. A similar version is also

available for using dynamic programming to find fixed-topology Steiner trees over

graphs [104] but the authors were pursuing a problem involving finding minimum-

delay routes and added enough extra features to make their algorithm exponential.

We will find later that the basic version of this problem has polynomial complexity.

There are a few classes of Steiner tree problems that are notably absent but

will be useful for solving our deployment task. One variation is finding a fixed-size

Steiner tree, where the number of vertices to be used is known. There is also no

research into problems involving changing Steiner trees or solving for Steiner trees

that are minimal with respect to movement from a prior tree. Both of these will be

addressed by this thesis.

1.3 Approach

Our objective is to localize and track an agent in a complex but known environment

while maintaining communications with a fixed base station. We split this problem

into two parts: localization and communication.

For localizing the agent, we are limited to using range-only measurements and are

unable to use memoryless approaches such as triangulation because we are dealing

with limited number of sensors. We will make use of the over-parameterization

techniques of [38] to modify the measurement equations to be linear using a new set of

coordinates. This coordinate transformation has geometric significance and allows us

to describe the system states as belonging to a coordinate manifold embedded within

a higher-dimensional space of our own construction. By classifying measurement

errors as hard-bounded, our measurement and update equations take on the character
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of operations with ellipsoids. As we add new sensing robots, it is simple to fuse the

measurement contributions of multiple robots into a shared estimate.

Our contribution is in generating control directions based on the techniques of [35]

but applied to this new filter. Since the representation of our estimates is ellipsoids

in a linear space, we make analogies to Gaussian techniques and find simple gradient

control laws that allow each independent agent to generate motion directions that will

cause its future measurements to shrink the estimate ellipsoid as quickly as possible.

Each agent can do this independently and achieve cooperation towards reducing

estimate uncertainty but without performing explicit coordination to accomplish

this.

For the communication problem, we begin by assuming that we have a map avail-

able with which to make visibility computations. We will use the decomposition of

[72] to produce a discretization of the problem suited to expressions of visibility. We

know that the complexity of this decomposition is bounded [91] and have establishd

algorithms to compute it [13, 21, 25]. A mutual visibility graph is constructed of-

fline and allows us to quickly establish whether two robots can see each other by

determining if their current cell locations are mutually visible within the environ-

ment. Although this is a conservative calculation of visibility, it is a well-motivated

discretization that provides a platform for building more sophisticated computations.

We can easily determine deployment locations for robots to form visibility chains

by finding shortest paths within the mutual visibility graph. If we know which cells

the independent agent and base station are located within, we can find the smallest

set of cells that provides a visibility chain between them. Robots are assigned target

cells, and we find paths for each robot that goes from their current location to the

center of their target cell. We can extend this problem from maintaining visibility

to a single target and instead consider tracking multiple targets by finding a Steiner

trees to connect them.

We identify two unsolved problems of interest with regards to Steiner trees: the
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first is finding a Steiner tree with a specified number of vertices (fixed-size Steiner

tree), and the second is finding a Steiner tree that is minimal with respect to the

movement of the vertices from an earlier placement (minimal movement Steiner

tree). Both of these address the practical problem of finding formations for deploying

a team of robots by allowing us to generate a solution that uses all of the available

robots and also move the formation as the target locations move without having to

recompute the Steiner tree. We solve these problems using a dynamic programming

approach similar to [100, 104].

With this, we have the machinery to generate and update robot formations based

on network visibility and also incorporated a discretization that allows us to handle

topological complexities in the creation of movement plans. Given the formations,

we control the robots to travel to their goals while simultaneously avoiding collisions

and maintaining visibility using the multi-robot motion planning technique of path

coordination [57, 89]. First independent paths are planned for each robot using

geodesics [55] computed using the vertex-visibility graph of the environment [58, 75].

Then, these paths are refined by dividing them into segments belonging to individual

visibility cells or cell boundaries. By identifying sections in the coordination diagram

between two paths where robots collide or lose visibility, we create obstacles in

the joint path space and then plan a path there to avoid all regions that violate

constraints. This translates into a scheduled execution of the original paths that

respects collisions and maintains visibility.

1.4 Thesis Contributions

This thesis makes several novel contributions to solve the posed problem of localizing

and maintaining communications with an independent agent.

Though the use of over-parameterization to solve nonlinear estimation problem

has been established, we have, together with the prior work of [36, 94], extended
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previous work on control for localization using linear estimators [35] and provided

experimental results that prove the approach.

Building upon the visibility-oriented decomposition of [72], we have applied

Steiner trees to the problem of generating visibility-maintaining formations for the

first time, guaranteeing to use a minimum number of robots for a conservative visi-

bility model. In addition, we have framed two new problems related to Steiner trees:

fixed-size Steiner trees and minimal movement Steiner trees. We present a dynamic

programming algorithm to approximate solutions to both.

The coordination of multiple robots to avoid collisions by sequencing the execu-

tion of their individually-planned paths is an established technique, but including

visibility constraints is a new consideration made possible by our use of the environ-

ment decomposition.

1.5 Thesis Outline

After this introduction, we will discuss the work in three parts, and present our

conclusions. The division is as follows:

Chapter 2 discusses our solution of the localization problem. The nonlinear

estimation framework is presented and specialized for the problem of range-only

estimation, and the estimation equations are given and demonstrated in both sim-

ulation and experiment. The control methodology is discussed and applied to the

nonlinear framework, and its efficacy is demonstrated with experiment.

Chapter 3 is devoted to the polygonal decomposition of the environment and

computing Steiner trees in order to find robot deployments. We discuss the fixed-size

Steiner tree and minimal movement Steiner tree problems and present the algorithm

to solve them approximately.

Chapter 4 presents the realization of the deployments from chapter 3 and other

implementation details. We investigate the complexities of our algorithms, both

30



theoretic and in implementation. The creation of paths using geodesic and cell-

adjacencies is explained, and then both techniques are combined to yield a hybrid

approach that allows us to both avoid collisions and maintain visibility. The path

sequencing is presented and demonstrated. We illustrate the use of our algorithms in

simulation, and perform an experiment that demonstrates the benefit that visibility

provides for communication.

Chapter 5 summarizes the contributions of the thesis once more and identifies

areas of future work.
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Chapter 2

Nonlinear Estimation and Control

for Localization

Here we consider the problem of localizing a target agent using range-only mea-

surements from multiple mobile sources and choosing sensor movements to speed-up

localization time and improve precision. With this application, it is difficult to use

uninformed linearized approaches, so we present a novel nonlinear estimation frame-

work and specialize it for the range-only case. From this we move on to the question

of controlling the sensors involved so as to improve estimation quality, basing the de-

sign around minimizing the volume of the uncertainty set comprising our estimation.

Both the estimation procedure and the control procedure are demonstrated experi-

mentally and we highlight possible avenues for extending the estimation framework

to problems with different structures than the range-only case.

2.1 Background

We will first formally establish the problem we wish to solve and the involved no-

tation. This estimation framework will make extensive use of ellipsoids and so we

summarize some of the relevant operations of Ellipsoid Calculus.
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2.1.1 Problem Setup and Notation

We consider a mobile sensor network equipped with relative-range measurement

capabilities with some capability of local sensing such as odometry or inertial mea-

surements. This network consists of n standard nodes that have either unknown or

only partially known positions and m anchor nodes that have fully known positions

with respect to some global reference frame. These anchor nodes could be in motion;

the only requirement is that their position is fully known.

Expressed in the global frame, the position of the ith standard node is a variable,

xi = [ xi yi ]T , and the position of the lth anchor node is al. The total state of the

network is x = [ xT1 . . . xTn ]T , and belongs to the space S = R2n. A measurement

between standard node i and standard node j has the form:

zij = hij(x) + e = ‖xi − xj‖+ e (1)

while a measurement between standard node i and anchor node l has the form:

zli = hli(x) + e = ‖xi − al‖+ e (2)

These measurements have noise e; for our purposes we assume that this noise is

bounded with constant bound ε. Thus e ∈ [−ε, ε]. These assumptions could be re-

laxed to include other models of bounded noise such as one with asymmetric bounds.

In a mobile sensor network, any of the nodes (standard or anchor) could be

considered to be attached to mobile robots. We adopt, for simplicity, a point model:

xi,k+1 = xi,k + ui,k, i = 1, 2, . . . n (3)

where ui is the control input for the ith mobile node at time k. The state of the

system evolves discretely, with the dynamic transition from step k to k+ 1 given by

(3), and a set of inter-node measurements taken at each step k:

zk = hk(xk) + ek

where hk is a combination of the measurement types expressed in (1) and (2).
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2.1.2 Ellipsoid Calculus

Because we rely extensively on the results in [83], we now summarize their notation

and definitions. We will use x, x0 to denote the state and z to denote observations

without worrying about the previous notation in this section.

An ellipsoid can be defined by two quantities: a vector specifying the position of

its center, and a symmetric positive semi-definite matrix that encodes the directions

and lengths of its semi-axes as the eigenvectors and eigenvalues respectively. Given

x0 ∈ <n and E ∈ Sn+, an n-dimensional ellipsoid is defined by the set:

εn(x0, E) =
{
x
∣∣ (x− x0)

TE(x− x0) ≤ 1
}

(4)

If E is singular, then the resulting ellipsoid is degenerate and possesses directions,

corresponding to the eigenvectors of the zero eigenvalues, where x is unconstrained.

The center in this case is actually only a single representative point of the affine set

at the center of the ellipsoid.

Fusion

Analogous to the fusion operation in sensor fusion, we define fusion for set valued

estimates to be the operation that takes two ellipsoids and finds an ellipsoid that

tightly bounds their intersection. The minimum-volume bounding ellipsoid can be

found using iterative algorithms such as that of [105], but, as noted there, the com-

plexity of this procedure is an open problem. However, the suboptimal approach

taken in [83], repeated here, involves the minimization of a convex function over

a bounded interval and so is simple and fast. Given two n-dimensional ellipsoids,

B1 = εn(x1, E1) and B2 = εn(x2, E2), a one-parameter family of fusing ellipsoids is
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ελn(x0, E), λ ∈ [0, 1], defined by:

X = λE1 + (1− λ)E2

k = 1− λ(1− λ)(x2 − x1)
TE2X

−1E1(x2 − x1)

x0 = X−1(λE1x1 + (1− λ)E2x2)

E =
1

k
X

(5)

and the fused ellipsoid is taken as the ελn that has minimum volume. This amounts

to either solving a bounded minimization problem over λ using the above, or finding

the zero of the derivative of the volume as in Theorem 3 of [83]. This approximate

intersection is denoted by ∩̃:

εn(x0, E)← εn(x1, E1) ∩̃ εn(x2, E2)

Propagations

We have interest in two different ellipsoid propagations, both paralleling the state

operations of our system given by Eqns. 1, 2, and 3. Theorem 1 of [83] provides the

general operation that is specialized to these two special cases.

We consider first a 1-dimensional ellipsoid associated with a single measurement

(also seen as an interval) ε1(z, 1/ε
2). If this measurement is obtained with a linear

observation model, z = H1×nx, its pre-image is the n-dimensional degenerate ellip-

soid: εn(H†z, (1/ε2)HTH). H†z can be any solution of the linear map, but we will

use H† as the pseudoinverse of H; note that the ellipsoid is rank 1 due to the form of

its matrix. Thus there is an n−1 dimensional affine set of points that are consistent

with this one dimensional observation.

Given an n-dimensional ellipsoid εn(x0, E), its image under the linear map y =

An×nx + bn×1 is the n-dimensional ellipsoid: εn(Ax0 + b, AEAT ). This is the same

expression encountered in propagation of Gaussian distributions in linear systems

theory.
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Slicing

It can be shown that the intersection of an n-dimensional ellipsoid εn(x0, E) with

an m-dimensional (m ≤ n) affine set in <n, A = { y0 + Y c | c ∈ <m }, produces an

ellipsoid εm(η, F ′), where:

F =Y TEY

η =F †Y TE(x0 − y0)

k =1− (x0 − y0)
TE(x0 − y0) + ηTFη

F ′ =
1

k
F

(6)

If k < 0 then the affine set and the ellipsoid do not intersect.

Projection

An ellipsoid projection finds the “shadow” of an ellipsoid in some of its components.

It can be shown that the projection of the n-dimensional ellipsoid B = εn(x0, E)

onto its first m components is given by:

P(B) = εm(x0,m, E11 − E12E
−1
22 E

T
12) (7)

where x0,m are the first m components of x0, and E =

 E11 E12

ET
12 E22

, with E11 as

an m-dimensional block.

Furthermore, if Y is a basis for any subspace of dimension m and Z is a basis for

its null space of dimension n −m, then the ellipsoid B = εn(x0, E) projected onto

this subspace is given by BY = εm(Y Tx0, EY ), with EY given by:

EY = Y TE Y − Y TE Z (ZTE Z)−1ZTE Y (8)

The projection operation for ellipsoids is analogous to marginalization of multi-

variate Gaussians (see [101]).
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Figure 5: The state space S is extended by adding functionally dependent coordinates of

S to create the extended state space S? = S ⊕ S̃.

2.2 Nonlinear Estimation Framework

We will now introduce the estimation framework and discuss the procedure for form-

ing and updating a state estimate. Some techniques for making use of this state

estimate will be given, and we will conclude by discussing ways that this framework

could be extended to new problems beyond the range-only measurement problem we

will develop in the next section.

2.2.1 Concept

Hanebeck [38] introduced a novel framework involving a nonlinear embedding that

maps the system states into an extended state space in such a way that the mea-

surement equations become linear. The basic idea is shown in Figure 5.

The extended space S? is formed by augmenting the base space S with additional

dimensions. Define a smooth map f : S → S̃ and let S? = S ⊕ S̃. Recall that

x denotes elements of S and let x? denote elements of S?. The map f defines a
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2n-dimensional smooth sub-manifold in S? with coordinates x:

x? = g(x) =

 x

f(x)

 (9)

The Jacobian of g,

∂g

∂x
=

 I

∂f
∂x


is always full rank and so the resulting manifold M is diffeomorphic to S. Our goal

is to choose f and transform the system equations in such a way as to make them

linear in the p-dimensional extended space S? (p > 2n). Note that we will ultimately

be interested only in those points that lie on the manifold, i.e., x? ∈M .

2.2.2 Incorporating New Measurements

An appropriate definition of the map f allows us to write each measurement equation

at time step k in the form:

z?k − w?k = H?
kx

?
k

where x?k ∈ S? and w?k is the measurement noise, assumed to be contained in a known

interval. By viewing the interval quantity on the left-hand side as a 1-dimensional

ellipsoid, we apply the results on ellipsoid propagation under affine transformations,

covered earlier in Section 2.1.2, to define Zk = εP ((H?
k)†z?k, (1/(w

?
k)

2)(H?
k)TH?

k) as

the feasibility ellipsoid in S? consistent with this measurement.

Each Zk can be seen as a pair of bounding hyperplanes constraining the possible

embedded states. However, since only the values of S? lying in M have meaning,

the actual set described by Zk can be interesting, as portrayed in Figure 6. As more

measurements are included, more bounds need to be incorporated. However, rather

than tracking an increasing number of hyperplanes, each new Zk is incorporated into

an aggregate state estimate ellipsoid E?k using the ellipsoid fusion procedure discussed

earlier in Section 2.1.2:

E?k ← E?k ∩̃ Zk
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Figure 6: A measurement Z, trans-

formed into a set bounded by two hyper-

planes, defines an interesting set in the

base space S when intersected with M .

S

S

M

~

X

Figure 7: The feasibility set X ⊂ S is

found by intersecting an ellipsoid E? ⊂
S? with the manifold M .

When the filtering is started, E?k can be initialized with εp(0, 0), a fully degenerate

ellipse, to reflect the fact that nothing is known about the state. This is analogous to

the initialization of the Information form of the Kalman filter with zeroed values (see

[101]). Unlike the case of an extended Kalman filter, tricky estimate initialization

procedures are not necessary.

It was seen earlier in Sec. 2.1.2 that, when fusing new measurement ellipsoids

into the estimate, there is a parameter λ that is solved for to choose how much of

the measurement is incorporated into the updated estimate. λ = 1 indicates that the

previous ellipsoid is left untouched and the measurement has no effect; conversely,

λ = 0 indicates that the previous ellipsoid is lost and only the measurement ellipsoid

is used. Values in-between give an indication of the innovation of the measurement.

This fact will be exploited later on to understand the workings of the filter.
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2.2.3 Making Use of Estimates

After performing filtering steps, the feasibility ellipsoid E?k contains all x?k consistent

with measurements up to step k, but not all of these elements have physical meaning.

Only the x?k ∈ M actually represent the images of states in S. This feasible set,

Xk ⊂ S is found by:

Xk = { x ∈ S | g(x) ∈ E?k }

The basic idea is shown in Figure 7.

This inversion can be carried out exactly using the implicit form (4) of E?k =

εp(x0, E) together with g:

(g(xk)− x0)
TE(g(xk)− x0) ≤ 1 (10)

Any xk satisfying this implicit nonlinear inequality belong to the true feasibility set.

The true size of the estimate set is only found by measuring the size after per-

forming this inversion. However, this process can be quite difficult to perform in

general, and so metrics on the ambient ellipsoid prove useful. The determinant of

the ellipsoid moment matrix (which corresponds to the inverse of the volume) and the

trace (which corresponds to the sum of the inverse squares of the semi-axis lengths)

can both provide some notion of the size and shape of the ellipsoid. These metrics

were employed to evaluate the filter performance during experimentation.

We suggest two approximate set inversion techniques: base projection and tan-

gent slicing.

Base projection works by noticing that the form of the state augmentation in Eq.

9 has the nonlinear terms stacked on top of the normal state space. By projecting

the higher-dimensional ellipsoid onto this linear portion of the state space using

the results of Sec. 2.1.2, a conservative bound on the true set is found. Later, in

Fig. 10 this projection is referred to as the “Linear Estimate Sub-space” because it

corresponds to the linear terms of the state augmentation. It should be noted that
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Figure 8: A base projection approximation of the estimate ellipsoid. The ellipsoid is

projected onto the linear part of the coordinates, yielding a “shadow” which surrounds the

true intersection.

this approximation completely ignores the contribution of the nonlinear terms in the

embedding. Figure 8 gives an idea of the process.

Figure 9: A tangent slice approximation of the estimate ellipsoid. A hyperplane tangent

to the manifold near the ellipsoid is used and a lower-dimensional representation of the

estimate is found in the coordinates of the base space.

Tangent slices, on the other hand, do take the contributions of the nonlinear

transformation into account when approximating the true set inversion. By recog-

nizing M as a manifold embedded into S? by g, the tangent space of M at a point
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x? ∈M can be found using the Jacobian of g. x? is taken to be the point M closest

to the center of the estimate ellipsoid. Now ∂g
∂x

and x? define an affine set in S? with

the same dimension as S. By restricting E?k to this set using the slicing operation

of Sec. 2.1.2, an approximate representation is found in S. This representation does

not have the bounding properties that the base projection does, however. Figure 9

gives an idea of the process.

2.2.4 Finding New Embeddings

One good question to consider is: How do we choose f? The simplest choice is

to do it by inspection, as advocated by the work of [59] on Non-Minimal-State

Kalman Filters. As we have done here, by writing out the full nonlinear measurement

equation a suitable split may present itself.

Another option, suggested by [38], is to use a Bernstein polynomial basis. The

Stone-Weierstrass approximation theorem tells us that it is possible to approximate

any continuous function over a real interval using a polynomial over the reals, and

Bernstein polynomials are often used as a constructive proof of the theorem thanks

to their properties. The n + 1 Bernstein basis polynomials of degree n are defined

by:

bν,n(x) =

 n

ν

xν(1− x)n−ν

where

 n

ν

 is a binomial coefficient. Though this is a 1-dimensional basis, there

are similar expressions for higher dimensions found by multiplying the bases together.

There are many nice properties of the polynomial, including the ability to write a

derivative as a combination of two polynomials of lower degree and the ability to

write a polynomial as the combination of two polynomials of higher degree. Finding a

state augmentation would involve taking the nonlinear system equations and finding

their linear representations in this basis, either exactly (if they are polynomial) or
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approximately (if they are not).

A promising alternative is suggested by Daum in several places including [18]. He

advocates using partial differential equations known as Fokker-Planck equations to

express the evolution of the state estimate probability distribution over time. As long

as the disturbance belong to an exponential family, there is a set of partial differential

equations that, when solved, provide a set of terms encompassing a sufficient statistic

for the distributions possible under the system’s dynamics. From looking at the

example of the radar tracking in [18], it is clear that there are direct connections

between that work and the work presented here. This could lead to an automatic

mechanism for producing augmentations.

2.3 Application to Range-only Measurements

As an illustration, begin with the range measurement equation between two standard

nodes:

zij − e = ‖xi − xj‖

and square both sides. The left hand side represents the interval [zij−ε, zij+ε] which,

when squared using interval arithmetic, becomes [z2
ij− 2zijε+ ε2, z2

ij + 2zijε+ ε2]. By

letting z?ij = z2
ij + ε2 and w ∈ [−2zijε, 2zijε], the transformed measurement equation

is:

z?ij = xi · xi + xj · xj − 2xi · xj + w

If a different bounded-noise model is used for e, such a transformation is still pos-

sible as long as care is taken to ensure that the modified estimate and bounds are

conservative.

Notice that this equation is nonlinear in the system variables xi and xj but is
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Figure 10: Visualization of the proposed embedding for a single robot range-only localiza-

tion problem along with examples of possible estimate uncertainties represented by this

formulation. In this case a closed form expression is available for the position estimate set.

As more measurements are taken into account, the nature of the solution sets changes.

Considering all possible (possibly degenerate) ellipsoids and their intersections with the

state manifold, a paraboloid in this case, the resulting solution sets can take the form of

an annulus, a simple set, or two disjoint simple sets.
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linear in the variables xi · xi, xj · xj, and xi · xj:

z?ij = [ 1 1 −2 ]


xi · xi
xj · xj
xi · xj

+ w

Applying this process to the range measurement equation between a standard

node and an anchor node leads to:

zl,?i − al · al = [ −2aTl 1 ]

 xi

xi · xi

+ w

Accordingly, we define f so that:

f(x) = [. . . , xi · xi, xj · xj, xi · xj, . . .]T .

Thus S? is constructed by adding at most n + nC2 dimensions to S, corresponding

to all dot product combinations of the positions of the nodes that appear in the

measurement equations. The measurement equations, after suitable modifications

to the additive noise, are now linear in S? while having bounded noise. The resulting

manifold and some examples of its applicability to the problem are seen in Figure 10.

We are not limited to range-only sensors. Indeed, the measurement equations for

bearing-only sensors can also be made linear with a similar embedding (see [11]).

2.4 Control for Localization

Though estimation is a challenging problem in its own right, the question of how to

control systems to enable and improve estimation is an important one with many

practical implications. In order to address this question, we make use of previous

work on maximizing information gains in decentralized systems using a more tradi-

tional linear filter [35], summarized here, and then draw a correlation between the

structures used in that approach and those in the current approach to develop a

methodology.
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2.4.1 Techniques Used with Gaussian filters

Though it involves more traditional linearized filtering techniques and seems some-

what tangential, we shall summarize the results of [35] in order to motivate our

control strategy. This section is stand-alone in terms of notation used. x(k) is the

vector state of the system at discrete time step k and z(k) is the vector of observa-

tions made at this time.

Start with the discrete time process and observation models given by:

x(k) = F(k)x(k − 1) + G(k)w(k)

z(k) = h(k,x(k)) + v(k)

where the process noise w(k) and observation noise v(k) are associated with Gaussian

models with zero mean and covariances of P and R respectively. The estimate of the

underlying state x(k) can be performed using an Information Filter (sometimes called

the “Information Form of the Kalman Filter”) obtained by replacing the typical

Kalman Filter state estimate x̂ and covariance P with the information state ŷ and

Fisher information Y. The notation (i|j) indicates a value at time i conditioned

on observations up until time j. The information state and Fisher information are

given by the relations:

ŷ(i|j) = P−1(i|j)x̂(i|j) (11)

Y(i|j) = P−1(i|j) (12)

New observations are incorporated as information vectors and information matrices

given by:

i(k) = HT (k)R−1(k)(z(k)− h(k, x̂(k|k − 1))) + H(k)x̂(k|k − 1)

I(k) = HT (k)R−1(k)H(k)

where HT (k) is the Jacobian ∇xh(k, x̂(k|k − 1)). The filter splits into a prediction
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step governed by the equations:

Y(k|k − 1) = [F(k)Y−1(k − 1|k − 1)FT (k) + Q(k)]−1 (13)

ŷ(k|k − 1) = Y(k|k − 1)F(k)Y−1(k − 1|k − 1)ŷ(k − 1|k − 1) (14)

and a correction step given by the equations:

Y(k|k) = Y(k|k − 1) + ΣN
i=1Ii(k) (15)

ŷ(k|k) = ŷ(k|k − 1) + ΣN
i=1ii(k) (16)

where Ii(k) and ii(k) are the information matrix and vector associated with the ith

sensor.

As those familiar with the technology will see, the information filter is simply

an inverted form of the Kalman filter, drawn from the conversion of Eq. 11. By

storing the state and estimate covariance in this form, the prediction step of Eq.

13 is made more complicated as a tradeoff for making the correction step of Eq.

15 very straight-forward. In [35] and earlier work, the additive form of Eq. 15 is

exploited to realize Decentralized Data Fusion (DDF) systems that can incorporate

observations from sensors and platforms that may not even be aware of each other

but can communicate through a shared medium.

Derivation of Control Law Using an Information filter

However, the real contribution of this Information Filter work comes when addressing

the problem of developing control strategies to maximize information gain. The

basic idea is to start with a set of available inputs and a current state estimate,

apply the inputs to the current estimate using the process model, hypothesize about

what the future measurements would be for each input and incorporate them using

the observation model, and finally quantify all of the potential future estimates to

select the input that yields the estimate with the smallest uncertainty (has the most

information). Though in general this would be a complex task, for linear systems

the burden is substantially less.
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The information value of the estimate is contained in the Fisher information

matrix Y and is commonly quantified by taking the determinant |Y|. The dual

relationship to the standard Kalman filter is obvious here; for the Kalman filter, the

uncertainty of the estimate is found by taking the determinant of the covariance,

representing the volume of the uncertainty ellipsoid, and since Y is the inverse

of P the information increases as the uncertainty decreases. We are interested in

increasing |Y| and so we seek to maximize the instantaneous mutual information

rate:

I(t) =
1

2

d

dt
log (|Y(t)|) =

1

2
trace

(
Y−1(t)Ẏ(t)

)
where we use the monotonic logarithm function in order to make use of a matrix

identity and obtain the clean form on the right-hand side. The maximization of this

rate gives rise to a gradient control law with zero look-ahead rather than planning

actions over time.

With a stationary process model, the only influence on Y is coming from the

inclusion of measurements as in Eq. 15:

Ẏ(t) =
N∑
i=1

Ii(t)

This gives rise to the very nice property that, given a common estimate Y, the

influence of each sensor on the total information gain is separable:

I(t) =
1

2
trace

(
Y−1(t)ΣN

i=1Ii(t)
)

=
1

2

N∑
i=1

trace
(
Y−1(t)Ii(t)

)
and so the optimization of information gain can occur in a distributed fashion since

each element only needs to worry about its own contribution against the current

estimate.

In [35], the setup was for a stationary process model (targets were stationary)

while the observers were mobile with collective state xR. The problem is then to

choose control directions for the observers to maximize the mutual information rate
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by following the gradient:

∇xR
I(t) =

1

2
trace

(
Y−1(t)∇xR

I(t)
)

where the expression obviously splits according to separation above. This gradient

algorithm is the desired control strategy.

2.4.2 Application to Set-based Filter

In our system, we have a stationary target and mobile robots equipped with range-

only sensors. The position of the mobile robots is known, so they can be treated as

anchors, but the target’s position needs to be estimated. This setup exactly matches

the setup of [35] with the chief difference being that we are performing estimation

using sets over augmented states rather than a linearized filter. Using a point-motion

model for the anchor (robot) positions, we can hypothesize future measurement

ellipsoids based on potential inputs ui = (ux,i, uy,i) and current estimates.

There is a strong structural analogy between ellipsoid-set filters and our nonlin-

ear set filter. In particular, the moment matrix E(t) and the information matrix

Y(t) behave very similarly. In fact, the former could be treated as the 1-standard-

deviation level set of the Gaussian described by the latter, and we carried through

with this technical blurring and obtained encouraging results despite the theoretical

challenges presented.

So by treating estimate and measurement ellipsoids as level sets of a Gaussian,

an approximate mutual information rate for the motion of robot i can be found:

Ĩi(ui, t) =
1

2
trace

(
E−1(t)Hi(ui)

TRi(ui)Hi(ui)
)

(17)

where Hi(u) = [−2(xi + ux,i), −2(yi + uy,i), 1] and R = (2zi(ui)ε)
−1, with zi(ui) =√

ri(ui)2 + ε2 as the transformed version of the predicted measurement by robot i

after its movement ui and ε as the noise bound on the range measurement. ri(ui) is

the hypothesized range measurement that will be taken after performing input ui; in
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this work it was assumed that the range measurement would be approximately the

same as the last measurement and so it is the direction of the future measurements

that is important in driving the gradient. The H vector is derived by taking the

anchor version of the measurement equations in Sec. 2.3 and applying a point-motion

model to the anchor position, as given in Eq. 3.

The control inputs to maximize Ĩi(ui, t) are then found as ui(t) = ∇ui
Ĩi(ui, t).

The length of ui(t) is ignored and only the direction is used in order to dictate the

motion of the robot.

In essence, this control law is selecting input directions that are informative

in directions that the current estimate E(t) knows little about. In Eq. 17, the

Hi(ui)
TRi(ui)Hi(ui) term is describing the degenerate ellipsoid that would be ob-

tained by a measurement taken after input ui. It is constraining the state in the

direction of the vector Hi(ui). The current estimate E(t) could be decomposed into

E(t) = V (t)TΛ(t)V (t) where V (t) is an orthonormal matrix and Λ(t) is a diagonal

matrix. Viewing E(t) as an inverse covariance (or information matrix), then V (t)

and Λ(t) give the directions and inverse-squared lengths of the semi-axes of the 1-

standard-deviation level set of the Gaussian ellipsoid. The directions of V (t) dictate

orthogonal directions in the estimate space, and the corresponding lengths dictate

how much is “known” in these directions. So using the properties of the trace, we

can see that we are calculating

Ĩi(ui, t) =
1

2
trace

(
Λ−1
i (t)V (t)Hi(ui)

TRi(ui)Hi(ui)V (t)T
)

The informative directions of the new measurement, Hi(ui), are projected into the

eigenspace of the current estimate, V (t), and then weighted according to how much

is known in these directions using the lengths of the semi-axes. Measurements pro-

viding more information in the longer directions of E(t) will produce larger values

of Ĩi. Degenerate directions have infinite semi-axis lengths but these are treated

numerically as some very large number to avoid singularities.
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2.5 Experimental Results and Conclusions

In our experiments we make use of the Parrot hardware developed at CMU. The

system establishes a peer-to-peer RF network and coordinates sonar pulses; ranges

between individual nodes are calculated by time-of-flight and the negotiation proce-

dure ensures that the source is identified. This sensor system is mounted on a pair

of indoor ground robots and a station as shown in Fig. 11.

Figure 11: The experimental setup.

The task was for mobile robots to actively localize an unknown, static feature

using range-only sensors. The location of the robots is assumed to be known and

is provided by an overhead camera system using the ARToolkitPlus software, orig-

inally developed by researchers at the University of Washington and improved by

researchers at the Graz University of Technology. Complete coverage of the experi-

mental area is provided by four calibrated Dragonfly cameras manufactured by Point

Grey, equipped with 6mm lenses, and mounted at a height of 19 feet above the floor.

The largest errors in the system occur at the boundaries of each camera’s field of

view, and there is no graceful transition from one camera to the next. This limitation

led to some position jumps during the experiment and highlighted some interesting

features of the estimation technique, as seen and explained in Figs. 12 and 13.

In the experiment plots, the bold T indicates the target location and the cyan and
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green annuli show the current range measurements with bounded noise. Magenta

ellipsoids correspond with the “shadow” of the ellipsoid projected onto the x, y plane

(also seen in Fig. 10). Dotted blue ellipsoids are found using the tangent slice

approximation and are essentially a linearized approximation of the ellipsoid near

the surface of the paraboloid. Finally, the red shapes correspond with the true

feasibility set, found by analytically solving for the intersection of the ellipsoid with

the paraboloid.

We perfomed three sets of experiments:

1. A single robot was used to localize a static feature. The results are seen in Figs

12 and 13. An operator-controlled run was performed to attempt to quantify

the effect of using control feedback, and these comparison results are seen in

Fig. 14.

2. A second robot was added in but kept stationary in order to see how controls for

the first robot were affected in an additional (stationary) information source,

and the results are seen in Fig. 15 and 16.

3. Control inputs were applied to both robots in order to demonstrate a full

cooperative mapping task, as seen in Figs. 17 and 18.

These experiments lead to the conclusion that the active control strategy is ro-

bust, has a definite beneficial effect, and leads to the strategy considered to be

optimal.

Robustness

In Fig. 12, a single robot was commanded using the controller in Sec. 2.4. At some

point during the experiment, the overhead localization system provided a flawed

value, and an inconsistent measurement was introduced into the filter. This evidence

for this is seen in the plot of |E| in Fig. 13, where the value dips below zero in frame

4, indicating a measurement ellipsoid that does not intersect the previous estimate.
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However, the estimate naturally converges to a set of feasible states as seen in the

later frames.

What happened was that small λ values were used, effectively throwing away the

current (bad) estimate after the faulty measurement, and the new measurements were

trusted more completely. The magnitude of the determinant never fully recovered

since at no point was the bad estimate completely thrown away, but it was enough

recovery to prevent the target from being lost. This modulation between estimate

and measurement happened automatically, but a more explicit system could help

the recovery proceed faster.

Beneficial Effect

We measure the positive effect of the controller in two ways: the active control

shrinks the estimate ellipsoid faster than otherwise, and adding robots alters the

individual trajectories and improves the results. This suggests that multiple robots

are providing benefit beyond that of simply running multiple copies of the same

filter, one for each robot, and are in fact coordinating sensibly.

Fig. 14 shows a comparison of |E| for a robot driven using the controller described

in Sec. 2.4 and one driven at the same speed in a straight line by a human operator

past the target. It can be clearly seen from the experimental trace that determinant

is orders of magnitude higher using the closed loop controller than for the human

driven case. Since the determinant is inversely proportional to the volume, the

estimate ellipsoid in the extended space shrinks faster. Thus the true feasibility set,

found by intersecting the estimate ellipsoid with a paraboloid as in Fig. 10, shrinks

faster as well.

Figs. 15 and 16 shows an experiment run when a second robot was added but kept

stationary. The addition of a new source of information alters the control trajectories

from the single robot run, and the rate of determinant increase is comparable to the

single robot case.
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In Figs. 17 and 18, the experiment is carried out with two mobile robots, and

the trajectories change yet again.

These trajectory changes arise naturally through the effect that each robot’s

measurement has on the estimate, similarly to [35]. It is important to note that there

is not explicit coordination or planning taking place. The coordination is implicit

and occurring through the shared information state of the target. At each instant,

an agent can see the knowledge of the target as well as its uncertainty/information

representation which encodes all previous measurements of the target made by all

agents, in some meaningful way. For a one-step decision, it is more beneficial to

take a movement and new measurement in a way that other agents have not. The

fact that the shared information state gives us access to their previous decisions lets

us completely ignore the details of who is providing information and how they are

doing it.

This sort of implicit coordination does not reduce the complexity of building and

maintaining a shared information state, but it does reduce the complexity of making

decisions amongst several agents.

Hints of Optimal Strategy

In Figs. 15 and 17, the robot trajectories end up guiding the robot so that the

measurement annuli of the individual robots lie at right angles to each other over

top of the target location. This geometric configuration leads to superior quality

measurements (consistent with intuition) but was not explicitly specified and instead

arose from the information gradient considerations of Sec. 2.4. Similar results were

observed in [35] with ground vehicles that had very accurate bearing measurements

but very inaccurate range measurements.
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Figure 12: Six snapshots of a single robot mapping an unknown feature using the pro-

posed controller. The plot elements are described in the text. With only one bounded

range measurement, the feature estimate is an annulus. Further measurements reduce the

annulus to two disjoint possible sets and finally a single set. In the fourth frame, an error

in the ground truth scheme for the robot has made its measurement inconsistent and the

filter estimate is destroyed. As further measurements are incorporated, the filter recovers

and frames five and six show that the estimate qualitatively returns to normalcy.

2.6 Summary

In this chapter, we solved the problem of localizing an independent agent using range-

only measurements from mobile sensors and then choosing sensor movements to

speed-up localization time and improve precision. We did this with a novel estimation
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Figure 12: (continued) Six snapshots of a single robot mapping an unknown feature using

the proposed controller. The plot elements are described in the text. With only one

bounded range measurement, the feature estimate is an annulus. Further measurements

reduce the annulus to two disjoint possible sets and finally a single set. In the fourth frame,

an error in the ground truth scheme for the robot has made its measurement inconsistent

and the filter estimate is destroyed. As further measurements are incorporated, the filter

recovers and frames five and six show that the estimate qualitatively returns to normalcy.

framework based on using an extended state space to transform a nonlinear problem

into a linear one and then using a standard linear filtering technique. In our case,

we used a set-based technique with ellipsoid set representations.

From this estimation framework, we drew an analogy to existing techniques in

control for information acquisition in probabilistic linear filters and derived equations

for the new framework.

Both the estimation and control were implemented on a hardware platform and

the technique was validated experimentally, with some interpretation and explana-

tion of weaknesses of the set-based assumption and how the filter robustly recovered.
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Figure 13: The fusion parameter and determinant of the moment matrix for the controlled

single robot case. At time step 34, corresponding to the fourth frame in Fig. 12, a bad

measurement results in the fused ellipsoid having a negative determinant, meaning that

the prior estimate and measurement did not intersect and the fused ellipsoid is complex.

As further measurements are incorporated, small λ values result in the complex estimate

ellipsoid being thrown away and the measurements being used to bootstrap a new estimate.

The second image is a close-up view of the recovery period.
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Figure 14: A comparison of the determinant of the ellipsoid moment matrices for two single

robot runs: one driven using the closed-loop controller and one driven by an operator in

a straight line past the target. The closed-loop data is from the run shown in Fig. 12

before the corrupting measurement is received. The determinant for the open-loop case is

growing but is orders of magnitude smaller than the closed-loop case.
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Figure 15: Four snapshots of a single controlled robot moving to map an unknown feature

while another stationary robot provides additional measurements. The plot elements are

described in the text. The resulting path is much different than the one achieved when

only one robot is present (Fig. 12). Note that the final robot path naturally results in the

two robots maintaining an approximately 90◦ separation around the target, a geometry

which would be expected to produce superior estimates given the sensor capabilities.
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Figure 16: The fusion parameters and determinant of the moment matrix for the single

mobile robot and single stationary robot case.
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Figure 17: Four snapshots of two controlled robots moving to map an unknown feature.

The plot elements are described in the text. The path taken by the first robot is different

again from the paths taken in Figs. 12 and 15. Yet again, the paths result in measurements

being taken from positions of 90◦ separation around the target. Neither robot is aware of

the existence of the other; their effects on each other occur solely through their effects on

the estimate ellipsoid.
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Figure 18: The fusion parameters and determinant of the moment matrix for the two

mobile robot case.
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Chapter 3

Visibility-Based Planning

In this chapter we will discuss the problem of deploying and moving a team of

robots to maintain visibility amongst a set of independent agents. After discussion

the definitions of these concepts, we will describe the special problem discretization

used for addressing our computations. With this discretization in place, we will find

both the number and positioning of robots in order to create visibility connections

between agents, and discuss how we can tailor our definition of edge weights in

order to establish preferences for these deployments. From the discussion of static

deployments, we look at how to sequence these deployments and find sequences

which minimize the total movement of the robot team. With these structures in

place, we will discuss how to build controllers to achieve these deployments in the

next chapter.

3.1 Background

Here we discuss the modeling of the two-dimensional environment and our notions

of visibility and visibility chains.
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Figure 19: An example of a “complex” environment.

3.1.1 Environment Description

Open-field tracking problems are quite well-known, so we instead assume that all

actions take place within a non-convex, multiply-connected environment such as

that shown in Fig. 19 where line-of-sight and motion are severely restricted. For-

mally speaking, the environment is a set E ⊂ R2. We will further require that the

environment is polygonal.

By treating the agent and base station as equivalent to robots, we collect the

positions of all the entities in the system into the indexed set X . We use the notation

that Roman indices range over the entire set, so xi ∈ X can correspond to any robot,

the agent, or the base station. Greek indices correspond to distinguished entities:

xα ∈ X is the position of the agent and xβ ∈ X is the position of the base station.
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3.1.2 Notions of Visibility

Two points, x and y, are considered to be in line-of-sight if the straight-line path

connecting them is contained within the environment: conv({x,y}) ⊂ E . To this

end we define the line-of-sight fuction:

LE(x,y) =

 1 conv({x,y}) ⊂ E
0 otherwise

The Visibility Matrix, A, for the entire system is given by computing the pair-wise

visibility of members of X . So the ij-th element is given by:

Aij(X ) = L(xi,xj) (18)

In Graph Theory, our Visibility Matrix can be considered an Adjacency Matrix,

and the Visibility Laplacian can be defined as:

L(X ) = D − A

where D is a diagonal matrix defined as the row-sum of V :

Dii =
∑
j 6=i

Aij

Our requirement of having a “line-of-sight chain” from the agent to the base

station can now be formalized as requiring that there is a path between the nodes

α and β in the graph described by A. However, we now tighten this requirement

by extending it to all robots in the system, motivated by the desire to not “lose”

any robots. To this end, we require that the graph described by A is connected, so

that all nodes xi have a path back to the base station xβ. This connectivity has two

equivalent conditions: first that the second-smallest eigenvalue of L is non-zero, and

second that for each {i, j}-pair there is some k such that the corresponding entry of

the visibility matrix raised to this power is non-zero, [Ak]ij 6= 0.

As discussed in Section 1.2.2, we are making use of a formation graph and we

are defining our graph quantity of interest to be λ2 and seeking positions that make

the adjacency matrix of Eq. 18 lead to a constrained λ2 > 0.
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3.2 Polygonal Decomposition

Since visibility between points in X would need to be computed repeatedly in order

to perform actions with A, it is helpful to relax the direct visibility computations

and instead make use of visibility cells. A visibility cell is a polygonal subset, Vi ⊂ E ,

whose visibility with respect to other cells can be expressed as a whole rather than

on a point-to-point basis.

The visibility cells form a partition of E , so:

⋃
i

Vi = E

and they only intersect in lines, so that dim(Vi
⋂
Vj) = 1.

3.2.1 Calculating Mutual Visibility

We use the term mutual visibility to describe that any point within one cell is visi-

ble to any point within another, thus the line-of-sight function can be extended to

visibility cells:

LE(Vi, Vj) =

 1 conv({x,y}) ⊂ E ∀x ∈ Vi, y ∈ Vj
0 otherwise

This gives rise to the mutual visibility graph described by the mutual visibility

matrix, Q:

Qij = LE(Vi, Vj)

We collect the visibility cells into an indexed set V with size |V| = M and note that

M depends on the particular decomposition of E .

3.2.2 Types of Decompositions

We make use of two different decompositions:
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Figure 20: Inflection Decomposition

• Inflection Decomposition: An inflection vertex of the polygonal environment

E is simply vertex whose internal angle is less than π. The inflection rays are

the two rays that are tangent to the vertex coming from either direction, prop-

agated outward until they hit the environment boundary; by adding the rays

from all inflection vertices, the environment is subdivided into the convex cells

desired. In an environment with only right-angles, this results in rectangular

cells as shown in Fig. 20.

• Aspect Decomposition: If the inflection decomposition is further subdivided by

including the bitangent lines connecting pairs of visible inflection vertices, the

resulting set of visibility cells forms the aspect decomposition. It is named such

because if the surrounding environment is scanned from within each cell, the
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Figure 21: Aspect Decomposition

resulting topology of gaps is identical within each cell but changes incremen-

tally between cells. A variation of this is the R-aspect decomposition, where

inflection vertices are only connected if their Euclidean distance from each

other is no greater than R. The aspect decomposition is a finer subdivision of

the inflection decomposition, as seen in Fig. 21 compared to Fig. 20.

Two cells i and j are considered adjacent if dim(Vi
⋂
Vj) = 1, i.e. they share a

boundary line but sharing a common point, such as a corner, does not make them

adjacent. For the three decompositions above, we have a theorem to relate the

adjacency of their cells with mutual visibility.

Theorem 3.2.1 Adjacent cells are mutually visible under both the inflection decom-

position and aspect decomposition.

This theorem has implications on the mutual visibility graph:
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Corollary 3.2.2 If adjacent cells are mutually visible under Theorem 3.2.1, then

connectivity of the environment E implies connectivity of the mutual visibility graph

over its decomposition.

Under these two results, then we can be assured that all regions of the environ-

ment can be seen from other regions of the environment and that we can discretize

the problem of maintaining a line-of-sight chain to a base station into one of main-

taining paths in the mutual visibility graph instead. It is important to note here

that this is a conservative version of visibility; it is possibly to find two points who

are visible to each other but whose cells are not mutually visible. However, our vis-

ibility model requires this sacrifice of strict visibility in order to make the problem

tractable.

For the decompositions seen in Fig. 20 and Fig. 21, the corresponding mutual

visibility graphs (MVGs) are seen in Fig. 22.

Figure 22: Mutual Visibility Graphs for the decompositions seen in Figs. 20 and 21.
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3.2.3 Computation of Decompositions

Though polygon decomposition is usually handled with a Voronoi decomposition

in order to obtain reasonably-shaped convex pieces, we are interested in building

decompositions from arbitrary intersections of segments. To this end, we have devel-

oped a routine that methodically intersects segments and pieces together polygons.

The idea is shown in Fig. 23 and summarized here.
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Figure 23: Steps in the decomposition of an environment into polygons. The environment

and all dividing segments are added into a large set of segments that are then collectively

intersected. The intersections are ordered from left-to-right and then bottom-to-top. The

intersections are processed in order, and each one allows for the closure of an existing

partial polygon (region A), the addition of a new bounding segment to an existing partial

polygon (regions B and C), or the formation of a new partial polygon (region D).

The environment is already represented as a set of line segments. To this set are

added all of the desired inflection and aspect lines emanating from reflex vertices.

The entire set of segments is intersected against itself to produce a set of all of the

intersections, seen in the left-most panel of Fig. 23. These intersections are ordered

from left-to-right and bottom-to-top, as seen in the middle panel of Fig. 23. We

traverse through this list of intersections, and as seen in the right-most panel of Fig.

23, we recognize each intersection as either the completion of an existing partial

polygon (region A), the addition of a new bounding segment to an existing partial

polygon (regions B and C), or the start of a new polygon (region D). By keeping
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a list of partial polygons and then adding, modifying, or removing finished entries

to be placed on a list of finished polygons, we can systematically build all polygons

formed from the arbitrary intersection of a set of line segments. The total runtime

complexity will be O(L2log(I) + I) for L segments and I intersections.

It is appropriate to note here that this problem is also known as finding the faces

of an arrangement of line segments in the plane. The presented algorithm is one of

two common algorithms used to solve the problem [25], but there is actually a more

efficient algorithm [13] that solves the problem in O(n log n+ k) for n line segments

and k intersections (not known beforehand). The complexity improvement over our

approach is due to more efficient line segment intersection. Another useful solution

is a data structure that can do point queries and determine in what face a point lies

in O(log n) time [21], though the faces are not explicitly computed.

3.3 Mutually-Visible Deployments

We define our Mutual Visibility Graph as G = (C, S), where C is the set of visibility

cells as nodes and S are the line-of-sight relationships as edges between the nodes.

A deployment of agents is a graph structure D = (V,E,m), where V are the

agents as nodes of the graph, E ⊂ V × V defines a relationship between the agents,

and m : V → C maps the nodes into the visibility cells they are located within.

Note that this ties into our synopsis of the unifying structure behind the formation

control literature reviewed in Section 1.2.2.

Our deployment is considered a mutually-visible deployment if the graph structure

(V,E) is a connected graph, and the edges correspond to line-of-sight relationships

in the MVG. This means that ∀(e1, e2) ∈ E, (m(e1),m(e2)) ∈ S.

Defining deployments in this way naturally splits the structure of the robot for-

mation, encoded in (V,E), from their physical locations, given by mapping m. As an

example, consider Fig. 24. The robot formation on the left consists of nodes related
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to each other by visibility, and then this maps into physical locations on the right,

where the visibility lines are evident.

Figure 24: A deployment D = (V,E,m) separates the structure of the robot formation,

encoded in (V,E), from its physical location, given by the mapping m. The relationship

of the robots between each other, visibility in this case, is shown on the left, and then this

formation is mapped into physical locations as shown on the right. The shaded nodes in

the graph correspond to the shaded cells in the decomposition.

We are interested in solving for mutually-visible deployments where some of the

nodes are agents we are tracking or the fixed ground station, with their locations

given. The additional nodes correspond to robots we need to deploy to maintain

visibility between all agents.

Finding mutually-visible deployments proceeds in two steps: first, we solve for

shortest paths connecting just two agents, and then extend this for multiple agents.

3.3.1 Virtual Edge Weights

The most critical piece of solving for mutually-visible deployments is designing the

edge weights that give rise to the cost of the shortest paths and Steiner trees. These
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weights give us the opportunity to define what we consider to be desirable config-

urations of robots. We will focus on three separate considerations: keeping a tight

deployment, making use of larger visibility cells whenever possible, and using as few

robots as possible.

To this end, we define our virtual edge weight as follows, with each of the three

costs to be discussed next:

Wv(i, j) = ca(i, j) + cb(i, j) + cc(i, j) (19)

Distance Cost

For keeping a tight deployment, we would like to prefer that given two pairs of

visible cells, the pair that are closer together are given preference. To this end, we

will define the first cost term as the distance between the centroids of the visibility

cells involved:

ca(i, j) = ka‖cent(Ci)− cent(Cj)‖2 (20)

where ka is a coefficient used to weight this first cost term versus the others.

Area Cost

Since we would like to prefer pairs of mutually visible cells where one or both of the

cells are larger, we need a cost term that scales inversely with cell area. Two costs

that achieve this goal are a simple inverse area and a negative exponential:

cb(i, j) = kb

(
1

area(Ci)
+

1

area(Cj)

)
(21)

cb(i, j) = kb (exp(−area(Ci)) + exp(−area(Cj))) (22)

where kb is again a coefficient to weight this cost term relative to the others.

To compare these two, Fig. 25 presents a histogram of the inverse-area cost,

while Fig. 26 presents a histogram of the negative-exponential cost, both taken over

all mutually-visible cell pairs in the aspect decomposition of Fig. 21.
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Figure 25: Histogram of the inverse area measure for the MVG of the decomposed environ-

ment seen in Fig. 21. The view on the right is a truncated version since the distribution

has a heavy tail. The mean is 191.02 and the standard deviation is 1.383e3.
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Figure 26: Histogram of the negative exponential measure (de) for the MVG of the decom-

posed environment seen in Fig. 21. The mean is 1.25 and the standard deviation is 0.46.

Note that by definition the measure cannot exceed 2.
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The inverse area cost results in very explicit separation between visibility pairs

with nominal areas and those with very small areas, as evidenced by the heavy tail

on the distribution. The negative exponential cost, by comparison, is very smooth

and has a hard limit of 2 by definition.

We will make use of the negative exponential cost. The relative weighting between

the negative exponential and centroid distance costs will be discussed shortly.

Minimum Deployment

The preference to minimize the robot count is realized by simply adding a large

penalty term to each edge. The need for this is seen in Fig. 27. Without a penalty

term, many small hops are preferred to a few large hops because the closer centroid

distances result in a shorter path. Though including costs related to the area can

mitigate this to some extent, we want the preference to be strong. To this end, we

define the deployment cost as:

cc(i, j) = Z, (23)

Z > sup
i,j

(ca(i, j) + cb(i, j)) (24)

By ensuring that is Z is larger than the other costs combined, we are guaranteed

that at no point will it be preferable to use two visibility hops where one will suffice.

Combining Costs

Consider the histograms of the centroid distance and negative exponential area costs

in Fig. 28. We need to combine the two to make the edge weights prefer both

tight deployments and the use of larger visibility cells. However, the relative scaling

between the two is important since weighting one too heavily will make the other

meaningless. Set ka = 1 and consider just the changing of kb. The combined cost

Wv(i, j) = ‖cent(Ci)−cent(Cj)‖2+kb(exp(−area(Ci))+exp(−area(Cj))) for various

values of kb is seen in Fig. 29. As kb is increased, the distribution changes from
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Figure 27: Using only centroid distances as the edge weighting, the resulting shortest path

can involve taking many small hops instead of fewer large hops. By adding a large penalty

term to each edge, in this case the length of the diagonal of the entire area, it will always

be preferable to use the smallest number of hops.
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Figure 28: The statistics for the centroid distance (left) and negative exponential area

(right) costs from the MVG for the decomposition of Fig. 21. We need to mix the two to

obtain a cost that stresses both tight deployments and the use of larger visibility cells.
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that of the centroid distance alone to that of the negative-exponential area alone.

Expressing the preferences of both requires some in-between histogram.
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Figure 29: The statistics using the measure Wv(i, j) = ‖cent(Ci) − cent(Cj)‖2 +

kb(exp(−area(Ci)) + exp(−area(Cj))) for a range of kb values. Across from top left to

bottom right, the values are kb = 0, 1, 5, 10, 30, and 100. Note how the distributions go

from that of the left histogram of Fig. 28 to the right histogram as kb becomes larger and

the negative-exponential-area measure is more represented (albeit scaled).

The ultimate goal is to manage the relative weighting so that both costs are of

the same magnitude on average. One way to do this is to divide each cost by its

maximum value to normalize it, and then they can be averaged together on equal

scaling. This approach results in the histogram of Fig. 30. Note that the result

looks similar to a Gaussian.

The normalized approach results in the following virtual edge weight:

Wv(i, j) =
1

2

( ‖cent(Ci)− cent(Cj)‖2
maxi,j ‖cent(Ci)− cent(Cj)‖2 . . . (25)

+
exp(−area(Ci)) + exp(−area(Cj))

maxi,j(exp(−area(Ci)) + exp(−area(Cj)))

)
+ 1.01 (26)
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Figure 30: Each cost (ca, cb) was normalized by dividing by its max and then the total

measure was taken as the average of the two, resulting in this almost Gaussian distribution.

combining all of the desired preferences into a weight that balances between tighter

deployments while preferring larger cells and minimizing the number of deployed

robots.

3.3.2 Shortest Paths

Given the locations of the base station and independent agent, reduced to their

corresponding cell locations, we can deploy robots to create a visibility chain by

choosing placing them in cells creating a path in the MVG. We will restrict ourselves

to using the shortest path calculated with the virtual edge weights discussed in Sec.

3.3.1. Such a path will fulfill the priorities outlined, namely a geographically compact

deployment using the fewest number of robots and preferring cells with larger areas.

We therefore treat the shortest path as the complete solution to the deployment

problem in the case of a single robot requiring connection to a fixed base station.

Examples can be seen Fig. 31.

The shortest path from one cell to all other cells can be computed using the

widely-known Dijkstra Algorithm. However, since we will need to compute shortest
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Figure 31: Examples of shortest paths in two environments using the virtual edge weights of

Sec. 3.3.1. A shortest path completely solves the problem of deploying robots to maintain

a visibility chain between a single agent and the base station.

paths repeatedly for algorithms that follow, it is useful to perform the calculation of

the shortest paths between all cells at once, handled by the Floyd-Warshall algorithm

or by repeatedly using the Dijkstra algorithm beginning from different starting cells.

Both have a complexity of O(|C|3) with the possibility of some reduction using more

sophisticated data structures.

3.3.3 Steiner Trees

Steiner Trees are an extension of the shortest path problem: given a set of termi-

nals, find the minimum-weight tree to connect all of them. If the set consists of

only two terminals, the problem reduces to the shortest path problem. Any non-

terminal nodes that are included are known as Steiner nodes and can be considered

as intermediaries that help maintain connectivity between the terminals.

If the terminal locations are considered to be a set of target agents together with

the base station, then the Steiner Tree over this terminal set solves the problem of

deploying the robot team to cover multiple targets.
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Using the virtual weight Wv on the edges of G, our Steiner Tree is a mutually-

visible deployment T ? = (V,E,m) where:

T ? = min
(V,E,m)

∑
(e1,e2)∈E

Wv(m(e1),m(e2)) (27)

This is a hard problem because not only are we optimizing over the placement

of the nodes, m, but also over topologies of the nodes, (V,E). It will be shown that

if we pick a topology, the problem can be solved efficiently (though the final result

may not be the true Steiner tree if the topology was not the optimal one). Before

that, we will solve the Steiner tree problem exactly.

Finding the Optimal Steiner Tree

To find the optimal topology and mapping, we use the Dreyfus-Wagner algorithm,

a dynamic programming approach first given in [24] and reviewed in [42, 80]. We

already know that the optimal tree for two terminals is just the shortest path between

them. The optimal tree for three terminals can be constructed from the optimal

trees for each of the pairs of terminals using one of a few simple operations. Then

we construct the optimal tree for four terminals using the three-terminal solution,

and so on, until we have the optimal tree for all terminals.

Following the notation of [80], we begin with the set of nodes of the entire graph,

V , and define a terminal set K ⊆ V . Take any subset of these terminals, X ⊆ K, and

some external node v ∈ V \X, then we define two optimal tree costs: s(X ∪ {v}) is

the cost of the minimum Steiner tree for the set of terminals X∪{v}, and sv(X∪{v})
is the cost of the minimum Steiner tree for the terminal set X∪{v} where we require

that v have a degree of at least two in the tree constructed.

The reason for defining a cost such as sv is that we can write it as the sum of the

costs of two smaller trees, as seen in Fig. 32. Since v is of degree at least two, then

its removal would break the tree over X into two or more subtrees. If we state that

the tree over X ∪ v] is optimal, then these two subtrees must also be optimal by the
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Figure 32: The split-tree-cost sv(X ∪ {v}) is composed of two costs. Since v is defined to

be of degree at least two, then it links two smaller subtrees X ′ and X\X ′. We find the

cost by summing the optimal costs of both of these subtrees.

principle of optimality. So suppose we knew which terminals belonged to each tree:

X ′ ⊂ X are the terminals of one half of the split, and X\X ′ are the other. We can

find the split-tree-cost sv(X ∪ {v}) in terms of the optimal costs of both of these

subtrees:

sv(X ∪ {v}) = s(X ′ ∪ {v}) + s(X\X ′ ∪ {v}) (28)

However, we do not know the optimal split beforehand, so we simply try every

possible split of X ′ ⊂ X to find which one gives the smallest cost. Note that we

require X ′ 6= ∅ and X ′ to be a strict subset of X, so we can state that |X ′ ∪ {v}| <
|X ∪ {v}| and |X\X ′ ∪ {v}| < |X ∪ {v}. Because of this, we can see that we are

finding the cost of the tree over a given terminal set in terms of the costs of trees over

smaller terminal sets. Since we are building this computation from small terminal

sets to larger, the optimal costs over these smaller terminal sets is already available.

Though we can find the optimal cost for X∪{v} while requiring v to have degree

greater than two, we need an expression for the optimal cost over X ∪ {v} without

conditions. We obtain this by recognizing that we can connect v into the optimal

tree over X in three ways, as shown in Fig. 33. Either v connects into one of the

terminals w ∈ X, v connects into some other node w /∈ X belonging to the optimal
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Figure 33: The optimal tree over the set X ∪ {v} relates to the optimal tree over X in

one of three ways. Either v connects to one of the terminals w ∈ X, v connects to a node

w /∈ X that has degree at least two in the tree over X, or v was already part of the optimal

tree over X. Note that the third case is really just a special case of the second where we

let w = v.

tree over X, or v is already part of the optimal tree over X. The third case is really

just the second case where we let w = v. It may happen that there is no direct

connection between v and w, in which case we connect v into the tree using the

shortest path instead since it represents the lowest cost connection possible. It is

important to note that in the second case, the node w must necessarily have degree

at least two in the optimal tree otherwise it would be a leaf and thereby one of the

original terminals and covered under the first case. Because of this, we can write the

cost of this type of tree in terms of the split-tree-cost sv defined earlier. We find the

optimal tree over X ∪ {v} by considering all the possible ways to connect v into the

tree over X and then taking the one with least cost.

Let p(a, b) be the cost of the shortest path between nodes a and b, perhaps found

using Dijkstra’s algorithm. We can iterate through all nodes w ∈ V , find their cost

associated with a tree where v connects to w depending on whether w is part of X

or not, and then take the minimum over all of them:

s(X ∪ {v}) = min
w

 p(v, w) + s(X), w ∈ X
p(v, w) + sw(X ∪ {w}), w /∈ X

(29)

The full Dreyfus-Wagner algorithm, as given in [80] is reproduced in Algorithm
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1.

Algorithm 1 DreyfusWagner(V,E,Wv, K)

Require: A graph (V,E) with edge costs Wv, and terminal set K ⊂ V

Ensure: The cost s(K) of the minimum Steiner tree over K.

1: for a, b ∈ V do

2: compute p(a,b)

3: end for

4: for {x, y} ⊆ K do

5: s({x, y}) = p(x, y)

6: end for

7: for i = 2 to |K| − 1 do

8: for X ⊂ K with |X| = i do

9: for v ∈ V \X do

10: sv(X ∪ {v}) = min∅6=X′⊂X [s(X ′ ∪ {v}) + s((X\X ′) ∪ {v})]
11: end for

12: end for

13: for X ⊂ K with |X| = i do

14: for v ∈ V \X do

15: s(X ∪ {v}) = minw

 p(v, w) + s(X), w ∈ X
p(v, w) + sw(X ∪ {w}), w /∈ X

16: end for

17: end for

18: end for

19: return s(K)

In order to produce a tree using DreyfusWagner, a backtracking system is

added that records which tree-joining case gave the optimal cost and which nodes

were connected. From this information, the optimal Steiner tree can be constructed.
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Finding an Approximate Steiner Tree

We will make use of two algorithms for finding approximate Steiner trees. In each

case, we are guaranteed that the cost of the approximation is no worse than twice

that of the true optimal [80].

Minimum-Spanning-Tree Approximation

The minimum-spanning-tree approximation was described by many researchers in-

dependently, see [80]. The idea is to find the minimum-spanning-tree within the

distance network taken over the terminal set, expand the results into the union of

the corresponding paths, and then clean up the resulting tree.

A distance network is a construct where we build an abstract graph over a

weighted graph where all nodes are connected to all other nodes with an edge whose

weight is the length of the shortest path between the two nodes. For instance, Fig. 34

shows a simple weighted graph and the complete graph forming the distance network

over its nodes with some of the edge weights given. All of the weights correspond to

the length of the shortest path between the two adjacent nodes. A distance network

can be defined for any graph and for any subset of nodes of a graph, all that is

required is a way to find shortest paths between nodes.

There is a direct correspondence between edges in the distance network and

shortest paths in the graph, as seen in Fig. 35. Any edge can be expanded into its

corresponding shortest path.

The other construction needed is a minimum spanning tree over the graph (V,E):

the minimum weight subgraph that connects all of the nodes of V . This can be

found using standard efficient algorithms such as Prim’s algorithm [77] or Kruskal’s

algorithm [52].

With these two computations, we can perform the Minimum-Spanning-Tree-

Steiner (MST-Steiner) algorithm, shown in Algorithm 2.
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Figure 34: Given the weighted graph on the left, the distance network over its nodes

is shown on the right with some of the edge weights labeled. A distance network is a

complete graph over the chosen nodes where the edge weights correspond to the length of

the shortest path between the adjacent nodes, but constructed in the original graph.
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Figure 35: There is a direct correspondence between edges of the distance network and

shortest paths in the original graph. The highlighted edge on the left can be expanded

into the shortest path shown on the right.
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Algorithm 2 MST-Steiner(V,E,Wv, K)

Require: A graph (V,E) with edge costs Wv, and terminal set K ⊂ V

Ensure: A Steiner tree over the terminal set K with approximately optimal cost.

1: Compute the distance network ND over K in V .

2: Compute the minimum spanning tree TD within ND.

3: Transform the edges of TD into their corresponding shortest paths in (V,E) to

form a subnetwork of (V,E).

4: Compute a minimum spanning tree T over this subnetwork.

5: Remove all leaves of T that are not terminals.

Takahashi-Matsuyama Approximation

Another simple approximation was described by Takahashi and Matsuyama [96]. The

basic idea is to incrementally build an approximate minimal Steiner tree by starting

with the shortest path between two terminals and then incrementally connecting

each other terminal into the growing tree using the shortest path to any of the nodes

of the tree. The basic idea is shown in Fig. 36. Each node is successively connected

by its shortest path.

The algorithm was compactly described in [80] and is repeated here in Algorithm

3.

3.3.4 Finding Deployments with Known Topology

As suggested in Sec. 3.3.3, if the topology of a deployment is known, then finding

the placements is efficient. Here we develop a dynamic programming approach for

finding the m that minimizes the total cost of the deployment D = (V,E,m).

Since we assume that the topology (V,E) is given, the cost of the deployment

(V,E,m) is:

C(D) =
∑

(e1,e2)∈E

Wv(m(e1),m(e2))
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Figure 36: An approximate minimum Steiner tree is constructed using the Takahashi-

Matsuyama algorithm by successively connecting each terminal into a growing tree by the

shortest path to any of the nodes of the tree. Here, two of the highlighted nodes are

connected by their shortest path, and then the remaining highlighted nodes are attached

one-by-one.

Algorithm 3 TakahashiMatsuyama(V,E,Wv, K)

Require: A graph (V,E) with edge costs Wv, and terminal set K ⊂ V

Ensure: A Steiner tree SK over the terminal set K with approximately optimal

cost.

1: Choose any v ∈ K and set SK = ∅, X = {v}, L = K\{v}
2: while L 6= ∅ do

3: Find the w ∈ L whose shortest path Pw to some node of X is smallest.

4: Shrink L to L\{w}, then expand X to include the vertices of Pw and add

Pw to SK .

5: end while
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or, recognizing m as the only variable:

C(V,E)(m) =
∑

(e1,e2)∈E

Wv(m(e1),m(e2)) (30)

We will suppress the (V,E) subscript since the topology is fixed in all that follows.

We will assume that the virtual cost of an edge between two nodes placed in the

same cell is zero, and also that the given topology is a tree T = (V,E) where the

leaves are all target agents whose positions are fixed. These fixed locations provide

the constraints needed to solve for the tree uniquely.

We will assume, without loss of generality, that in nodes are indexed from 1

to n and so we will denote the mapping m by its action on the various indices:

mi = m(i). We have the constraint that for node indices corresponding to target

locations, T , the mapping is already known, which we will write as mT = {MT } to

cover the assignment of all the mapping entries of the set. The optimal cost is then

the minimization over all possible mapping assignments under this constraint:

C?(T ) = min
m|mT ={MT }

C(m) (31)

We will suppress the mT = {MT } notation with the assumption that all further cost

calculations are done under this constraint.

Because the topology is a tree, removing any edge results in the formation of two

trees. If the edge is removed between two adjacent nodes i and j, then we obtain two

trees: T i\j and T j\i to signify the tree including node i (resp. j) formed by removing

the edge to node j (resp. i). This is illustrated in Fig. 37. We can write the optimal

cost of the tree in terms of the optimal cost of the two subtrees together with the

cost of the edge we removed:

C?(T ) = min
m

(
C?(T i\j) + C?(T j\i) +Wv(mi,mj)

)
(32)

This leads to the idea of conditionally optimal costs: the cost associated with

choosing the optimal mapping with conditions, written as C?
i→mi

(T ) to indicate the
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Figure 37: By removing an edge between two nodes i and j, the tree T is split into two

subtrees we call T i\j and T j\i to indicate the tree formed by taking node i (resp. j) and

removing the edge connecting it to node j (resp. i). The cost of the total tree can be

expressed as the sum of the costs of the two subtrees plus the cost of the removed edge,

and we make use of this to derive a recursive formulation of the cost.

optimal cost of tree T with the requirement that node i mapped into cell mi. For

example, we may decide that node i is mapped into cell number 42 of the visibility

decomposition and then want the cost associated with choosing all other mappings

to be optimal. If we were to take a particular node and then find the conditionally

optimal costs for all possible assignments of that node, we can take the minimum

one and recover the optimal cost:

C?(T ) = min
mi

C?
i→mi

(T ) (33)

Using this idea, we can rewrite Eq. 32 as a minimization over the choices of the
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mappings for nodes i and j:

C?(T ) = min
mi,mj

(
C?
i→mi

(T i\j) + C?
j→mj

(T j\i) +Wv(mi,mj)
)

(34)

If we look from the point of view of node i, then we could also write this as:

C?(T ) = min
mi

(
C?
i→mi

(T i\j) + min
mj

(
C?
j→mj

(T j\i) +Wv(mi,mj)
))

(35)

The conditionally optimal cost of T i\j does not depend on mj since T i\j does not

contain node j. Finally, we are finding the optimal cost by minimizing over all

possible mi, but if we pick a particular mi, we are simply finding the conditionally

optimal cost for this selection. Thus we have:

C?
i→mi

(T ) = C?
i→mi

(T i\j) + min
mj

(
C?
j→mj

(T j\i) +Wv(mi,mj)
)

(36)

This leads to a recursion because Eq. 36 can be used again with T i\j becoming

T since T i\j is just another tree.

The final piece of the recursion is the fact that some of the mappings are already

fixed because of the motion of the targets, so they have no conditionally optimal

cost. Mathematically speaking, we can set to infinite the conditionally optimal cost

of them going to any spot other than the one that they actually did go to. This

handles the mT = {MT } from earlier.

If the environment decomposition has N cells, so that each node has a number of

assignments of O(N), then for each of the O(N) possible assignments we are checking

against O(N) assignments of each neighbor. For k nodes, there are k − 1 links, so

the total complexity will be O(kN2) for the full computation.

We will build upon this procedure to include motion constraints and costs in Sec-

tion 3.5.1. The link is that we can recover the fixed-topology Steiner tree calculation

by letting the movement costs go to zero.
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3.4 Deployment Sequences and Costs

Given the mutual visibility graph, G = (C, S), computed for a given environment

decomposition, we define a mutually visible tree T = (V,m,E) as a connected set of

nodes, V , with labels, m : V → C, identifying which cell of C they belong to, and

an edge set E connecting each node with other mutually visible nodes, as identified

by the LoS restrictions of S, in such a way that the resulting graph is a tree.

A tree sequence T = T1, T2, . . . , Tn is an indexed set of these mutually visible

trees defined over G.

Given a weighting Wv : S → R on the edges of G, a weight Wt : E → R is

induced by mapping the adjacent vertices of an edge to their corresponding cells in

C and using the weight of the connecting edge in S. This leads to a virtual cost of a

tree associated with the “virtual” cost of visibility that we have created to influence

agent deployments into cells with better size or proximity. This virtual tree cost is

defined as:

Cv(T ) =
∑
e∈E

Wt(e) =
∑

(e1,e2)∈E

Wv((m(e1),m(e2))) (37)

Given a physical weighting function Wp : C×C → R relating the cost of physical

relocation between cells (discussed shortly in Sec. 3.4.1), we can define the physical

cost of transition between two trees by looking at the costs for the nodes of one tree

to move from their corresponding cells to the cells of the nodes of another. What

this entails is figuring out how to match the nodes of one tree to the other in such

a way as to minimize the total cost of moving and then find this cost. Assuming

that the tree nodes are all zero-indexed, then this really amounts to finding an

optimal permutation amongst all permutations of n integers, Pn. We call this an

identification function, I : Vi → Vj, identifying the nodes of one tree Ti with another

tree Tj. All possible identifications (permutations) belong to the set I. Using this

in conjunction with the cell labels and physical weighting function, we define the
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physical cost as:

Cp(Ti, Tj) = min
I∈I

∑
v∈Vi

Wp(mi(v),mj(I(v))) (38)

Though this definition is defined in terms of a minimization that would seem to

be exponential because of the need to look at permutations of the n nodes, this is in

fact an assignment problem, also known as the bipartite matching problem because

you are choosing the edges to match the nodes of the two halves of a bipartite graph

such that the total cost is minimized. In our case, the cost is simply the physical cost

of moving from the associated cell of a node in the original tree to the associated cell

of a node in the new tree. This can be solved in O(n3) time using a variant of the

Hungarian algorithm. Note that solving this also requires finding the assignment,

which is useful in actually commanding the mobile agents to transition between the

two trees.

To apply these cost functions to the entire tree sequence, they are simply applied

to each element or sequential pair of elements:

Cv(T ) =
N∑
i=1

Cv(Ti) (39)

Cp(T ) =
N−1∑
i=1

Cp(Ti, Ti+1) (40)

These two costs must be combined in order to give a total sequence cost:

C(T ) = Cp(T ) + µCv(T ) (41)

where the non-negative parameter µ defines the relative weighting between the two

costs. High values of µ leads to a preference (lower cost) for graph sequences with

trees that consist of agents in cells with better proximity, size, etc, as defined by

our virtual visibility weights Wv. Low values of µ leads to a preference (lower cost)

for graph sequences where the node transitions are not far according to the physical

costs Wp. Note that this is a fundamental tradeoff; tuning this parameter gives us a

way to decide how greedy we are going to be with deployment selection.
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In practice, we are more interested in designing a sequence to minimize costs.

Given a tree Ti, we can find the subsequent tree Ti+1 that minimizes the cost by

considering just the transition cost and the cost of the next tree since the cost of Ti

is already fixed:

Ti+1 = arg min
T∈T

[Cp(Ti, T ) + µCv(T )] (42)

Also, assuming the physical cost Wp is symmetric, this process could be applied in

either direction along the tree sequence finding either the previous or subsequent

tree to minimize costs.

3.4.1 Physical Edge Weights

Analogous to the virtual edge weights described in Sec. 3.3.1, physical edge weights

allow us to specify preferences between cell-pair choices, but now we are indicating

how unfavorable it is to require the robot to move from one cell to another cell.

The most logical choice is to make use of Euclidean distance: if the centroids of

two cells are far apart, it will take longer for the robot to traverse between the

two and hence has higher cost. The corresponding weight would be Wp(i, j) =

‖centroid(Ci)− centroid(Cj)‖2.
However, this weight is less meaningful if the cells are not directly visible since

the robot would need to navigate around obstacles to move between the two. In this

case, it would make more sense to use the shortest path between the centroids and

then take the length of that path as the physical cost. In Sec. 4.2, both the geodesic

and adjacency path are calculated. The geodesic is the true shortest path between

two points that respects the environment boundary, while the adjacency path is the

shortest path between two cells formed by only traversing between adjacent cells

and its length is taken as the sum of the length of the segments joining the centroids

of subsequent cells. Either length will give some notion of the cost of traversing

between cells that do not have direct line-of-sight.
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3.5 Deployment Sequence Optimization

Given the definitions of a deployment sequence and its associated cost, we seek

to design a deployment sequence that minimizes the total cost. This problem has

practical significance: we know the starting locations of our agents and intermediary

robots and what the final deployment should look like based on the locations of

the agents, but we need to create the sequence of mutually-visible deployments in-

between the two. Doing so will ensure that our system is mutually-visible at each

intervening step that we calculate.

We can make these time horizons as small as we want by using smaller transitions

for the agents, addressing the problem that we may not know the final destination of

the agents and therefore the final deployment tree needed. We can settle for incre-

mental deployments, computing deployment sequences between small agent shifts.

As noted in the calculation of deployments with fixed topology, this problem has

two components: picking a topology and deciding where the nodes are placed. With

the topology fixed, the placement problem is easy, and we extend the results of Sec.

3.3.4 to handle the physical costs associated with moving the nodes. We will find

the optimal deployment assuming that one is possible with the given topology. If

there is no deployment possible using the fixed topology, some heuristic approach

for changing the topology is needed. This is discussed in Sec. 3.6.

Incorporating movement costs into the Steiner tree calculation represents an un-

explored problem that we call finding a minimal movement Steiner tree. The main

structural difference is that a traditional minimal Steiner tree problem considers

edge costs alone but for consideration of movement we must incorporate per-node

costs as well. Another way to think of it is that given a set of target locations, you

can compute a Steiner tree to find the optimal way to connect them, but you may

be willing to trade-off the optimality of the final tree for a reduced cost of moving

robots to form the tree. Our approach to performing this tradeoff is to introduce

a parameter µ that scales the edge-weight contribution to the final cost and then
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perform a dynamic programming step to solve for the optimal placements with a

fixed topology. Using Sec. 3.6, we can explore the space of possible topologies to op-

timize the cost even more. But as will be seen later, searching all topologies requires

exponential time and so we will make a heuristic simplification.

3.5.1 One-step Sequence Optimization

Equation 42 states the optimization problem that needs to be solved to perform

the 1-step tree design. Though it seems difficult, if the structure of the new tree is

known, we can solve this problem using dynamic programming. This approach can

incorporate both the virtual and physical costs associated with the new tree and

can work with constraints on cell location of the nodes of the new tree. This is a

direct extension of the technique of Sec. 3.3.4 where we consider minimizing the

edge costs of the new deployment but now we have an additional cost in the form of

the physical cost for a node to move from its existing position to a new one.

We find this by declaring that the conditionally optimal cost of a single-node

tree is simply the physical cost of the conditioned move of node i from its current

position m0
i to its new one:

C?(Ti→mi
) = Wp(m

0
i ,mi) (43)

From Sec. 3.3.4, we have the recursive formula for the conditionally optimal cost

of a tree in terms of the two trees formed by removing an edge between node i and

j:

C?
i→mi

(T ) = C?
i→mi

(T i\j) + min
mj

(
C?
j→mj

(T j\i) +Wv(mi,mj)
)

(44)

where we can add Eq. 43 as the endpoint of the recursion once we’ve split the tree

down into single-node trees.

Though we have defined the optimal costs in terms of arbitrary splits of the tree,

it is most useful to split the tree one node at a time since we can directly write

the optimal conditional cost of a single node with Eq. 43. Moreover, if a node has
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several adjacent edges, the contributions of the trees formed by removing each of

these edges are independent and can be added together. With these modifications

in mind, we can write the final recursion as:

C?(Ti→mi
) = Wp(m

0
i ,mi) +

∑
j∈adj(i)

min
mj

[
C?(T

j\i
j→mj

) + µWv(mi,mj)
]

(45)

where adj(i) are the nodes adjacent to i in tree T . We find the conditioned cost

C?(T
j\i
j→mj

) of T j\i by using this same Eq. 45 replacing T with T j\i.

This is demonstrated in Fig. 38. We pick some arbitrary node i and then write it’s

conditionally optimal cost in terms of the sum of the conditionally optimal costs of

each child node j. However, we first need to compute this conditionally optimal cost

so we recurse into the subtree and repeat the procedure with the child node j now

treated as the base node i and using the conditionally optimal costs of this node’s

children j’s. We keep recursing down the tree and querying for the conditionally

optimal cost until we are left with a single-node tree, whose conditionally optimal

cost we know from Eq. 43 as just the physical cost. With this in hand, we can

unwind back through the tree and compute the conditionally optimal costs with

minimizations over the children costs until we end up back at the original base node.

Its minimum conditional cost is the minimum cost for the entire tree.

A note on design: constraints on the problem can be introduced through design

of the cost functions Wp,Wv. If a pair of cells are not visible to each other (adjacent

in the mutual visibility graph), then set their virtual cost Wv to infinite. This

automatically removes them from consideration as viable choices for adjacent cells

in T , unless there is no realization of T possible, in which case the optimal cost

becomes infinite. If a movement constraint is desired so that certain cell choices are

infeasible because of range or possibly nonholonomic conditions, then the physical

cost Wp can be made infinite for that particular cell.

The algorithms are given in Algs. 4, 5, and 6 and described here.
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Algorithm 4 InitializeRedeployment(m0,mc,Wp)

Require: A set of current node placements m0, a set of constrained locations mc

where the targets are to be placed, and physical weights Wp between placement

locations.

Ensure: A cost structure C of physical costs alone.

1: C ← {}
2: for i = 1 to k do

3: if i is a constrained target in mc then

4: C(i, j) =∞, ∀j 6= mc
i

5: C(i,mc
i) = 0

6: else

7: C(i, j) = Wv(m
0
i , j)

8: end if

9: end for

10: return C

Algorithm 5 Redeployment(C,Wv, T, µ, v, a)

Require: A cost structure C incorporating physical costs, virtual edge weights Wv,

a tree topology T , a mixing parameter µ, the current node v, and the ancestor

node a.

Ensure: The cost structure C is correct for the subtree T v\a.

1: for j ∈ NT (v), j 6= a do

2: Redeployment(C,Wv, T, µ, j, v)

3: for mv = 1 to N do

4: C(v,mv)← C(v,mv) + minmj
[C(j,mj) + µWv(mi,mj)]

5: end for

6: end for

97



i

j i

j

Figure 38: Beginning with some arbitrary node i, it’s conditionally optimal cost depends

on the sum of minimizations over the conditionally optimal cost of each child node j. We

recurse into this node and repeat the procedure, treating it as a base node i querying the

conditionally optimal cost of all of its children. This continues until we have obtained a

single-node tree, whose conditionally optimal cost is found using just its physical cost as

in Eq. 43. This lets us complete the computations back up through the tree.

First the conditionally optimal cost structure is initialized with InitializeRe-

deployment and all of the physical costs are filled in. For the targets whose

movements are fixed, we set the physical cost of their new position to zero and set

all other positions to infinity. For all other agents, we set their costs according to

the established physical cost function.

With the physical costs entered into the cost structure, we use the recursive

function Redeployment to solve for the costs. We can start from any node v

of the graph and initially set the ancestor a as empty. The algorithm starts by

iterating over each neighbor j of v and ensuring that its conditionally optimal cost is

computed. We then minimize over this cost and add it into the conditionally optimal

cost of v. When iterating over the neighbors of v, we skip over a in order to establish

that we are optimizing the subtree T v\a.
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Algorithm 6 RedeploymentBacktrack(m,C,Wv, T, µ, v, a)

Require: Structure of optimal locations m, the conditionally optimal costs C, vir-

tual edge weights Wv, a tree topology T , a mixing parameter µ, the current node

v, and the ancestor node a.

Ensure: The optimal locations m are correct for the subtree T v\a.

1: if a is ∅ then

2: mv = arg minmv C(v,mv)

3: else

4: mv = arg minmv [C(v,mv) + µWv(ma,mv)]

5: end if

6: for j ∈ NT (v), j 6= a do

7: RedeploymentBacktrack(m,C,Wv, T, µ, j, v)

8: end for

After the conditionally optimal cost is computed for our chosen start node, we

can compute the positions that give rise to this cost by using Redeployment-

Backtrack. First the lowest cost position is used for the current node v, and then

all of its neighbors are updated, again skipping over the ancestor a to ensure that

we are optimizing the subtree T v\a.

3.6 Topology Modification

Similarly to [108], we consider the use of topology modification in order to find so-

lutions to the visibility-maintenance problem in the case where the current topology

is suboptimal or infeasible for keeping the targets mutually-visible.

Our approach is very simple and is demonstrated in Figure 39: take the current

tree topology and remove a single edge, producing two trees. Then connect these

two trees by adding an edge between every pair of vertices except the original. For

a tree T = (V,E), the set of trees produced by removing edge (i, j) is denoted T̄(i,j)
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Figure 39: We systematically create new tree topologies by removing an edge (i, j) from

the original tree and then adding edges between all vertices of the two trees produced by

the deletion.

and is found by:

T̄(i,j) =
{

(V,E − (i, j) + (α, β))
∣∣ ∀(α, β) 6= (i, j), α ∈ V (T i\j), β ∈ V (T j\i)

}
(46)

The full set of single-edge modifications of T is found by:

T̃ =
⋃

(i,j)∈E

T̄(i,j) (47)

and by checking T̃ and T , we have broadened our search for ways to fulfill the

mutual visibility requirement. The OneStepTopologyModification procedure

is shown in Algorithm 7.

This modification of the redeployment is interesting because it is a step towards a

solution to the problem of finding a fixed-size Steiner tree, or an optimal Steiner Tree

with a specified number of vertices. This is a completely new problem that has not
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Algorithm 7 OneStepTopologyModification(T )

Require: A tree T = (V,E)

Ensure: A set of trees T̃ found from T by a single edge-modification.

1: T̃ ← ∅
2: for (i, j) ∈ E do

3: for (m,n) ∈ V × V, (m,n) 6= (i, j) do

4: T̃ ← T̃ ∪ (V,E − (i, j) + (m,n))

5: end for

6: end for

7: return T̃

been previously explored. This approach to solving it falls short, of course, because a

complete solution would check all possible tree topologies for the given robot count,

and we have only checked those which can be found by one edge-shifting operation

away from a given topology. From [12] we know that there are nn−2 possible trees that

can be constructed over n vertices, so an exhaustive search would be exponential.

3.7 Summary

In this chapter we investigated the problem of deploying a team of robots to maintain

a visibility chain with moving targets in a non-convex, multiply-connected environ-

ment. We accomplished this by discretizing the environment into polygonal cells

and pre-computing visibility information between them. From this, we cast all of

our deployment problems as graph computations and used standard algorithms to

find the associated graph structures.

We introduced the idea of deployment topologies where the required visibility re-

lationships were separated from the physical robot locations within the environment,

and we saw that if the topology is given, finding the optimal robot locations is easy.
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This led to an algorithm for computing robot motions to accommodate changing

target locations while keeping the deployment topology fixed and devised a heuristic

way to check multiple topologies to see if better solutions could be found.

One important building block was devising edge weights for the visibility links

within the environment, and we constructed them to express preferences for min-

imizing robot count, making the deployment as compact as possible, and utilizing

larger visibility cells as much as possible.

Now that we have decomposed the visibility-based deployment into a sequence

of deployment topology snapshots, we must implement a control strategy that will

move the robots between snapshots while preserving visibility between connected

robots and avoiding collisions between the agents and both the environment and

each other.
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Chapter 4

Implementation and

Experimentation

In this chapter we will discuss solving the practical realization of the deployments

planned in Chapter 3 as well as characterizing the complexity of the algorithms. Al-

though the necessary robot positions have been found to ensure visibility at discrete

times during the deployment, the actual paths and control actions have not been

found.

There are two goals for the paths and their execution: to maintain mutual vis-

ibility during the motion and to avoid collisions between the robots and both the

environment and each other. We will realize this goal by having each robot plan a

path independently and then sequence the execution of these paths. Two alternate

approaches, each satisfying one of the goals, will be presented, and then they will be

combined into one unified approach.

The intent is to eventually validate this planning and execution technique through

implementation on a team of robots in an uncontrolled environment. As a prelimi-

nary step, we will perform simulated deployments to follow a user-controlled agent

through an environment. Before this, we will perform a simple experiment to moti-

vate the requirement of visibility for communication.
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4.1 Complexity

We will investigate two aspects of the complexity of the problem: first, we will create

decompositions and graphs for several example environments in order to investigate

the effect that the environment specifics such as vertex count have on the complexity

of the resulting graphs. Second, we will perform the various procedures of Chapter

3 and compare the timing against theoretical complexity results.

4.1.1 Environment Complexity

The reflex and aspect decompositions have been performed on several environments

shown in Fig. 40 and the resulting metrics are shown in Table 1.

There is a theoretical upper-bound on the number of polygons created using this

procedure. Though we are actually computing the faces of an arrangement of line

segments, we can bound this by considering the number of faces of an arrangement

of lines, and it is well-known that for n lines in the plane, there are O(n2) faces

formed [91]. Trying to specifically bound the complexity of an arrangement of line

segments is much more complex [25] because the faces may no longer be convex. In

our decomposition, the lines emanate from the reflex vertices; for r reflex vertices,

there will be 2r lines extending out tangent to them, but O(r2) bitangent lines joining

them, so in total there will be O(r2) lines. Because of this, we will have no more than

O(r4) faces in our final decomposition, though the actual number is usually much

less because many of the reflex vertices will not be visible to each other, leading to

no bitangent being placed between them.

The complexity of computing the decomposition is fairly low. The steps are:

1. Perform an intersection between all segment pairs. This can be slightly opti-

mized by only intersecting pairs whose bounding boxes overlap. For a total

segment count of L, this is up to L(L− 1)/2 checks.

2. Order the intersections lexically by their corresponding point, and process each
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(a) Room1 w/o bitangents (b) Room1 w/ bitangents

(c) Room2 w/o bitangents (d) Room2 w/ bitangents

Figure 40: The decompositions of sample environments used for testing. Versions with and

without bitangents included are shown, but some of the environments were too complex

to include bitangents. The stats of the environments are summarized in Table 1.
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(e) Room3 w/o bitangents (f) Room3 w/ bitangents

(g) Cityblocks w/o bitangents

Figure 40: (continued) The decompositions of sample environments used for testing. Ver-

sions with and without bitangents included are shown, but some of the environments were

too complex to include bitangents. The stats of the environments are summarized in

Table 1.
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(h) Maze w/o bitangents (i) L457 w/o bitangents

(j) L457mod w/ bitangents

Figure 40: (continued) The decompositions of sample environments used for testing. Ver-

sions with and without bitangents included are shown, but some of the environments were

too complex to include bitangents. The stats of the environments are summarized in

Table 1.
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Map V r Lb Lr La I N Td

room1 (w/o bit.) 28 12 28 20 0 49 26 0.000622

room1 (w/ bit.) 28 12 28 20 45 205 197 0.003

room2 (w/o bit.) 34 17 34 28 0 76 48 0.000946

room2 (w/ bit.) 34 17 34 28 54 243 233 0.00379

room3 (w/o bit.) 64 36 64 56 0 148 98 0.00201

room3 (w/ bit.) 64 36 64 56 126 645 638 0.0121

cityblocks (w/o bit.) 68 64 68 128 0 600 517 0.00655

maze (w/o bit.) 82 55 82 110 0 348 259 0.00461

l457 (w/o bit.) 225 116 225 202 0 791 594 0.0144

l457mod (w/ bit.) 18 11 18 18 24 72 65 0.00141

Table 1: The characteristics of various test environments and their resulting decomposition

data. Many of the maps are decomposed both with and without bitangent (aspect) lines.

The data presented are: V, the number of vertices in the environment; r, the number of

reflex (convex) vertices; Lb, the number of line segments contributed by the environment

boundary; Lr, the number of line segments contributed by reflex lines; La, the number

of line segments contributed by aspect (bitangent) lines; I, the number of line segment

intersections found; N, the final number of polygons created; Td, the time to compute the

decomposition, in seconds.
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to order their incoming segments. Using a data structure such as a binary tree,

the ordered insertion happens with O(log(I)) as each is created, and when

intersections overlap (as is the case when more than two segments join at a

point) then the segment lists are merged together. The search for existing

intersections at the same point and the tree insertion can be performed at the

same time.

3. Progress through the ordered list of intersections, and for each adjacent pair

of segments coming into or leaving the intersection, classify them as being the

start, end, or continuation of a polygon based on their relative orientation.

Add polygon starts to the list of open polygons, otherwise search through the

list of open polygons to find those with dangling edges corresponding to the

segments in question and apply either edge transitions or close the polygon and

move it to a closed list. Iterating through segments at each intersection is an

O(1) procedure, there are I intersections to loop through, and when searching

the open polygon list, it will only have as many entries as there are polygons

intersecting a constant-x sweep line through the environment. This count could

be as high as N , the number of polygons, but will be much less in practice.

The total complexity should therefore be around O(I).

Steps 1 and 2 are simultaneous, and 3 happens sequentially, so the total decom-

position complexity is around O(L2log(I) + I). I will generally be much less than

L(L − 1)/2 (since the actual valid intersections are a subset of all segment pair

intersection checks), so the total complexity will be dominated by the L(L − 1)/2

intersection checks, for an approximate O(L2) complexity. This is seen in Figure 41,

where the computation time is plotted log-log against the line segment count and a

line of slope 2 is fit to the data. There are algorithms for computing this arrangement

more efficiently: for example, [13] is an O(n log n + k) algorithm for computing all

k intersections between n line segments in the plane and finding the corresponding

faces. The complexity improvement is due to more efficient line segment intersection.
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Figure 41: Polygonal decomposition time versus line segment count, plotted log-log. A

line of slope 2 is fit to the data, demonstrating a quadratic time complexity. The far right

point was removed as an outlier.

Further calculation time information is shown in Table 2. For each decomposition,

we calculate the mutual visibility graph, the adjacency graph, and all-points shortest

paths for each of these graphs.

Our computation of the MVG proceeds as follows:

1. Loop through each pair of polygons: N(N − 1)/2 tests

2. For each pair, check if their centroids are visible to each other and eliminate

the pairing if not: up to O(V ) checks using the naive visibility approach of

checking for intersection with each boundary segment

3. Create a convex hull around the two polygons, and find the two line segments

added that did not belong to the original polygons: O(1) (related to number

of polygon vertices which will be around 8 total)

4. Check if either of these line segments intersect the boundary: O(V ) checks

using the naive approach
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Map N Tmv Tad Tpv Tpp

room1 (w/o bit.) 26 0.0292 0.00311 0.00323 0.00233

room1 (w/ bit.) 197 0.277 0.076 0.84 0.342

room2 (w/o bit.) 48 0.0538 0.00545 0.00973 0.0115

room2 (w/ bit.) 233 0.405 0.111 1.34 0.532

room3 (w/o bit.) 98 0.16 0.0223 0.0614 0.0457

room3 (w/ bit.) 638 2.8 0.823 22.8 12.6

cityblocks (w/o bit.) 517 4.48 0.634 13 6.4

maze (w/o bit.) 259 0.749 0.161 1.06 0.751

l457 (w/o bit.) 594 5.81 0.807 15 9.75

l457mod (w/ bit.) 65 0.038 0.00778 0.0262 0.0155

Table 2: Calculation time information for each of the test environments. For each envi-

ronment, we show the time to compute the mutual visibility graph (Tmv), the time to

compute the adjacency graph (Tad), the time to compute the all-pairs shortest paths for

the mutual visibility graph (Tpv), and the time to compute the all-pairs shortest paths for

the adjacency graph (Tpp).

5. Check each environment hole to see if it is within the convex hull of the polygon

pair: O(1)

The total complexity is O(V N2), but will be dominated by N2 since the number of

polygons is generally much higher than the vertex count when using bitangent lines.

Building the adjacency graph is done by checking each polygon pair and seeing

how many vertices of the first are found within the second (lying on the boundary

counts as being contained within). If the number is two or more, then they are

adjacent. The total number of checks is N(N − 1)/2, or O(N2) complexity.

The time complexity of both graph computations is shown in Figure 42. The

computation time is plotted log-log against the polygon count. A line of slope 2 is
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fit in both cases.
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Figure 42: Time complexity analysis of the computation of the mutual visibility and ad-

jacency graphs. The computation time is plotted log-log against the polygon count and

lines of slope 2 are fit to each, demonstrating the quadratic complexity of the task.

We compute the all-pairs shortest-paths by repeatedly applying Dijkstra’s algo-

rithm to successive nodes. For a graph with |V | nodes and |E| edges, the complexity
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of Dijkstra’s algorithm is known to be O(|V |2 + |E|) when a simple linked list is used

to store the list of nodes to be processed. For the worst-case of a complete graph,

|E| = |V |(|V |−1)/2, so the complexity will be dominated by |V |2. Our polygons are

the nodes, so our Dijkstra complexity will be O(N2). This is repeated for each node,

for a total shortest-path complexity of O(N3). The adjacency graph is less dense

than the MVG, so the running time ends up being less, but both scale the same.

Both computations are investigated in Figure 43 where the computation times are

plotted log-log against the polygon count and lines of slope 3 are fit to both, demon-

strating the cubic dependence of the all-pairs shortest path computation on polygon

count.

4.1.2 Deployment Complexity

The previous section was discussing the complexity of computations that are pre-

formed only once. However, during operation, calculating Steiner trees and rede-

ployments will be an ongoing task, and so we turn now to consideration of their

complexities.

Optimal Steiner Tree

The cost of computing the Steiner tree for the various map decompositions and target

counts is shown in Figures 44 and 45. The computation was done repeatedly and

the average is indicated along with bars corresponding to the min and max values.

From [80] (Theorem 5.7), we have that the time complexity of the Dreyfus-Wagner

algorithm, with the shortest paths precomputed, is O(3kn+2kn2). We are interested

in verifying the dependence on both variables and so analyze the time dependence

by fixing one and varying the other. We will form regressions for the data in two

ways: we will fit curves to the natural values, and we will fit lines of fixed slope to

the data plotted log-log or linear-log.

In Figure 44, the computation time is plotted with respect to polygon count for
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Figure 43: Time complexity analysis of the computation of the all-pairs shortest path for

both the MVG and the adjacency graph. The computation time is plotted log-log against

the polygon count and lines of slope 3 are fit to both, demonstrating their cubic dependence

on polygon count.
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Figure 44: Timing for computation of the optimal Steiner tree using the Dreyfus-Wagner

algorithm, looking at the computation time as a function of polygon count for a variety of

fixed target counts. The average of several trials is shown along with error bars indicating

the minimum and maximum values. In the first plot, the data is plotted normally and

a quadratic is fit to each data set. In the second plot, the data is plotted log-log and a

line of slope 2 is fit to each data set fairly well, demonstrating a quadratic dependence of

computation time on polygon count.
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Figure 45: Timing for computation of the optimal Steiner tree using the Dreyfus-Wagner

algorithm, looking at the computation time as a function of target count for a variety of

fixed polygon counts. The average of several trials is shown along with error bars indicating

the minimum and maximum values. In the first plot, the data is plotted normally and a

base-3 exponential is fit to each data set. In the second plot, the data is plotted with the

time transformed by log10 and a line of slope log10(3) is fit to each data, demonstrating a

base-3 exponential dependence of computation time on target count.
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a variety of target counts. In the first plot, a quadratic is fit to the data; in the

second, the data is plotted log-log and a straight line of slope 2 is fit over each data

set, corresponding to a quadratic relationship between polygon count and runtime.

According to the R2 values, the fits in the log-log case are fairly good.

In Figure 45, the computation time is plotted with respect to target count for a

variety of polygon counts. The first plot has a base-3 exponential fit to the data;

the second plot is linear-log, with the time transformed by log10, and a straight

line of slope log10(3) is fit over each data set to demonstrate the base-3 exponential

dependence. The fit is also very close.

Redeployment

The redeployment happens in essentially two steps:

1. For each tree topology, the dynamic programming step is performed: for each

node, the conditionally optimal cost is found by looping through each of N

possible placements of the node and minimizing over the N possible positions

of each neighboring node connected by an edge in the topology. For k nodes

in the topology, there are k − 1 edges in total, so the complexity for a single

dynamic programming step is O(kN2).

2. Single-step topology modifications are performed by removing each edge of the

topology in turn (k − 1 edges), creating two disjoint trees, and then joining

these trees by connecting each possible pair of vertices. For a tree split into

two trees of size |Ta| and |Tb|, there are |Ta||Tb| − 1 possible other trees to be

formed.

Assigning a complexity to the topology iteration portion of this process is challeng-

ing. The number of trees to check is smallest when removing the link for a leaf

node, and the line topology has the smallest number of leaves and so has the most

topologies to check. If the topology were a star, the number of topologies to check
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for each link removal grows linearly, and hence the total complexity is quadratic.

For a line topology, some of the links lead to linear complexity, and some lead to

almost quadratic, so the complexity is more than quadratic but less than cubic. The

complexity of the topology checking falls somewhere between the two and is depen-

dent on the current topology. It should be noted that if all possible topologies are

checked, rather than just single-edge modifications, then there are a total of nn−2

trees possible over n vertices [12].

For the single run of the dynamic programming, we expect O(kN2) complexity,

and some timing results are shown in Figures 46 and 47. In Figure 46, the timing

with respect to polygon count is plotted for fixed robot count in both normal and

log-log plots. In Figure 47, the timing with respect to robot count is plotted for

fixed polygon count in both normal and log-log plots. It is not possible to find a

regression in this data set because there is too much variance in the timing values.

Increasing the accuracy of these time values remains future work.

The total redeployment task of computing the dynamic program for iterated

topologies should have complexity greater than O(k3N2) but less than O(k4N2).

Figures 48, 49, and 50 show the gathered timing information, again plotted both

normal and log-log and with timing compared against polygon count and robot

count. What is interesting is that a cubic relationship was expected for robot count,

but in reality the dependence fits better to a quartic for lower polygon counts and

to the 5th power for higher ones, possibly increasing beyond that.

One possible reason for this discrepancy is implementation-dependent. In the

overview of the redeployment calculation, we skipped the step where a computation

of the conditionally optimal cost is backtracked in order to solve for the actual po-

sitions. This is analogous to reinforcement learning value function techniques where

a dynamic program must be solved to extract the optimal policy after computation.

We could do something akin to computing with the state-action function instead:

namely, keep track of conditionally optimal costs as well as the position choices that
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Figure 46: Timing of a single run of the dynamic programming task, plotted against the

polygon count for fixed robot count. The data is plotted both normally and log-log, but

the variance is too high to make use of because of timing errors due to resolution and

scheduling. The relationship is expected to be quadratic.
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Figure 47: Timing of a single run of the dynamic programming task, plotted against the

robot count for fixed polygon count. The data is plotted both normally and log-log, but

the variance is too high to make use of because of timing errors due to resolution and

scheduling. The relationship is expected to be linear.
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Algorithm Step Complexity

Polygon Decomposition O(L2)

Mutual Visibility Graph O(N2)

Adjacency Graph O(N2)

All-Pairs Shortest Paths O(N3)

Steiner Tree O(3kN + 2kN2)

Redeployment (Single DP Step) O(kN2) (theoretical)

Redeployment (Full) O(k4N2) ∼ O(k5N2)

Table 3: Summary of the complexity of each step in the algorithms presented. Here L

is the number of line segments used for performing the polygon decomposition, N is the

number of polygons found in the decomposition, and k is either the number of targets

in the Steiner Tree computation or the number of robots in the redeployment calculation.

The complexities were verified experimentally except for the Single Dynamic Programming

Step of the Redeployment since the timing variance was too great to make a conclusion.

led to them, eliminating the need for backtracking at the expense of memory, but

this was not done here. In addition, our implementation performs this backtracking

to solve for optimal positions every time a topology with lower cost is found. In the

worst case, every new topology checked could be better and so the backtracking is

performed for every topology. The scaling would suggest that since this backtracking

is approximately O(kN2) and is performed together with a forward step, the scaling

should be the same but with a factor of 2 in the worst case; however, since N2 >> k3

for the number of robots we are dealing with, the results will be inflated by any ex-

tra uses of the quickly-scaling dynamic programming portion of the computation.

Deferring backtracking until the computation is complete should eliminate this bias.

All of the scaling is summarized in Table 3.
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Figure 48: Timing of the total redeployment computation, plotted against the polygon

count for fixed robot count. The data is plotted both normally and log-log. The relation-

ship is expected to be quadratic, and in the second plot, a line of slope 2 is fit to the data

fairly well, suggesting this is the case.
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Figure 49: Timing of the total redeployment computation, plotted against the robot count

for fixed polygon count. The data is plotted normally; the expected complexity is greater

than cubic but less than quartic. There does seem to be a relationship, but it turns out to

be neither of these, as seen in Figure 50.

4.2 Single-Agent Path Planning

Before we can deal with combining the paths of multiple robots to avoid collisions and

maintain visibility, we must first understand how to plan a path for a single robot.

We will do this in two ways: first using geodesics within the polygonal environment,

and then using cell-sequences in the adjacency graph of the environment and its

associated visibility cell decomposition.

4.2.1 Computation of Geodesics

Given the start and goal positions for an individual agent, we compute the desired

trajectory by finding the geodesic connecting the two positions within the polygonal

environment [55]. In general, the geodesic is defined as the shortest path between

two points. In a Euclidean space, geodesics are straight lines, but in curved spaces
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Figure 50: Timing of the total redeployment computation, plotted against the robot count

for fixed polygon count. The data is plotted log-log and the plots shown different slope

lines fit to the data, slope 4 in the first and slope 5 in the second. The lower polygon

count cases fit the slope 4 line better, but as the polygon count rises, the slope 5 line fits

better, suggesting a deeper relationship between the polygon count and robot count in

determining the algorithm complexity.
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or spaces with holes, they become more exotic. On the surface of a sphere, for

example, geodesics consist of the great circle arcs formed from taking a section of

a diametric circle passing through the two points in question. Geodesics are not

necessarily unique; if the points on the sphere are antipodal, such as the north and

south poles on a spherical model of the Earth, then there are an infinite spectrum

of geodesics between the two corresponding to all of the lines of longitude.

Given a two-dimensional robot, the question of ensuring that the robot does not

run into the walls is handled by the common trick of inflating the walls by an amount

equal to the bounding radius of the robot shape. That way, the robot can be treated

as a point traveling in the expanded environment.

The geodesic query happens frequently, so an efficient routine for calculating it

online is used. Most of the computation is handled offline and only some simple

visibility computation and value lookup needs to be done at runtime. The offline

steps consist of computing the Visibility Graph and then constructing all shortest

paths between reflex vertices. The online steps consist of finding the visible reflex

vertices at the start and goal locations, then looping over pairs and looking up their

shortest path lengths and constructing the shortest path using the pre-calculated

path information. All of these steps are now explained in detail.

Preliminaries The polygonal environment is represented as an indexed list of

vertex positions and a corresponding list of the two edges connected to each vertex.

Each edge is directed; this allows us to represented polygons with holes since we

orient each edge with free space on its left side. Computationally speaking, given a

polygon vertex p and the edge vector v emanating from it, a point q is in the interior

of the polygonal environment, with respect to this edge, if v × (q − p) > 0. Because

the free space of our environment is interior, the boundary edge of the environment

is directed counter-clockwise, while the boundary of any interior holes are directed

clockwise.
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This information is maintained in three indexed lists: the Vertices list main-

tains an indexed set of coordinates of each vertex in R2, the Next list associates

with each vertex index the index of the vertex succeeding it along the polygon edge,

and the Prev list associates with each vertex index of the vertex preceding it. The

forward edge vector from vertex i would be calculated as Vertices(Next(i)) −
Vertices(i). Keeping the list of both the next and previous vertices allows for easy

construction of the edges local to a given vertex at various places in the algorithms.

Visibility Graph Computation The Visibility Graph for the given polygonal

environment is a graph where each vertex of the polygon forms a node and an edge

is joined between two nodes if their corresponding vertices are visible. In this case,

visibility exists if the line segment joining the two vertices does not intersect any other

line segment in the environment. Though there are more efficient ways to calculating

the graph, this simple description already gives rise to the naive algorithm that we

use.

The naive algorithm is shown in Algorithm 8. There are various tricks that can

speed up the computation, but it remains an O(n3) algorithm. Other implementa-

tions have been found that run faster: Lee’s algorithm runs in O(n2 log n) time [58],

and the Overmars and Weizl algorithm runs in O(n2) time [75]. However, since the

visibility graph computation can be performed a priori, we have no need for a faster

implementation.

With the resulting graph, we can take any vertex and quickly determine which

other vertices are visible to it, speeding up the calculation of shortest paths to follow.

Vertex Shortest Path Computation With the visibility graph in place, we

can easily calculate the shortest path between any two vertices in the polygonal

environment. By calculating all such shortest paths beforehand, the bulk of the

geodesic calculation is reduced to a table lookup. Only a subset of the vertices need

to be considered for calculation; reflex vertices are the only ones who will be found in
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Algorithm 8 NaiveVisibilityGraph(P )

Require: A polygonal environment P with vertices V and joining edges E.

Ensure: A visibility graph G joining the corners of P that are visible.

1: for v ∈ V do

2: for u ∈ V, u 6= v do

3: r ← u− v
4: for e ∈ E do

5: if r intersects e then

6: Break and check next u

7: end if

8: end for

9: Add (u, v) to G

10: end for

11: end for

12: return P

any shortest path. Starting with each reflex vertex as a source, the shortest paths to

all other vertices are found using the Dijkstra algorithm and the distance information

and node chains are stored for later use.

Finding the reflex vertices is as simple as checking the cross product of the adja-

cent edges. The ith vertex is a reflex vertex if:

(Vertices(Next(i))−Vertices(i))× (Vertices(Prev(i))−Vertices(i)) < 0

(48)

Geodesic Query With the shortest paths between reflex vertices pre-computed,

performing a geodesic query requires simply finding all reflex vertices visible from

the start and end nodes and then selecting the pair that lead to the smallest total

length. Once this pair is selected, the information about the node chains from the
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shortest path computation is used to reconstruct the path.

4.2.2 Computation of Adjacency Paths

Given the robot’s current polygonal cell and its target cell, we would like to find a

sequence of adjacent cells that the robot can traverse to get between the two. This

is accomplished by finding shortest paths in the adjacency graph for the polygonal

decomposition.

The adjacency graph has the individual polygonal cells as nodes and an edge

between two nodes if they share a common edge. Thus travel is possible between

connected cells by passing through this edge. For the decompositions shown in Figs.

20 and 21, the corresponding adjacency graphs are shown in Fig. 51. Fig. 52 shows

the adjacency graph for a more complicated environment.

Figure 51: The adjacency graphs for the decompositions of Figs. 20 and 21. Two cells are

connected if they share a common boundary edge.

The shortest path is computed with edge lengths being taken as the distance

between the centroids of the adjacent cells. If a smoother path is desired, a small

penalty can be added to each edge length to encourage paths to use less jumps. Any
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Figure 52: The aspect decomposition of a complicated environment and its corresponding

adjacency graph.

standard shortest path algorithm can be used, in our work we have pre-computed

all shortest paths offline using the Dijkstra algorithm.

Examples of adjacency paths computed in this way are shown in Fig. 53 for the

aspect decompositions whose adjacency graphs are seen in the previous Figs. 51 and

52.

In contrast to geodesics, whose path is represented as a series of line segments

joining the start and end points, adjacency paths are a sequence of cells that can be

traversed, in order, to travel from the start cell to the end cell.

4.3 Multi-Agent Path Planning

Given a group of agents with assigned target positions, the next challenge is to plan

paths for the agents so that they reach their destinations while avoiding collisions

with each other.

There are three established methodologies for coordinating multiple agents in

such a way. One is to develop controllers based on artificial potential fields for each

individual agent and then join them together with an inter-agent repulsive potential

in order to simultaneously move towards the objective while avoiding collisions. This

has the advantage of being simple to implement, but offers no guarantees that the
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Figure 53: Example adjacency paths for the aspect decompositions of the environment as

seen in Figs. 51 and 52.

agents will actually reach their goals without getting stuck in local minima of the

aggregate potential field. A second methodology is to solve a joint planning problem

taking into account the states of all agents and enforcing non-collision constraints.

However, the complexity of this planning problem grows quickly as the number of

agents grows.

Our solution for accomplishing this is taken from [89, 57]. It could be seen as

a hybridization of the above two methods: each agent plans its respective solution

path, but then we schedule the collective execution of these plans in such a way as to
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avoid collisions. There is a reduction in complexity as compared to global planning

because the full state of each agent is reduced to a single variable: the amount of its

path that has been executed.

4.3.1 Combining Two Geodesic Paths

Given the kth agent’s start point, xsk, and end point, xgk, the single-agent solution

path is simply the geodesic from xsk to xgk within the expanded polygonal environ-

ment. For the kth agent, this path is a function, Pk : [0, 1] → R2, where the path

variable γ indicates how far along the path we are. Pk(0) = xsk and Pk(1) = xgk and

Pk(γ) gives points in-between.

γ = 0

γ = 1

γ = γ′
i, κi = 0

γ = γ′
i+1, κi = 1

xs

xg

Figure 54: A highlighted straight-line segment of the geodesic between xs and xg. The ith

segment starts when the path-variable γ = γ′i and ends when the path-variable γ = γ′i+1.

The local path-variable κi ranges from 0 to 1 along this segment.

From our construction of the geodesic in polygonal environments, this path is

composed of a sequence of straight-line segments as shown in Fig. 54. If the geodesic
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for the kth agent is composed of N segments, there is an increasing sequence of path-

variable values γ = {γ′0 = 0, γ′1, . . . , γ
′
N , γ

′
N+1 = 1} whose evaluations return the

positions of the start and end points of the various segments. For example, the ith

segment ranges from Pk(γ
′
i) to Pk(γ

′
i+1); we use a local path-variable κi to describe

this segment. The local path function for this ith segment of the geodesic for the

kth agent is just a linear combination of the endpoints: P i
k(κi) = (1 − κi)Pk(γ′i) +

κiPk(γ
′
i+1).

The total path-variable value in the ith segment can be similarly calculated from

the local path-variable value as:

γ = (1− κi)γ′i + κiγ
′
i+1 (49)

Given two single-agent paths, it is possible that as the robots move along their

paths, there will be path-variable combinations that lead to a collision of the two

robots. These interactions can be clearly seen in a coordination diagram representa-

tion of the path pair, as seen in Fig. 55.

Movement in the coordination diagram corresponds to movement along the robot

paths. This is illustrated in Fig. 56, where 3 different locations in the coordination

diagram are selected and their respective robot positions are demonstrated. Note

that movements in the coordination diagram produce complicated motions in phys-

ical space. Configuration A located on the edge of the set of collision configurations

in the center of the diagram, and so the robots are touching each other. As the

configuration moves along one axis in the coordination diagram, to configuration B,

robot 1 moves along its path while robot 2 stays still. In configuration C, robot 2

has moved through the collision area because robot 1 is no longer in a coordinate

that would block its motion.

The collision areas in the coordination diagram can be more complicated if the

motions are complicated, such as in Fig. 57. We only are interested in straight-line

segments however, so the coordination diagrams between geodesic paths take on very

specific structure.
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Figure 55: By looking at a pair of paths, values of the path-variables where the robots

collide can be seen in a coordination diagram. In this case, the robots collide at the halfway

point along each of their paths and at nearby values of γ, due to their size.
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Figure 56: The positions of the robots in physical space, corresponding to three coordinates

of interest in the coordination diagram of Fig. 55.
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P1(γ1)

P2(γ2)
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γ2

Figure 57: A more complicated pair of paths and the associated coordination diagram.

Our geodesic paths will never be this complicated since we are only interested in paths

composed of straight-line segments.

For two circular-shaped objects, a collision occurs if the distance between their

centers drops below R1 +R2, where R1 and R2 are the radii of the objects. Looking

at one pair of segments, one for each path, the collision situation looks like Fig. 58.

If we express the straight-line segments as P i
k(κi) = pi + κivi, then the equation

for D2(κi, κj) is:

D2(κi, κj) = ‖(pi + κivi)− (pj + κjvj)‖2

= [(pi − pj)T (pi − pj)] + [2(pi − pj)Tvi]κi + [2(pi − pj)Tvj]κj
+[−2vivj]κiκj + [vTi vi]κ

2
i + [vTj vj]κ

2
j

and we see it as a quadric in κi, κj. If the radii of the two robots are Rk1 and Rk2 ,

then any combination of κi and κj that leads to D2(κi, κj) < (Rk1 +Rk2)
2 will result

in collision. Moving the squared radius term to the left-hand side of the inequality,

we want to characterize the region defined by:

D2(κi, κj)− (Rk1 +Rk2)
2 < 0 (50)

One of the simplifications proposed by [89] is to calculate the bounding box for
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P i
k1

(κi)

Pj
k2

(κj)

κi

κj

D(κi, κj)

Figure 58: While calculating the interaction between paths k1 and k2, we consider just

the interaction of the ith straight-line segment of k1 and the jth straight-line segment of

k2. When the robots are at positions κi and κj in the local path-variable values of their

respective segments, the distance D(κi, κj) is shown. If this distance drops below the sum

of the bounding radii of the two robots, then a collision occurs.

this region rather than dealing with it as a quadric inequality. We do this below, but

with one additional note: only the portion of the inequality region that lies within

the [0, 1] × [0, 1] coordinate box needs to be considered. This necessitates finding

absolute bounds for the inequality region and then shrinking them as necessary if

it turns out that the portion within our coordinate box does not reach these full

extents.

Characterizing the Collision Region The standard form for the quadric in-

equality in two variables is:

Aκ2
i +Bκiκj + Cκ2

j +Dκi + Eκj + F < 0 (51)
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where for our problem we have:

A = vTi vi

B = −2vTi vj

C = vTj vj

D = 2(pi − pj)Tvi
E = −2(pi − pj)Tvj
F = (pi − pj)T (pi − pj)− (Rk1 +Rk2)

2

This can be written in homogenous coordinates as:
κi

κj

1


T 

A B
2

D
2

B
2

C E
2

D
2

E
2

F



κi

κj

1

 = κ̃TQκ̃ < 0 (52)

θφi

φj

vi

vj

pi − pj

Figure 59: Angles between segments and their connecting vector.

The family of curves represented by quadric equations are known as conic sec-

tions, and their characterization is well known. If the determinant |Q| is 0, then the

136



conic is degenerate. We can calculate this quantity explicitly:

|Q| = F

∣∣∣∣∣∣ A
B
2

B
2

C

∣∣∣∣∣∣− E

2

∣∣∣∣∣∣ A
B
2

D
2

E
2

∣∣∣∣∣∣+
D

2

∣∣∣∣∣∣
B
2

C

D
2

E
2

∣∣∣∣∣∣
= ACF +

BDE

4
− B2F

4
− AE2

4
− CD2

4

By writing the inner products in terms of the angles between the corresponding

vectors, as seen in Fig. 59, we have:

A = ‖vi‖2

B = −2‖vi‖‖vj‖ cos(θ)

C = ‖vj‖2

D = 2‖pi − pj‖‖vi‖ cos(φi)

E = −2‖pi − pj‖‖vj‖ cos(φj)

F = ‖pi − pj‖2 − (Rk1 +Rk2)
2

and we can simplify the determinant even further:

|Q| = ACF +
BDE

4
− B2F

4
− AE2

4
− CD2

4

= ‖vi‖2‖vj‖2
(
(cos2(θ)− 1)(Rk1 +Rk2)

2 . . .

+‖pi − pj‖2(1− cos2(θ)− cos2(φi)− cos2(φj) . . .

+2 cos(θ) cos(φi) cos(φj)))

And from Fig. 59 we can see the substitution φj = θ+φi, which allows us to simplify

even further to get:

|Q| = −‖vi‖2‖vj‖2(Rk1 +Rk2)
2 sin2(θ)

From this we know that the conic will only be degenerate if θ = 0, requiring that

the line segments are parallel. In all other cases, the conic is non-degenerate.
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Further information is obtained from the sign of the determinant of the primary

sub-matrix:

|Q11| =
∣∣∣∣∣∣ A

B
2

B
2

C

∣∣∣∣∣∣
We can calculate |Q11| to be:

|Q11| = AC − B2

4
= (vTi vi)(v

T
j vj)−

(−2vTi vj)
2

4

= ‖vi‖2‖vj‖2 − ‖vi‖2‖vj‖2 cos2(θ)

= ‖vi‖2‖vj‖2(1− cos2(θ))

From this we can establish that |Q11| ≥ 0, with |Q11| = 0 only when the line segments

are parallel.

With this knowledge, we can characterize the solution inequality as follows:

1. When the line segments are not parallel: we know the conic is not degenerate

because |Q| 6= 0, and since |Q11 > 0, we know the conic is an ellipse (or has no

solution, which would result in an imaginary ellipse).

2. When the line segments are parallel: we know the conic is degenerate because

|Q| = 0, and since |Q11| = 0 as well, it consists of two parallel straight lines.

Bounding the Collision Region We bound the portion of the collision region

(which we have identified as either an ellipse or the region in-between two parallel

lines) in two steps: first we find the global bounds for the region, and then if they

lie outside of the [0, 1]× [0, 1] coordinate box, we solve for the intersection points on

the corresponding edge and shrink the bounding region appropriately. This is shown

in Fig. 60, where the ellipse extends outside the coordinate box and the bounding

box for the valid region is smaller than what would be obtained by simply clipping

the full global bounding box. This procedure is important: since we are considering

each path segment pair individually, only positions within the path segments can be

considered for collisions, and if we take a bounding box for the global collision states,

138



we will be overestimating the collision region to an extent that may be detrimental

to the future planning.

(0,0)

(0,1) (1,1)

(1,0)

Collision Region

Bounding Box

Figure 60: Finding the bounding box of the collision region within our [0, 1]× [0, 1] coor-

dinate box.

Assuming we have an ellipse, we find the global minimums and maximums by

simple algebra. If we were to fix κj and look at the quadric as a function of κi only,

then we have a quadratic:

(A)κ2
i + (Bκj +D)κi + (Cκ2

j + Eκj + F ) = 0

Graphically speaking, we are drawing horizontal lines at varying heights, and solving

for the two roots of the resulting quadratic will give us the two κi values where that

horizontal line intersects the ellipse (if such an intersection exists). However, at the

top and bottom extrema, there will be only one solution to the quadratic: a double

root. This occurs when the discriminant is zero, so we simply solve for when:

(Bκj +D)2 − 4A(Cκ2
j + Eκj + F ) = 0
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This gives us another quadratic, this time in κj, whose roots give us the two κj

coordinates where horizontal lines intersect the ellipse only once, i.e. the top and

bottom:

(B2 − 4AC)κ2
j + (2BD − 4AE)κj + (D2 − 4AF ) = 0 (53)

We can find the quadratic revealing the κi values at the left and right extrema

by substituting the other way:

(C)κ2
j + (Bκi + E)κj + (Aκ2

i +Dκi + F ) = 0

then the discriminant:

(Bκi + E)2 − 4C(Aκ2
i +Dκi + F ) = 0

gives us the quadratic:

(B2 − 4AC)κ2
i + (2BE − 4CD)κi + (E2 − 4CF ) = 0 (54)

Taken together, the roots of Eqs. 54 and 53 give us the global bounding box.

However, if one of the bounds lies outside one of the edges of our [0, 1]× [0, 1] box,

then we need to find the points along the edge where the ellipse intersects. For

example, if, as shown in Fig. 60, the upper κj bound exceeds κj = 1 but the lower

bound is still below, then we know that there will be two κi values signifying the left

and right intersection with the κj = 1 boundary, found by plugging κj = 1 into Eq.

54 and solving for the roots of the quadratic. This procedure is executed four times,

once for each edge, resulting in a possible 8 intersection points, as seen in Fig. 61.

As Fig. 61 explains, we will always have eight points under consideration, with

the possibility that some may be coincident if a particular extremum lies within the

coordinate box. The final step of the procedure is to simply find the bounding box of

the eight points, taking into consideration only those which are within the coordinate

box.
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Figure 61: The points x1 through x8 are placed at the intersections of the ellipse with

the coordinate box. If the ellipse bounds do not exceed the coordinate box, then both

points are placed coincident on the extremum. The points are placed even if they do not

lie within the coordinate box, so long as the ellipsoid bounds exceed the given coordinate;

these points will be culled from consideration later.

x1

x2

x3

x4

x5 x6

x7
x8

Figure 62: When the collision set is degenerate (the line segments are parallel), intersections

are taken with each of the four coordinate edges and we proceed as normal.
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If the intersection region is degenerate (when the line segments are parallel), then

we automatically must take the intersection with all four coordinate edges, as seen

in Fig. 62. The bounding procedure continues as normal from then on.

There are two special cases to be handled when all of the intersection points lie

outside of the coordinate box:

1. Each point pair ((x1,x2), (x3,x4), etc) straddles the coordinate box. In this

case the collision set covers the coordinate box and so the bounding box is the

entire region.

2. Each point pair lies either above or below the coordinate region. In this case

the collision set lies entirely outside the coordinate box and so there is no

collision possible between these two segments.

The entire CollisionBound algorithm is given in Algorithm 9. The function

SolveQuadratic takes the (A,B,C) coefficients of the standard quadratic equa-

tion, Ax2 +Bx+C = 0, and returns the ordered pair of the two roots, (xmin, xmax).

Algorithm 9 CollisionBound(p1,v1,p2,v2, S)

Require: Two line segments (p1,v1) and (p2,v2) and a separation distance S.

Ensure: A bounding box over the local path-variables for the pairs that where the

robot separation drops below S.

1: A← vTi vi

2: B ← −2vTi vj

3: C ← vTj vj

4: D ← 2(pi − pj)Tvi
5: E ← −2(pi − pj)Tvj
6: F ← (pi − pj)T (pi − pj)− S2

7: if B2 − 4AC = 0 then // Degenerate Section

8: x− ← −1, x+ ← 2, y− ← −1, y+ ← 2
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9: else // Ellipse

10: (x−, x+)← SolveQuadratic(B2 − 4AC, 2BE − 4CD,E2 − 4CF )

11: (y−, y+)← SolveQuadratic(B2 − 4AC, 2BD − 4AE,D2 − 4AF )

12: if x− ≥ 1 or x+ ≤ 0 or y− ≥ 1 or y+ ≤ 0 then

13: return ∅
14: end if

15: end if

16: if x− < 0 then // Intersect with Left Coordinate

17: (q1, q2)← SolveQuadratic(C,E, F )

18: x1 ← (0, q1)

19: x2 ← (0, q2)

20: else // Find Left Extremum

21: (q,−)← SolveQuadratic(C,Bx− + E,Ax2
− +Dx− + F )

22: x1,x2 ← (x−, q)

23: end if

24: if x+ > 1 then // Intersect with Right Coordinate

25: (q1, q2)← SolveQuadratic(C,B + E,A+D + F )

26: x3 ← (1, q1)

27: x4 ← (1, q2)

28: else // Find Right Extremum

29: (q,−)← SolveQuadratic(C,Bx+ + E,Ax2
+ +Dx+ + F )

30: x3,x4 ← (x+, q)

31: end if

32: if y− < 0 then // Intersect with Lower Coordinate

33: (q1, q2)← SolveQuadratic(A,D, F )

34: x5 ← (q1, 0)

35: x6 ← (q2, 0)

36: else // Find Lower Extremum
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37: (q,−)← SolveQuadratic(A,By− +D,Cy2
− + Ey− + F )

38: x5,x6 ← (q, y−)

39: end if

40: if y+ > 1 then // Intersect with Upper Coordinate

41: (q1, q2)← SolveQuadratic(A,B +D,C + E + F )

42: x7 ← (q1, 1)

43: x8 ← (q2, 1)

44: else // Find Upper Extremum

45: (q,−)← SolveQuadratic(A,By+ +D,Cy2
+ + Ey+ + F )

46: x7,x8 ← (q, y+)

47: end if

48: bbox← ∅
49: for Each intersection point, xi do

50: if xi inside coordinate box then

51: Expand bbox to include xi

52: end if

53: end for

54: if bbox = ∅ then

55: if x1(2) < 0 and x2(2) > 1 and x3(2) < 0 and x4(2) > 0 and x5(1) < 0 and

x6(1) > 1 and x7(1) < 0 and x8(1) > 1 then // Collision Set Surrounds

56: bbox← [0, 1]× [0, 1]

57: end if

58: end if

59: return bbox

For multi-segment paths, the CollisionBound algorithm is applied to each

pair of segments (one from each path), then the resulting bound is transformed into

the global path coordinates using Eq. 49. Putting all of these bounds together

144



results in the box-approximation to the true coordination diagram. This process is

demonstrated in Fig. 63.

Figure 63: An example of a multisegment path interaction. The upper-left diagram shows

the paths of the two robots, and the upper-right diagram shows the resulting bounding

box union taken from the interaction of each of the segment pairs. Below are the results

of CollisionBound for each segment pair. From these it is evident that only the portion

of the quadratic falling within the local coordinate box is bounded, and for some segment

pairs it is possible for the interaction to be completely outside of this coordinate box. The

union of the bounding boxes contains the true interaction set.

4.3.2 Combining Three or More Geodesic Paths

When there are more than two robots, then the dimension of the coordination dia-

gram will grow accordingly. However, the diagram has special structure: if two of the

robots are colliding, any position of the other robots is invalid. Because of this, the
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collision regions for one pair of robots become cylinders in the general coordination

diagram.

For example, in Fig. 64, the earlier example of two robots crossing is shown with

a third robot that does not interact. When the first and second robots collide, any

value of γ3 is invalid. This example continues in Fig. 65, where this time the third

robot does cross paths. The interaction of each pair of robots is projected into the

full three-dimensional coordination diagram.

1

2

P1(γ1)

P2(γ2)

3

P3(γ3)

γ1

γ2

γ3

Figure 64: When more robots are added, the interactions of any pair of robots will become

a cylinder in the full coordination diagram since any position of the other robots cannot

change the fact that two of them have collided.

For multi-segment paths, the projection becomes more complicated but is still

composed of a union of cylinders. In Fig. 66 is an example of a three-robot system

with multi-segment paths interacting.
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Figure 65: Another example of interactions between pairs of robots resulting in cylinders in

the full coordination diagram. Here the coordination diagrams of the two pairs of interest

are shown below, and their projection and union is shown in the upper-right.
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Figure 66: An example of interaction between three robots with multi-segment paths

resulting in more complicated projected collision areas. The individual robot-pair collision

diagrams below correspond, from left to right, with the interaction of Robot 1 with 2,

Robot 2 with Robot 3, and Robot 3 with Robot 1. Ordering the interactions in this way

preserves the orientation of the diagrams with respect to the full 3-dimensional picture

shown in the upper-right.

4.3.3 Searching the Coordination Diagram

of Geodesic Paths

It is important to note that it is possible to quickly calculate free directions to move

without having to completely characterize the full N-dimensional projected collision

areas. This proceeds in several steps:

1. Create two boolean vectors, forward and backward, whose ith elements indicate

whether it is possible to move forward or backward along the ith axis in the
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full coordination diagram. All directions are true initially.

2. Loop through each unique robot pair and consult the corresponding set of

bounding boxes surrounding the coordination diagram for this pair.

3. Loop through each box on the diagram and check if the point is touching the

box. A few different cases are shown in Fig. 67. Assuming the point is touching

the box, then only if the point lies within an edge, such as point B or C in the

figure, do directions need to be cut off immediately. However, the directions

which lie tangent to the bounding box need to be marked. Each possible

direction is labeled as 1+, 1−, 2+, and 2− in the figure. The number of times

that each direction is tangent is incremented as tangency is encountered. For

example, at point A, the 1+ and 2− directions are incremented. At point B,

when the point is first encountered as a corner to the left-hand box, the 1−
and 2+ directions are incremented. Then when the point is encountered on the

side of the right-hand box, the 2+ and 2− directions are incremented. After all

the boxes are accounted for, any direction which was tangent to two or more

boxes is an illegal direction, as demonstrated with point B.

The free directions are eliminated as boxes prevent movement. Once the free

directions are established, neighbor coordinates can be found by incrementing and

decrementing the current coordinate as appropriate, where the incremental distance

is determined by the merging of box extents for each axis across all possible pairings.

Once the coordination diagram is established as a set of bounding boxes describ-

ing keep-out areas together with the axis pairs they belong to, the final planning step

is to find a sequence of motions in path-coordinate space that allow for travel from

the initial coordinate, all path coordinates equal to zero, to the final coordinate, all

path coordinates equal to one. This is accomplished using an A? algorithm where

the heuristic and distance functions are taken as the Euclidean distance in the full

path-coordinate space.
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Figure 67: Different cases to consider when eliminating free directions at a given point.

For corner points like point A, all directions are free, but two directions are tangent to

a box. When paired with another box, such as at point B, a direction being tangent to

multiple boxes means it is not free. Points such as C have a non-free direction and two

tangent directions.

There is a natural discretization of the space in terms of the bounding boxes.

Since motion in a given direction will only be halted by reaching a bounding box

in one of the associated coordination diagram, the union of all bounding box limits

along this axis serves to define all interesting points.

4.3.4 Searching the Coordination Diagram

of Adjacency Paths

Given a set of adjacency paths represented as an ordered list of cells, the search of the

coordination diagram is similar to that for geodesics, but instead of boxes bounding

collision configurations, we impose graph property constraints on path configura-

tions. In particular, we are interested in maintaining a visibility-chain between all

agents and ensuring that collision configurations are avoided.
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Given a particular robot configuration, the graph S is the subgraph of the MVG

formed by the nodes of the MVG occupied by the robots and any edges that remain.

As seen in Fig. 68, although the MVG is always connected, the subgraph need not

be. The bold edges are those that remain when the nodeset is limited to only those

occupied, but when the node shifts, connectivity can be lost.

Figure 68: Although the MVG is always connected, a subgraph of the MVG need not be.

As the nodes shift from the configuration in the center picture to those in the right picture,

the induced subgraph becomes disconnected.

As established earlier, a visibility-chain exists if the subgraph S is connected.

This test can be carried out by a breadth-first search from an arbitrary node of S.

If any nodes remain untouched after the search terminates, then the subgraph is

multiply connected and the visibility-chain is broken.

If a configuration of the robots along their adjacency paths leads to an uncon-

nected subgraph in the MVG, then the configuration is disallowed.

4.3.5 Hybrid Approach

Both the previous techniques, using geodesic paths and using cell-sequences from the

adjacency graph, have strengths and weaknesses. The geodesic path technique leads

to efficient straight-line movements but fails to account for visibility when deciding

movements. The adjacency path technique allows for guarantees of mutual visibility

at each step of the process but fails to incorporate collision avoidance.
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A hybrid approach is possible: using geodesic paths but refining the splits beyond

just straight-line segments and identifying parts of the segments lying within each

individual visibility cell. This idea is shown in Fig. 69. The geodesic path is found

between the start and goal locations, but the path is split into a series of segments

according to membership with visibility segments. The geodesic-scheduling approach

can then be augmented with additional constraints requiring maintenance of the

deployment topology by ensuring that pairs of segments lie within cell pairs that are

mutually visible.

If two robots are required to maintain line-of-sight according to the deployment

topology, then for any pair of segments that do not lie within or border upon cells

that are mutually visible, the corresponding path variable intervals are blocked out.

There are two fundamental constraints with this approach. First, constraining

visibility is impossible to do in this way if topology modification is used since new

links may be formed to agents that are not currently visible, but will become visible

once the movement is complete. Second, it is possible that the paths between two

agents may diverge to the point that visibility can no longer be maintained. This

could be the case if two agents choose different homotopy classes of paths when

confronted with a hole in the environment. If this happens, the visibility can not

be maintained without modifying one or both paths. This simple path coordination

can not handle this case; a more sophisticated method should be used.

4.4 Experiments and Simulation

Here we shall see some experimental results motivating the use of visibility as a

communication model and simulations demonstrating the deployment of a team of

robots to follow a moving target while trying to maintain visibility.
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Figure 69: The original geodesic path is refined into segments lying within individual visi-

bility cells (or the boundary between two visibility cells). Doing so enables the extension of

the geodesic path scheduling to include visibility constraints by blocking out path variable

interval pairs corresponding to segments that do not lie within or border upon cells that

are mutually visible if the two robots belonging to these paths are required to maintain

visibility according to the deployment topology.

4.4.1 Motivating Visibility as a Communication Model

In order to check whether there is any gain by insisting on visibility between agents

in order to facilitate wireless communications, we performed a simple experiment.

Lacking any sophisticated wireless communications model, we use signal strength as

a proxy for bandwidth; this ignores a great deal of the intricacies happening in the

OSI logical link layer and higher, but does give some insight [40]. Our test consists

of a simple sender/receiver pair placed at varying distances and with differing line-

of-sight conditions. The positions used are shown in Figure 70. At each position,
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several signal strength measurements were made to demonstrate that visibility has

a dramatic effect on the power loss [92]. As can be seen in Figure 71, the positions

corresponding to loss of line-of-sight experienced a substantial drop in received signal

power. We claim that this appreciably degrades network performance, but plan to

use direct bandwidth tests to quantify this in the future.

B1234
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7

8910111213141516

17

18

19

20

Figure 70: The numbered receiver locations for the signal strength test. The base was

placed in the lower-right corner (marked with a B), and the other receiver was moved to

the other locations placed at 1m intervals. Some of the positions veer off into the hallway

and lose line-of-sight with the base.

4.4.2 Deployment Simulations

For our deployment trials, we use one fixed base, one user-driven agent, and several

mobile robots as support. The robots are placed in initial locations and their de-

ployment topology is assigned to be a line, with the fixed base at one end and the

agent at the other. Goal points are then repeatedly sent to the agent to simulate

wandering or exploring; the goal points are deliberately chosen to be within the cur-

rent line-of-sight of the agent or just around a visible corner, to further simulate the

act of exploration. Each time a goal point is sent, a new deployment is calculated to
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Figure 71: The signal strength measured at various locations, expressed as decibels of loss.

In the first plot, the locations are plotted one-by-one, and in the second, the results are

plotted according to range, with the circles corresponding to ranges of positions within

line-of-sight and triangles corresponding to ranges of positions not within line-of-sight.

There is a substantial power drop when line-of-sight is lost.

connect the new goal point with the base station and also produce a mutually-visible

tree with minimal movement. It is important to note that this tree will be mutu-

ally visible when the movement is complete, but may not be mutually-visible at the

instant it is computed. Also, during the motion, the final positions may never be

reached because the agent chooses a new point. We set the speeds of the agent and

robots to be the same, so in some cases the robots can not keep up with the deploy-

ments. What happens is a best effort sequence of deployments. Some snapshots are

seen in Figures 72, 73, 74, and 75. The focus is on times when the topology shifts

as a different path is found to connect the spot that the agent declares it intends to

go to. In the figure captions, we note the amount of time that the agent is visible to

the robots as a percentage of the entire sequence.
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Figure 72: A simulated sequence of deployments in the l457mod environment. The doubly-

circled point is the user-controlled agent, the thick black lines indicate the current deploy-

ment with robot locations circled, the thin gray lines indicate the resulting deployment

calculated to support this new position, and the arrows indicate how each robot moves

between the two. The moving agent was visible to at least one robot for 68% of the

sequence.
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Figure 73: A simulated sequence of deployments in the room3 environment. The doubly-

circled point is the user-controlled agent, the thick black lines indicate the current deploy-

ment with robot locations circled, the thin gray lines indicate the resulting deployment

calculated to support this new position, and the arrows indicate how each robot moves

between the two. The moving agent was visible to at least one robot for 81% of the

sequence.
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Figure 74: A simulated sequence of deployments in the maze environment. The doubly-

circled point is the user-controlled agent, the thick black lines indicate the current deploy-

ment with robot locations circled, the thin gray lines indicate the resulting deployment

calculated to support this new position, and the arrows indicate how each robot moves

between the two. The moving agent was visible to at least one robot for 79% of the

sequence.
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Figure 75: A simulated sequence of deployments in the cityblocks environment. The

doubly-circled point is the user-controlled agent, the thick black lines indicate the current

deployment with robot locations circled, the thin gray lines indicate the resulting deploy-

ment calculated to support this new position, and the arrows indicate how each robot

moves between the two. The moving agent was visible to at least one robot for 87% of the

sequence.
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4.5 Summary

In this chapter we discussed details for executing the deployments found in Chapter

3 and analyzed the complexity of the algorithms found there. We devised move-

ment schedules for the robots by combining geodesic paths found for each individual

robot and then sequencing their execution to avoid collisions and maintain visibility

according to the deployment topology. The path segments were split according to

both their inclusion within the visibility cells and the points where the robots in-

teract through collision. These segment-segment interactions translate into interval

constraints on the concatenated path variables of all of the robots and we use A?

planning to find a schedule in path-variable-space that avoids them.

We performed a simple experiment to motivate the requirement of visibility for

communication by demonstrating that loss of visibility causes a large drop in signal

strength. Finally, we performed simulated deployment tests by manually driving an

agent and computing and sequencing deployments to keep the agent connected to

the base station.
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Chapter 5

Conclusion

This thesis discussed the problem of using mobile robots to interact with an indepen-

dent agent as it travels through a complex environment. We considered two aspects

of the scenario: localizing and tracking the agent using range-only sensors within

line-of-sight, and deploying and moving a team of robots to maintain a chain of vis-

ibility for communication between the agent and a fixed base station. We presented

the technical material and then provided simulated deployments to demonstrate the

concept. Ultimately, this work will prove useful for the stated vision of deploying

teams of robots to assist emergency personnel in gathering information while mini-

mizing risk.

In Chapter 2, we solved the problem of localizing an independent agent using

range-only measurements from mobile sensors and then choosing sensor movements

to speed-up localization time and improve precision. We did this with a novel esti-

mation framework based on using an extended state space to transform a nonlinear

problem into a linear one and then using a standard linear filtering technique. In

our case, we used a set-based technique with ellipsoid set representations.

From this estimation framework, we drew an analogy to existing techniques in

control for information acquisition in probabilistic linear filters and derived equations

for the new framework.

161



Both the estimation and control were implemented on a hardware platform and

the technique was validated experimentally, with some interpretation and explana-

tion of weaknesses of the set-based assumption and how the filter robustly recovered.

In Chapter 3, we investigated the problem of deploying a team of robots to main-

tain a visibility chain with moving targets in a complex environment. We accom-

plished this by discretizing the environment into polygonal cells and pre-computing

visibility information between them. From this, we cast all of our deployment prob-

lems as graph computations and used standard algorithms to find the associated

graph structures.

We introduced the idea of deployment topologies where the required visibility re-

lationships were separated from the physical robot locations within the environment,

and we saw that if the topology is given, finding the optimal robot locations is easy.

This led to an algorithm for computing robot motions to accommodate changing

target locations while keeping the deployment topology fixed. We extended this by

devising a heuristic to check other topologies. These algorithms led to the posing of

the fixed-size Steiner tree and minimal movement Steiner tree problems.

One important building block was devising edge weights for the visibility links

within the environment, and we constructed them to express preferences for min-

imizing robot count, making the deployment as compact as possible, and utilizing

larger visibility cells as much as possible.

In Chapter 4, we discussed details for executing the deployments of Chapter

3 and analyzed their algorithmic complexity. We devised movement schedules for

the robots by combining geodesic paths found for each individual robot and then

sequencing their execution to avoid collisions and maintain visibility according to

the deployment topology. The path segments were split according to both their

inclusion within the visibility cells and the points where the robots interact through

collision. These segment-segment interactions translate into interval constraints on

the concatenated path variables of all of the robots and we use A? planning to find
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a schedule in path-variable-space that avoids them.

We performed a simple experiment to motivate the requirement of visibility for

communication by demonstrating that loss of visibility causes a large drop in signal

strength. Finally, we performed simulated deployment tests by manually driving an

agent and computing and sequencing deployments to keep the agent connected to

the base station.

5.1 Challenges and Future Work

There remain many barriers to practical implementation of all the techniques pre-

sented, despite the hardware experiments performed. Investigating and breaking

these barriers would be the most fruitful direction for future work, and we will re-

view a few avenues of research to accomplish this.

In the localization technique of Chapter 2, we saw a nonlinear transformation

that handled the problem of range-only measurements, but finding transformations

for other nonlinear problems remains an open problem. The work of [19] promises

to be the most general treatment for this problem. Once ellipsoid sets are found,

translating them into feasibility sets in the original state space remains a challenge

and the efficacy of the techniques suggested remains dubious. The bounded error

assumption may also be unnecessarily conservative since a few measurement outliers

could require the error bound be quite large to avoid inconsistencies such as those

encountered during experiment.

Though the analogy between the set-based technique used previously established

techniques with Guassian representations produced results which were promising,

the link is still technically unmotivated. Moreover, the control strategy itself is a

simple greedy approach, and there still remains work to be done in finding planned

approaches for carving out the information space efficiently. This would necessitate

multi-robot coordination of a different character than that investigated in this work
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during the discussion of executing robot deployments.

The visibility-based deployment calculations of Chapter 3 all hinge on the special

discretization of the polygonal environment. This presents two problems.

First, as the environment complexity grows, the discretization will become in-

creasingly complex as well and the visibility and shortest-path computations that

must be computed will begin to take an exorbitant amount of time. The inclusion

of the aspect lines in the decomposition is especially costly due to the explosion of

cells produced; additionally, many of the cells are small and relatively useless from

a practical control standpoint, even though they are important from a theoretical

visibility standpoint.

Second, in practical situations, the environment map will not be as clean as

those used in this work. Even if the environment is mapped beforehand, this map

will likely be constructed using noisy laser scans and integrated into an occupancy

grid or segment map. Using the inflection and aspect line approach will either

require extensive preprocessing to clean up the map, or we will need an entirely new

decomposition concept that preserves the visibility-centered and topological nature

of these decompositions but generates the visibility cells in some other way, perhaps

more experimentally motivated.

This does not even begin to approach the problem of performing visibility-based

planning in an environment that is still being discovered. If a suitable decomposition-

generation scheme could be devised that would allow for incorporation of measure-

ments online, there would still remain the problem of integrating new cells with

visibility and shortest-path computations in order to make them usable within the

framework. If there was a way to do this incrementally, then simultaneous discovery

and planning could be possible.

Another useful extension would be to relax the hard visibility constraints and

instead assign edge weights based on communications quality using a more general

model that takes into account fading from non-line-of-sight conditions. We could

164



use this new set of weights to compute “radio-friendly” deployments. The biggest

challenge would be implementing a high-quality communications model.

There still remains the question of robustness. A tree graph is a poor commu-

nications topology because a single point-of-failure will disable the communications.

Requiring a biconnected graph as in [8] would eliminate this problem, but now the

redeployment cannot be solved optimally using dynamic programming. Instead, we

would be forced to consider approximate techniques similar to those used for loopy

belief propagation in Bayesian networks.

The plan refinement and execution of Chapter 4 also leaves open questions tied to

the discretization. In particular, the aspect decomposition creates many cells which

are small or awkwardly-shaped, leading to an explosion in the number of segments

that must be considered and tested for interaction with each other. Moreover, the

small cells are capturing changes in the visibility topology between areas of the

environment that may not even be in use by the robot configuration at a given

time. This issue could possibly be solved by simplifying the decomposition in a way

that effectively “linearizes” around the current deployment and the visibility lines

that must be maintained, only creating cell transitions for inflection points that

can break line of sight within some horizon of the current deployment. This could

create smaller-scale decompositions and thereby greatly reduce the complexity of

the mutual-visibility and shortest-path computations, perhaps even scaling down to

real-time performance on a reasonably powerful mobile robot computer.

The inability to guarantee that visibility can be maintained during motion is a

good reason to question the use of geodesics as a path primitive to use for coor-

dination. Other approaches like dynamic programming over a discretization of the

Generalized Voronoi Graph, such as in [50], might be warranted.

There is also a vast gulf of research separating the centralized path sequencing

operation used here and a distributed implementation. Even though such an imple-

mentation was not a stated goal, current research trends are towards such approaches
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because they offer the promise of harnessing the collective processing power of sev-

eral small computers to produce results that would otherwise require one large one.

There has been no research in parallelization or distribution of our path sequencing,

but the pair-wise nature of the constraint generation would suggest that the amount

of communication would be limited. Performing the distributed graph search based

on these softly-defined constraints would be a challenge.

However, if the discretization scheme were re-imagined in order to be more closely

tied to online measurements, and this could be further extended into efficient online

updates of visibility and shortest-path computations, the presented work would pro-

vide the foundation for a very powerful planning and control framework to handle

visibility maintenance.
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