169 research outputs found

    Mode decision for the H.264/AVC video coding standard

    Get PDF
    H.264/AVC video coding standard gives us a very promising future for the field of video broadcasting and communication because of its high coding efficiency compared with other older video coding standards. However, high coding efficiency also carries high computational complexity. Fast motion estimation and fast mode decision are two very useful techniques which can significantly reduce computational complexity. This thesis focuses on the field of fast mode decision. The goal of this thesis is that for very similar RD performance compared with H.264/AVC video coding standard, we aim to find new fast mode decision techniques which can afford significant time savings. [Continues.

    Complexity management of H.264/AVC video compression.

    Get PDF
    The H. 264/AVC video coding standard offers significantly improved compression efficiency and flexibility compared to previous standards. However, the high computational complexity of H. 264/AVC is a problem for codecs running on low-power hand held devices and general purpose computers. This thesis presents new techniques to reduce, control and manage the computational complexity of an H. 264/AVC codec. A new complexity reduction algorithm for H. 264/AVC is developed. This algorithm predicts "skipped" macroblocks prior to motion estimation by estimating a Lagrange ratedistortion cost function. Complexity savings are achieved by not processing the macroblocks that are predicted as "skipped". The Lagrange multiplier is adaptively modelled as a function of the quantisation parameter and video sequence statistics. Simulation results show that this algorithm achieves significant complexity savings with a negligible loss in rate-distortion performance. The complexity reduction algorithm is further developed to achieve complexity-scalable control of the encoding process. The Lagrangian cost estimation is extended to incorporate computational complexity. A target level of complexity is maintained by using a feedback algorithm to update the Lagrange multiplier associated with complexity. Results indicate that scalable complexity control of the encoding process can be achieved whilst maintaining near optimal complexity-rate-distortion performance. A complexity management framework is proposed for maximising the perceptual quality of coded video in a real-time processing-power constrained environment. A real-time frame-level control algorithm and a per-frame complexity control algorithm are combined in order to manage the encoding process such that a high frame rate is maintained without significantly losing frame quality. Subjective evaluations show that the managed complexity approach results in higher perceptual quality compared to a reference encoder that drops frames in computationally constrained situations. These novel algorithms are likely to be useful in implementing real-time H. 264/AVC standard encoders in computationally constrained environments such as low-power mobile devices and general purpose computers

    Selected topics in video coding and computer vision

    Get PDF
    Video applications ranging from multimedia communication to computer vision have been extensively studied in the past decades. However, the emergence of new applications continues to raise questions that are only partially answered by existing techniques. This thesis studies three selected topics related to video: intra prediction in block-based video coding, pedestrian detection and tracking in infrared imagery, and multi-view video alignment.;In the state-of-art video coding standard H.264/AVC, intra prediction is defined on the hierarchical quad-tree based block partitioning structure which fails to exploit the geometric constraint of edges. We propose a geometry-adaptive block partitioning structure and a new intra prediction algorithm named geometry-adaptive intra prediction (GAIP). A new texture prediction algorithm named geometry-adaptive intra displacement prediction (GAIDP) is also developed by extending the original intra displacement prediction (IDP) algorithm with the geometry-adaptive block partitions. Simulations on various test sequences demonstrate that intra coding performance of H.264/AVC can be significantly improved by incorporating the proposed geometry adaptive algorithms.;In recent years, due to the decreasing cost of thermal sensors, pedestrian detection and tracking in infrared imagery has become a topic of interest for night vision and all weather surveillance applications. We propose a novel approach for detecting and tracking pedestrians in infrared imagery based on a layered representation of infrared images. Pedestrians are detected from the foreground layer by a Principle Component Analysis (PCA) based scheme using the appearance cue. To facilitate the task of pedestrian tracking, we formulate the problem of shot segmentation and present a graph matching-based tracking algorithm. Simulations with both OSU Infrared Image Database and WVU Infrared Video Database are reported to demonstrate the accuracy and robustness of our algorithms.;Multi-view video alignment is a process to facilitate the fusion of non-synchronized multi-view video sequences for various applications including automatic video based surveillance and video metrology. In this thesis, we propose an accurate multi-view video alignment algorithm that iteratively aligns two sequences in space and time. To achieve an accurate sub-frame temporal alignment, we generalize the existing phase-correlation algorithm to 3-D case. We also present a novel method to obtain the ground-truth of the temporal alignment by using supplementary audio signals sampled at a much higher rate. The accuracy of our algorithm is verified by simulations using real-world sequences

    Motion correlation based low complexity and low power schemes for video codec

    Get PDF
    制度:新 ; 報告番号:甲3750号 ; 学位の種類:博士(工学) ; 授与年月日:2012/11/19 ; 早大学位記番号:新6121Waseda Universit

    Surveillance centric coding

    Get PDF
    PhDThe research work presented in this thesis focuses on the development of techniques specific to surveillance videos for efficient video compression with higher processing speed. The Scalable Video Coding (SVC) techniques are explored to achieve higher compression efficiency. The framework of SVC is modified to support Surveillance Centric Coding (SCC). Motion estimation techniques specific to surveillance videos are proposed in order to speed up the compression process of the SCC. The main contributions of the research work presented in this thesis are divided into two groups (i) Efficient Compression and (ii) Efficient Motion Estimation. The paradigm of Surveillance Centric Coding (SCC) is introduced, in which coding aims to achieve bit-rate optimisation and adaptation of surveillance videos for storing and transmission purposes. In the proposed approach the SCC encoder communicates with the Video Content Analysis (VCA) module that detects events of interest in video captured by the CCTV. Bit-rate optimisation and adaptation are achieved by exploiting the scalability properties of the employed codec. Time segments containing events relevant to surveillance application are encoded using high spatiotemporal resolution and quality while the irrelevant portions from the surveillance standpoint are encoded at low spatio-temporal resolution and / or quality. Thanks to the scalability of the resulting compressed bit-stream, additional bit-rate adaptation is possible; for instance for the transmission purposes. Experimental evaluation showed that significant reduction in bit-rate can be achieved by the proposed approach without loss of information relevant to surveillance applications. In addition to more optimal compression strategy, novel approaches to performing efficient motion estimation specific to surveillance videos are proposed and implemented with experimental results. A real-time background subtractor is used to detect the presence of any motion activity in the sequence. Different approaches for selective motion estimation, GOP based, Frame based and Block based, are implemented. In the former, motion estimation is performed for the whole group of pictures (GOP) only when a moving object is detected for any frame of the GOP. iii While for the Frame based approach; each frame is tested for the motion activity and consequently for selective motion estimation. The selective motion estimation approach is further explored at a lower level as Block based selective motion estimation. Experimental evaluation showed that significant reduction in computational complexity can be achieved by applying the proposed strategy. In addition to selective motion estimation, a tracker based motion estimation and fast full search using multiple reference frames has been proposed for the surveillance videos. Extensive testing on different surveillance videos shows benefits of application of proposed approaches to achieve the goals of the SCC

    Advanced heterogeneous video transcoding

    Get PDF
    PhDVideo transcoding is an essential tool to promote inter-operability between different video communication systems. This thesis presents two novel video transcoders, both operating on bitstreams of the cur- rent H.264/AVC standard. The first transcoder converts H.264/AVC bitstreams to a Wavelet Scalable Video Codec (W-SVC), while the second targets the emerging High Efficiency Video Coding (HEVC). Scalable Video Coding (SVC) enables low complexity adaptation of compressed video, providing an efficient solution for content delivery through heterogeneous networks. The transcoder proposed here aims at exploiting the advantages offered by SVC technology when dealing with conventional coders and legacy video, efficiently reusing information found in the H.264/AVC bitstream to achieve a high rate-distortion performance at a low complexity cost. Its main features include new mode mapping algorithms that exploit the W-SVC larger macroblock sizes, and a new state-of-the-art motion vector composition algorithm that is able to tackle different coding configurations in the H.264/AVC bitstream, including IPP or IBBP with multiple reference frames. The emerging video coding standard, HEVC, is currently approaching the final stage of development prior to standardization. This thesis proposes and evaluates several transcoding algorithms for the HEVC codec. In particular, a transcoder based on a new method that is capable of complexity scalability, trading off rate-distortion performance for complexity reduction, is proposed. Furthermore, other transcoding solutions are explored, based on a novel content-based modeling approach, in which the transcoder adapts its parameters based on the contents of the sequence being encoded. Finally, the application of this research is not constrained to these transcoders, as many of the techniques developed aim to contribute to advance the research on this field, and have the potential to be incorporated in different video transcoding architectures

    A Real-time Rate-distortion Oriented Joint Video Denoising and Compression Algorithm

    Get PDF
    This thesis proposes a real-time video denoising filter, a joint pre-filtering and compression algorithm, and a joint in-loop filtering and compression algorithm. A real-time video denoising filter: a great number of digital video applications motivate the research in restoration or enhancement methods to improve the visual quality in the presence of noise. Video Block-Matching and 3D collaborative filter, abbreviated as VBM3D, is one of the best current video denoising filters. We accelerate this filter for real-time applications by simplifying the algorithm as well as optimizing the codes, while preserving its good denoising performance. A joint pre-filtering and compression algorithm: pre-filtering and compression are two separate processes in traditional systems and they do not guarantee optimal filtering and quantization parameters with respect to rate-distortion framework. We propose a joint approach with pre-filtering by VBM3D and compression by H.264/AVC. For each quantization parameter, it jointly selects the optimal filtering parameter among the provided filtering parameters. Results show that this approach enhances the performance of H.264/AVC by improving subjective visual quality and using less bitrates. A joint in-loop filtering and compression algorithm: in traditional video in-loop filtering and compression systems, a deblocking filter is employed in both the encoder and decoder. However, besides blocking artifacts, videos may contain other types of noise. In order to remove other types of noise, we add a real-time filter as an enhancing part in the H.264/AVC codec after the deblocking filter. Experiments illustrate that the proposed algorithm improves the compression performance of the H.264/AVC standard by providing frames with increased PSNR values and less bitrates. /Kir1

    Recent Advances in Region-of-interest Video Coding

    Get PDF
    corecore