
Surveillance centric coding
Akram, Muhammad

 

 

 

 

 

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/2320

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/2320


 

Surveillance Centric 

Coding  

 

Muhammad Akram 

Department of Electronic Engineering 
Queen Mary, University of London 

 
 
 
 
 
 
 

Thesis submitted in partial fulfilment 
of the requirements for the degree of 

Doctor of Philosophy 
 

2011 



 

  i

 

 

 

To my Parents and Family 

 

 

 

 

 



 

  ii

Abstract 

The research work presented in this thesis focuses on the development of techniques 

specific to surveillance videos for efficient video compression with higher processing 

speed. The Scalable Video Coding (SVC) techniques are explored to achieve higher 

compression efficiency. The framework of SVC is modified to support Surveillance 

Centric Coding (SCC). Motion estimation techniques specific to surveillance videos 

are proposed in order to speed up the compression process of the SCC. 

The main contributions of the research work presented in this thesis are divided into 

two groups (i) Efficient Compression and (ii) Efficient Motion Estimation. The 

paradigm of Surveillance Centric Coding (SCC) is introduced, in which coding aims 

to achieve bit-rate optimisation and adaptation of surveillance videos for storing and 

transmission purposes. In the proposed approach the SCC encoder communicates 

with the Video Content Analysis (VCA) module that detects events of interest in 

video captured by the CCTV. Bit-rate optimisation and adaptation are achieved by 

exploiting the scalability properties of the employed codec. Time segments 

containing events relevant to surveillance application are encoded using high spatio-

temporal resolution and quality while the irrelevant portions from the surveillance 

standpoint are encoded at low spatio-temporal resolution and / or quality. Thanks to 

the scalability of the resulting compressed bit-stream, additional bit-rate adaptation is 

possible; for instance for the transmission purposes. Experimental evaluation showed 

that significant reduction in bit-rate can be achieved by the proposed approach 

without loss of information relevant to surveillance applications. 

In addition to more optimal compression strategy, novel approaches to performing 

efficient motion estimation specific to surveillance videos are proposed and 

implemented with experimental results. A real-time background subtractor is used to 

detect the presence of any motion activity in the sequence. Different approaches for 

selective motion estimation, GOP based, Frame based and Block based, are 

implemented. In the former, motion estimation is performed for the whole group of 

pictures (GOP) only when a moving object is detected for any frame of the GOP. 
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While for the Frame based approach; each frame is tested for the motion activity and 

consequently for selective motion estimation. The selective motion estimation 

approach is further explored at a lower level as Block based selective motion 

estimation. Experimental evaluation showed that significant reduction in 

computational complexity can be achieved by applying the proposed strategy. In 

addition to selective motion estimation, a tracker based motion estimation and fast 

full search using multiple reference frames has been proposed for the surveillance 

videos. 

Extensive testing on different surveillance videos shows benefits of 

application of proposed approaches to achieve the goals of the SCC.  
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Chapter 1 

Introduction 

The research presented in this thesis focused on diverse coding techniques specific to 

surveillance videos. The foremost aim of this work is to propose techniques to 

improve the storage capacity and bandwidth utilisation with less computational 

complexity. The proposed coding techniques to improve compression and processing 

efficiency have been described to achieve better performance compared to the 

conventional techniques. 

One of the major building blocks of the modern digital video surveillance architecture 

is digital video coding. Its main role is to decrease the quantity of information 

essential to represent the original image sequence. Video coding techniques offer a 

compressed bit-stream representing the identical perceptual information with much 

less data for any given input video with a particular image frame rate and resolution. 

Superior compression performance can be accomplished with sophisticated video 

coding methods and/or bringing in visual artefacts. 
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Once compression is executed, the consequent bit-stream can be resourcefully 

propelled through a digital network or stored on a device. When a client needs to 

exhibit it or explore its contents, a decoding procedure requires to be applied on the 

compressed bit-stream. The decoding course of action recreates the original input 

video at its original resolution and frame rate. 

 

 
Figure 1: Scalable video coding  
 
Scalable Video Coding (SVC) offers the equivalent compression functionality 

expressed above and is shown in Figure 1. Further more, the bit-stream is arranged 

with a hierarchical structure that facilitates a user to effortlessly pull out only a 

subpart of the data enclosed in the bit-stream while still being able to decode the 

original input video but at a lower frame rate and/or spatial resolution. The recursive 

application of this approach on a new bit-stream removed out of the original bit-

stream can be utilised to carry out the process of successive extractions consequent to 

always lower resolutions. 

SVC 
Scalable bit stream 

Temporal 
scalability 

Spatial 
scalability 

Quality 
scalability 
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Figure 2: Surveillance application of SVC 
 
There are numerous kinds of scalability and each of them can be available with 

different granularity. The most frequent type of scalability is the temporal scalability. 

For example, if the original image sequence consisted of 30 frames per second, 

temporal scalability would facilitate a user to decode a subpart of the bit-stream 

reconstructing a sequence with 15 frames per second or a lower number of frames per 

second. Spatial scalability is related to the opportunity to generate a bit-stream 

corresponding to the smaller spatial resolutions, for example, by decoding images 

with a resolution of CIF (common intermediate format: 352×288) out of an image 

sequence initially encoded at 4CIF (704×576). Quality scalability represents the 

possibility to decode the bit-stream at a lower quality. In this scenario, the temporal 

and spatial resolutions continue to be the same, but the recreated image sequence will 

emerge having additional artefacts or less details. In short, Scalable Video Coding 

(SVC) offers an exclusive representation of one image sequence permitting 

instantaneous access to the scene at different scales: spatial, temporal and quality. 

One of the many application scenarios of SVC is shown in Figure 2 where benefits of 

SVC for visual surveillance are evident. 

Surveillance Centric Coding (SCC) is based on the SVC frame-work due to its 

potential benefits for surveillance applications. The main goal of this thesis is to 

develop such surveillance video specific coding techniques which offer a higher 

frame rate 

frame size 

time 

on-line processing medium time storage long time storage

4CIF
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• live monitoring 
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compression ratio so that storage and transmission resources may be utilized more 

efficiently. In addition to a better compression performance, some techniques to 

perform a quicker compression process are also focused for the SCC. All the 

developed techniques to accomplish these tasks are presented in consequent chapters 

of this thesis.  

 

VCA

SCC 
Encoder

SCC 
Decoder

Surveillance 
Sequence

Compressed Bit-
Stream

No Activity

Object Detected

Decoded Surveillance Sequence

 
Figure 3: Surveillance centric coding system 
 
An overview of the SCC system is shown in Figure 3. The Video Content Analyser 

(VCA) is used to detect any important activity corresponding to surveillance specific 

information. Based on this information, the reconstructed image resolution is 

specified. Thus, a lot of storage space is saved for the case when there is no motion 

activity. Now for the case of improving processing time, the focus of the attention 

goes to the motion estimation module due to its high processing power consumption. 

A high level system overview is illustrated in Figure 4. The process of motion 

estimation is driven on the basis of the information provided by the motion detection 

module. The final compressed bit-stream is available after the process of Entropy 
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Coding. The detailed discussion on the SCC system is presented in the dedicated 

chapters. 

 

 

 

  
 
 
 
 

   
 
 
 
 
 
  
 
 
Figure 4: Surveillance centric coding system: Motion Estimation 
 

1.1 Motivation 

Security has been a critical issue in the world. Different security techniques have 

always been deployed according to different scenarios. Over the past decade or so, 

video-Surveillance has evolved as the most widely used security system today. It has 

seen great success and growth in the rate of deployment during recent times. 

Surveillance cameras can be found at almost every security-sensitive point as shown 

in Figure 5. The massive deployment of Closed Circuit Television (CCTV) cameras 

generates an enormous amount of data as can be observed in Figure 6. As the data 

keeps on increasing with 24/7 CCTV operation, the problem of data management 

escalates. The situation is further jeopardized when multi-view cameras are installed 

in highly security-sensitive locations. 

Many researchers are drawing inspiration from this scenario and exploring new 

avenues in the CCTV system related research and areas like object recognition, 

object–based video segmentation, target detection and visual tracking etc. Apart from 

the problem of monitoring extracting video surveillance information, the huge 
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amount of data imposes a problem of storage and transmission with limited resources 

like storage space and channel bandwidth. 

In surveillance applications video captured by CCTV is usually encoded using 

conventional compression technology, such as MPEG-1/2 or H.264/AVC. These 

systems encode the video signal regardless the significance of events in the video. As 

an example, in many surveillance situations the scene remains essentially static for 

seconds and even minutes in some cases. During these periods of time nothing 

interesting happens from the surveillance standpoint, and the video resembles a still 

picture for long periods of time with no other activity than random environmental 

motion. This is the case of surveillance in metro stations during night hours or private 

car parking where the usual events are cars coming and leaving from time to time. 

When such videos are compressed using conventional coding techniques, each frame 

receives an equal level of importance. The conventional video compression 

techniques do not make a distinction between a frame having no special information 

and a frame having an object of interest with some motion activity. 

    
Figure 5: Extensive deployment of surveillance cameras 
 
The primary goal of developing any codec is to achieve highest compression while 

maintaining best possible visual quality. Therefore, all the modules and processes of 

the codec are optimised to achieve this goal. Thus, the video codecs available today 

have been optimised for visual sensitive applications. These codecs are not very 

efficient for surveillance systems. Therefore, we need to develop a coding scheme 

which is specific to surveillance system to improve the coding efficiency. 

Consequently, the utilisation of storage space and transmission of the channel 

bandwidth, especially in wireless channel, will improve. 
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Figure 6: CCTV system and control room 
 
In Surveillance Centric Coding (SCC), the framework of scalable video coding shall 

be utilised for Rate-Distortion (RD) optimisation specific to surveillance videos. The 

SCC will be flexible in changing its coding parameters according to the significance 

of the video events. The SCC shall also code different regions of each frame with 

different fidelity. Moreover, the SCC shall have lower complexity compared to the 

current standards. 

1.2 Scope of the Thesis 

The major goal of the work presented in this thesis is to develop techniques specific 

to surveillance videos to achieve better compression at reduced computational 

complexity.  The obvious characteristics of surveillance videos include static 

background or static cameras and a high importance for the video segments 

containing any event of interest like car entering a parking area. Such characteristics 

motivate to explore the Scalable Video Coding (SVC) frame work and computer 

vision techniques relevant to surveillance videos like the VCA. In order to reach to a 

meaningful conclusion, following research questions need to be addressed.  

Will the SVC be helpful to achieve byte savings? Does the SVC framework have 

support to achieve goals of Surveillance Centric Coding (SCC)? How to utilise the 

SVC framework if it does not have a support for the SCC? Are there any possibilities 

of integrating computer vision techniques developed for surveillance videos in the 
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framework of the SCC? How would computer vision techniques help to realise the 

SCC? What will be the effect of computer vision techniques on the complexity of the 

SCC? How will the negative points of computer vision techniques affect? What will 

be the effect of different scenarios on the deployment of the SCC? 

This is worth-mentioning that the work presented in this thesis does not deal with the 

computer vision techniques and does not address the problems related to them. The 

computer vision techniques are explored and utilised to achieve the byte saving and 

reduction in computational complexity in the SCC. The thesis deals with the effects 

of integrating computer vision techniques in the framework of the SCC. 

1.3 Contributions and Structure of the Thesis 

According to the objectives laid down for the PhD research, some techniques have 

been developed for efficient compression and efficient motion estimation of 

surveillance videos. These techniques are discussed in the subsequent chapters of this 

thesis. The corresponding major contributions are discussed in the following 

subsections. 

1.3.1 Efficient Compression 

Scalable video coding (SVC) framework is selected as a basis to carry out the 

development of Surveillance Centric Coding (SCC) techniques after distinguishing 

the potential benefits of using the SVC techniques for surveillance videos. In order to 

deal at the Group of Pictures (GOP) level, the GOP dependency on the preceding and 

following GOPs is removed. The second step is to get the ability to deal with each 

GOP according to the SCC requirements while still maintaining the SVC properties. 

So, the communication linkage between Video Content Analysis (VCA) module and 

single GOP is established. The analysis of each GOP generated by the VCA under the 

requirements of SCC is utilised to exploit the SVC properties of each GOP. Thus, the 

bit-stream generated by the SCC consists of GOPs with different scalability features 

to compress the surveillance videos with higher compression efficiency while no 

compromise is made on the important information from the surveillance standpoint. 

After the implementation of SCC paradigm, another novel approach is proposed to 

improve the compression efficiency. In this approach, foreground objects are detected 
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by the VCA by forming rectangular windows around objects. The first frame of the 

sequence is used as background and rest of the frames contain only the foreground 

pixels while the background pixels are set to zeros. This shows efficient compression; 

but due to use of block based coding approaches, lack of sharpness at the object edges 

is observed. The major advantage of using this approach is its implementation in the 

SCC framework. Thus, in addition to avoiding shape coding and other object based 

coding techniques, the scalabilities features are inherited through the SCC framework 

offering the potential of improving the compression efficiency through exploiting the 

scalability features in each GOP. 

1.3.2 Efficient Motion Estimation 

As the motion estimation (ME) is the most processing intensive part of a codec; 

efficient techniques to perform fast motion estimation are explored. A novel approach 

of performing selective motion estimation is proposed where object detection 

information generated by the VCA is used to flag the frames which do not have any 

moving object. Based on this analysis, different selective motion estimation 

approaches were proposed which included: (i) GOP level selective motion estimation, 

(ii) Frame level selective motion estimation and (iii) block level motion estimation. 

After the paradigm of selective motion estimation, a novel way of performing 

efficient motion estimation through reusing the information of surveillance video 

object tracker is proposed. In this approach, a real-time object tracker is used which 

generates information for each unique object with a unique track identity. In addition 

to this, objects are bounded in a rectangular box. So, instead of performing any kind 

of motion estimation for any block of the surveillance video, the motion vectors are 

calculated through the information generated by the object tracker.  

Multiple reference frame based motion estimation increases the computational 

complexity with every extra reference frame. In order to address this problem, a fast 

full search for multiple reference frames based ME is proposed. This scheme is based 

on the successive elimination algorithm (SEA): a fast full search approach. This 

approach reduced the processing power for surveillance videos. Finally, another fast 

ME search algorithm, multi-pattern search algorithm, is proposed to find approximate 

calculations as in case of the well-known Diamond search.  
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1.3.3 Thesis Structure 

Some background on the rate-distortion (RD) theory is presented in Chapter 2. In 

addition to the RD theory basics, some state-of-the-art strategies related to the 

surveillance videos are also presented. Chapter 3 describes the basic strategies for 

block-based video coding and wavelet-based scalable video coding. This chapter 

explains these techniques with the focus on the H.264/AVC standard which is the 

state-of-the-art block-based codec. Techniques of Motion Compensated Temporal 

Filtering (MCTF) and 2D DWT are explained for aceSVC: a wavelet-based video 

codec developed at QMUL. In chapter 4, object-based video coding implemented in 

MPEG-4 is presented. Object-based video coding has an attraction for surveillance 

videos because of independent handling of each object.  

From Chapter 5 and onwards, research contributions for coding techniques specific to 

surveillance videos are discussed. Chapter 5 describes architectural modifications for 

a scalable video codec to convert it into the surveillance centric codec to improve the 

compression efficiency. A mathematical model of the modified architecture has been 

described. This chapter contains the experimental evaluation of the modified system 

as well as different experimental results for the road map towards a surveillance 

centric codec.  

To overcome the problem of computational intensive motion estimation techniques, 

Chapter 6 describes a selective motion vector search technique based on the motion 

detection module. This technique maintains the visual quality of the video as that of 

full search yet improves the processing efficiency for the coding of the surveillance 

videos. A selective motion estimation approach has been proposed at different levels 

of selection (i) GOP level (ii) Frame level and (iii) Block level. All of these 

approaches are discussed with their challenges and experimental results. 

Apart from selective motion estimation, a novel approach using a surveillance video 

object tracker will be discussed in Chapter 6. A unique motion track is calculated for 

each object of the surveillance video. The displacement of the object between the 

current and reference frame will be used to calculate motion vectors after identifying 

and matching the track in the two frames.  

With the motive of maintaining the visual quality, Chapter 7 focuses on the fast full 

search approaches for efficient motion estimation. The concept of multiple reference 
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frames based motion estimation is discussed. A fast full search technique based on 

multiple reference frames is proposed. This technique improves the processing 

efficiency for surveillance videos while maintaining the visual quality. 

Chapter 8 is related to efficient motion estimation. A multi-pattern based motion 

vector search technique has been proposed. The experimental evaluation of this 

approach is tested and compared against the popular diamond search and cross-

diamond-hexagonal search techniques. This multi-pattern based search improves the 

processing efficiency at the cost of visual quality of the video. Finally, Chapter 9 

gives the conclusions on the work presented in this thesis. 
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Chapter 2 

Background 

In this chapter, an overview of basics related to Rate Distortion (RD) optimisation 

and its application in video coding is presented. The fundamental measures related to 

RD optimisation are discussed. Some of the basic distortion measuring parameters are 

explained in the context of their use in video coding. The Lagrangion method for RD 

optimisation is presented because of its established useful application in video coding. 

Finally, some state-of-the-art techniques related to surveillance centric coding are 

discussed briefly. 

2.1 Rate-Distortion Theory 

Shannon with his rate-distortion theory  [1]  [2] addressed the elementary problem of 

RD optimization, maximizing reconstructed quality at the minimum cost (bit 

consumption). RD theory basically provides a way of minimising the number of bits 

representing the source element to a given reconstruction quality or distortion, which 

helps to develop a trade-off between rate and distortion. 
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As a branch of information theory  [3]- [5], RD theory consists of fundamental 

concepts of information and entropy in information theory. A methodical explanation 

of all subsequent terminologies in information theory is beyond the scope of the work 

presented in this thesis; however a straightforward review of important concepts is 

presented in this preliminary section for the study of RD theory.  

• Entropy 
The quantitative evaluation of information in entropy is derived from Shannon’s 

information theory  [5]. Assume a random variable X takes values from the source 

elements {x1, x2, x3, …, xN-1, xN} and P(xi) the probability that X = xi , then entropy of 

source X is given by 

H (X) = -∑
=

N

i 1
P(xi)logb P(xi)                                         (2.1) 

In this equation, the ‘logb’ has the base of the working digital system. For digital 

binary system ‘b’ equals 2. The entropy of X, H(X), can further be considered as a 

quantitative representation in terms of the average number of binary symbols required 

to encode source X. As presented in the information theory, a lossless compression 

approach, the best compression performance in terms of preserving quality, can be 

accomplished by representing the source with the number of bits equal to its entropy.  

• Conditional entropy 
In case of lossy compression, some quantity of information is discarded during 

encoding process; consequently a reconstructed symbol will be different from the 

original source symbol. Therefore in RD theory a reconstruction element {y1, y2, y3, 

…, yM-1, yM} is further dealt with, which is generally different from the source 

alphabet {x1, x2, x3, …, xN-1, xN}. To explain lossy compression, let us assume Y be a 

random variable that takes values from {y1, y2, y3, …, yM-1, yM} and X from the 

source elements {x1, x2, x3, …, xN-1, xN}. Following equation (2.1), the entropy of the 

reconstruction is given by 

H (Y) = -∑
=

M

j 1
P(yj)logb P(yj)                                          (2.2) 

Let P (xi | yj) be a joint probability that X = xi and Y = yj occur with probabilities P(xi) 

and P (yj), respectively. Then the conditional probability is defined as 

P (xi | yj ) =  P (xi, yj )/ P (yj)                                         (2.3) 
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which presents a probability that X = xi occurs while the occurrence of Y = yj has 

been determined. Correspondingly the conditional entropy H(X | Y) is defined as 

H (X|Y) = -∑
=

N

i 1
∑
=

M

j 1
 P (xi | yj ) logb P (xi | yj )                            (2.4) 

The conditional entropy H(X | Y) can be considered as the amount of uncertainty 

remaining about X given the knowledge of the value Y  [5]. 

• Average mutual information 
The average mutual information is another quantity measure that reflects the 

relationship between the uncertainty and entropy of two random variables  [3]. It is 

defined as 

I (X;Y) = ∑
=

N

i 1
∑
=

M

j 1
 P (xi, yj )logb [P (xi | yj ) / P(xi) ]                     (2.5) 

By expanding the logarithm argument, I (X;Y) can be expressed by means of the 

entropy and the conditional entropy, as 

I (X;Y) = H(X ) − H(X |Y)                                          (2.6) 

Thus, the average mutual information represents the amount of information that the 

knowledge of Y contributes to the reduction of uncertainty of X. 

2.2 RD Optimisation for Video Coding 

RD performance is the primary factor in the development and functioning of a video 

codec. Although it has been shown that video sources can be characterized by a 

Gaussian model  [6], any statistical model has the possibility of failing in practical 

conditions due to the broad diversity of content in real world videos. Therefore for a 

particular video codec, the RD performance is usually evaluated in an operational 

approach, rather than attempting to capture accurately the characteristics of video 

sources using statistical models. Consequently, the goal of the RD optimisation for 

video coding is to search for the optimal operating point for a concrete system under a 

constraint, usually the bit-rate. 
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2.2.1 Distortion Measures 

The method of measuring distortion is critical in RD optimization. A comprehensible 

distortion measure is not only vital for RD optimization, but also supportive for 

system design and performance evaluation. Relating to video coding, an appropriate 

distortion measure should be unswerving with the perceptual distortion perceived by 

the Human Visual System (HVS), since a human is ultimately to be the viewer. 

Subjective evaluation thus emerges as the most accurate approach for distortion 

measures in accordance with perception  [7].  

Regardless of the fact that objective video assessment may not match well with a 

subjective assessment founded on human visual perception, it is extensively used 

because of its simplicity and straightforwardness. The design of the objective 

distortion measure has concentrated on perceptual conformity, however, this 

aspiration becomes very vague as the characteristics of the HVS are complex and not 

well understood so far. For detailed information on perceptually compliant distortion 

measure, VQEG report  [8] summarised the competitive proposals organized by video 

quality experts group, which has been devoted to the standardization of video quality 

assessment methods with a stress on objective distortion measurement. Concerning 

video coding, the most frequently used objective distortion measures in practice are 

the Sum of Absolute Differences (SAD), the Sum of Squared Differences (SSD), the 

Peak Signal-to-Noise Ratio (PSNR), and the Mean Squared Error (MSE). Their 

formulations are defined by 

MSE = (1/ MN) ∑
=

N

x 1
∑
=

M

y 1
|f (x, y) – f ~ (x, y) |2 

PSNR = 10log10 (2552 / MSE) 

SAD = ∑
=

N

x 1
∑
=

M

y 1
|f (x, y ) – f ~ (x, y )| 

SSD = ∑
=

N

x 1
∑
=

M

y 1
|f (x, y) – f ~ (x, y) |2 
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Where f (x, y) and f ~ (x, y) are the pixel values at (x, y) in the original frame/block 

and the reconstructed frame/block, respectively, where M × N being as the 

frame/block size. The first two distortion measures are intuitively interpreted, where a 

lower MSE or SSD corresponds to lower distortion. Nonetheless, a higher distortion 

is related to a lower Signal-to-Noise Ratio (SNR) or PSNR. PSNR is widely used in 

evaluating compression performance in image or video coding, however, in motion 

compensated prediction, SAD and SSD are usually preferred on account of their 

succinct expressions. 

2.2.3 Lagrangian Optimisation  

Lagrangian optimisation is a standard method to solve the constrained optimization 

problem, which seeks to minimize an objective function subject to constraints on the 

probable values of the variable  [10],  [11]. In general, a constrained optimization 

problem can be described as follows.  

Let S be a finite set of all permissible values of variable B. The objective function and 

the constrained function of B are denoted as O(B) and R(B) respectively, both of 

them real-valued functions of B defined for all B ∈  S . Then the constrained 

optimisation focuses on finding the best possible B given a constraint Rc, as 

minB∈S O(B)             subject to     R(B) < Rc                   (2.7) 

This constrained optimization problem can be solved by introducing a Lagrange 

multiplier λ and finding the solution to the corresponding unconstrained problem. It 

can be proved that for any λ ≥ 0, the solution B *(λ) to the unconstrained problem 

minB∈S {O(B) + λ R(B)}                                         (2.8) 

is also the solution to the constrained problem posed by (2.7) with the constraint 

given by Rc = R(B*(λ))  [10]. That is, for any B ∈  S that satisfies the condition given 

by R(B) ≤ R(B* (λ)), the inequality O(B* (λ)) ≤ O(B) holds. 

According to theorem presented above, for a known non-negative λ, the best possible 

solution B*(λ ) can be easily established by exploiting (2.8). The subsequent 

constraint Rc = R(B*(λ)), consequently, varies with diverse selection of λ. However, 

in constrained optimization generally it is the constraint Rc, not the corresponding λ, 

which is predetermined before the optimization course of action. A problem then 

arises in how to find the appropriate λ in order to achieve the optimal solution B* (λ) 
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under a given constraint Rc. One may attain the Lagrange multiplier using bisection 

search  [12],  [13]. In RD optimization for video coding, however, a more 

computationally efficient approach is usually employed to determine the Lagrange 

multiplier  [14]. 

Instead of solving the problem of Lagrange multiplier selection empirically as in 

 [10]- [13], for RD optimized video coding the Lagrange multiplier can be determined 

for any unit as long as a quantization parameter is known, since λ can be formulated 

as a function of the quantization parameter  [14]. Once the rate constraint Rc has been 

designated, the corresponding quantization parameters for each coding unit can be 

readily found through a rate control process such as in  [15], and then the Lagrange 

multipliers in terms of a mapping to the quantization parameters. 

As a distinct version of the general description given in (2.8), the constrained 

optimization problem in video coding can be solved under the motivation of 

Lagrangian optimization  [6],  [10]. The most favourable parameter set for all coding 

units can then be determined by minimizing the following cost function J 

J = ∑
=

N

i 1
di,j  + λ ∑

=

N

i 1
ri,j                                          (2.9) 

given the Lagrange multiplier λ . Under the independent assumption that the rate ri,j 

and distortion di,j can be measured independently for each coding unit, equation (2.9) 

can be rewritten as the sum of cost functions for all specific coding units: 

J = ∑
=

N

i 1
(di,j  + λ ri,j )                                        (2.10) 

  J = ∑
=

N

i 1
Ji,j                                                          (2.11) 

 

Therefore the coding parameter for each coding unit can be optimized respectively by 

minimizing its own cost function, as 

min{ Ji,j = di,j  + λ ri,j },                                        (2.12) 

for coding unit i = {1, 2, 3, ..., N} where j = {1, 2, 3, ..., M} for each i . 

2.3 State-of-the-Art work 

Object based techniques offered by MPEG-4 are exploited in  [16]. Authors proposed 

a method to save storage space explicit to surveillance videos. Three different models 
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for background subtractions: a Mixtured Gaussian Model  [17], a Non-parametric 

Background Model  [18] and a Normalized Correlation Model  [19], are discussed.  

In the work presented in Vetro et al  [16], a frame-based coding technique is utilised 

to compress a single background image, while the object-based coding technique is 

applied to compress the sequence of segmented foreground objects. A constant 

quality using fixed quantization parameters is used to code both background and 

foreground, and the background image is merely repeated for each reconstructed 

frame. In a real world system, it is anticipated that a predetermined criteria will be 

used to evaluate when the background image should be refreshed, if needed.  

In the work of Du and Doermann  [20], the approach presented by Vetro et al  [16] was 

further extended by deriving the compression efficiency model that considers the 

number and size of foreground objects. This work was motivated by the observation 

that if the size and number of foreground objects is high, the object based coding may 

produce worse results than conventional frame-based coding. Therefore, by using the 

derived compression model the encoder can adaptively choose whether to perform 

frame-based or object based coding for a specific time segment of a surveillance 

video. 

In order to get superior compression and better quality of video from a stationary 

camera, Nishi and Fujiyoshi  [21] present a video coding technique based on pixel 

state analysis. Initially, pixel state analysis identifies foreground objects and the 

background using object detection. In addition to detecting the foreground objects, 

pixels of the foreground object are identified as stationary or transient. Despite the 

fact that the object is in motion, the foreground object has motionless pixels because 

it has same texture and colour. For motionless pixels, it is not required to store the 

pixel. It is feasible to reinstate the pixel of these stationary pixels by utilizing their 

values from the previous frame. For transient pixels, it is essential to store the pixel. 

Transient pixels of a foreground object are compressed by LZH (Lempel- Ziv-

Huffman) codec which guarantees to restore the pixel’s intensity entirely. When an 

object enters the surveillance area, object regions are identified as foreground and the 

other regions are identified as background. Foreground objects and background are 

encoded independently. At the stage of decoding, background and foreground objects 

are combined to restore the original image.  
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In the work presented by Cavallaro et al  [22], the prefiltering step is used in effort to 

develop behaviour similar to the way humans treat visual information. An example is 

the division of the video into two groups of concern; explicitly foreground and 

background. The classification of the semantic division depends on the task to be 

carried out. Therefore, some a priori information of the objects to be segmented is 

necessary. For applications such as video conference or news broadcasting, faces may 

represent the semantic objects to be considered, whereas in applications such as video 

surveillance and sport broadcasting, motion information can be used as semantic for 

segmenting moving objects. The breakdown of the scene into significant objects prior 

to encoding is used in the perceptual prefiltering. Areas related to the foreground 

division, or semantic objects, are used as regions of interest.  
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Chapter 3 

Block-Based Video Coding 

Advance Video Coding (AVC) also known as H.264/MPEG-4 Part 10 is currently the 

most powerful and state-of-the-art video coding standard. It has been developed by a 

Joint Video Team (JVT) consisting of experts from the ISO/IEC Moving Picture 

Experts Group (MPEG) and the ITU-T Video Coding Experts Group (VCEG)  [24], 

 [25],  [26],  [27].  

In Figure 7, major functional blocks of AVC encoding process are shown  [27]. An 

input frame Fk is presented for encoding. The frame is divided into units of 16x16 

pixels called macroblock. Selecting either Inter or Intra Prediction mode, a prediction 

macroblock ‘P’ is formed using a reconstructed frame. In Intra mode, the samples of 

the current frame are utilised to construct a prediction ‘P’. In the case of Inter mode, 

Motion Estimation and Motion compensation on one or more previously encoded and 

reconstructed frames are used to form ‘P’.  

.  
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Figure 7: AVC Encoder (High Level View) 
 
The difference between predicted macroblock ‘P’ and the current macroblock is 

transformed, quantized to produce ‘X’, a set of quantized coefficients. These 

coefficients are scanned for re-ordering and then entropy encoded. The compressed 

bit-stream consists of entropy-coded coefficients with the necessary information 

required to decode the macroblock (such as the macroblock prediction mode, 

quantization step size, motion vector information describing how the macroblock was 

motion-compensated, etc). This is passed to a Network Abstraction Layer (NAL) for 

transmission or storage. 

The high level view of the decoder architecture is shown in Figure 8. The compressed 

bit-stream from the NAL is passed through the entropy decoding block then inverse 

transformation and inverse quantization processes are performed. After decoding the 

header of the compressed sequence, either Inter or Intra prediction mode is selected to 

produce the prediction signal. The prediction signal is added to the inverse 

transformed coefficients to reconstruct the frame. This reconstructed frame is passed 

through a filter to smooth the frame. 
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Figure 8: AVC Decoder (High Level View) 

3.1 Intra Prediction Mode 

In intra mode, previously encoded and reconstructed blocks of the current frame are 

used to form a prediction block. Then the difference between the current block and 

the prediction block is encoded. In AVC, a sub-block division of 4×4 is possible. For 

luma samples, the prediction block may be constructed for a 16×16 macroblock or for 

each 4×4 sub-block. AVC has 4 optional modes for a 16×16 luma block, 9 optional 

modes for 4×4 luma block and one mode for chroma block. The direction for 

prediction is given in Figure 9 and first four mode are explained by Figure 10 
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Figure 9: Spatial prediction directions (4×4 Block) 
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M A B C D E F G H
I       
J       
K       
L       
                                                      
(a) Mode 0 (Vertical)     (b) Mode 1 (Horizontal) 
 

M A B C D E F G H
I     
J      
K      

L       
(c) Mode 2 (Mean/DC)    (d) Mode 3 (Diagonal down-left) 
 
Figure 10: Modes of 4×4 

 

For 16×16 macroblock prediction, the pixel values of an entire macroblock of luma or 

chroma sample are predicted from the boundary pixels of neighbouring previously-

decoded macroblocks. The encoder can select one of four different ways of 

performing full-macroblock prediction for each particular macroblock. These are: (i) 

vertical, (ii) horizontal, (iii) DC and (iv) planar. The pixel values of a macroblock are 

predicted from the pixel values just above or just left for vertical and horizontal 

prediction modes, respectively. In intra prediction mode 2 (DC prediction), the 

average of the luma values of the neighbouring pixels is used for the whole 

macroblock. In planar prediction, a curve-fitting equation with three parameters is 

used to form a prediction block. These parameters include brightness, slope in the 

horizontal direction, and slope in the vertical direction that approximately matches 

the neighbouring pixels. 

Chroma intra prediction always operates using full-macroblock prediction. Because 

of differences in the size of the chroma arrays for the macroblock in different chroma 

formats (i.e., 8×8 chroma in 4:2:0 macroblocks, 8×16 chroma in 4:2:2 macroblocks, 

and 16×16 chroma in 4:4:4 macroblocks), chroma prediction is defined for three 

possible block sizes. The prediction type for the chroma is selected independently of 

the prediction type for the luma  [27] [28]. 
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In 4×4 prediction modes, the values of each 4×4 block of luma data are predicted 

from the adjacent pixels above or left of a 4×4 block, and encoder can select nine 

different directional ways of performing the prediction.  

3.2 Inter-Prediction Mode 

The spatial redundancy present in the video is handled through intra prediction modes. 

To exploit the temporal redundancy present in the video, inter prediction mode is 

used. At the core of inter prediction mode are techniques of motion estimation and 

motion compensation. AVC supports a wide range of block size (down to 4×4) and 

fine sub-pixel motion vectors. 

The luminance component of each macroblock may be divided in four different ways 

as shown in Figure 11  [27]. If 8×8 encoding mode is chosen then each of the four 8×8 

macroblock partitions may further be split in sub-partitions in 4 different ways as 

shown in Figure 11. So, within each macroblock, there are a large number of possible 

combinations of partitions and sub-partitions. This approach of dividing macroblock 

into partitions of varying sizes is known as tree structure motion compensation. 

 

 
Figure 11: Macro and Sub-macroblock partitions 
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A separate motion vector is associated with each partition or sub-partition. The choice 

of partition and the associated motion vector is encoded and included in the 

compressed bit-stream. Therefore, the coding efficiency decreases with the high 

number of partitions (smaller blocks). On the other hand, a small number of bits are 

required for large sized partitions; however the motion compensated residual may 

contain a significant amount of energy in frame areas with high detail. Generally, 

homogeneous areas of the frame are divided into large partitions while a small 

partition size may be more useful for detailed areas.  

Each partition in an inter-coded macroblock is predicted from an area of the same size 

in a reference picture. The motion vector represents the offset between the two areas. 

For luma components, the AVC supports quarter pixel resolution. If sub-pixel 

position in the reference frame does not have the pixel then it is created using 

interpolation from the neighbouring image pixels. In Figure 12, the integer pixel and 

sub-pixel prediction are shown  [27]. Sub-pixel motion compensation increases the 

complexity of the system but it offers significantly better compression efficiency than 

integer-pixel motion compensation. 

                      
 

Figure 12: Integer pixel and sub-pixel motion estimation 
 

3.3 Transform and Quantisation 

Each residual macroblock is transformed to decorrelate the data spatially. Depending 

on the type of residual data, there are three transforms for the baseline profile of 

AVC: a transform for the 4x4 array of luma DC coefficients in intra macroblocks 

(predicted in 16×16 mode), a transform for the 2×2 array of chroma DC coefficients 

(in any macroblock) and a transform for all other 4×4 blocks in the residual data. 

a) Current Frame (b) Reference Block: MV (-1,1) (c) Reference Block: MV (-0.5, 0.75) 
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Further transforms are chosen depending on the motion compensation block size if 

the optional “adaptive block size transform” mode is used. 

The transformation step produces coefficients which are quantized using a 

quantization control parameter. This parameter can be changed for every macroblock. 

When the video format supports 8 bits per sample then the quantization parameter can 

have one of the 52 possible values. If the video format supports more than 8 bits per 

sample then the fidelity range extension (FRExt) expands the number of steps by 6 

for each additional bit of sample. The relationship between the quantisation step and 

quantisation parameter is not linear. An increment of 6 in the value of quantisation 

parameter doubles the quantisation step size. 

3.4 Entropy Coding 

The term Entropy Coding refers to lossless coding techniques that exchange data 

elements with coded representations. These techniques can result in a significantly 

reduced data size. In H.264, two modes of entropy coding are used: binary arithmetic 

coding (BAC) and variable length coding (VLC). Both of these techniques are 

applied in a context adaptive (CA) way, resulting in the terms CAVLC and CABAC. 

 

codeNum Code 
0 1 
1 010 
2 011 
3 00100 
4 00101 
5 00110 
6 00111 
7 0001000 

--- --- 
 

Table 1: Exponential Golomb Code (UVLC) 
 
The main idea of VLC is that when the data elements to be coded occur with different 

frequencies; the data elements with high frequency of occurrence can be assigned 

short codes, while the data elements with low frequency of occurrence can be 

assigned longer codes. This results in variable length codes to data elements. For the 

syntax elements other than residual transform coefficients; Universal Variable Length 
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Coding (UVLC) is applied. First eight elements of the Exp-Golomb Code table for 

given input data elements are shown in Table 1. 

The codeNum is used as an index to the actual data elements. The general form of 

these codes is [‘n’ zeros][1][n-bit DATA]; such that DATA is a binary representation 

of an unsigned integer. Such a code is decoded as  

codeNum = 2n + Int(DATA) – 1 

such that the Integer (DATA) is the integer corresponding to the binary code  [28]. 

The AVC standard specifies twelve additional code tables to achieve higher 

efficiency through coding the abundant residual transform coefficient. Six tables for 

characterizing the content of the transform block as a whole, four for indicating the 

number of coefficients, one for indicating the overall magnitude of a quantized 

coefficient value, and one for representing consecutive runs of zero-valued quantized 

coefficients. The length of the fixed length coefficient value suffix and the selection 

of the appropriate table are based on the statistical characteristics of the current 

stream; thus the context based (CAVLC). The coding efficiency is increased in 

CAVLC at the cost of execution efficiency. 

Further improvement in the coding efficiency can be achieved using context-based 

adaptive binary arithmetic coding (CABAC) at the cost of increased complexity. The 

CABAC based coding has roughly 10% higher coding efficiency than CAVLC  [28]. 

In CABAC, non-integer number of bits per symbol can be assigned; offering a very 

high degree of statistical adaptivity which allows the coder to adjust to changing 

symbol statistics, and context selection ensures that the statistical adaptivity is 

relevant to the specific data being coded  [28]. In the case of CAVLC, only the 

transform coefficients are coded adaptively whereas in CABAC, intra prediction 

modes, the macroblock type, motion vectors, residual transform coefficients and 

several other syntax elements are coded adaptively. 

3.5 Scalable Video Coding 

Generally, a scalable video bit-stream is composed of such sub-streams which can be 

removed from the main bit-stream to form a valid bit-stream for reconstructing the 

source video data but with lower quality as compared to the complete original bit-

stream. The usual modes of scalability are spatial, temporal and quality scalability. A 
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spatially scalable bit-stream consists of sub-streams which represent the reduced 

spatial dimensions (picture size). In temporal scalability, the sub-stream represents 

the source video with a reduced frame rate. With quality scalability, the sequence 

reconstructed from the sub-stream has the same spatial and temporal level as with full 

bit-stream but offers lower visual (perceptual) quality. Scalable video coding (SVC) 

offers a number of benefits in terms of applications  [29],  [29]. A good overview of 

scalable extension of H.264/AVC is presented in Schwarz et al  [31]. 

3.6 Wavelet-Based Scalable Video Coding 

In surveillance videos  [29],  [32], the scalable video codec (SVC) can be used to adapt 

to the appropriate scalability level when an event of interest is detected. The SVC has 

to be modified for the requirements of surveillance applications  [33]. In this section, 

the wavelet-based SVC ( [34],  [35]) framework is presented which is named as 

aceSVC. In this framework, the temporal and spatial scalability has been achieved 

through the process of motion compensated temporal filtering (MCTF)  [36] in the 

temporal domain and 2D discrete wavelet transform (DWT) ( [37],  [38]) in the spatial 

domain, respectively. The MCTF results in motion information and wavelet 

coefficients that represent the texture of transformed frames. These wavelet 

coefficients are then bit-plane encoded  [39] to achieve quality scalability. The 

architecture of the aceSVC encoder is shown in Figure 13. 

The architecture is divided into Spatio-temporal decompositions, Rate-distortion 

optimization and Entropy coding. The spatio-temporal decompositions section 

enables signal decorrelation suitable for compression of video. In wavelet video 

coding, the spatial decomposition of original frames or motion compensated frames is 

achieved through spatial discrete wavelet transform (2D DWT). The temporal 

transform is performed using the concept of motion compensated temporal filtering 

(MCTF). MCTF can be applied on the original frame or on the spatial sub-bands.  

The motion information obtained from the motion estimation block is also used in the 

process of MCTF. On the basis of order of applying spatial and temporal transform, 

aceSVC architecture supports two schemes:  
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Figure 13: aceSVC Encoder building blocks 
 
2D + t : spatial transform followed by temporal transform 

t + 2D : temporal transform followed by spatial transform 

The order of applying the decomposition steps defines a decomposition path, which 

in the aceSVC encoder is created according to the input target points  [40]. The sub-

band selector inputs the resulting sub-bands to the standard video compression 

modules like quantization and entropy coding. The remaining redundancy present in 

the data of motion information and quantized wavelet sub-band coefficients is 

removed through entropy coding. Using the bit-stream organization methods 

developed for scalable video coding  [41], the compressed data is organized into the 

compressed bit-stream. 
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(a) t + 2D scheme 

 
(b) 2D + t scheme 

Figure 14: Decomposition schemes 
 

3.7 Temporal Transform 

Proper exploitation of temporal redundancies can result in a great efficiency in the 

video compression. A frame can be represented with data from already coded frames 

because they contain similar information. A significant part of temporal redundancy 

can be removed through the process of motion compensation. In this process, a 

predicted frame is divided into motion units, each of which is associated with a 

motion vector and motion mode for the description of prediction. Motion models are 

used to define a prediction method (Inter/Intra) for each motion unit, and the relevant 

motion unit configurations. Motion vectors are associated with the motion units in 

temporal prediction (inter mode) to describe the displacement of motion units 

between frames. 

Temporal filtering or decomposition has been adopted as a generalized approach to 

achieve temporal scalability and motion compensation. If we consider the dyadic 

decomposition, then the even numbered frames become low-pass frames (L frames), 

while the odd number frames become high-pass frames (H frame).  The low-pass 

frames can be used for further decomposition. This process is known as MCTF 

because of filtering along the motion trajectories. Initially, MCTF has been developed 

for full frame resolution  [36],  [42],  [43]. To enhance the coding performance at lower 
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spatial resolutions, different approaches of applying MCTF to different spatial sub-

bands of the input frames has been developed  [35],  [45],  [46],  [47]. 

In full frame MCTF, the iterative filtering of the low-pass frames from the previous 

temporal level can result in higher depth of temporal decomposition. The application 

of the Haar wavelet filter (filtering between two frames only) for performing MCTF 

is shown in Figure 15. 

L H L H L H L H

LL LH LL LH

LLL LLH

1st Temporal Level

2nd Temporal Level

3rd Temporal Level

High Pass FrameLow Pass Frame  
Figure 15 Motion compensated temporal filtering 
 
In this particular example, three levels of MCTF are performed on the original frames, 

resulting in four temporal sub-bands. After three time low-pass filtering, the lowest 

sub-band and its corresponding frames are labelled with LLL. The corresponding 

high-pass sub-bands are shown with labels H, LH, LLH, respectively for consecutive 

lower temporal levels. The number of performed low-pass filtering steps necessary to 

obtain a specific sub-band is denoted by the number of “L” letters. In the context of 

temporal scalability, a basis is obtained for embedded encoding of “T + 1” layers of 

different frame rates by performing filtering of “T” temporal decomposition levels. In 

each step of MCTF, the motion information is produced which is together with the 

resulting frames is used for decoding the frame. The video synthesis process starts 

with the lowest sub-band LLL and LLH and follows the inverse MCTF stages from 
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the lowest temporal level to the highest levels. In the synthesis of each temporal level, 

the corresponding motion information is used. 

3.8 Spatial Transform 

To exploit the spatial redundancies, there are two major categories of spatial 

transforms utilized in the coding of video and still image- discrete wavelet transform 

and Discrete Cosine Transform (DCT) or DCT-like transform  [48]. In Joint Picture 

Expert Group (JPEG) still image coding standard  [49], DCT is used which is also part 

of several video coding standards.  

Discrete Wavelet Transform (DWT) is used in the state-of-the-art JPEG-2000 still 

image coding standard  [50],  [51]. The wavelet transform offers good compression 

efficiency as well as inherit feature of scalability. For this reason, a number of 

scalable video codecs has adopted wavelet transform. In most of the proposed 

solutions, the scalable video coding architecture has been divided into two categories 

in regard to the order of dimensions in which the transform is performed. In ‘t + 2D’ 

scheme, spatial wavelet transform is performed after the temporal decomposition, 

Figure 16(a). In this approach, motion compensated temporal filtering (MCTF) is 

performed on the full spatial resolution as opposed to the wavelet sub-band domain. 

This scheme is known as spatial domain MCTF (SD-MCTF). Several codecs has 

been developed which are based on the SD-MCTF  [43],  [52],  [53]. 

 
Figure 16: Spatial Decomposition 
 
SD MCTF frameworks represent texture energy very compactly. As the motion 

information is generated from the application of MCTF on the full frame resolution, it 

H H 

H L 

H H 

H 
LH 

LH LH 

LL 

   a) First Level    b) Second Level 



 

  33

causes the problem of scaling the motion information at lower resolutions. It means 

that lower spatial, temporal and quality scale streams utilize motion information 

which does not necessarily represent the optimal block-matching decision for these 

particular streams  [40]. Alternative approaches have been developed to address this 

problem. In one of the approaches, input frames are spatially transformed and then 

the transformed frames are used for temporal decomposition  [45]. This approach is 

known as in-band MCTF (2D + t). Since motion compensation is performed 

separately for different spatial resolutions, in-band MCTF offers a better level of 

scalability in video  [40]. Each spatial decomposition has its own motion information 

which can be used to optimise the rate-distortion for different decoding points. On the 

other hand, this approach adds extra complexity due to the fact that it performs 

motion estimation and motion compensation at different resolutions. Further, the 

MCTF on the full spatial domain is more efficient as compared to the MCTF on 

spatial sub-bands. 

3.9 Scalability support in bit-stream 

In aceSVC, the compressed bit-stream is organized to support the extraction of all 

types of scalability features. The bit-stream of the video sequence is divided into 

group of pictures (GOP). Each GOP consists of GOP header with spatially and 

temporally decomposed frames. 

  

 

 

 

 

 

 

 

 

 

Figure 17: Spatial scalability 
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For spatial domain MCTF, the low-pass temporal frames contain the texture data in 

different spatial resolutions. In Figure 17, three different spatial resolution levels in 

the bit-stream are shown. The bit-stream of each resolution is organized in a layered 

structure. The lowest resolution can be obtained by extracting only the base layer. 

Higher spatial resolutions can be decoded by extracting the bit-stream of base layer 

with additional layers. 

The quality scalability also known as SNR scalability can be characterized as offering 

the same video sequence with different quantization levels. Generally, the extraction 

of a larger portion of bit-stream results into better decoded visual quality. In Coarse 

Grain Scalability (CGS), sub-band coefficients are organized in layers. This helps 

efficient adaptation and use of different tools as presented in  [54]. Three different 

quality levels are shown in the bit-stream of Figure 18. The lowest quality sequence is 

decoded by extracting the Q0 bit-stream. Further quality may be improved by adding 

the extra layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18: Quality scalability 
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Temporal scalability is to offer the same sequence with different frame rates. The 

process of MCTF generates low-pass and high-pass frames. Like low-pass frames, 

high-pass temporal frames are also decomposed spatially so as to maintain the 

correspondence with its low-pass frames. The bit-stream of high pass texture data 

always contains the associated motion information required for its reconstruction. 

 

 

 

 

 

 
 
 

 
Figure 19: Temporal scalability 
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Chapter 4 

Object-Based Video Coding 

Replacing the conventional rectangular block based video coding with the object-

based coding is the main concept defined by the MPEG-4 standard. Object-based 

video coding gives direct access to the scene contents; thus helps manipulation of 

each object independently. According to MPEG-4 requirements  [55], object-based 

video coding shall provide the following features  [56]: 

• Object-based representation 

• Object quality and fidelity 

• Object-based bit-stream manipulation and editing 

• Object-based coding flexibility 

• Object-based random access 

Each object described in the video is characterized by spatial and temporal 

information in the form of shape, motion and texture  [57]. Following are the basic 

definitions for the hierarchical structure of MPEG-4 object based coding: 

♦ Visual Object Sequence (VS): The complete MPEG-4 scene which may 

contain any natural or synthetic objects and their enhancement layers  [57].
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♦ Video Object (VO): An area of video sequence (VS) that may have arbitrary 

shape in the 2D domain and may exist for an arbitrary length of time. 

♦ Video Object Plane (VOP): A video object (VO) in a particular instant of 

time is termed as video object plane. 

♦ Group of Video Object Planes (GOV): GOV provides random access points 

into the compressed bit-stream. At these access points, VOPs are encoded 

independent of each other  [57]. 

In Figure 20, three different VOPs are presented: VOP1: person facing the camera, 

VOP2: the person with his back towards the camera and the VOP3: the whole 

background. If a visual scene contains a synthetic object then the shape and 

characteristics of the object already exist. For a natural object present in the scene, a 

process of segmentation has to carry out. A wide range of segmentation techniques 

have been developed. These techniques can be broadly divided into three categories: 

• Pixel-Based Segmentation 

• Edge-Based Segmentation 

• Region-Based Segmentation  

 

 
Figure 20: Different VOPs in a frame 
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4.1 Object Shape Coding 

After detecting the object by performing the segmentation step or any other analysis 

technique, the shape information of each object is described by a binary alpha plane 

or greyscale alpha plane. In binary alpha plane, each pixel is tested if it is an inside 

shape (1) or an outside shape (0). On the other hand in grey scale plane, the shape 

information is represented with 8 bits. 

4.1.1 Binary Shape Coding 

In a bitmap scheme, a binary shape is represented in a matrix of binary values. The 

bitmap based techniques are very simple and have low computational complexity 

with good compression results.  

A motion compensated block based technique is applied to binary shape coding. As a 

first step of binary shape coding, a rectangular window with a size of a multiple of 16 

pixels in horizontal and vertical directions is selected such that this window can 

bound the shape of the object. The position and size of this rectangular windows is 

chosen such as to minimize the number of ‘16×16’ sized non-transparent blocks. 

Samples in the bounding box and outside the VOP are set to 0. The encoding process 

is performed block by block after partitioning the bounding rectangular box into 

blocks of ‘16×16’ pixels.  

Matrix representation of the object shape is referred to as a binary mask. Pixel inside 

the VOP shape is set to 1 while the pixel outside the shape is set to 0. It is then 

partitioned into ‘16×16’ blocks referred to as binary alpha blocks (BAB). Each BAB 

is encoded separately. Most of the BABs have pixels all of the same value, either 1 

(opaque block) or 0 (transparent block). A Context based Arithmetic Encoding (CAE) 

and motion compensation techniques are applied to the encoding of BAB. The terms 

of IntraCAE and InterCAE are used for without or with motion compensated CAE, 

respectively. The motion vectors computed in the InterCAE are differentially coded. 

The combination of CAE and motion compensation techniques helps to result in the 

following mode for BAB encoding  [57]: 
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1. The block is flagged opaque. In this case, shape coding is not necessary but 

texture information has to be coded. 

2. The block is flagged as transparent. No shape and texture coding. 

3. The block is coded using IntraCAE without use of past information. 

4. Motion vector difference (MVD) is zero but the block is not updated. 

5. MVD is zero and the block is updated. InterCAE is used for coding the block 

update. 

6. MVD is non-zero, but the block is not coded. 

7. MVD is non-zero, and the block is coded. 

4.1.2 Greyscale Shape Coding 

The binary shape and greyscale shape corresponds to the same structure but greyscale 

shape pixels can have any value from (0-255) thus indicating the level of 

transparency/opaqueness. The pixel with value 0 is considered to be completely 

transparent and a pixel with the value 255 is considered to be completely opaque. The 

pixel value between 0 and 255 corresponds to degree of transparency in the pixel. A 

block based motion compensated DCT is used for the encoding of greyscale shape 

information. 

4.2 Foreground Coding 

Foreground objects are coded using conventional techniques tailored for the arbitrary 

shape of the object. Foreground coding is divided into two major steps: (i) Motion 

estimation and compensation and (ii) Texture coding. 

4.2.1 Motion Estimation and Compensation 

The object based coding in MPEG-4 uses the same techniques as for block based 

coding to exploit the temporal redundancies. These techniques have been adapted for 

object based coding. There are three modes for encoding VOP in MPEG-4  [57]: 

1. Intra VOP (I-VOP): a VOP encoded independently of any other VOP. 

2. Predicted VOP (P-VOP): a VOP may be predicted based on another 

previously decoded VOP using motion compensation. 
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3. Bidirectional Interpolated VOP (B-VOP): a VOP may be predicted based on 

the past as well as future VOPs. The B-VOP cannot be interpolated using 

another B-VOP. 

Macroblocks in the bounding rectangular box are utilized for motion estimation. 

Motion estimation is performed in the usual way if the macroblock is completely 

within a VOP. For macroblocks that partially belong to the VOP, motion estimation is 

performed using modified block matching approach. Sum of Absolute Difference 

(SAD) is computed only for those pixels in the macroblock which belong to the VOP 

 [57]. For the VOP boundary reference blocks, the pixels outside the VOP are 

assigned values through padding. For such blocks, the SAD is computed including 

padded pixels. 

4.2.2 Boundary Macroblocks Padding 

To pad the boundary macroblocks, horizontal and vertical extrapolation is performed. 

In the first step, the pixel extrapolation is performed in a row. If only one end of the 

row has opaque pixels then all the transparent pixels in the row are replaced with the 

value of the nearest opaque pixel of the row. If the both ends of the row have opaque 

pixels then the transparent pixels in the row are replaced with the value equal to the 

mean of the two neighbouring pixels. After padding the row horizontally, the same 

process is repeated for columns in the vertical direction. 

4.2.3 Exterior Macroblocks Padding 

There is a possibility that the referred macroblock may fall entirely outside the VOP. 

Such macroblocks are completely transparent. For the padding of such macroblocks, 

the neighbouring macroblocks are utilized. In Figure 21, the order of neighbouring 

macroblock selection is shown. If MB1 is a boundary MB of the object, then it is 

selected for performing padding. If MB1 is not a boundary MB, then MB2, MB3, 

MB4 are tested sequentially for boundary MB. If no boundary MB is found then 

pixels are filled with the value of “2n - 1” with ‘n’ being the number of bits per pixel. 
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Figure 21: Order of MB selection for performing padding 

4.2.4 Texture Coding 

In the object based coding, if the block being encoded has all opaque pixels then it is 

encoded with conventional 8×8 block DCT. In the case of boundary blocks which 

have both opaque and transparent pixels, either DCT is applied after padding the 

blocks or a Shape Adaptive DCT is applied. For a normal DCT approach, for an N×N 

block, there are N2 coefficients. The shape adaptive DCT is more efficient because it 

uses only opaque pixels. 

 

 
Figure 22: Blocks for encoding VOP texture 
  

• Shape Adaptive DCT (SA-DCT) 

In shape adaptive DCT, each VOP is processed in 8×8 blocks. In each block, first, 

each row is processed. In each row, all the opaque pixels are shifted to the left such 

that the left most opaque pixel touches the left boundary of the block. Then a one 

dimensional DCT in the horizontal direction is performed to transform the pixels. 

After processing all the rows, then the resulting block with coefficients is processed 

for each column shifting all the non-zero coefficients to the top of the block. Then on 

the shifted column, again one dimensional DCT is performed in the vertical direction. 
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This is shown in Figure 23. For intra coding of VOPs, an additional step of 

computing the zero-mean block is carried out.  

(a) Object Texture MB                (b) Horizontal Shift                      (c) Horizontal DCT 

 

       
       
       
       
       
       
        
       
 

(d) Vertical Shift                          (e) Vertical DCT 

Figure 23: Shape adaptive DCT process 
 

4.3 Background Coding 

Compression efficiency of object based coding is higher because of the isolated 

treatment of background. Using only background, it can be coded with lower quality 

and lower reliability because of being visually a less important portion of the image. 

In addition, in most of the cases, the background does not have much change thus 

causing the improvement in the compression efficiency. In one method for 

background coding, first a low quality approximation of the background is sent then 

afterwards, progressively, some areas of this background with higher quality are sent. 
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Chapter 5 

Surveillance Centric Coding 

In this chapter, we introduce the coding paradigm of Surveillance Centric Coding 

(SCC), in which coding for specific surveillance applications is targeted. The SCC 

aims at exploiting specific properties of surveillance video in a comprehensive 

application framework including coding adaptation to surveillance, rate distortion 

optimisation according to the VCA (video content analysis), and other related 

concepts. 

The basic approach towards Surveillance Centric Coding (SCC) has been introduced. 

The Scalable video coding (SVC) has attraction for surveillance applications because 

of its spatial, temporal and quality adaptability. In this chapter a scalable video codec, 

aceSVC (discussed in chapter 3), has been modified to support event-based video 

coding of the surveillance videos. The architectural modifications for GOP level 

switching of the scalability features have been presented and implemented. This 

approach enables the saving of bit-rate and storage space. The following sections give 

a description of the modified system. 
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5.1 Architectural Modifications 

The required information in the surveillance video is the presence of some motion 

activity or any other event of interest. Therefore, the portion of the video which has 

an event of interest should have a good RD performance. On the other hand, the 

portion of the video which does not have any special information may be set to a 

lower RD performance. This adaptive RD performance saves a large number of bits. 

On the other hand, the bit-stream generated by the scalable video codec does not 

support GOP level switching of the scalability features. Thus to support event based 

scalability features at GOP level for the coding of surveillance videos, the 

architecture of aceSVC has been modified. The adaptive RD performance is achieved 

at the GOP level through the modified architecture. Some new blocks have been 

introduced to implement this approach. These blocks are: 

1. GOP Selector 

2. GOP Collector 

3. GOP Analysis 

 

5.1.1 GOP Selector 

The GOP selector (GS) block has been used in all three stages of scalable video 

coding (Encoding, Extraction and Decoding). At each stage, it manages one GOP 

from the input sequence and forwards it to the following blocks for processing. The 

use of this block removes the dependency of the GOP on the following and preceding 

GOPs; and enables extractor to extract each GOP with different spatial, temporal and 

quality level. 

5.1.2 GOP Collector 

Like GOP selector (GS) block, the GOP collector (GC) block is part of each stage of 

scalable video coding. Its function is to receive the processed GOP and to manage it 

for the final output bit-stream. At the encoding stage, it also accepts GOP analysis 

information and associates it as metadata with the processed GOP. 
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5.1.3 GOP Analysis 

This block finds out if a certain event of interest is present in the selected GOP. The 

main event of interest in the surveillance video is the motion of the object of interest. 

This block analyzes each GOP to detect the motion present in the GOP. The 

information produced by this block is used to extract the appropriate spatial, temporal 

and quality features. 

The uncompressed raw video can be represented with equation (5.1), where iG is the 

ith uncompressed GOP. Each GOP can be represented with its frames ( jf ) with 

equation (5.2). 

RAWV   = { 1G , 2G , 3G , …, NG }.                         (5.1) 

 

iG   = { 1f , 2f , 3f , …, Mf }                                     (5.2) 

where, 

  N = Total number of GOPs in the video 

  M = Total number of frames in a GOP 

The algorithm for analysis is shown in Figure 24. The GOP analysis block is capable 

of detecting multiple motion levels in the video. This helps to produce a bit-stream 

with multiple scalability features in different GOPs for a single video derived by the 

analysis result. 

At the start, 1f  is set as the reference frame and the following frames are compared 

with it to find out the similarity of frames with 1f . If the similarity is below a certain 

threshold level ‘ 1p ’, then GOP is considered to have a moving object with motion 

level 1; and if the similarity is below threshold ‘ 2p ’, then motion level 2 is assigned. 

Thus multiple motion levels have been defined.  

The algorithm of GOP analysis always looks for the maximum motion level in the 

sequence. Once the maximum motion level is detected then it terminates to save time 

and processing power. Selection of threshold values is the key to the accuracy of 

analysis. Based on the analysis of the GOP, layer extraction index ‘µ’ is generated, 

which is used by the extractor to extract an appropriate scalability layer. 
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Figure 24: GOP analysis Algorithm 
 

5.2 METHODOLOGY 

5.2.1 Encoder 

 
 

Figure 25: SCC Encoder 

1- MOTIONLEVEL = 0 

2- THRESHOLD1 = p1 

3- THRESHOLD2 = p2                    comment: p1 > p2 

4- Ref_Frame = first frame of GOP 

5- FOR each frame of GOP except first 

6-    similarElements = 0 

7-    FOR each element of the frame 

8-       IF element is equal to related element in Ref_Frame 

THEN 

9-          Increment in similarElements;  END IF 

10-    END FOR 
11-    IF similarElements are smaller than THRESHOLD2 

THEN 

12-       MOTIONLEVEL = 2;  TERMINATE HERE  

13-    ELSE IF similarElements are smaller than 

THRESHOLD1 THEN 

14-       MOTIONLEVEL = 1; END IF 

15- END FOR 
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A block diagram of the SCC encoder is shown in Figure 25. The GOP Selector (GS) 

block picks up the raw data of one GOP and forwards it to the encoder and the GOP 

Analysis (GA) block for processing. The encoder generates a compressed GOP with 

all the scalability layers as predefined in the scalability tree through an encoding 

parameter file. The GA block processes the GOP data and generates analysis 

metadata as described in section 5.1.3. This metadata is passed to the GOP Collector 

(GC) which associates it with the encoded GOP. This process is repeated until each 

GOP of raw video is encoded and put into the encoded bit-stream.  

5.2.2 Extractor 

The function of an SVC extractor is to extract an encoded video bit-stream with the 

required scalability level. In new architecture of extractor, again the GS and GC block 

are used with Extraction Control (EC) block as shown in Figure 26. The GS block 

will pick up compressed GOP data from the main encoded video bit-stream and 

forward it to the SVC extractor and the Extraction Control (EC) block. Extraction 

Control (EC) block extracts the GOP analysis metadata ‘µ’ produced by the GOP 

Analysis (GA) block on the encoder side. This information is passed to the SVC 

extractor for the extraction of appropriate scalability layer. The extracted GOP is then 

passed to the GC block which manages the extracted GOP for the final extracted bit-

stream. This process is repeated for all the GOPs.  

 

 
 

Figure 26: SCC Extractor 
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5.2.3 Decoder 

As in the case of the architecture of the encoder and extractor, the decoder 

architecture is also changed. Again, the GS and GC blocks are deployed, which 

perform the same functionality as mentioned for encoding and extraction. The 

decoder recovers the video in an uncompressed form. Decoded video contains GOPs 

with different scalability levels according to the event present in the GOP. After 

decoding the compressed bit-stream, post-processing is performed to enable the 

smooth viewing of the decoded video. 

5.3 Model of the System 

The above discussion can be explained through simple mathematical equations. So, 

the mathematical model of the modified scalable video coding system is presented in 

the following subsections. 

 5.3.1 Encoder 

The model of SCC encoder is shown in Figure 27. The raw video data can be 

represented with equation (5.1). This is the input to this stage. The encoding (Enc) 

and GOP analysis (A) operations can be represented with equations (5.3) and (5.4), 

respectively. 
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Figure 27: Model of SCC Encoder 
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                             where, 

Enc ( . )
 

Gi

 

gi
C  +

  

  VRAW 
   

    vEnc 

 

A (.)



 

  49

                                      iG  ∈  RAWV  

µ  = A ( iG )                                                    (5.4) 

The compressed GOP ( Enc
ig ) with added GOP analysis information (µi) is 

represented with equation (5.5). 

 
c
ig  = µi + Enc

ig                                               (5.5) 

                  where, 

                          c
ig ∈  Cv  

such that: 

Cv  = { cg1 , cg2 , cg3 ,…, c
Ng  }                          (5.6) 

Equations (5.3) through (5.6) describe the complete process of encoding for the 

modified system. 

5.3.2 Extractor 
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Figure 28: Extractor Model 
 
The model of Extractor is shown in Figure 28. The input to this stage is equation (5.6). 

Each GOP of equation (5.5) is forwarded to the decision extraction (D) and the GOP 

extraction block according to equations (5.7) and (5.8), respectively. 
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Enc
ig  = c

ig - µi                                                  (5.8) 

 

After executing equations (5.7) and (5.8), the SVC extractor executes equation (5.9) 

given below and the extracted GOP is put into the final extracted bit-stream given in 

equation (5.10). 
Ext
ig = Ext ( Enc

ig )                                               (5.9) 

                   where,  

                   Ext
ig ∈  Extv   

such that: 

Extv  = { Extg1 , Extg2 , Extg3 , …, Ext
Ng }                 (5.10) 

 

5.3.3 Decoder 

Decoding is final step of the codec. Its input is an extracted video given in equation 

(5.10). The model can be easily described with equations (5.11) and (5.12). Here, the 
Dec
iG is a decoded GOP from the compressed GOP.  

 
Dec
iG  = Dec ( Ext

ig )                                            (5.11) 

 

DECV  = { DecG1 , DecG2 , DecG3 , …, Dec
NG }           (5.12) 

The decoded video DECV  is visually similar to RAWV  , given in equation (5.1). This 

can be described as: 

 

DECV  ≡  RAWV                                                   (5.13) 

5.4 Functionality Evaluation 

As aforementioned, extraction of GOP with different scalability features depends on 

the level of motion present in the sequence. The modified system has full support for 
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the selection of a different scalability layer for multiple motion levels. The scalability 

tree for encoding can be defined as per requirement. For this experimentation, the tree 

shown in Figure 29 has been used. 

 

 
 

Figure 29: Scalability Tree 
 
Root node contains full scalability levels i.e. the raw video. For the encoding of the 

video, two spatial and two temporal levels are defined while there are three quality 

levels. So, three types of bit-streams, (QCIF, 6.25fps, 128kbps), (CIF, 25fps, 

256kbps) and (CIF, 25fps, 512kbps), can be extracted. 

 
 

Figure 30: No Motion: static scene 
 
The experiment is carried out on a typical surveillance video. The video contains all 

types of motion scenarios. When there is no motion in the video, it is set to motion 
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level 0, while for slight movements it is set to motion level 1 and for all other higher 

movements, motion level 2 is used.  

 
 

Figure 31: Motion Level 1: slight movement 
 
The original uncompressed video has CIF resolution and 25 fps. The portion of the 

video which has no motion (motion level 0) is extracted at QCIF spatial resolution, 

6.25 fps temporal resolution and 128 kbps quality resolution, as shown in Figure 30. 

The portion of video which has motion level 1 is extracted at CIF spatial, 25 fps 

temporal and 256 kbps quality resolution, as shown in Figure 31. 

 
 

Figure 32: Motion Level 2: large movement 
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Finally, the portion of video which has motion level 2 has been extracted at CIF 

spatial, 25 fps temporal and 512 kbps quality resolution as shown in Figure 32. 

 
 

Figure 33: GOP Motion Analysis 
 
The graph in Figure 33 shows motion levels present in the surveillance video used for 

the experiment. Level 0 is for no movement, level 1 for slight movements and level 2 

for greater movements. The second graph in Figure 33 shows final extracted video 

with scalability levels for each GOP. The second graph testifies the analysis presented 

in the first graph in Figure 33. In the second graph of Figure 33, layer 1 is for QCIF, 

6.25 fps and 128 kbps; layer 2 is for CIF, 25 fps and 256 kbps; while layer 3 is 

representing CIF, 25 fps and 512 kbps. 

5.5 Surveillance Centric Coding 

The architecture of a generic SCC system is outlined in Figure 34  [103].The work 

presented in this section focuses on the use of video content analysis (VCA) to drive 

the encoding process. By this approach the use of available resources is optimised 

according to the requirements of surveillance applications. In the proposed approach, 

the SCC encoder communicates with the VCA modules and performs encoding by 

rate-optimisation according to events as specified by the VCA. The VCA can also be 

used on the decoder-side for off-line processing, e.g., car plate recognition, face 

detection, etc. Therefore, the question behind this work is how to exploit the 

information resulting from the VCA to tailor the coding and transmission or 
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streaming of the video signal. Clearly, this cannot be achieved with conventional 

coding technology without complex transcoders. It can however be achieved if fine 

granularity scalable coding technology is applied. 

 

VCA

SCC Encoder

Video captured on
CCTV Compressed scalable 

bit-stream

Event detection, tracking, 
pattern recognition…

SCC Decoder Decoded video

VCA

Compressed 
domain VCA

 
Figure 34: A generic SCC system. 
 

5.5.1 Event-Based Encoding of Surveillance Video 

As mentioned in the introductory section, the basic principle behind the presented 

work is to use different encoding settings for segments of the surveillance video that 

show different levels of activity. For this purpose we classify the surveillance video 

into temporal segments that contain essentially static scenes and segments that show 

some level of motion activity. To perform this classification, background subtraction 

and the tracking module from the work of Stauffer and Grimson  [70] is used as VCA. 

Output of this module dictates the quality / spatio-temporal resolution of the encoded 

content. As the VCA module plays a vital role to the final outcome of the SCC 

system, therefore it is explained briefly in the following subsection. 

5.5.2 Video Content Analysis 

An adaptive background subtraction method based on mixture of Gaussians  [70] is 

used. This method is able to deal robustly with lightning changes, bimodal 

background like swaying trees and introduction or removal of objects from the scene. 

The value of each pixel is matched against weighted Gaussians of the mixture. If the 

pixel value is within 2.5 standard deviations of any Gaussian distribution then the 

mean value and standard deviation of the corresponding Gaussian are updated. If the 
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pixel value is not within 2.5 standard deviations of any distribution then the least 

probable distribution is replaced by the new distribution. The mean value of the new 

distribution is set as the value of the current pixel and its initial variance is set to a 

high value. Weights are continuously updated for each distribution of the mixture.  

 

  
a) b) 

 
c) d) 

  
e) f) 

 
Figure 35: Background subtraction. a) 3-rd and b) 110-th frame of the hall 
sequence. Result of the background subtraction for the c) 3-rd and d) 110-th 
frame. Result of tracking for the e) 3-rd and f) 110-th frame 
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At each time instance Gaussians of the mixture that represent the background are 

identified according to the predefined threshold. Pixels whose value is not within 2.5 

standard deviations of the Gaussians representing the background are declared as the 

foreground. Foreground pixels can then be segmented into regions and tracked 

throughout the sequence. The output of the background subtraction and tracking 

module is illustrated in Figure 35. 

5.5.3 Workflow of the System 

The proposed system for application in SCC coding is outlined in Figure 36. At each 

time instance the encoder communicates with the VCA module. When the input video 

is essentially static the output of the background subtraction does not contain 

foreground regions. This can be used to signal to the encoder to encode the captured 

video at a low spatio-temporal resolution and quality. Encoding parameters in this 

case can be defined by the user or they can be chosen automatically by the system. 

This allows, for instance, encoding and/or transmitting of the portions of the video 

containing long, boring, static scenes using low quality frame-rate and spatial 

resolution. On the other hand, when some level of activity in the captured video is 

detected, the VCA module notifies the encoder to automatically switch encoding to a 

desired much higher spatio-temporal resolution and quality video. Therefore, 

decoding and use of the video at different spatio-temporal resolutions and qualities 

corresponding to different events is achieved from a single bit-stream, without 

multicasting or complex transcoding. Moreover, additional optional adaptation to a 

lower bit-rate is also possible without decoding the video. This is, for instance, very 

useful in cases where the video has to be delivered to a device with a low display 

capability. Using this approach, the bit-rate of parts of the video that are of low 

interest is kept low while the bit-rate of important parts is kept high. In many realistic 

applications it can be expected that large portions of the captured video have no 

events of interest. Thus, the proposed model leads to significant reduction of 

resources without jeopardizing the quality of any off-line event detection module. 
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Figure 36: The workflow of the event-based encoding. 
 
As an added side effect, critical metadata encoding events detected by the VCA can 

be interleaved with the bit-stream. Therefore events of interests can easily be 

identified in the compressed domain just by reading the corresponding metadata 

extracted directly from the video stream. 

5.6 Performance Results 

Performance of the proposed SCC framework has been evaluated using different 

typical surveillance sequences listed in Table 2. Encoding was performed on the GOP 

by GOP basis, i.e. the smallest group of frames which can be encoded / adapted 

according to the output of VCA is defined by the GOP size. In our experiments, we 

use three different GOP sizes: 8, 16 and 32. 
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Seq. Frame Size Frame Rate Frames 

Bridge 352 × 288 30 2100 

Dance 352 × 288 30 500 

Hall 352 × 288 30 300 

LightOffOn 352× 288 30 500 

LightOnOff 352× 288 30 500 

Parking 352 × 288 30 2100 

Road Car 352× 288 30 500 

Street 352 × 288 30 750 
Table 2: Surveillance sequences 
 
The proposed framework is evaluated with respect to its flexibility and efficiency. 

Criteria given in Table 3 are used to adapt the encoding of surveillance sequences 

with respect to different spatio-temporal resolutions and qualities. If the VCA does 

not detect an event in the particular portion of the sequence, it passes the information 

to the SCC encoder that performs the encoding process either at low spatial resolution 

(width and height of the frame is reduced to half i.e. spatial adaptation – QCIF), 

frame-rate (temporal adaptation – half of original frame-rate) or the combination of 

all three scalability directions (spatial, temporal, quality), as given in Table 3. When 

the event is detected by the VCA, encoding is switched to original resolution and 

frame-rate and high quality. 

Event Adaptation Bit-rate 

Spatial 144 kbps 

Temporal 288 kbps 

Quality  128 kbps 
Essentially static scene 

Combined 100 kbps 

Event detected 
(Man/truck/boat) 

Full spatio-temporal 
resolution 512 kbps 

Table 3: Adaptation bit-rates 
 
Table 4, Table 5 and Table 6 show byte savings for each tested sequence, using the 

SCC encoder with different types of rate adaptation. The byte savings are shown 
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relative to the corresponding sequence encoded at full resolution, frame-rate and high 

quality for the whole length. The relative byte saving is calculated as: 

 

rbbs = (1 - NBSCC / NBConv) x 100 %                   (5.14) 

 
where ‘NBSCC’ represents the number of bytes of the compressed sequence using the 

SCC approach from Figure 36 and ‘NBConv’ represents number of bytes of the 

compressed sequence encoded at full resolution, frame-rate and quality for the whole 

length.  

 

Adaptation for %age Byte Savings 
Seq. 

Spatial Temporal Combined Quality 

Bridge 65.58 39.91 73.43 68.42 

Dance 28.74 17.50 32.16 30.01 

Hall 3.83 2.33 4.30 4.00 

LightOffOn 42.64 25.93 47.73 44.49 

LightOnOff 10.37 6.31 11.61 10.82 

Parking 52.29 31.83 58.54 54.59 

Road Car 71.90 43.75 80.46 75.00 

Street 4.60 2.80 5.15 4.80 
Table 4: GOP size 8: Relative byte savings 
 
The relative byte saving ‘rbbs’ using different GOP sizes is shown in Table 4, Table 

5 and Table 6 for GOP 8, 16 and 32, respectively. From these tables, it can be 

observed that the compression gains for the “Hall” sequence are rather small. This is 

because throughout the whole sequence some level of activity is present and therefore 

almost the whole sequence is encoded at the original spatio-temporal resolution and 

high quality. This is clearly evident in Table 6 where ‘rbbs’ for the ‘Hall’ sequence is 

zero which indicates all the frames are encoded at full spatio-temporal resolution. So, 

the GOP size affects the efficiency of the SCC. For other surveillance sequences, 

significant bit-rate savings can be observed, especially in “Bridge” and “Parking” 
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sequences because of motion activity present in a short interval of time for these 

sequences. 

 
Adaptation for %age Byte Savings 

Seq. 
Spatial Temporal Combined Quality 

Bridge 62.56 38.08 70.05 65.28 

Dance 27.60 16.80 30.90 28.80 

Hall 3.83 2.33 4.29 4.00 

LightOffOn 41.48 25.25 46.44 43.28 

LightOnOff 9.22 5.61 10.32 9.62 

Parking 52.02 31.66 58.24 54.29 

Road Car 71.88 43.75 80.46 75.00 

Street 3.07 1.87 3.43 3.20 
Table 5: GOP size 16: Relative byte savings 
 

Adaptation for %age Byte Savings 
Seq. 

Spatial Temporal Combined Quality 

Bridge 58.73 35.75 65.75 61.28 

Dance 23.00 14.00 25.75 24.00 

Hall 0.00 0.00 0.00 0.00 

LightOffOn 41.48 25.25 46.44 43.28 

LightOnOff 9.22 5.61 10.32 9.62 

Parking 51.47 31.33 57.63 78.52 

Road Car 71.87 43.75 80.47 75.00 

Street 0.00 0.00 0.00 0.00 
Table 6: GOP size 32: Relative byte savings 
 
Decoded visual images of the proposed SCC for the “Hall” sequence are presented in 

Figure 37 and for the “Parking” sequence in Figure 38. The first row shows original 

frames. The second row represents the binary mask of the original video, which is the 

output of the background subtraction module. The third row shows the reconstructed 

sequence whose essentially static segments were encoded at lower spatial resolution. 
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Fourth row represents the temporally adapted sequence. Note that only one of the two 

consecutive original frames is kept in the adapted portion of the sequence. The last 

row shows the combined scalability, i.e. reduction of spatio-temporal resolution and 

quality. 

No frame 

No frame 

 
Figure 37: Frames of the reconstructed “Hall” sequence obtained. First row: the 
original frames. Second row: binary mask. Third row: Spatial adaptation. 
Fourth row: Temporal adaptation. Fifth row: Combined adaptation. 
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No frame 

No frame 

 
Figure 38: Frames of the reconstructed “Parking” sequence obtained. First row: 
the original frames. Second row: binary mask. Third row: Spatial adaptation. 
Fourth row: Temporal adaptation. Fifth row: Combined adaptation. 
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5.7. Foreground Based SCC 

After event based surveillance centric coding, a novel approach for foreground based 

surveillance centric coding (FBSCC) is proposed. Several attempts have been made 

in the past to compress the surveillance videos retaining only the information relevant 

to surveillance applications. In the work of Vetro et al  [16], surveillance videos have 

been encoded using object-based MPEG-4 after subtracting the background. The 

single background image is compressed using frame-based technique. After decoding 

the compressed sequence and the background image, the background image is 

repeated for each frame. In the work of Nishi and Fujiyoshi  [101], pixel state analysis 

is performed to detect background and foreground objects. Further analysis 

distinguishes the foreground object pixel as transient or stationary pixels. The 

transient pixels of foreground objects are compressed using Lempel-Ziv-Huffman 

(LZH) codec. For stationary pixels, the colour intensity is restored by referring to the 

same pixel location in the last frame. In the work of Hakeem et al  [102], an object-

based video coding framework for video sequences obtained from the static camera 

has been presented. The developed system detects and tracks objects in the scene and 

learns the appearance model for each object. 

 
Figure 39: Architecture of implemented system 
 
In this work, an alternative approach is proposed to reduce the bit-rate of the encoded 

video segments that are irrelevant from the surveillance standpoint. The proposed 

approach combines video tracking, foreground subtraction and scalable video coding. 

A novel approach for foreground extraction is proposed where the information 
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provided by the surveillance video tracker is used. This ensures that only the required 

information is extracted for compression. This approach is independent of shape 

coding techniques required in the case of MPEG-4 object-based coding. Also, this 

approach has the benefit of using a fully scalable video codec which can be used to 

fulfil further requirements of storage and transmission.  

5.8. Methodology 

The architecture of the implemented system is shown in Figure 39. The surveillance 

video captured from the CCTV camera is presented to a surveillance video tracker 

and foreground subtraction module of the system. The foreground objects are tracked 

by forming rectangular boxes. The output of the video tracking module for the ‘Hall’ 

video is illustrated in Figure 40. 

 
Figure 40: Object tracking in frame 122 of hall video 
 
The information about each box dimensions in each frame of the video is passed to 

the foreground extraction module of the proposed system. Based on the dimensions of 

the tracking boxes, pixels bounded by these boxes are retained as foreground and the 

rest of the frame is given a black colour. The algorithm for the foreground subtraction 

module is presented in Table 7.  

The algorithm is designed for YUV video format with 4:2:0 chroma sub-sampling. To 

accommodate U and V components of the video, the dimensions of the tracking 
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boxes are scaled down. The algorithm handles multiple tracking boxes for each frame 

of the surveillance video.  
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table 7: Algorithm for foreground subtraction 

for (each frame of input video) 
    for hy=0 to FrameHeight – 1 
        for wy=0 to FrameWidth – 1 

o y_in [hy][wy] = Y component of the frame 
o y_out [hy][wy]= 0 

        end for 
    end for 
    for hu=0 to FrameHeight/2 – 1 
        for wu=0 to FrameWidth/2 – 1 

o u_in [hu][wu] = U component of the frame 
o u_out [hu][wu]= 128 

        end for 
    end for 
    for hv=0 to FrameHeight/2 – 1 
        for wv=0 to FrameWidth/2 – 1 

o v_in [hv][wv] = V component of the frame 
o v_out [hv][wv]= 128 

        end for 
    end for 
 
    for (each box in the frame) 
        Get (Dimensions of the rectangular box) 
        for hy=0 to FrameHeight – 1 
             for wy=0 to FrameWidth – 1 
                 if (hy and wy are within box)  

o y_out [hy][wy]= y_in [hy][wy] 
             end for 
         end for 
         for hu=0 to FrameHeight/2 – 1 
             for wu=0 to FrameWidth/2 – 1 
                 if (hu & wu are within scaled dimensions of box) 

o u_out [hu][wu]= u_in [hu][wu] 
             end for 
         end for 
         for hv=0 to FrameHeight/2 – 1 
             for wv=0 to FrameWidth/2 – 1 
                 if (hv & wv are within scaled dimensions of box) 

o v_out [hv][wv]= v_in [hv][wv] 
             end for 
         end for 
    end for 
 
    Save (y_out, u_out and v_out as a YUV frame) 
end for 
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Figure 41 presents the tracked frame in Figure 40 after the application of foreground 

subtraction algorithm. The very first frame of the video is trained as the background 

while the subsequent frames contain only the foreground pixels identified through the 

bounding boxes. By using the bounding boxes, only the information of interest from 

the surveillance standpoint is obtained and presented for encoding. 

 

 
 

Figure 41: Foreground subtracted frame 122 of hall video 
 
For actual encoding of the subtracted video, a wavelet-based scalable video codec – 

aceSVC  [71] is employed. The architecture of the aceSVC features spatial, temporal, 

quality and combined scalability. After decoding the compressed bit-stream of 

foreground subtracted sequence, first frame is added as the background of each frame 

to generate a surveillance sequence for better human visual understanding.  

5.9. Experimental Results for FBSCC 

Performance of the proposed framework has been evaluated using four different 

typical surveillance sequences: the “Bridge” with 2100 frames, “Hall” with 300 

frames, “Dance” with 500 frames and “Street” with 750 frames. All the sequences 

have a resolution of 352×288 pixels (CIF) and frame-rate of 30 Hz. All of these 

sequences have a static background throughout the length of the sequences. The 

‘Bridge’ sequence has a small boat appearing for a short time. So, out of 2100 frames, 

small numbers of frames have foreground object. In the ‘Dance’ sequence, an 
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animated person is dancing with fast arms and legs movement. In the ‘Street’ 

sequence, with an outdoor street background, different animated objects are moved 

through the street. In the ‘Hall’ sequence, two people are walking in opposite 

directions in a corridor.  
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Figure 42: PSNR Results for Indoor surveillance sequences 
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Figure 43: PSNR results for outdoor surveillance sequence 
 
In the Peak Signal to Noise Ratio (PSNR), described in section 2.2.1, results shown in 

Figure 42 and Figure 43, the legend Full Frame-based represents the full frame-based 

surveillance video without any pre-/post- processing, compressed using aceSVC. For 

the PSNR evaluation of the proposed strategy, the original surveillance sequence is 

tracked and foreground subtracted using box information. After foreground 

subtraction, again the background frame is added. This generates a raw sequence 
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subjectively similar to the decoded and background added sequence. This new raw 

sequence is used to calculate the PNSR values of the proposed strategy.  

 

 
(a)  

 

 
 

 (b) 
Figure 44: Subjective comparison of reconstructed frame 122 of Hall sequence at 
same bit-rate (a) Full Frame-based (b) Foreground-based 
 
Results show that the proposed strategy has a much better Rate-Distortion 

performance. The subjective comparison of the decoded frames is given in Figure 44. 

This proves that all the information important from the surveillance standpoint is 

maintained. 
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5.10 Related Test Results 

The overall aim of this research work is to develop different algorithms and 

techniques for the Rate-Distortion optimized coding of the surveillance videos. First, 

the state-of-the-art coding standards are applied on the surveillance videos to evaluate 

their performance. The H.264 reference software, JM 12.4 version, is used in its 

different configurations and applied to the ‘Hall’ and the ‘Bridge’ videos. The result 

of this experiment is shown in Figure 45.  

Hall, CIF@30Hz

35.00

36.00

37.00

38.00

39.00

40.00

120 144 196 216 252 288 320

Bitrate [kbps]

PS
N

R JM IBBP

JM IBPB

JM IPPP
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b) Bridge video 

Figure 45: H.264 R-D plot 
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The JM configuration of ‘IBBP’ has the best PSNR results for both Hall and Bridge 

videos. But this configuration has higher complexity because of the higher number of 

‘B’ frames. Results for Bridge video are slightly better than the Hall video. The 

Bridge video has most of the frames with very minor environmental changes in the 

scene while the Hall video has a lot of motion activity. 

Next step, a wavelet based video codec, aceSVC, has been applied on the Hall and 

Bridge videos. In aceSVC, the temporal redundancy present in the video is removed 

using the Motion Compensated Temporal Filtering (MCTF).  
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b) Bridge video 

Figure 46: aceSVC R-D plot 
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In this test, different levels of temporal filtering are set to evaluate the R-D 

performance of the aceSVC. The results of this test for the Hall and the Bridge videos 

are shown in Figure 46. On the basis of these results, it is evident that for surveillance 

videos, the higher temporal level filtering has a better R-D performance. As in H.264, 

the Bridge video has better results for aceSVC as well. The Bridge video has very 

high temporal redundancy which MCTF has utilized to improve the R-D performance. 

After evaluating the block-based H.264 and wavelet-based aceSVC for their different 

configurations, the comparison between results of the best configuration of the each 

codec is done. 
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Figure 47: aceSVC vs JM 
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The R-D performance comparison between aceSVC and JM is shown in Figure 47 for 

the Hall and the Bridge videos, respectively. The result for the Hall video shows that 

JM performed better than aceSVC at low bit-rates. After the 144 kbps and higher bit-

rates, aceSVC has produced better results than JM. While for the Bridge video, the R-

D performance of aceSVC is better than JM for all bit-rates. 

Motion estimation techniques in any codec, block-based or wavelet based, have the 

highest complexity as compared to all other modules of the codec. They consume a 

lot of processing power causing a high latency. For most of the surveillance scenarios, 

there is very little motion activity in the videos. Furthermore, the static background 

throughout the video reduces the effect of this motion activity.  

5.11. Conclusions 

In this chapter, the coding system that performs rate optimisation and adaptation in 

surveillance applications was proposed. This was achieved by an interaction between 

a Video Content Analysis (VCA) module and the Wavelet-based Scalable Video 

Coding. A modified architecture for event based SVC was proposed which was 

efficiently adapted to the surveillance application. GOPs were created in such a way 

that there was no interlink between the GOPs. The GOP analysis approach was used 

to detect the motion or event effectively. This analysis was used to switch the video 

to different scalability levels according to significance of the event in the GOP. 

Experimental results showed that the modified architecture successfully controlled 

the scalability features of GOPs after detecting motion events. Time segments 

containing events relevant to surveillance applications are detected by the VCA and 

encoded using a higher spatio-temporal resolution and a better quality. Other portions 

of the video are encoded at low spatio-temporal resolution and / or quality. 

Experimental results show that significant bit-rate reductions can be achieved by 

using the proposed approach. 

In another approach, a novel technique to obtain the foreground objects relevant to 

surveillance applications using the information of a surveillance video tracker was 

presented. A fully scalable video codec has been used to compress the foreground-

only sequence. A very high compression rate is achieved by using the proposed 

technique. Performance of the implemented system is compared with normal full 
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frame based coding. Subjective quality and PNSR results obtained through 

experimental evaluation show that significant bit-rate reduction can be achieved by 

using the proposed approach. Use of fully scalable video codec provides the 

flexibility to achieve further reduction of bit-rate while still preserving the required 

surveillance information.  
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Chapter 6 

Selective Motion Estimation 

6.1 Introduction 

In surveillance applications, video captured by the CCTV is usually encoded using 

conventional techniques, such as H.264/AVC. These techniques have been developed 

in view of conventional videos. With a growing number of surveillance system 

deployments, there is a need to introduce surveillance centric coding techniques. The 

goal of this work is to propose an efficient motion estimation approach specific to 

surveillance videos. During the encoding process of videos, motion estimation is 

performed to find the motion vectors for the best matched block in a search window. 

While decoding video, these motion vectors are used to reconstruct the original 

blocks with their best matched block in an already decoded frame. Encoding 

complexity is dominated by the ME if full search (FS) is used as the BMA. FS 

matches all possible displaced candidate blocks within the search window to find a 

block with the minimum Block Distortion Measure (BDM). 
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Several fast BMAs have been introduced to beat FS in terms of computational 

complexity. These include the new three step search (N3SS)  [59], four-step search 

(4SS)  [60], diamond search (DS)  [61], kite-cross diamond search (KCDS)  [66], and 

modified DS (MODS)  [67], etc. In this chapter, a novel approach to reduce 

computational complexity for encoding surveillance videos has been proposed. The 

proposed approach utilizes a real-time background subtractor (BGS)  [70] to detect the 

presence of the motion activity in the sequence. In typical surveillance videos, a scene 

remains static for a long period of time. Performing motion vector search for these 

frames is wastage of computing resources. A motion vector (MV) search is performed 

only for frames which have some motion activity identified by the BGS. 

6.2 Selective Motion Estimation 

The generic architecture of the implemented system is shown in Figure 48. A 

surveillance video is fed to background subtraction and video encoding modules of 

the system. The real-time background subtractor, motion detection block in Figure 48, 

detects motion activity present in the sequence. This information is passed onto the 

motion estimation module of the encoder. The motion estimation module utilizes the 

motion detection information to perform selective motion estimation. After motion 

compensated temporal filtering (MCTF) step, spatial transformation is performed to 

remove the spatial redundancies. Finally, entropy coding techniques like CABAC are 

used to improve compression efficiency. 

 
 
 
 
 

 
 
 
 
 
 
  
 
 
 
Figure 48: Architecture of implemented system 
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6.2.1 Real-Time Background Subtraction 

A motion detection module must be efficient in terms of utilizing processing power 

otherwise; the complexity of the motion estimation module shall be reduced at the 

cost of increased complexity for motion detection. A real-time video background 

subtraction module based on the Gaussian mixture model  [70] is used to detect 

motion activity present in the video. This method is able to deal robustly with light 

changes, bimodal background like swaying trees and introduction or removal of 

objects from the scene. The value of each pixel is matched against weighted 

Gaussians of mixture. Those pixels are declared as foreground whose value is not 

within 2.5 standard deviation of the background Gaussians. Foreground pixels are 

grouped into segmentation regions and bounded by rectangular boxes throughout the 

length of the sequence. The output of the BGS module for hall video is illustrated in 

Figure 49. Pixels which are static for a number of frames are modelled as 

background; therefore they do not fall within the boundary of boxes. Presence of the 

bounding box is an indication of motion activity present in the frame. This indication 

is used to perform selective motion estimation. 

 

 
 

Figure 49: BGS result for frame 122 of hall video 

6.2.2. Selection Policy 

As aforementioned, video captured from the CCTV camera is processed through a 

real-time background subtraction (BGS) module to detect the presence of motion 

activity in the sequence. Presence of motion activity for each frame of the sequence is 
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marked and recorded. This information is utilized by the motion estimation module of 

the encoder to perform selective motion estimation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 50: Strategy for selective motion estimation 
 
Two different selective motion estimation approaches, GOP level and Frame level, 

are implemented to improve the efficiency of the motion estimation process in terms 

of saving processing power and processing time. In the GOP level approach, BGS 

information is analysed for all the frames of a GOP. Therefore, a single decision of 

performing selective motion estimation is made for each GOP. If the BGS detects any 

moving object in any frame of the GOP then motion estimation is performed for that 

GOP otherwise motion vectors for all the frames of the GOP are set to zero. The 

workflow strategy of the proposed system is shown in Figure 50. GOP level selective 

motion estimation performs better when there is no motion activity for a large number 

of frames in the sequence. Its efficiency is lower when there is some pattern of 

activity present in the sequence not allowing to bypass the ME module. Also, this 

for (frame=1 to end of sequence) 
   if (motion activity found) 
      frameMotion [frame] = 1 
   otherwise 
      frameMotion [frame] = 0 
end for 
 
switch (motion estimation mode) 
case GopByGop: 
   for (each GOP of the sequence) 
      for (first frame of GOP to GOP size) 
         if ( frameMotion [frame] is 1) 
            Perform Motion estimation for this GOP 
            ME_performed = 1 
            Break 
      end for 
      if ( ME_performed is not equal to 1) 
            All the motion vectors are set to zero 
   end for 
 
case FrameByFrame: 
   for (each frame of the sequence) 
      if ( frameMotion [frame] is 1) 
         Perform Motion estimation for this frame 
     otherwise 
            All the motion vectors are set to zero 
   end for 
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approach is dependent on GOP size set for encoding the sequence where a smaller 

GOP size has better efficiency. 

In the Frame level approach, the BGS information for each frame of the sequence is 

analyzed. The decision to perform selective motion estimation is made for each frame. 

If any motion activity is present in a particular frame then motion estimation is 

performed otherwise motion vectors for that frame are set to zero. This approach 

improves processing efficiency by performing the ME only for the frames where it is 

required and bypassing ME module for static frames. Thus, based on BGS analysis, 

no compromise is made for the frames which are important from a surveillance 

standpoint and complexity can still be reduced by applying the proposed approach. 

6.3 Experimental Results for Selective ME 

Performance evaluation of the proposed approach is carried out on different 

surveillance sequences given in Table 8. All of these sequences have CIF (352×288) 

spatial resolution and a frame rate of 30 Hz. Background in all the sequences is static 

throughout the length of the sequences. 

While performing the experiment, the Sum of Absolute Difference (SAD) is used as a 

Block Distortion Measure (BDM). Block size is 16x16 while the search range is 15 

(+- 15 pel displacement is possible in vertical and horizontal directions). All the 

videos are compressed into a 256 kbps bit-rate. True processing time is used to 

evaluate the performance of the proposed approach, while Y-PSNR is calculated to 

assess the image quality. The evaluation is performed using different GOP sizes. 

Each GOP contains at least one intra-coded frame. Thus, increasing the GOP size for 

the same sequence reduces the intra-coded frames in the whole compressed bit-stream. 

Consequently, a higher GOP size has a higher processing time. All the tests are 

performed on a machine with Intel Core(TM) 2CPU 6600@2.40GHz processor and 2 

GB RAM. First of all, the BGS module has to be real-time to improve the efficiency 

of the proposed system. For this, Table 8 shows that the motion detection process is 

real-time where processing time for each surveillance sequence is given in seconds. 

BGS processes almost 30 frames in each second on the above described machine. 

Although BGS performance is real-time, still time consumed by BGS is included in 

overall encoding time for the evaluation of proposed selective motion estimation 
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approach. In all the tables, the PSNR results are in dBs and time is measured in 

seconds. 

 

Seq Total Frames Time (sec) Frames/Sec 

Bridge 2100 66 31.82 

Dance 500 16 31.25 

Hall 300 10 30.00 

LightOffOn 499 16 31.19 

Parking 2100 68 30.88 

RoadCar 499 15 33.26 

Street 750 25 30.00 

ThinkingMan 499 15 33.26 
Table 8: Real-time motion detection 
 

Experimental results for full search based motion estimation are summarized in Table 

9. These results are used as a reference to compare the proposed approach. Table 10 

shows the results for GOP level motion estimation. Different GOP sizes are selected 

to perform the experiment. With each GOP, the MCTF is performed in such a way to 

produce the maximum number of motion estimated frames.  

 

GOP Size=8 GOP Size=16 GOP Size=32 
Seq 

Time(sec) PSNR Time(sec) PSNR Time(sec) PSNR 

Bridge 6336 40.04 8473 40.92 10396 41.33 

Dance 1253 44.67 1652 46.43 2026 47.31 

Hall 787 33.90 1045 36.54 1300 37.76 

LightOffOn 1513 41.02 2067 42.67 2630 42.90 

Parking 6080 37.15 8312 38.86 10582 39.61 

RoadCar 1405 41.12 1917 43.07 2416 43.73 

Street 1734 27.86 2309 30.96 2933 33.53 

ThinkingMan 1186 30.03 1593 35.12 2005 39.36 
Table 9: Full motion estimation  
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The processing time saving, compared to full motion estimation, achieved for GOP 

level approach is shown in Table 11. Results show that the nature of the sequence has 

great influence on the efficiency of the proposed approach. One drawback with GOP 

level motion estimation is that motion estimation is performed for all the frames of 

the GOP even if only one frame of the GOP has the motion activity. Thus to refine 

and improve the performance, Frame level selective motion estimation is 

implemented. Motion estimation is performed only for frames which contain any 

foreground object with some kind of motion activity. Table 12 and Table 13 show the 

experimental results for Frame level approach. Results show significant improvement 

over GOP level selective motion estimation approach. 

GOP Size=8 GOP Size=16 GOP Size=32 
Seq 

Time(sec) PSNR Time(sec) PSNR Time(sec) PSNR 

Bridge 1795 40.04 3743 40.99 5172 41.38 

Dance 786 44.63 1085 46.38 1490 47.31 

Hall 764 33.91 1018 36.55 1310 37.76 

LightOffOn 649 41.02 941 42.67 1363 42.90 

Parking 2841 37.17 3790 38.87 4868 39.61 

RoadCar 123 41.15 140 43.07 177 43.73 

Street 1628 27.87 2232 30.96 2869 33.53 

ThinkingMan 1157 30.04 1560 35.12 1914 39.36 
Table 10: GOP level selective motion estimation  
 
Seq GOP Size=8 GOP Size=16 GOP Size=32 

Bridge 71.67 55.82 50.25 

Dance 37.27 34.32 26.46 

Hall 2.92 2.58 -0.77 

LightOffOn 57.11 54.48 48.17 

Parking 53.27 54.40 54.00 

RoadCar 91.25 92.70 92.67 

Street 6.11 3.33 2.18 

ThinkingMan 2.44 2.07 4.54 
Table 11: Processing time saving for GOP level selective motion estimation (%) 
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GOP Size=8 GOP Size=16 GOP Size=32 
Seq 

Time(sec) PSNR Time(sec) PSNR Time(sec) PSNR 

Bridge 670 40.08 761 41.04 926 41.43 

Dance 537 44.49 713 46.24 902 47.09 

Hall 770 33.91 1033 36.55 1284 37.76 

LightOffOn 600 41.84 800 42.72 1073 43.04 

Parking 1454 37.17 1876 38.86 2372 39.59 

RoadCar 123 41.15 144 43.07 174 43.73 

Street 1228 27.87 1613 30.94 2010 33.50 

ThinkingMan 282 30.20 339 35.33 407 39.47 
Table 12: Frame level selective motion estimation 
 
Seq GOP Size=8 GOP Size=16 GOP Size=32 

Bridge 89.43 91.02 91.09 

Dance 57.14 56.84 55.48 

Hall 2.16 1.15 1.23 

LightOffOn 60.34 61.30 59.20 

Parking 76.09 77.43 77.58 

RoadCar 91.25 92.49 92.80 

Street 29.18 30.14 31.47 

ThinkingMan 76.22 78.72 79.70 
Table 13: Processing time saving for Frame level selective motion estimation (%) 
 
For assessing user perception based on visual quality, subjective quality evaluation 

based on the double stimulus impairment scale  [69] method is performed as in Figure 

51. Different users participated in this test. Videos from full motion estimation, GOP-

by-GOP motion estimation and Frame-by-Frame motion estimation were organised at 

random. The user had to assign any number from 1 to 5 after watching the videos.  
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(a) 

 

 
(b) 

Figure 51: Visual comparison Hall frame 225 (a) Full ME (b) Frame level 
selective ME 
 

Seq Full ME GOP-by-GOP Frame-by-Frame 

Dance 2.57 2.71 2.71 

Hall 4.39 4.25 4.25 

Street 2.82 2.68 2.53 
Table 14: Subjective quality result  
 

Table 14 shows the results for visual evaluation of the sequences. These are average 

numbers where 5 is the maximum number representing the best quality. Results show 
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that applying the proposed approach has not much effect on the visual perception of 

the video which is important from the surveillance standpoint. This shows that the 

processing efficiency for the proposed approach is improved without compromising 

on the visual quality of the surveillance videos. 

6.4 Selective Block Search 

In addition to the GOP level and Frame level selective motion estimation, Block level 

selective motion estimation is also implemented. This approach comes with some 

extra complexity because of identifying and locating non-static blocks. Once again, 

the BGS is used to identify static and non-static blocks. As shown in Figure 49, non-

static pixels of each frame are bounded by the rectangular boxes. So, the location of 

these bounding boxes identifies non-static pixels. Motion vector (MV) search is 

performed only for those blocks which are identified by the BGS. Use of the BGS 

ensures that only the information sensitive from surveillance standpoint utilizes the 

computational resources. Motion vectors for block belonging to background are set to 

zero. The block selection for motion estimation is discussed in detail in the following 

section. 

6.4.1 Block Selection Policy 

As aforementioned, video captured from the CCTV camera is processed through a 

real-time background subtraction (BGS) module which forms rectangular boxes 

bounding the group of pixels which represent motion activity. Dimensions and 

coordinates of the bounding boxes are passed to the ME module of the video codec. 

Thus, based on BGS analysis, the bounding box indicates an area of the frame where 

ME needs to be performed. These indicated locations are important from surveillance 

standpoint. Workflow of the proposed system is shown in Figure 52. For each frame 

the ME module gets its required information from the BGS. If there are no pixels 

with motion in the frame then a motion vector for all the blocks of the frame is set to 

zero. If any motion activity is present in the frame then overlapping of bounding 

boxes and block under consideration is tested. In the case that there are any pixels 

common in block and bounding box then ME is performed for the block; otherwise, 
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the motion vector for the block is set to zero. The proposed approach is capable of 

handling multiple boxes for a frame. 

Selective ME

YES

Real-Time 
Background 
Subtraction

Foreground object 
detected

Set Motion 
Vectors to zero 

 Block overlaps 
with bounding box?

Perform Motion 
Estimation only for 

this Block

YES

NO

NO

Motion Vectors

 
Figure 52: Workflow for selective motion estimation 
 

To analyze the complexity of the proposed approach, let us assume that a frame is 

divided in N macroblocks (MBs) and time consumed for ME for each block is T. If 

there are ‘X’ MBs which do not have any motion activity then conventional ME for 

the frame is presented as: 

MEConv = ∑
=

X

i
iT

1
 + ∑

+=

N

Xj
jT

1
                                    (6.1) 
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If a full search is employed then the time consumed by each MB is same. In this case, 

the conventional ME become: 

 

MEConv = XT  + TXN )( −                                   (6.2) 
 

In the case of the proposed approach, only second term of the above equation is used. 

 

MEProposed = TXN )( −  + bTXN )( −                       (6.3) 

 

where bT  is overhead cost of motion detection and block selection. Taking the ratio 

of MEProposed to MEConv and after some mathematical manipulation we get the 

relation given below. This ratio describes how much time is consumed by the 

proposed approach compared to a conventional approach. 

 

(MEProposed)/(MEConv) = NTTTXN b /))(( +−           (6.4) 

 

Clearly, if there is no motion activity in the frame i.e. X = N then the time consumed 

by the proposed approach becomes zero and for the worst case when all the blocks of 

the frame have motion activity i.e. X = 0 then the proposed approach consumes 

TTb /  more time compared to FS. 

6.5 Experimental Results for Selective Block ME 

The performance of the proposed framework has been evaluated using different 

typical surveillance sequences as described in section 8.3. Different criteria are used 

for evaluating the proposed selective search. They are the Mean Square Error (MSE), 

average number of search points per motion vector (SearchPt), Relative Complexity 

Reduction (RCR), the SpeedUp ratio, the Y-PSNR value, and true processing time. 

Any of the available block matching algorithms can be utilised to perform a search. In 

this test, the search technique is based on Diamond Search (DS) and  the full search 

(FS) algorithms. 

Experimental results for selective block and all blocks motion vector search are 

summarized in Table 15, Table 16 and Table 17.  
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GOP Size=8 GOP Size=16 GOP Size=32 
Seq 

Time(sec) PSNR Time(sec) PSNR Time(sec) PSNR 

Bridge 743 40.08 838 41.04 1038 41.43 

Dance 139 44.37 153 46.04 184 46.83 

Hall 123 33.91 137 36.36 167 37.57 

LightOffOn 187 41.83 210 42.07 254 42.98 

LightOnOff 194 34.01 220 37.55 271 39.42 

Parking 716 37.15 814 38.83 988 39.57 

RoadCar 143 41.18 165 43.10 203 43.75 

ThinkingMan 171 30.22 201 35.36 241 39.49 
Table 15: Block level selective motion estimation 
 

 

Seq GOP Size=8 GOP Size=16 GOP Size=32 

Bridge 88.27 90.11 90.02 

Dance 88.91 90.74 90.92 

Hall 84.37 86.89 87.15 

LightOffOn 87.64 89.84 90.34 

LightOnOff 84.35 86.72 86.93 

Parking 88.22 90.21 90.66 

RoadCar 89.82 91.39 91.60 

ThinkingMan 85.58 87.38 87.98 
Table 16: Processing time saving for Block Level selective motion estimation(%)  
 
 

 SDS DS 
Sequence 

MSE SearchPt MSE SearchPt 

Hall 8.25 1.84 8.50 17.32 

Dance 2.34 1.78 2.45 15.30 

Street 22.43 0.53 24.37 14.93 
Table 17: Performance comparison using diamond search 
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Table 18 shows the computational power saving for each sequence in terms of the 

Relative Complexity Reduction (RCR) and the SpeedUp ratio. RCR and SpeedUp 

ratio are calculated using the following relationships: 

RCR = (1 – NSSel / NSCom ) x 100 %                          (6.5) 

 

SpeedUp = NSCom / NSSel                                             (6.6) 

where NSSel and NSCom represent the total number of search points using the 

proposed selective search approach and complete search approach, respectively.  

 

Sequence NSSel | NSCom RCR (%) SpeedUp  

Hall 429971 | 4061538 89.41 9.45 

Dance 692493 | 5962671 88.39 8.61 

Street 307007 | 8725698 96.48 28.42 
Table 18: Complexity reduction using diamond search 
 

The experimental results of Table 17 and Table 18 show that the proposed approach 

can reduce the computational complexity significantly with very little change in MSE. 

These parameters are the performance indicators for the BMA only. The overall 

encoding time is affected by the performance of the BMA. 
 

Sequence SDS  DS SFS FS 

Hall 39.15 38.84 39.15 38.96 

Dance 44.76 44.23 44.87 44.72 

Street 35.06 34.26 35.06 34.79 
Table 19: PSNR results for diamond and full search BMA 
 

Y-PSNR results for selective diamond search (SDS), diamond search (DS), selective 

full search (SFS) and full search (FS) are shown in Table 19. In SFS, a full search is 

performed for blocks which are bounded by boxes. Some of PSNR and MSE results 

are better for the proposed selective search. This is because of setting most of the 

motion vectors (MV) to zero which saves bits from MV encoding process. These 

saved bits are utilized by rate-distortion module of the encoder to improve quality of 

image. 
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The true processing time of the whole encoding system is given in Table 20. 

Encoding parameters perform 5 temporal decomposition levels which produce plenty 

of motion estimated frames. Table 20 shows a significant time reduction for the 

proposed approach even applying a full search BMA for the selected blocks. 

 
Proposed System (Sec) 

Sequence 
BGS SFS Total 

FS 
(Sec) 

%age 
saving 

Hall 10 216 226 385 41.30 

Dance 17 256 273 432 36.81 

Street 25 500 525 823 36.21 
Table 20: True processing time using full search BMA 
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Figure 53: Test results for Hall video, frame 101- 150 
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(b) Search points 

Figure 54: Test results for first 50 frames of Street video 
 
Figure 53 illustrates a frame-by-frame performance comparison of the proposed 

approach against a conventional search approach for hall videos. For the hall video, 

frame 101-150 are shown due to a high motion activity in these frames. Results show 

that the proposed approach can reduce the complexity of ME while maintaining the 

visual quality. 

6.6 Tracker Based 

Video tracking applications are used to facilitate the visual surveillance. Whenever an 

object moves in the surveillance sequence, the video tracker starts performing motion 
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calculations for the object. The object itself is bounded by a rectangular box to make 

the moving object prominent in the video. In proposed tracker based motion 

estimation, a fast surveillance video tracking approach based on the work of Stauffer 

and Grimson  [70] is used. The video tracker assigns each moving object a unique 

track number. These track numbers or tracks Ids are matched to identify same object 

in different frames of the sequence. A simple workflow for the tracker based motion 

estimation is shown in Figure 55.  

YES

Set Motion 
Vectors to zero 

NO

Motion Vectors

Any Track in the 
Frame?

Set Motion 
Vectors to zero 

Current Track 
matched?

Perform MV 
Calculation

NOYES

YESNO

Any Previous Track?

Set Motion 
Vectors to zero 

 
Figure 55: Workflow for tracker based motion estimation 
 

In the process of motion estimation, each block of the frame is a candidate for motion 

vector calculations. So, the very first step is to check whether the frame for motion 
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estimation has any object with any tracking information. If there is no track present 

then the motion vectors for all the blocks of the frame are set to zero. This is because 

the background in the surveillance videos remains static through out the sequence. So, 

zero motion vectors retain the same block from the previous frame. 

Now, if the candidate frame has some moving objects with some tracking information 

then each block of the frame is tested as to whether it is part of the tracked objects. If 

a block is not part of any tracked object then it indicates that the block represents the 

background of the sequence. Therefore, the motion vectors for such blocks are set to 

zero. If a block is part of any of the tracked objects present in the frame then the 

further tests are performed for motion vector calculation. First of all, the track number 

or track Id of the candidate block is matched against the track numbers of the 

previous frame; if the track number is found then the displacement of the bounding 

rectangular box between two frames is taken as a motion vector. This displacement 

can be calculated by taking the difference between any of the corner points of the 

bounding boxes. 

The tracker based approach is faster because there is no need to perform any block 

matching technique within a search window. This helps in reducing the complexity of 

the motion estimation. On the other hand, this approach may reduce the visual quality 

of the tracked object because all the blocks of the tracked object are assigned the 

motion vector value. This quality impairment can be observed in a situation where a 

tracked object is moving in one direction but some parts of the object, let us say arms 

in the case of human, are moving in different direction with different displacement 

and/or different pose. 

6.7 Experimental Results for Tracker Based ME 

Results for the tracker based motion estimation are summarized in Table 21 and 

Table 22. The comparison of selective and tracker based motion estimation in terms 

of time saving and image quality is presented in Figure 56 to Figure 59. The 

processing time saving, compared to full motion estimation, achieved for the tracker 

based motion estimation approach is shown in Table 22. Results show that the nature 

of the sequence has great influence on the efficiency of the proposed approach where 

level and type of motion activity are the main factors. For sequences like ‘Bridge’ 
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which contain very little motion activity, tracker based motion estimation does not 

show any improvement over frame based selective motion estimation.  

GOP Size=8 GOP Size=16 GOP Size=32 
Seq 

Time(sec) PSNR Time(sec) PSNR Time(sec) PSNR 

Bridge 1194 39.97 1325 40.96 1525 41.36 

Hall 208 31.95 233 33.93 259 35.03 

LightOffOn 312 41.66 351 42.49 398 42.90 

Parking 1187 36.92 1327 38.57 1535 39.33 

RoadCar 230 41.09 255 43.02 292 43.69 

Street 473 27.5 522 30.17 594 32.37 

ThinkingMan 283 29.92 315 34.75 363 38.79 
Table 21: Tracker-Based motion estimation 
 

Seq GOP Size=8 GOP Size=16 GOP Size=32 

Bridge 81.16 84.36 85.33 

Hall 73.57 77.70 80.08 

LightOffOn 79.38 83.02 84.87 

Parking 80.48 84.04 85.49 

RoadCar 83.63 86.70 87.91 

Street 72.72 77.39 79.75 

ThinkingMan 76.14 80.23 81.90 
Table 22: Processing time saving for Tracker-based selective ME (%) 
 
On the other hand, for sequences like ‘Hall’ and ‘Street’ which contain a high level of 

motion activity, tracker based motion estimation speeds up the motion estimation 

process but the visual quality of the decoded sequence is degraded. The reason for 

this quality degradation is the type of motion activity carried out by the foreground 

object. In these sequences, many of the pixels do not have same direction of 

movement as the direction of the main foreground object linked to these pixels. So, 

the motion vectors for the blocks which hold such pixels do not point to the right 

pixels in the reference frame while decoding. Consequently, the visual quality of the 
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reconstructed sequence is degraded. Results show a significant improvement over the 

GOP level selective motion estimation approach. 
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(b) 

Figure 56: Bridge sequence comparison of tracker based and selective motion 
estimation (a) %age time saving (b) visual quality 
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(b) 

Figure 57: Hall sequence comparison of tracker based and selective motion 
estimation (a) %age time saving (b) visual quality 
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(b) 

Figure 58: Parking sequence comparison of tracker based and selective motion 
estimation (a) %age time saving (b) visual quality 
 



 

  97

Street

0

10

20

30

40

50

60

70

80

90

8 16 32
GOP Size

%
ag

e 
Sa

vi
ng GOP-by-GOP

Frame-by-Frame
Tracker Based

 
(a) 

Street

27.3

27.9

28.5

29.1

29.7

30.3

30.9

31.5

32.1

32.7

33.3

8 16 32
GOP Size

P
SN

R 
(d

B)

GOP-by-GOP
Frame-by-Frame
Tracker Based
Full Search

 
(b) 

Figure 59: Street sequence comparison of tracker based and selective motion 
estimation (a) %age time saving (b) visual quality 
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6.8 Conclusion 

A novel approach for performing selective motion estimation was proposed where 

object detection information generated by the VCA was used to flag the frames which 

did not contain any moving object. Based on this analysis, different selective motion 

estimation approaches were proposed which included: GOP level selective motion 

estimation, Frame level selective motion estimation and block level motion 

estimation. 

In the GOP level selective motion estimation, the decision as to whether perform 

motion estimation or to skip was enforced at the GOP level. Therefore, the only way 

of skipping the motion estimation for a particular GOP was the scenario where there 

was not a single frame of the GOP identified as containing a moving object. Due to 

the very low probability of such a scenario, this scheme had little improvement even 

for moderately busy locations. The second drawback of the GOP level selective 

motion estimation was its dependency on the GOP size. So, with a smaller GOP size, 

there was higher probability of occurring such GOPs which do not have any frame 

detected containing a moving object. To counter the issues faced in GOP level 

selective ME, a Frame level selective ME was proposed where decision of 

performing ME or skipping it was taken for each frame independent of other frames. 

Once again, this approach was integrated in the SCC framework keeping the contact 

with the SCC framework. Evidently, the Frame level selective ME performed better 

than the GOP level. The key observation for Frame level ME was the imposing of 

ME decision for all the blocks of the frame irrespective of the location and size of the 

moving objects. 

Under the motivation of evolving selective ME from Frame to macroblock level, 

Block level selective ME was proposed. Two major challenges to implement this 

approach were (i) identification of the macroblock as part of a moving object and (ii) 

locating those blocks while performing ME. As explained in Chapter 5, the 

foreground pixels identified by the VCA were isolated from the background pixels by 

using the information in the rectangular bounding boxes. A similar solution to address 

these two issues of Block level selective ME was used for the implementation. 

After the paradigm of selective motion estimation, a novel way of performing 

efficient motion estimation through reusing the information of surveillance video 
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object tracker was proposed. In this approach, a real-time object tracker was used 

which generates information for each unique object with a unique track identity. In 

addition to this, objects were bounded in a rectangular box. So, instead of performing 

any kind of motion estimation for any block of the surveillance video, the motion 

vectors are calculated through the information generated by the object tracker. This 

approach had the drawback of miscalculating some of the motion vectors 

corresponding to the same object; ultimately, reducing the visual quality. 
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Chapter 7 

Fast Full Search For Motion 

Estimation 

Fast motion vector search algorithms have been developed under the motivation of 

reducing the computational complexity of the exhaustive full search. All of these 

algorithms are based on monotonically increasing match criteria around the location 

of the optimal motion vector to iteratively determine that location. The computational 

complexity is reduced by selecting a limited number of test points within the search 

window. These search algorithms follow the route of local minima to find out the 

ultimate motion vector for a particular search. This can lead to reduction in the 

accuracy of the motion estimation and ultimately the quality of video. Thus, reduction 

in computational complexity comes at the cost of reduction in accuracy. To address 

this problem, fast full search algorithms ( [76] -  [83]) have been proposed. 

. 
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7.1 Successive Elimination Algorithm 

Successive elimination algorithm (SEA)  [76] constrains the search process within the 

search window while preserving the optimal solution for the motion vector. SEA is 

based on mathematical inequality given below. 

 

R – M(x, y) ≤  SAD (x, y)                                    (7.1) 

M(x, y) – R ≤  SAD (x, y)                                     (7.2) 
 

In these equations, R represents the some norm of the reference block while M(x, y) 

represents the sum norm of any matching candidate block with the motion vector (x, 

y). The term on the right side is the sum of the absolute difference (SAD) between the 

reference block and the candidate block with motion vector (x, y). Now, assume for a 

given SAD (m, n) for an initial matching candidate block with motion vector (m, n). 

Obviously, the potential candidate for the best match is that block for which the 

following equation holds. 

 

SAD (x, y) ≤  SAD (m, n)                                    (7.3) 

Then equations 7.1 and 7.2 can be modified as follows. 

 

R – M(x, y) ≤  SAD (m, n)                                    (7.4) 

M(x, y) – R ≤  SAD (m, n)                                     (7.5) 
which implies 

 

R – SAD (m, n) ≤  M(x, y) ≤  R + SAD (m, n)                 (7.6) 

 

The inequality in equation 7.6 is the major result used by the SEA search. It indicates 

that to obtain the best match, only those blocks are tested in the search process whose 

sum norms satisfy the equation 7.6. The set of these blocks is less than the total 

number of blocks in a search window. So, utilizing equation 7.6 helps to reduce 

computational complexity of the search process greatly without excluding the 
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optimum point. An efficient method to calculate the sum norms for candidate blocks 

in the search window is given in the work of Li and Salari  [76]. 

7.2 Fast Full Search in H.264 

Advance video coding (AVC) also known as H.264/MPEG-4 Part 10  [24]  [25] has 

been developed by the joint video team (JVT). One of the novelties contributing to 

the superior performance of H.264 is a rich set of coding modes to choose from for 

each macroblock. One of them is the ability to select different block partition (16×16, 

16×8, 8×16, 8×8, 8×4, 4×8, 4×4) for better motion estimation. For a full search 

approach, each partition is selected to perform matching within the search window. 

The use of different block sizes for various macroblock partitions multiplies the 

number of computations. So, the improved accuracy in the motion estimation comes 

with a substantial increase in the computational complexity. 

A fast full search approach is given in the work presented by Ates and Altanbasak 

 [86] to reduce the higher complexity introduced by different macroblock partitions. 

The fast full search is based on the fact that, if the same search range is used for all 

block sizes, the sum of absolute differences (SADs) computed for small block 

partitions (e.g. 4×4) can be reused to construct the SADs for larger block partitions 

(e.g. 16×16). That is, for a given motion vector, SADs calculated for 4×4 sub-blocks 

can be added up to find the SADs of larger sub-blocks. This will require additional 

memory to store the computed SADs, but decrease the number of computations 

almost to the level of a single block type case. 

Let us assume that Bmxn is a sub-block with size (m x n), such that (m x n) ∈  

{(16×16), (16×8), (8×16), (8×8), (8×4), (4×8), (4×4)}, then SAD for Bmxn is given 

by the following equation  [86]. 

 

SADBmxn (v) = ∑
==

++−
nm

yx
yx vyvxryxc

,

1,1
),(),(             (7.7) 

 

where v = (vx, vy) is the motion vector, ‘c’ and ‘r’ are the current and reference frames, 

respectively. As the SAD reuse is based on the simple observation that, for a given 
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MV v = (vx, vy) SAD of Bmxn can be decomposed into the SADs of its 4×4 sub-

blocks as given below  [86]. 
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This means, to compute SADBmxn (v) for a sub-block Bmxn with MV v = (vx, vy) it is 

necessary to compute SADs of all its 4×4 sub-blocks such that (4x4) ⊂  Bmxn. Thus 

from equation 7.8, it is concluded that once SADs for all the 4×4 sub-blocks are 

computed, they can be reused to build up SADs of sub-blocks with higher dimensions. 

The computational complexity for performing search for all the seven macroblock 

partitions becomes close to the computational complexity of searching for only 4×4 

sub-blocks. This reduction in computational complexity comes with a higher use of 

memory where SAD values for all the partitions are stored to build SAD values for 

higher dimension partitions 

 

SAD1
4x4 SAD2

4x4 SAD3
4x4 SAD4

4x4 

SAD5
4x4 SAD6

4x4 SAD7
4x4 SAD8

4x4 

SAD9
4x4 SAD10

4x4 SAD11
4x4 SAD12

4x4 

SAD13
4x4 SAD14

4x4 SAD15
4x4 SAD16

4x4 

 
Table 23: SAD values for single search position in search window 
 

Table 23 shows calculated SAD values for a single search position in the search 

window for a block of 16x16. Let us assume search range is ‘r’ then search window 

will consist of (2r + 1) x (2r + 1) search positions. For each search position, there 

will a table similar to Table 23. These SAD values are reused to build similar tables 
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for higher dimension sub-block partitions containing SAD values for that particular 

sub-partition. Some examples of SAD reuse are shown below. 

 

 SAD1
8x4 = SAD1

4x4 + SAD2
4x4 

SAD1
4x8 = SAD1

4x4 + SAD5
4x4 

SAD1
8x8 = SAD1

4x8 + SAD2
4x8   

SAD1
16x8 = SAD1

8x8 + SAD3
8x8  

SAD1
8x16 = SAD1

8x8 + SAD2
8x8  

SAD1
16x16 = SAD1

8x16 + SAD2
8x16  

7.3 Multiple Reference Frames Motion Estimation 

The AVC/H.264 codec uses multiple reference frames to enhance the accuracy of 

motion estimation. In the multiple reference frame motion estimation, a single block 

with uni-prediction in P slices is predicted from one reference picture out of a large 

number of decoded pictures. With a similar approach, a biprediceted block in B slices 

is predicted from two reference pictures; both can be chosen from their candidate 

reference picture lists. Multiple reference frame motion estimation is an effective 

technique to improve the coding efficiency. However, this approach dramatically 

increases the computational complexity of the encoders because the motion 

estimation process needs to be performed for each of the reference frames. So, the 

computational complexity is increased ‘n’ times if ‘n’ number of reference frames are 

used. The work presented in this chapter is focused on the reduction of computational 

complexity for multiple reference frames with a quality similar to that achieved 

through the full search. 

7.4 Fast Multiple Reference Motion Estimation 

Visual quality is one of the most important factors for the surveillance videos. For 

this reason, a full search based approach with less computational complexity is 

required for fast and accurate motion estimation. At the same time, a multiple 

reference based approach is adopted because of its more accurate results for motion 
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estimation. Successive Elimination Algorithm (SEA) described in section 7.1 is 

investigated for multiple reference frames based fast full search. 

7.4.1 The Algorithm 

Assuming that there are five reference frames for a motion estimation of a ‘P’ slice as 

depicted in Figure 60. A difference frame is generated for each pair of consecutive 

reference frames. Ideally, two consecutive frames are exactly the same except for 

those pixels which are changed due to the motion of an object.  

 
Figure 60: Multiple reference frames with difference frames 
 

Thus, the difference frame contains all the pixel values equal to zero except the pixels 

which represent motion. So, the difference frames are the indicator of the locations 

for object motion. Practically, two consecutive frames have different pixel values 

even for the locations where there is no motion at all. This is because of 

environmental noise, camera noise and noise introduced by wind or flickering lights, 

etc. This is shown in Figure 61 for two consecutive reference frames of the Hall 

sequence with the difference frame in (c). 

Reference Frame Current Frame Difference Frame 



 

  106

 

    
              (a) 1st Reference frame                           (b) 2nd Reference frame 

  
(c) Difference frame (no grouping)           (d) Difference frame (2x2 grouping)  

    
(e) Difference frame (2x4 grouping)                 (f) Difference frame (4x4 grouping) 

Figure 61: Consecutive reference frames with difference frame 
 

For the given fast multiple reference motion estimation, the main idea is to perform 

the full motion vector search in the reference frame which is the nearest to the current 
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frame. This full search is based on the successive elimination algorithm  [76]. For the 

rest of the reference frames, difference frames are used to indicate the locations 

representing the change in the pixel value. So, only those points are tested as motion 

vector candidates which are indicated by the difference frames. This approach is 

equivalent to performing the full search because all the similar points in two 

consecutive frames are already tested in the previous reference frame. 

The difference frame consists of so many different points close to each other as 

shown in Figure 61 (c). These points can be grouped together represented by a single 

point in the group. The difference frames for group 2×2, 2×4 and 4×4 are shown in 

Figure 61 (d), (e), (f). Reduction in the density of the difference pixel localization can 

be seen with the increase in the grouping dimensions. A minimum block size for the 

motion vector search is 4×4 in the H.264. Thus, all these groupings for the difference 

frames are covered by 4×4 search blocks with an extra search around the optimum 

point. 

Multiple Reference Frame Motion Estimation (MRFME) for improved processing 

efficiency has been categorized into three implementation approaches, (i) MRFME_1 

(ii) MRFME_2 and (iii) MRFME_3. These approaches are described in Table 24. 

MRFME_1 performs SEA based motion estimation around previous frame motion 

estimation with a smaller search window. This step is based on the observation that 

the majority of motion vectors are close to the previous frame/optimum motion vector.  

Thus, by performing an initial SEA search non-candidate points are eliminated. After 

checking the test points indicated by the difference frames, once again, the SEA 

search is performed to refine the MV and to cover up the grouping of the pixels. The 

MRFME_2 is exactly same as the MRFME_1 without the initial SEA search while 

the MRFME_3 performs testing of only those points which represents the group of 

pixels. 

The flowchart diagram for the implemented algorithm is given in Figure 62. Each 

reference frame is tested for being the first reference frame for the motion vector 

search. If it is the first reference frame then SEA search is performed to find the best 

MV. For the rest of the reference frames, MRFME_1, MRFME_2 and MRFME_3 

approaches are used to find better motion vector. The terms BMV and D_Pixels in the 

flowchart diagram represent the best updated motion vector and different pixels from 
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the last reference frame, respectively. D_Pixels are actually group representative 

locations for 2×2, 2×4 or 4×4 groups as described previously. 

 

Search type Description 

MRFME_1 

(i) Best MV = Previous frame MV 

(ii) SEA search is performed around Best MV with search 

window = 4. If better MV is found then Best MV is 

replaced with it. 

(iii) All the different pixel group locations within the 

original search window are tested for better MV. If 

better MV is found then to cover different pixels in 

the group, SEA search is performed around the found 

location with search window size equal to 4. 

MRFME _2 

(i) Best MV = Previous frame MV 

(ii) All the different pixel group locations within the 

original search window are tested for a better MV. If 

a better MV is found then to cover different pixels in 

the group, the SEA search is performed around the 

found location with search window size equal to 4. 

MRFME _3 

(i) Best MV = Previous frame MV 

(ii) All the different pixel group locations within the 

original search window are tested for better MV. If 

better MV is found then this location is selected as 

optimum MV. 

 
Table 24: Search approaches for reference frames except first reference frame 
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Figure 62: Flowchart for the implemented algorithm 

First Reference 
Frame? 

SEA Search BMV = Previous 
Frame MV 
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search window

SEA search around 
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MV

MV
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Yes

Yes 

Yes

No

No 

No
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7.5 Experimental Results 

The performance evaluation of the proposed approach is carried out on five different 

surveillance sequences: ‘Bridge’, ‘Dance’, ‘Hall’, ‘CarPark’ and ‘Street’ as shown in 

Table 25. All of these sequences have CIF (352×288) spatial resolution and a frame 

rate of 30 Hz. Background in all the sequences is static throughout the length of the 

sequences. “Bridge” sequence is a distant view of a boat moving in a river. The 

‘Dance’ sequence contains an animated person dancing with fast legs and arms 

motion. In the ‘Hall’, two persons are walking in opposite directions in a corridor. In 

the ‘CarPark’, a car comes in a parking area. In the ‘Street’, with real outdoor street 

background, different animated objects move through the street. 

 

Seq. Total frames Description 

Bridge 500 Boat moving slowly 

Dance 500 Animated man with fast legs and arms movement 

Hall 300 Persons walking in a corridor 

CarPark 500 Car in a parking area 

Street 750 Different objects moving in a street 

Table 25: Surveillance sequences 
 

While performing the experiment, the Sum of Absolute Difference (SAD) is used as a 

Block Distortion Measure (BDM). The proposed algorithm is implemented in the 

reference software, Joint Model (JM). The proposed algorithm was implemented 

after introducing major changes in the motion estimation modules and reflecting 

those changes throughout the software. The main profile of H.264 codec is used. As 

the process of multiple reference frames is the same for both ‘B’ and ‘P’ frames, 

therefore only ‘P’ frames are used in the test. The block size is 16x16 while the 

search range is 16 (+- 16 pel displacement is possible in vertical and horizontal 

directions from the current block location). The maximum number of reference 

frames is 5. All the videos are compressed for 196 kbps bit-rate. The true processing 

time is used to evaluate the performance of the proposed approach, while Y-PSNR is 
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calculated to assess the image quality. All the tests are performed on a machine with 

Intel Core(TM) 2CPU 6600@2.40GHz processor and 2 GB RAM.  

A comparison of the full search, fast full search and SEA search is given in Table 26. 

This comparison is based on motion estimation time only. It can be seen that the SEA 

search has performed better in terms of motion estimation time with similar image 

quality. In the implementation of the SEA search algorithm, memory address 

calculation is performed only for the first block of the search window then a 

sequential increment is used to locate the remaining block in the search window of 

the reference frame. This helps to speed up the memory access process and thus 

improves the motion estimation process. Consequently, the implemented approaches 

of the MRFME are compared with the SEA search results. 

 

Full Search Fast Full Search SEA 
Seq. 

T(sec) YPSNR T(sec) YPSNR T(sec) YPSNR 

Bridge 2732 39.31 1298 39.29 512 39.32 

Dance 2730 45.78 1056 45.78 149 45.8 

Hall 1673 37.19 634 37.19 268 37.18 

CarPark 2671 41.6 1061 41.6 731 41.61 

Street 3457 33.95 1588 33.96 1011 33.93 

Table 26: Comparison of full search approaches 
 

As aforementioned, difference frame pixels groups of 2×2, 2×4 and 4×4 are 

represented by a single point. For each of pixel group types, experimental results 

using search approach of MRFME_1, MRFME_2 and MRFME_3 are shown in Table 

27, Table 29 and Table 31. For each of the pixel group types, MRFME_1 has better 

results compared to the other two approaches in terms of maintaining the picture 

quality compared to the full search. 

 

 

 



 

  112

 

 

SEA MRFME_1 MRFME_2 MRFME_3 
Seq. 

T(sec) YPSNR T(sec) YPSNR T(sec) YPSNR T(sec) YPSNR 

Bridge 512 39.32 83 39.31 71 39.32 70 39.34 

Dance 149 45.8 20 45.78 13 45.73 13 45.73 

Hall 268 37.18 36 37.18 39 37.07 37 37.07 

CarPark 731 41.61 125 41.60 113 41.59 112 41.59 

Street 1011 33.93 152 33.94 160 33.89 188 33.79 

Table 27: 2×2 group with MRFME 
 

MRFME_1 MRFME_2 MRFME_3 
Seq. 

SpeedUp ΔYPSNR SpeedUp ΔYPSNR SpeedUp ΔYPSNR 

Bridge 6.17 +0.01 7.21 0.00 7.31 -0.02 

Dance 7.45 +0.02 11.46 +0.07 11.46 +0.07 

Hall 6.88 0.00 6.87 +0.11 7.24 +0.11 

CarPark 5.85 +0.01 6.47 +0.02 6.53 +0.02 

Street 6.65 -0.01 6.32 +0.04 5.38 +0.14 

Table 28: 2×2 group speedup and PSNR loss against SEA 
 

The speed up factor and loss in the image quality results for fast MRFME approaches 

against SEA based MRFME are shown in Table 28, Table 30 and Table 32. Results 

show that MRFME_1 has the best results with non-zero pixels of difference frames in 

a group of 2x4 being represented with single location. 
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SEA MRFME_1 MRFME_2 MRFME_3 
Seq. 

T(sec) YPSNR T(sec) YPSNR T(sec) YPSNR T(sec) YPSNR 

Bridge 512 39.32 63 39.32 64 39.28 63 39.32 

Dance 149 45.8 10 45.78 11 45.71 11 45.71 

Hall 268 37.18 32 37.20 31 37.02 32 37.02 

CarPark 731 41.61 104 41.61 103 41.59 103 41.59 

Street 1011 33.93 136 33.97 133 33.79 133 33.75 

Table 29: 2×4 group with MRFME 
 

MRFME_1 MRFME_2 MRFME_3 
Seq. 

SpeedUp ΔYPSNR SpeedUp ΔYPSNR SpeedUp ΔYPSNR 

Bridge 8.13 0.00 8.00 +0.04 8.13 0.00 

Dance 14.9 +0.02 13.55 +0.09 13.55 +0.09 

Hall 8.36 -0.02 8.38 +0.16 8.38 +0.16 

CarPark 7.03 0.00 7.10 +0.02 7.10 +0.02 

Street 7.43 -0.04 7.60 +0.14 7.60 +0.18 

Table 30: 2×4 group speedup and PSNR loss against SEA 
 

SEA MRFME_1 MRFME_2 MRFME_3 
Seq. 

T(sec) YPSNR T(sec) YPSNR T(sec) YPSNR T(sec) YPSNR 

Bridge 512 39.32 68 39.30 68 39.30 76 39.38 

Dance 149 45.8 13 45.74 13 45.70 20 45.71 

Hall 268 37.18 36 37.20 34 37.02 41 37.03 

CarPark 731 41.61 110 41.61 110 41.58 116 41.59 

Street 1011 33.93 144 33.99 196 33.75 159 33.79 

Table 31: 4×4 group with MRFME 
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MRFME_1 MRFME_2 MRFME_3 
Seq. 

SpeedUp ΔYPSNR SpeedUp ΔYPSNR SpeedUp ΔYPSNR 

Bridge 7.53 +0.02 7.53 +0.02 6.74 -0.06 

Dance 11.46 +0.06 11.46 +0.10 7.45 +0.09 

Hall 7.44 -0.02 7.88 +0.16 6.54 +0.15 

CarPark 6.65 0.00 6.65 +0.03 6.30 +0.02 

Street 7.02 -0.06 5.16 +0.18 6.36 +0.14 

Table 32: 4×4 group speedup and PSNR loss against SEA 
 

7.6 Conclusions 

This Chapter describes a fast multiple reference frames based motion estimation 

technique. In the very first reference frame of each motion vector search, a successive 

elimination algorithm is used to find the best motion vector in the search window. For 

the remaining reference frames, the difference between two consecutive reference 

frames is taken to locate the pixels which are different in the current reference frame 

from the already searched reference frame. Searching locations having non-zero 

difference is equivalent to the full search because the locations with zero difference 

have already been tested in the previous reference frame. Experimental results show 

that for the best searching approach MRFME_1 for 2×4 grouping, the speed up factor 

is 14.9 with maximum loss of 0.02 dB. 
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Chapter 8 

A Multi-Pattern Search Algorithm 

8.1 Introduction 

Motion is the main source of temporal variations in videos. The Motion Estimation 

(ME) is a process that estimates spatial displacements of the same pixels in 

neighbouring reference frames. In many video coding standards, significant 

improvement in bit-rate reduction is achieved through the application of motion 

estimation and Motion Compensation (MC) techniques. The process of ME divides 

frames into a group of pixels known as block. Block Matching Algorithms (BMAs) 

are used to find out the best-matched block from the reference frame within a fixed-

size search window. Displacement of best-matched block from the reference block is 

described as Motion Vector (MV). The best-matched is usually evaluated through a 

cost function based on Block Distortion Measure (BDM) such as Mean Square Error 

(MSE), Mean Absolute Error (MAE) or Sum of Absolute Difference (SAD). 
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The full search (FS) BMA, which searches all the candidate blocks within the search 

window exhaustively, introduces high computational complexity. This high 

computational complexity imposes a big hurdle for real-time coding of videos. Under 

this motivation, many fast BMAs  [58] -  [69] based on heuristic patterns have been 

proposed to achieve fast motion estimation with a similar block distortion compared 

to FS and with a less computational complexity. These include four-step search (4SS) 

 [60], diamond search (DS)  [61], kite-cross diamond search (KCDS)  [66], modified 

DS (MODS)  [67], and cross-diamond-hexagonal search (CDHS)  [68], etc. DS 

introduces a diamond shape searching pattern and unrestricted searching steps. KCDS 

utilizes cross-centre-biased MV distribution property. It employs a small cross-

shaped search pattern in the first and second steps. MODS uses a dynamic threshold 

value to perform any time search stop. CDHS combines cross, diamond and hexagon 

shapes in the search pattern. 

For fast motion estimation, a novel direction based Multi-Pattern search (MP search) 

algorithm has been proposed. It starts with a small cross in the first step. The second 

step identifies the trend of Motion Vector (MV) direction. Based on the direction of 

MV, obtained in second step, if the current minimum BDM point is along the 

horizontal or vertical axis of previous minimum BDM point then three new points 

forming a T shape with the previous minimum BDM point, are selected to perform a 

search in the next step. If the current minimum BDM point does not coincide with 

any axis of the previous minimum BDM then three new points, one along the 

direction of previous minimum BDM point and two along the direction of rectangular 

components of previous MV are checked for the minimum BDM. The proposed MP 

search algorithm is explained in detail in the following sections. 

8.2 Multi-Pattern Search 

The proposed MP search is based on the observation that when a motion vector points 

to a location other than the starting point during a search step then its direction tends 

to remain within +90 to -90 degrees in the following search step. This observation 

was testified on the sequences used in the experimental evaluation. For all of the 

sequences, the full search BMA was used and not a single MV violated above 

mentioned observation. Based on this observation, the number of candidate points 
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within a search window is reduced by avoiding the points which are in the region 

beyond a +90 and -90 degree of the motion vector. Further reduction in the remaining 

candidate points is achieved through the employment of different search patterns. 

 

      
                                            (a)                                                 (b) 

      
                                             (c)                                               (d) 

 
      (e) 

Figure 63: Search patterns for the MP search (a) small cross shaped pattern 
(SCSP) (b) small triangle shaped pattern (STSP) (c) large T-shaped pattern 
(LTSP) (d) large rectangular-directional search pattern (LRSP) (e) small double 
cross shaped pattern (SDCSP) 
 

The MP search algorithm employs five different search patterns as illustrated in 

Figure 63. The black dot in these patterns represents the minimum BDM point of 

previous search step. The first pattern, a Small Cross Shaped Pattern (SCSP), consists 
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of 5 search points including the start point at the centre. A block search always starts 

with this pattern. This pattern helps to identify the direction of the flow of motion and 

helps early termination for static background based blocks. After the SCSP, Small 

Triangle Shaped Pattern (STSP) searches three new points surrounding previous 

optimal search point identified through the SCSP to further confirm the motion 

direction. The STSP shown in Figure 63 is assumed for an upward minimum BDM 

point from the previous step otherwise, this shape can be in any of four directions of 

the SCSP.  

After the first two steps, further search is always performed using either Large T-

shaped (LTSP) or Large Rectangular-directional Search Pattern (LRSP). When a 

minimum BDM is in the direction of previous minimum BDM then a T pattern is 

used which helps to avoid unnecessary checking of directionally unrelated points. 

When a minimum BDM point does not fall along the direction of the previous BDM 

then a rectangular direction based LRSP pattern is used. Thus, in a multi-pattern 

approach, checking points which have a very low probability to follow the motion 

inertia are avoided and hence complexity of ME is reduced. At any stage of the search, 

if previous minimum BDM is also the current minimum BDM then a Small Double 

Cross Shaped Pattern (SDCSP) is used to searches 8 new points surrounding 

minimum BDM. As seen in Figure 63, except for pattern (a) and (e), all the patterns 

perform testing on three new points. These three points based patterns reduce the 

complexity of motion vector search by avoiding unnecessary point checking. The 

multi-pattern search algorithm can be described in the following steps: 

Step 1:  A minimum BDM point is found by 5 checking points using SCSP. If the 

start point is the minimum BDM point then the search terminates here 

otherwise go to step 2. 

Step 2:  Minimum BDM point of step 1 is surrounded in a small triangle shaped 

pattern to search 3 new points for a minimum BDM. Then go to step 3. 

Step 3:  Considering the minimum BDM point of the previous step, a large T-shaped 

search pattern is formed. If a previous minimum BDM point is also a 

minimum BDM point of this step or minimum BDM point of step touches the 

boundary of the search window then go to step 5. If a minimum BDM point 

found in this step is along the axis of previous minimum BDM point then 

repeat step 3 for a newly found minimum BDM point otherwise go to step 4. 
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Step 4:  Considering the minimum BDM point of the previous step, a large 

rectangular-directional search pattern is employed. If the previous minimum 

BDM point is also the minimum BDM point of this step or the minimum 

BDM point touches the boundary of search window then go to step 5. If the 

minimum BDM point found is along any of rectangular directions of previous 

minimum BDM point then go to step 3 otherwise repeat step 4. 

Step 5:  Use the small double cross search pattern to check 8 new search points. The 

minimum BDM point found in this step is the best matched point for motion 

vector representation. Terminate search. 

To illustrate the workflow of the MP search, two different examples of motion vector 

search are shown in Figure 64 with different search paths with a search range of 7. 

 
Figure 64: Two different search paths of MP search 

STSP step SCSP & SDCSP steps 

LRSP step 

STSP step 

LTSP step 
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8.3 Simulation Results 

Performance of the proposed MP search has been evaluated using five different 

image sequences shown in Table 33. These sequences can be divided into three 

groups: Akiyo and Carphone with a low motion activity, Foreman and Tennis with 

normal motion activity and Football with high motion activity. 

Sequences Frame rate Frame size Frames 

Akiyo 30 352x288 300 

Carphone 30 352x288 350 

Football 30 352x288 260 

Foreman 30 352x288 300 

Tennis 30 352x288 300 
Table 33: Image sequences used in experiment 
 

While performing the experiment, the Sum of Absolute Difference (SAD) is used as a 

Block Distortion Measure (BDM). The block size is 16×16 and the search range is 15 

with GOP size 64. Different criteria are used for evaluating the proposed MP search 

algorithm. They are the Mean Square Error (MSE), average number of search points 

per motion vector, relative complexity reduction (RCR), and SpeedUp ratio. Table 34 

shows MSE results for the comparison of different BMAs in terms of reconstructed 

image quality. Results show that the proposed MP search has always performed better 

than other BMAs except for the Tennis sequence with very similar MSE results. 

 

BMA Akiyo Carphone Football Foreman Tennis 

FS 1.82 38.47 206.44 33.35 31.51 

DS 1.84 46.73 284.02 66.80 63.58 

CDH 1.89 47.56 288.27 70.42 64.42 

MP 1.84 46.97 286.36 69.54 65.13 
Table 34: Average MSE results 
 

Table 35 shows results of average number of search points per MV. Note that 

considering the search window size; this value is constant for FS. Results show that 
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the proposed MP search has the lowest average number of search points per MV for 

each type of image sequence.  

 

BMA Akiyo Carphone Football Foreman Tennis 

FS 961 961 961 961 961 

DS 16.04 42.80 94.01 74.63 35.58 

CDH 8.98 34.19 65.90 55.24 24.54 

MP 6.83 17.45 30.01 25.47 13.03 
Table 35: Average number of search points per MV 
 

Table 36 and Table 37 show computational power saving for each sequence in terms 

of Relative Complexity Reduction (RCR) and SpeedUp ratio. These are calculated 

using the following relationships: 

 

RCR = (1 – NSMP / NS) x 100 %                              (8.1) 
 

SpeedUp = NS / NSMP                                                 (8.2) 
 

where NSMP and NS represents total number of search points using the proposed MP 

search and other Fast search approaches, respectively. These two parameters, RCR 

and SpeedUp ratio, describe how much computational power is saved using the 

proposed approach in comparison to the DS and CDH search approach. 

 

BMA Akiyo Carphone Football Foreman Tennis 

DS 2.06 1.91 2.67 2.42 2.31 

CDH 1.15 1.53 1.87 1.79 1.60 
Table 36: MP Speedup factor against DS and CDH 
 

BMA Akiyo Carphone Football Foreman Tennis 

DS 51.46 47.64 62.55 58.68 56.71 

CDH 13.04 34.64 46.52 44.13 37.50 
Table 37: RCR (%) for MP compared to DS and CDH 
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Experimental results of Table 36 and Table 37 show that the proposed approach can 

reduce the computational complexity significantly with very little change in MSE.  
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Figure 65: Frame-by-frame comparison (a) MSE results for Carphone (b) 
Search points per MV for Carphone (c) MSE results for Tennis (d) Search 
points per MV for Tennis 
 

Figure 65 illustrate frame-by-frame performance comparison of the proposed 

approach against the FS, DS, CDH search approaches for the ‘Carphone’ and 

‘Tennis’ videos. 

8.4 Conclusions 

In this chapter, a novel multi-pattern search technique has been presented to perform 

fast motion estimation. The proposed search pattern starts with small cross shaped 
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and small triangular shaped patterns. Afterwards based on the previous optimal 

search point, it selects either a T-shaped pattern or rectangular component-directional 

pattern. A high reduction in computational complexity is achieved by using the 

proposed technique. Performance of the implemented MP block search is compared 

against DS and CDHS BMAs. MSE and average number of search points per motion 

vector results obtained through an experimental evaluation show that the processing 

speed can be improved significantly by using the proposed approach while 

maintaining a comparable image quality. 
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Chapter 9 

Conclusions  

The research presented in this thesis focused on diverse coding techniques specific to 

surveillance videos. The foremost aim of this work was to propose such approaches 

to improve the storage capacity and bandwidth utilisation with less computational 

complexity. The proposed coding techniques to improve compression and processing 

efficiency have been described to improve on the conventional techniques. These 

techniques are developed under the motives laid down in Chapter 1. Most of the work 

has been tested and evaluated on a set of typical surveillance videos. 

9.1 Conclusions 

In the previous chapters, the basic techniques for video coding in the state-of-the art 

video coders have been presented. The object-based coding approach in MPEG-4 has 

been explained. After the background study of state-of-the art approaches, the 

achievements in developing the surveillance centric coding techniques can be 

summarised as below. 
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1.  A technique to improve on the compression efficiency for surveillance videos 

has been presented. The architecture of the scalable video coding has been 

modified to become surveillance centric coding. The modified architecture offers 

a better byte saving performance. The architectural modifications in the SVC help 

to deal each GOP of the video with different coding parameters. This approach 

shows that the application of scalable video coding with an event driven approach 

improves the transmission and storage efficiency. 

 

2. After introducing the SCC architecture, a novel approach to implementing 

foreground based SCC has been proposed. The foreground pixels are selected by 

using the bounding boxes of the VCA modules. This approach has the benefit of 

being free from shape coding and background coding as compared to MPEG-4 

object based coding. In addition to this, scalable video codec can be used to 

exploit the scalability features as described in the SCC. 

 

3. Different experimental results showed that the motion compensated temporal 

filter (MCTF) with higher levels of filtering helps to remove the temporal 

redundancies present in the surveillance videos. This approach has better RD-

performance than the block-based coding approaches, H.264. 

 

4. A search technique with higher processing efficiency with a visual quality 

equivalent to the full search approach and selective search strategy specific to 

surveillance videos is presented. Two approaches to perform selective motion 

estimation, GOP based and Frame based, are described where Frame based 

approach performed better. The visual quality for both the approaches is the same 

as that of the full search. 

 

5. To improve the selective motion estimation further, a selective block search 

technique has been proposed. The selection of the block is based on the novel 

approach where a motion detection module is used to provide the location of 

candidate blocks. Although, this approach performs a fewer number of block 

matching steps yet the overall processing efficiency of the system is close to a 
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Frame based selective search. This is because of the overhead complexity added 

by the bounding box matching algorithm to locate the candidate block in the SCC. 

 

6. After introducing selective motion estimation approaches, another novel 

approach, tracker-based motion estimation has been proposed where surveillance 

video object motion tracker information is used to calculate the motion vectors. A 

unique motion track is calculated for each object of the surveillance video. The 

distance representing the displacement of the object between the current and the 

reference frame is taken as a value to calculate motion vectors after identifying 

and matching the track in the two frames. This approach performs a faster 

calculation of the motion vectors but it degrades the visual quality of the video 

depending on the nature of the movement represented by the foreground object. 

 

7. Finally, under the same motivation of achieving processing efficiency without 

loss in visual quality, fast full search approaches are explored. A fast search 

approach for multiple reference frames specific to surveillance videos has been 

proposed. This approach is based on considering different points between the two 

consecutive reference frames and then using these different points to avoid 

unnecessary block matching steps. This search approach is specific to 

surveillance videos with motion estimation based on multiple reference frames. 

 

8. To improve the processing efficiency of the SCC, a multi-pattern search approach 

is proposed. This approach improves the processing efficiency with some loss in 

visual quality compared to the full search technique. However, it maintains 

comparable visual quality with respect to other fast search techniques for example 

the diamond search. 

 

The current achievements described above show the performance of the SCC 

in terms of compression efficiency and processing efficiency. 
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9.2 Key Contributions 

With the motivation to achieve the objectives laid down in Chapter 1, several 

contributions have been made. These contributions are classified into two groups: 

Efficient Compression and Efficient Motion Estimation. 

9.2.1 Efficient Compression 

After distinguishing the potential benefits of using the Scalable Video Coding (SVC) 

techniques for surveillance videos, the SVC framework was adopted to implement the 

Surveillance Centric Coding (SCC) paradigm introduced in Chapter 5. One of the 

drawbacks in using the SVC framework for the SCC was the sliding filtering window 

between the consecutive GOPs. This sliding window was acting like a bond between 

the two GOPs, restraining the possibility of treating each GOP independently. So, the 

architectural modifications proposed and presented in Chapter 5 helped to break up 

this inter-GOP bondage. After the removal of the GOP dependency, the second step 

accomplished was to achieve the ability to deal with each GOP according to the SCC 

requirements while still maintaining the SVC properties. So, the communication link 

between the Video Content Analysis (VCA) module and a single GOP was 

established. The analysis of each GOP generated by the VCA under the requirements 

of the SCC was used to exploit the SVC properties of each GOP. Thus, the bit-stream 

generated by the SCC consisted of GOPs with different scalability features to 

compress the surveillance videos with higher compression efficiency while it not 

compromising the important information from the surveillance standpoint. 

 
After the implementation of the SCC paradigm, another novel approach was proposed 

to improve the compression efficiency. In this approach, foreground objects are 

detected by the VCA by forming rectangular windows around objects. The first frame 

of the sequence is used as background and the rest of the frames contain only the 

foreground pixels while the background pixels are set to zeros. This showed efficient 

So, a flexible framework of the SCC was developed after proposing the 
architectural modifications for the SVC. Higher compression efficiency was 
achieved by establishing the link between the SCC and the VCA. 
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compression but due to the use of block based coding approaches, lack of sharpness 

in the foreground boundary was observed. The major advantage of using this 

approach is its implementation in the SCC framework. Thus, in addition to avoiding 

shape coding and other object based coding techniques, the scalabilities features are 

inherited through the SCC framework offering the potential of improving the 

compression efficiency by exploiting the scalability features in each GOP. 

 

9.2.2 Efficient Motion Estimation 

Apart from storage issues for surveillance videos, the main challenge was to 

compress the surveillance videos as quickly as possible. As the Motion Estimation 

(ME) is the most processing intensive part of a codec; therefore, efficient techniques 

to perform fast motion estimation were explored. In addition to proposing some 

efficient motion estimation algorithms, the task of using the SCC framework 

described in the last section in terms of integrating proposed motion estimation 

algorithms was accomplished. 

A novel approach for performing selective motion estimation was proposed whereby 

the object detection information generated by the VCA was used to flag the frames 

which did not contain any moving object. Based on this analysis, different selective 

motion estimation approaches were proposed which included: GOP level selective 

motion estimation, Frame level selective motion estimation and block level motion 

estimation. 

In the GOP level selective motion estimation, the decision to perform or skip the 

motion estimation was enforced at the GOP level. So, the only way of skipping the 

motion estimation for a particular GOP was the scenario where there was not a single 

frame of the GOP identified as containing a moving object. Due to the very low 

probability of such a scenario, this scheme contributed a little improvement even for 

moderately busy locations. The second drawback of the GOP level selective motion 

estimation was its dependency on the GOP size. So, with smaller GOP size, there was 

So, a novel approach focusing on the foreground pixels was proposed and 
implemented in the framework of the SCC to achieve a better compression 
efficiency.  
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a higher probability of such GOPs occurring which do not have any frame detected 

containing a moving object. To counter the issues faced in the GOP level selective 

ME, a Frame level selective ME was proposed where the decision to perform or skip 

the ME was taken for each frame independently of other frames. Once again, this 

approach was integrated into the SCC framework. Evidently, the Frame level 

selective ME performed better than the GOP level. The key observation for the Frame 

level ME was the imposing of the ME decision for all the blocks of the frame 

irrespective of the location and size of the moving objects in the frame. 

 
With the motivation of evolving selective ME from Frame to macroblock level, a 

block level selective ME was proposed. Two major challenges to implementing this 

approach were (i) identification of the macroblock as part of a moving object and (ii) 

locating those blocks while performing ME. As explained in Chapter 5, the 

foreground pixels identified by the VCA were isolated from the background pixels by 

using the information of the rectangular bounding boxes. A similar approach was 

used to implement the Block level selective motion estimation. 

 
After the paradigm of selective motion estimation, a novel way of performing 

efficient motion estimation through reusing the information of a surveillance video 

object tracker was proposed. In this approach, a real-time object tracker was used 

which generates information for each unique object with a unique track identity. In 

addition to this, objects were bounded in a rectangular box. So, instead of performing 

any kind of motion estimation for any block of the surveillance video, the motion 

vectors are calculated through the information generated by the object tracker. This 

approach had a drawback of miscalculating some of the motion vectors corresponding 

to the same object; ultimately, reducing the visual quality. 

A novel approach for implementing the block level selective motion 
estimation was proposed.  

Novel approaches to performing fast motion estimation were proposed. By 
using the VCA, selective motion estimation helped to speed up the 
compression process by avoiding unnecessary computations.  
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Multiple reference frame based motion estimation increases the computational 

complexity with every extra reference frame. In order to address this problem, a fast 

full search for multiple reference frames based ME was proposed. This scheme was 

based on the Successive Elimination Algorithm (SEA): a fast full search approach. 

This approach reduced the processing power for surveillance videos. One drawback 

was the extra memory used. 

 
Finally, another fast ME search algorithm, multi-pattern search algorithm, was 

proposed to find approximate calculations as in the case of the Diamond search. This 

algorithm is valid for any kind of videos, surveillance or non-surveillance. 

 

9.3 List of Publications 

The work presented in this thesis has lead to the following research publications. The 

author of the thesis is the main contributor to all the stages of the publication work 

from concept development to submission. 

 

1. M. Akram and E. Izquierdo, “Fast multi-frame motion estimation for 

surveillance videos,” in the Proc. of IEEE 17th International Conference on 

Image Processing (ICIP 2010), pp. 753-756, September 2010. 

2. M. Akram and E. Izquierdo, “Selective block search for surveillance centric 

motion estimation,” in the Proc. of  IEEE 52nd  International Symposium 

ELMAR 2010, pp. 93-96, September 2010. 

A fast motion estimation search algorithm was proposed. Computational 
complexity is reduced through acceptable compromise on visual quality. 

Fast multi-frame motion estimation for surveillance videos was proposed in 
order to maintain visual quality. 

Another novel approach for fast motion estimation was proposed where 
instead of using motion estimation module of the SCC, the surveillance 
video tracker provided the information to calculate the motion vectors.  
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3. M. Akram and E. Izquierdo, “A multi-pattern search algorithm for block 

motion estimation,” in the Proc. of IEEE 12th International Asia-Pacific Web 

Conference (APWEB 2010), pp. 407-410, April 2010. 
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video coding in wireless surveillance applications,” in the Proc. of  IEEE 
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2009), Oct 2009. 

6. M. Akram, N. Ramzan, and E. Izquierdo, “Event based video coding 

architecture,” in the Proc. of IET 5th International Conference on Visual 

Engineering (VIE 08), pp. 807-812, July 2008. 
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coding,” in the Proc. of IET 5th International Conference on Visual 
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