
JUNSHENG FU
A Real-time Rate-distortion Oriented Joint Video Denoising and
Compression Algorithm
Master of Science Thesis

Subject approved in the Department

Council meeting on the 23rd of August

2011

Examiners: Prof. Karen Egiazarian

0 Dr. Alessandro Foi

Preface

In September 2010, I started to work as a research assistant in Transforms and

Spectral Techniques Group in the Department of Signal Processing at Tampere

University of Technology. The purpose of this thesis is to enhance the compression

performance of a video coding standard using better filtering strategies. The main

parts of this thesis are implemented and documented in 2011.

I would first like to acknowledge my supervisor and examiner Prof. Karen

Egiazarian for the opportunity of working in such a nice group and his guidance

during my thesis work. I would also like to show my gratitude to Dr. Evgeny

Belyaev, for his invaluable supports and the numerous fruitful discussions during

the development of this thesis. Further, I thank my second examiner Alesssandro

Foi, and other colleagues in Transforms and Spectral Techniques Group for their

assistance and friendliness.

Looking back, the two years studying in Finland, have been an unforgettable

experience in my life - fellowship, wonderful friends, “Tech. salon”, badminton club

and Finnish sauna.

Finally, I am deeply indebted to my father Jianhua Fu, mother Qiulian Xia and

my best friend Mengting He for their unconditional love, encouragement and sup-

port. I could not have become what I am now without them.

Tampere, Finland

November 2011

Junsheng Fu

2

Abstract

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’s Degree Programme in Information Technology

JUNSHENG FU : A Real-time Rate-distortion Oriented Joint Video Denoising

and Compression Algorithm

Master of Science Thesis: 58 pages

September 2011

Major: Signal Processing

Examiner: Prof. Karen Egiazarian, Dr. Alessandro Foi

Keywords: real-time filter, pre-filtering, in-loop filtering, H.264/AVC

This thesis proposes a real-time video denoising filter, a joint pre-filtering and com-

pression algorithm, and a joint in-loop filtering and compression algorithm.

A real-time video denoising filter: a great number of digital video applications

motivate the research in restoration or enhancement methods to improve the visual

quality in the presence of noise. Video Block-Matching and 3D collaborative filter,

abbreviated as VBM3D, is one of the best current video denoising filters. We ac-

celerate this filter for real-time applications by simplifying the algorithm as well as

optimizing the codes, while preserving its good denoising performance.

A joint pre-filtering and compression algorithm: pre-filtering and compression

are two separate processes in traditional systems and they do not guarantee optimal

filtering and quantization parameters with respect to rate-distortion framework.

We propose a joint approach with pre-filtering by VBM3D and compression by

H.264/AVC. For each quantization parameter, it jointly selects the optimal filtering

parameter among the provided filtering parameters. Results show that this approach

enhances the performance of H.264/AVC by improving subjective visual quality and

using less bitrates.

A joint in-loop filtering and compression algorithm: in traditional video in-loop

filtering and compression systems, a deblocking filter is employed in both the encoder

and decoder. However, besides blocking artifacts, videos may contain other types

of noise. In order to remove other types of noise, we add a real-time filter as an

enhancing part in the H.264/AVC codec after the deblocking filter. Experiments

illustrate that the proposed algorithm improves the compression performance of

3

the H.264/AVC standard by providing frames with increased PSNR values and less

bitrates.

4

Table of Contents

1 Introduction 1

2 Video Compression using the H.264/AVC Standard 3

2.1 Main Characteristics of Video Codec 3

2.1.1 Introduction . 3

2.1.2 Visual quality . 3

2.1.3 Bitrate . 4

2.1.4 Complexity . 4

2.2 General Scheme of H.264/AVC . 4

2.3 Integer Transform and Quantization 7

2.4 Block-based Motion Estimation and Compensation 10

2.5 Rate-distortion Optimization . 13

2.6 Visual Artifacts in Compression . 14

2.7 Deblocking Filter . 16

2.8 Influence of Source Noise to Compression Performance 19

2.9 Conclusion . 21

3 Video Denoising using Block-Matching and 3D filtering 22

3.1 Introduction . 22

3.2 Classification of Video denoising Algorithms 23

3.3 Video Block-Matching and 3D filtering 24

3.3.1 General Scheme of the Video Block-Matching and 3D filtering 24

3.3.2 Grouping . 25

3.3.3 Collaborative filtering . 25

3.3.4 Aggregation . 25

3.3.5 Algorithm . 26

3.3.6 Complexity Analysis . 27

3.3.7 Practical Results . 28

3.4 Real-time Implementation of the Video Block-Matching and 3D filtering 31

3.5 Conclusion . 36

5

4 Joint Rate-distortion Oriented Video denoising and Compression 37

4.1 Introduction . 37

4.2 Pre-filtering in Typical Video Compression Scheme 38

4.3 Joint Rate-distortion Oriented Pre-filtering and Compression 38

4.3.1 Definition of Optimization Task 38

4.3.2 Practical Results . 39

4.3.3 Summary . 46

4.4 In-loop Filtering in Typical Video Compression Scheme 46

4.5 Joint Rate-distortion Oriented In-loop Filtering and Compression . . 47

4.5.1 Definition of Optimization Task 47

4.5.2 Practical Results . 48

4.5.3 Summary . 52

5 Conclusion 53

References 55

6

List of Figures

2.1 Example of I,P,B-frames, group of pictures and decoupled coding or-

der and display order . 5

2.2 Flowchart of the H.264/AVC encoder 6

2.3 Examples of intra prediction. 7

2.4 Flowchart of the H.264/AVC decoder 7

2.5 Block-based motion estimation . 11

2.6 Two patterns in diamond search algorithm 12

2.7 Two patterns in Hexagon-based search algorithm 13

2.8 Occurrence of blocking artifacts . 15

2.9 Edge filtering order in a macroblock 16

2.10 Adjacent samples at vertical and horizontal edges 17

2.11 Compress noisy video . 19

2.12 Rate-distortion curves for noisy video compression: video foreman

corrupted with different level of Gaussian noise is compressed by the

H.264/AVC codec with different QPs (QP ∈ {20, 22, 24, ...46}). 20

3.1 Typical flowchart of video denoising 22

3.2 Flowchart of VBM3D denoising algorithm. The operation enclosed

by dashed lines are repeated for each reference block. 24

3.3 Examples of VBM3D filtering: two test videos vassar and ballroom

are corrupted by Gaussian noise with σ = 20, and (a),(c),(e), re-

spectively are original, noisy and denoised frames for vassar, and

(b),(d),(f), respectively are original, noisy and denoised frames for

ballroom. 30

4.1 Typical pre-filtering and compression scheme 38

4.2 Joint pre-filtering and compression scheme 39

4.3 Rate-distortion comparison for video hall (352×288) in two compres-

sion modes: H.264/AVC compression; joint pre-filtering and H.264/AVC

compression . 42

4.4 Rate-distortion comparison for video foreman (352×288) in two com-

pression modes: H.264/AVC compression; joint pre-filtering and H.264/AVC

compression . 42

7

4.5 Enable constant bitrates control (bitrates = 215 kbit/s), frame by

frame PSNR comparison for video hall (352×288) in two compression

modes: H.264/AVC compression; joint pre-filtering and H.264/AVC

compression. 43

4.6 For video hall, (a) is the 23rd frame of the output video from the

H.264/AVC compression system with enabled constant bitrates con-

trol, (b) is the 23rd frame of the output video from the joint VBM3D

pre-filtering and H.264/AVC compression system with enabled con-

stant bitrates control, (c) and (d) are fragments from (a), (e) and (f)

are fragments from (b). 44

4.7 For video hall, (a) is the 91st frame of the output video from the

H.264/AVC compression system with enabled constant bitrates con-

trol, (b) is the 91st frame of the output video from the joint VBM3D

pre-filtering and H.264/AVC compression system with enabled con-

stant bitrates control, (c) and (d) are fragments from (a) and (b)

respectively. 45

4.8 Simplified block diagram of the H.264/AVC encoder 46

4.9 Using VBM3D as an enhancing part in H.264/AVC codec 47

4.10 Optimization task . 47

4.11 For video hall, comparison of rate-distortion performance in two com-

pression modes: H.264/AVC under inter mode; H.264/AVC with en-

hanced in-loop filtering under inter mode 50

4.12 For video foreman, comparison of rate-distortion performance in two

compression modes: H.264/AVC under inter mode; H.264/AVC with

enhanced in-loop filtering under inter mode 50

4.13 For video hall, comparison of rate-distortion performance in two com-

pression modes: H.264/AVC under intra mode; H.264/AVC with en-

hanced in-loop filtering under intra mode 51

4.14 For video foreman, comparison of rate-distortion performance in two

compression modes: H.264/AVC under intra mode; H.264/AVC with

enhanced in-loop filtering under intra mode 51

8

List of Tables

2.1 Parts of quantization steps and quantization parameters used in H.264

codec . 10

2.2 Boundary strength (BS) in different conditions 17

2.3 Percentages of inter and intra coded macro-blocks when video hall is

corrupted by Gaussian noise with different variances 21

3.1 Parameters involved in the VBM3D complexity analysis 28

3.2 Performance of VBM3D among different test videos sequences cor-

rupted by Gaussian noise with σ = 20 in computer with Intel Core 2

Duo 3GHz and 3.2GB of RAM. 29

3.3 Comparison of the standard VBM3D and the simplified VBM3D al-

gorithm . 32

3.4 Comparison of the performance between the standard VBM3D and

the simplified VBM3D for denoising video sequences vassar and ball-

room which are corrupted by Gaussian noise with different variances,

in computer platform with Intel Core 2 Duo 3GHz and 3.2GB of RAM 33

3.5 Algorithm comparison of the proposed implementation and the sim-

plified VBM3D . 34

3.6 Description of modified Diamond search 34

3.7 Comparison of the performance between the standard VBM3D, the

simplified VBM3D and the proposed implementation for denoising

video sequences vassar and ballroom which are corrupted by Gaussian

noise with different variances, in computer platform with Intel Core

2 Duo 3GHz and 3.2GB of RAM . 35

4.1 VBM3D setting for pre-filtering . 40

4.2 Summary of parameters involved in VBM3D setting 41

4.3 Setting of JM codec . 41

4.4 Setting of proposed filter . 49

4.5 JM Codec setting under inter mode 49

4.6 JM Codec setting under intra mode 49

Chapter 1

Introduction

Nowadays there are a great number of practical applications involving digital videos,

but digital videos can be easily corrupted by noise during acquisition, processing

or transmission. A lot of research has been carried out in video restoration and

enhancement solutions to improve the visual quality in the presence of noise. Video

Block-Matching and 3D collaborative filter [1], abbreviated as VBM3D, is one of

the best current video denoising filters, and it achieves state-of-the-art denoising

performance in terms of both peak signal-to-noise ratio and subjective visual quality.

However, due to the computational complexity of the algorithm, the speed at

which the current implementation of VBM3D executes makes it hard to be used for

real-time applications. In this thesis, we define the real-time requirement as: the

filter should have at least 25 fps for processing frames with a resolution of 640 ×
480 under computer platform with Intel Core 2 Duo 3 GHz and 3.2 GB of RAM.

To meet this requirement, while preserving the good denoising performance, we

balance between complexity and speed, optimize the code and propose an integer

implementation.

In the current video compression systems, the most essential task is to fit a large

amount of visual information into a narrow bandwidth of transmission channels or

into a limited storage space, while maintaining the best possible visual perception

for the viewer [2]. H.264/AVC is one of the most commonly used video compres-

sion standards in areas of broadcasting, streaming and storage. It has achieved a

significant improvement in rate-distortion efficiency over previous standards [3].

The noise in video sequences not only degrades the subjective quality, but also

affects compression processes. The H.264/AVC codec uses only a filter to decrease

blocking artifacts. To enhance the compression performance, some filtering strate-

gies are usually employed, such as pre-filtering, in-loop filtering and post-filtering.

In this thesis, we focus on pre-filtering and in-loop filtering.

In traditional video pre-filtering and compression systems, pre-filtering and com-

pression are two separate processes and do not guarantee optimal filtering and quan-

tization parameters. It has been suggested that joint pre-filtering and compression

1

1. Introduction

algorithm improves the performance of the compression by producing compressed

video frames, with increased PSNR values and less compression artifacts, at the same

bitrates, compared to standard compression[4]. We continue this research of joint

parameters selection, and propose a joint algorithm with pre-filtering by VBM3D

and compression by the H.264/AVC encoder.

In traditional video in-loop filtering and compression systems, a deblocking filter

is employed to remove blocking artifacts introduced in the compression process.

However, videos may contain other types of noise, and it is desirable to remove them

as well. The method presented in the literature [5] suggests that adding a spatial-

temporal filter in the H.264/AVC codec improves the compression performance. We

continue this research and present a joint in-loop filtering and compression algorithm

by adding the proposed real-time filter as an enhancing part into the H.264/AVC

codec. The joint scheme is designed, tested and analyzed.

This thesis is structured as follows:

- Chapter 2 briefly describes the H.264/AVC standard. The reader is guided

through characteristics of video codec, main functional parts of H.264/AVC

and its compression performance in the presence of noise.

- Chapter 3 discusses some general video denoising methods with a focus on

VBM3D. This helps the reader to understand general video denoising strategies

and how VBM3D achieves state-of-the-art denoising performance in terms of

both peak signal-to-noise ratio and subjective visual quality. Further, a real-

time integer implementation of the simplified VBM3D is proposed.

- Chapter 4 illustrates traditional video filtering and compression schemes as

well as their drawbacks. Then two joint filtering and compression algorithms

are proposed: one is a joint pre-filtering and compression algorithm; the other

is a joint in-loop filtering and compression algorithm. Finally, results of both

algorithms are analyzed.

- Chapter 5 summarizes the results of this study and provides suggestions for

the future work.

2

Chapter 2

Video Compression using the

H.264/AVC Standard

2.1 Main Characteristics of Video Codec

2.1.1 Introduction

Video codec is a software that compresses and decompresses digital videos. By using

it, a large amount of visual information can be put into a limited storage space or

a narrow bandwidth of transmission channel. Many different kinds of codecs were

designed in the last twenty years. In order to compare different codecs, three main

characteristics need to be taken into consideration: visual quality of compressed

video, bitrate, and complexity. In this section, these three characteristics will be

introduced one by one, and a brief overview of the widely used video compression

standard H.264/AVC will be presented.

2.1.2 Visual quality

In order to evaluate and compare video codecs, it is necessary to estimate the visual

quality of compressed video frames displayed to the viewer.

Video visual quality is actually subjective and viewers’ opinions of visual quality

can be various. So usually it is more complex and difficult to use subjective criteria to

obtain the measurement of video visual quality. On the other hand, objective quality

measurement method gives accurate and repeatable results and has low complexity.

It is widely used in video compression and processing systems. In this thesis, we

use Peak-Signal-to-Noise Ratio to measure the visual quality of video frames. The

Mean Squared Error and Peak-Signal-to-Noise Ratio are discussed below.

The Mean Squared Error, abbreviated as MSE, is one common way to measure

the difference between two signals. It is the average of the square of the difference

between the desired response and the actual system output. In 2D images, if I is an

3

2. Video Compression using the H.264/AVC Standard

original image and I ′ is the same image corrupted by a noise, MSE can be expressed

as:

MSE =
1

|X|
∑
x∈X

(I(x)− I ′(x))2, (2.1)

where x ∈ X ⊂ Z2, I(x) is a pixel of I at position of x.

The Peak-Signal-to-Noise Ratio, abbreviated as PSNR, indicates the ratio be-

tween the maximum possible power of a signal and the power of corrupting noise.

Usually, PSNR is expressed in the term of a logarithmic decibel scale. It is defined

as :

PSNR = 10 log10

(MAX2

MSE

)
, (2.2)

where MAX is the maximum possible value of the signal, e.g. if each pixel is

represented by 8 bits, then MAX = 255.

In order to compare different lossy compression codecs, PSNR is the most com-

monly used quality measurement. In this case, the signal is the original data, and

the noise is the error introduced by the compression. However, it should be noticed

that high PSNR values do not always guarantee high human visual quality percep-

tion [8]. In this thesis, PSNR is used as a quality measurement due to its simple

calculation and clear physical meaning.

2.1.3 Bitrate

In video coding, bitrate is the number of bits generated by the a codec in a unit

of time, usually a second. Therefore, bitrate can be measured in “bits per second”

(bit/s), or in conjunction with a metric prefix, e.g., kilo (kbit/s).

2.1.4 Complexity

Complexity of a video codec can be expressed as the number of arithmetic operations

used in processing a video. But in real applications, the number of operations do

not show the full complexity because they do not include the memory accesses and

logical operations. Therefore, we consider complexity as the number of processed

frames in a unit of time, for the given frame resolution and computer platform.

2.2 General Scheme of H.264/AVC

H.264/AVC (Advanced Video Coding) is one of the most commonly used video

compression standards. It is a block-oriented motion-compensation-based codec

standard developed by the ITU-T Video Coding Experts Group (VCEG) together

with the ISO/IEC Moving Picture Experts Group (MPEG). It is published jointly

as Part 10 of MPEG-4 and ITU-T Recommendation H.264 [6, 7].

4

2. Video Compression using the H.264/AVC Standard

Some important terminologies in the H.264/AVC standard is discussed before

briefing the scheme of H.264/AVC.

A video sequence can be divided into several groups of pictures (GOP). Each

group of pictures may contain several frame types: I-frames, P-frames and B-frames.

An I-frame is an “intra-coded frame”. It is the least compressible frame and decodes

itself without the aid of other frames. A P-frame is a “predicted frame”. It uses

data from previous frames to decompress and is more compressible than I-frame.

A B-frame is a “bidirectional predicted frame”. It uses both previous and forward

frames as references to achieve the highest amount of data compression. The coding

and display orders of frames are not necessary the same. Figure 2.1 illustrates one

example of group of pictures, I-frame, P-frames, B-frames and decoupled coding

order and display order.

Figure 2.1: Example of I,P,B-frames, group of pictures and decoupled coding order

and display order

A coded frame consists of a number of macroblocks. Within each frame, a slice

is made of a set of macroblocks in raster-scan order. Generally, an I-slice contains I-

macroblock, a P-slice may contain P and I-macroblocks and B-slice may contain B, P

and I-macroblocks. I-macroblocks are predicted using intra prediction from decoded

samples in the current slice. P-macroblocks are predicted using inter prediction from

previous reference frame(s) in display order. B-macroblocks are predicted using inter

prediction from both previous and forward reference frames.

The H.264/AVC standard defines only the syntax of an encoded video bitstream

and the decoder. The Encoder and Decoder of the H.264/AVC standard are re-

spectively shown in Figure 2.2 and Figure 2.4. As we can see, there is a “decoding

loop” inside the Encoder. So we can say that the Encoder has two data-flow paths:

“forward path” and “reconstruction path”.

Below is a brief description of data flow in encoder and decoder.

5

2. Video Compression using the H.264/AVC Standard

Coding

controller

Intra

prediction

(current) + Transform Quantization

Motion

compensation

+

Scaling

Inverse

transform

De-blocking

filter

Buffer

Motion

estimation

Entropy

coding

Input

video

Split into

Macroblocks

-

+

+

Motion

vectors

Control

data

coefficients Encoded

bitstream
'nF

Intra

Inter

nF res

'res

X

''nF

+

Figure 2.2: Flowchart of the H.264/AVC encoder

In encoder, an input frame is processed in macroblock-wise manner, and each

macroblock is encoded in intra or inter mode, which is determined by the coding

controller. In inter mode, a prediction F ′n is obtained based on motion estimation,

motion compensation and previous reconstructed samples (motion estimation and

motion compensation will be presented in Section 2.4). Then F ′n is subtracted from

the current block Fn to produce a residual res that is transformed and quantized

to create X. The coefficients X take two paths: the first path leads to entropy

encoding, in which the coefficients X together with the side information required

in decoder (e.g. encoding mode, quantizer, and motion vectors) are entropy coded

and transmitted as the output of encoder; the second path is the “reconstruction

path”, where the coefficients X are scaled and inverse transformed to produce a

reconstructed residual res′ for the current block. The prediction F ′n is added to

res′ to give the reconstructed block F ′′n . After applying the deblocking filter, F ′′n
is preserved in the buffer for further prediction. In intra mode, the only difference

is the way of creating the prediction F ′n: intra block prediction is used instead of

motion estimation and compensation. Basically, a prediction F ′n is formed based on

the samples locate above or on the left. These samples are already encoded and

reconstructed without the deblocking filter (see Figure 2.3).

The decoder receives the compressed bitstream and obtains a set of quantized

coefficients X after entropy decoding. Then quantized coefficients X are scaled and

inverse transformed to produce res′, which is identical to the res′ in “reconstruc-

6

2. Video Compression using the H.264/AVC Standard

(a) Horizontal (b) Vertical (c) Vertical right

Figure 2.3: Examples of intra prediction.

Scaling
Inverse

transform

Decoded

video

Encoded

bitstream
Entropy

decoding

Buffer
Motion

compensation

+

Inter

IntraIntra

prediction

De-blocking

filter
+

+
X 'res ''nF

'nF

Figure 2.4: Flowchart of the H.264/AVC decoder

tion path” inside encoder. By utilizing the header information obtained from the

bitstream, the decoder creates a prediction F ′n in inter or intra mode. Then F ′n is

added to res′ to produce F ′′n which is filtered to create each decoded block.

2.3 Integer Transform and Quantization

Generally the H.264/AVC codec uses block transforms with three different sizes:

4 × 4, 8 × 8, and 16 × 16 transform. All of these three transforms are integer

transforms. Some scales multiplication in transform are integrated into quantization.

Since the general idea of these three types of transforms are similar, we just discuss

the 4× 4 DCT-based transform and quantization here.

This 4× 4 DCT-based transform is applied to 4× 4 blocks of residual data res.

Compared with Discrete Cosine Transform, this DCT-based transform has some

advantages [8]:

1. The core part of transform can be implemented by only additions and shifts.

2. Scaling multiplication inside transform can be integrated into quantization,

reducing the total number of multiplications.

3. It’s an integer transform, so it can produce platform independent results (un-

like floating point implementation that has slightly different results by running

the same codes in different platforms).

7

2. Video Compression using the H.264/AVC Standard

Evolution of the 4×4 DCT-based integer transform from the 4×4 DCT transform

is shown below [23]: Discrete Cosine Transform (DCT) is a basis in various lossy

compression standards for multimedia signals, such as MP3, JPEG and MPEG.

Here, for data X, a 4× 4 DCT can be written as:

Y = AXAT =

a a a a

b c −c −b
a −a −a a

c −b b −c

[X]

a b a c

a c −a −b
a −c −a b

a −b a −c

 , (2.3)

where a =
1

2
, b =

√
1

2
cos(

π

8
), and c =

√
1

2
cos(

3π

8
).

This equation can be modified and expressed in the following form:

Y = (CXCT)⊗E =

1 1 1 1

1 d −d −1

1 −1 −1 1

d −1 1 −d

[X]

1 1 1 d

1 d −1 −1

1 −d −1 1

1 −1 1 −d

⊗

a2 ab a2 ab

ab b2 ab b2

a2 ab a2 ab

ab b2 ab b2

 ,
(2.4)

where CXCT is the core part of 2D transform. E is a matrix of scaling factors.

The symbol ⊗ indicates element-wise matrix multiplication. In other words, each

element of CXCT is multiplied by the scaling factor at the same position in matrix

E. The constant a, b and c are the same as in Equation 2.3, and d =
c

d
≈ 0.414 .

In order to simplify the core part of 2D transform, d is set to 0.5. But b needs

to be modified to ensure that the transform remains orthogonal. So, these modified

constants are as follows:

a =
1

2
, b =

√
2

5
, d =

1

2
. (2.5)

The core part of 2D transform CXCT is further simplified by multiplying a scalar

2 to the 2nd and 4th rows of matrix C and the 2nd and 4th columns of matrix CT .

Matrix E is also scaled for compensation. Finally, we get the simplified version of

the forward transform:

Y = (CXCT)⊗E =

1 1 1 1

2 1 −1 −2

1 −1 −1 1

1 −2 2 −1

[
X

]
1 2 1 1

1 1 −1 −2

1 −1 −1 2

1 −2 1 −1

⊗

a2
ab

2
a2

ab

2

ab

2

b2

4

ab

2

b2

4

a2
ab

2
a2 ab

ab

2

b2

4

ab

2

b2

4

.

(2.6)

Therefore, the core part of the transform CXCT can be implemented with integer

arithmetic using only additions and shifts. Note, the result of this 4× 4 DCT-based

8

2. Video Compression using the H.264/AVC Standard

transform will not be identical to the 4× 4 DCT due to changes of factors d and b.

Besides, the scaling matrix E can be integrated into quantization since it requires

element-wise multiplications (explained in the quantization part).

The inverse transform is also defined as arithmetic operations in the H.264 stan-

dard [7], and it is illustrated below,

X = CT
i (Y⊗Ei)Ci =

1 1 1
1

2

1
1

2
−1 −1

1 −1

2
−1 1

1 −1 1 −1

2

[
Y

]
a2 ab a2 ab

ab b2 ab b2

a2 ab a2 ab

ab b2 ab b2

1 1 1 1

1
1

2
−1

2
−1

1 −1 −1 1
1

2
−1 1 −1

2

 ,
(2.7)

where Y is the decoded data and is multiplied with scaling matrix Ei, C
T
i and Ci

are inverse transform matrices, and X is the inverse transformed data. Note, the

factors ±1

2
in CT

i and Ci can be implemented by a right-shift without a significant

accuracy loss.

Quantization is a process of mapping a range of values X to a smaller range

of values Y. Since the possible range of a signal is smaller after quantization, it

should be possible to represent signal Y with less bits than original signal X. A

scalar quantization is used in H.264, and it is a lossy process since it is impossible

to determine the exact value of the original fractional number from the rounded

integer. The basic forward quantizer can be expressed as:

Zi,j = round
(Yi,j
Qstep

)
, (2.8)

where Yi,j is the transformed coefficients, Qstep is the quantization step, and Zi,j is

the quantized data.

The standard H.264 [7] defines 52 values of quantization steps (Qstep), indexed

by quantization parameters (QP) from 0 to 51. Both post- and pre-scaling multipli-

cations are integrated into forward and inverse quantization to avoid floating point

operation in transform domain. The forward quantization is given as:

Zi,j = round
(
Wi,j ·

PF

Qstep

)
, (2.9)

where Zi,j is the quantized coefficient, Wi,j is the unscaled coefficients obtained from

the core transform CXCT , PF is one of three scalars
ab

2
,
b2

4
and a2, according to

the position (i, j) in the matrix E (see Equation 2.6), Qstep is the quantization step.

Table 2.1 shows parts of Qsteps and QPs used in the H.264 codec.

In order to simplify the arithmetic, the factor
PF

Qstep
is implemented in the

reference software [25] as a multiplication by a factor MF and a right-shift, avoiding

9

2. Video Compression using the H.264/AVC Standard

Table 2.1: Parts of quantization steps and quantization parameters used in H.264

codec

QP 0 1 2 3 4 5 6 7 8 9 10

Qstep 0.625 0.6875 0.8125 0.875 1 1.125 1.25 1.375 1.625 1.75 2

QP 24 ... 30 ... 36 ... 42 ... 48 ... 51

Qstep 10 ... 20 ... 40 ... 80 ... 160 ... 224

any division operation:

Zi,j = round
((
Wi,j ·MF

)
� qbits

)
, (2.10)

where

qbits = 15 + floor

(
QP

6

)
. (2.11)

2.4 Block-based Motion Estimation and Compen-

sation

Inter-frame predictive coding is used to eliminate the large amount of temporal and

spatial redundancy that exists in video sequences. It tries to reduce the redundancy

between transmitted frames by sending a residual which is formed by subtracting a

predicted frame from the current frame. The more accurate the prediction is, the

less energy is contained in the residual frame. To get an accurate prediction, good

motion estimation and compensation are very important. A widely-used method is

block-based motion estimation and compensation, which is adopted in various video

coding standards, such as H.262, H,263 and H.264.

Block-based motion estimation is the process of searching within an area in the

reference frame to find the best match for a given block. The reference frame is a

previously encoded frame from the sequence and may be before or after the current

frame in display order. Motion estimation is carried out by comparing current block

with some or all possible blocks in a search window and finding the block which is

the best match. For a given M ×N block Sn in a frame with frame number n, the

process is to find a M ×N block S
′

k in a reference frame with the frame number k

to minimize,

J(v) =
∑

(x,y)∈Sn

(sn(x, y)− s′k(x+ vx, y + vy))
2, (2.12)

where v = (vx, vy) is a motion vector, |vx| ≤ r and |vy| ≤ r, r is the search radius,

sn(x, y) is a luminance value of the pixel with coordinate (x, y) in the block Sn,

s
′

k(x + vx, y + vy) is a luminance value of the pixel with coordinate (x + vx, y + vy)

in the block S
′

k (see Figure 2.5).

10

2. Video Compression using the H.264/AVC Standard

There are many motion estimation algorithms, and we discuss full search, dia-

mond search [11] and hexagon-based search [12] in this section.

Figure 2.5: Block-based motion estimation

Full search is a commonly used motion estimation method, and for each block it

searches exhaustively for the best match within a search window. On one hand, it

obtains the most precise match since it compares all possible blocks in a reference

frame. As a result, the best prediction can be provided, residual will be small and

less data need to be transmitted. On the other hand, practical applications of full

search is limited due to its high computationally intensity. For each block, if only

one reference frame is used, the number of search points is,

NFS = (2× r + 1)2, (2.13)

where r is the radius of search window, and the number of search points for full

search NFS is proportional to r2, NFS ∝ r2.

In real applications, some fast motion estimation algorithms are commonly used,

such as diamond search and hexagon-based search.

Diamond search [11] is a fast motion estimation method, which employs two

search patterns as shown in Figure 2.6. One pattern is called large diamond search

pattern (LDSP), consisting of 9 check points from which 8 points surround the

center one to create a diamond shape (Figure 2.6a). The other pattern named small

diamond search pattern (SDSP), comprising of 5 check points (Figure 2.6b). The

main algorithm can be summarized in a few steps:

Step 1. Center a large diamond search pattern (LDSP) at a predefined search window,

and compare 9 check points to find minimum block distortion, abbreviated as

MBD. If the MBD point is found to be at the center, jump to Step 3; otherwise,

go to Step 2.

11

2. Video Compression using the H.264/AVC Standard

(a) Large diamond search pattern (b) Small diamond search pattern

Figure 2.6: Two patterns in diamond search algorithm

Step 2. Create a LDSP centred at the position of MBD point from previous search,

and search within new check points. If the MBD point among these check

points is found to be at the center, jump to Step 3; otherwise, repeat this step.

Step 3. Switch the search pattern from large diamond search pattern to small diamond

search pattern, and create a small diamond search pattern at the position of

MBD point from the previous search. The minimum block distortion among

check points is the final solution.

Hexagon-based search [12] is another widely used fast motion estimation algo-

rithm. It has two hexagon-based search pattern as illustrated in Figure 2.7. The

first pattern consists of 7 check points with 6 endpoints surrounding the center one

to compose a hexagon shape (Figure 2.7a). The six endpoints are approximately dis-

tributed around the center, which is desirable to achieve the fast search speed [12].

The second pattern (Figure 2.7b) composes of 5 check points (left, right, up, and

down dots around the center with distance 1). The Hexagon-based search algorithm

is described below:

Step 1. Put a large hexagon search pattern at the center of the predefined search

window, and evaluate 9 check points to find minimum block distortion, abbre-

viated as MBD. If the MBD point is found at the center of the hexagon, jump

to Step 3; otherwise, go to Step 2.

Step 2. Create a new large hexagon search pattern centred at the position of MBD

point from previous search, and compare new check points. If the MBD is

found at the center of this hexagon, jump to Step 3; otherwise, repeat Step 2.

Step 3. Switch the search pattern from the large hexagon pattern to the small one,

and center this pattern at the position of the previous MBD point. Compare

these 5 check points in a small hexagon pattern, and the MBD among them

is the final solution.

12

2. Video Compression using the H.264/AVC Standard

(a) Large hexagon search pattern (b) Small hexagon search pattern

Figure 2.7: Two patterns in Hexagon-based search algorithm

Compared with full search, both diamond search and hexagon-based search are

much more computationally efficient in motion estimation. If we set NDS and

NHEXBS as the average number of search points per block with respect to diamond

search and hexagon-based search, then NDS ∝ r, NHEXBS ∝ r [12] and NFS ∝ r2

(Equation 2.13), where r is the radius of the search window. Therefore, compared

with full search, diamond search and hexagon-based search have significantly reduced

complexity.

Block-based motion compensation is a process of improving the prediction accu-

racy by utilizing motion between the current block and reference block(s). Once the

best match is found, it becomes the predictor for the current M × N block. The

predictor is subtracted from the current block to produce a residual M ×N block.

Then the residual is encoded and transmitted to the decoder, together with the

information required in the decoder to repeat the prediction process. Block-based

motion compensation is a popular technique because it is straightforward, and fits

well with rectangular video frames and block-based image transforms. However,

there are also some disadvantages. For instance, moving objects in a real video sel-

dom have neat edges that match rectangular boundaries, and objects may move by a

fractional number of pixels between frames. Some types of motion, such as rotation

and warping, are difficult to compensate by using block-based methods. There-

fore, some other methods are used to improve compensation, like variable block-size

motion compensation, motion vector with sub-pixel accuracy, and improved coding

modes (e.g. skip mode and direct mode) [7].

2.5 Rate-distortion Optimization

The H.264/AVC standard has various candidate modes to code each macroblock,

such as Inter Mode 16 × 16, Inter Mode 16 × 8, Inter Mode 8 × 16, Intra modes

and so on. A coding controller is used to help encoder to make the decision about

13

2. Video Compression using the H.264/AVC Standard

applying specific mode for each block. Generally, mode decision depends on two

main criteria:

• The mode with least distortion.

• The mode with lowest bitrate.

However, these two criteria cannot be fulfilled at the same time. For example,

in block-based motion estimation, smaller size block (8× 4, 4× 4) may give a lower-

energy residual (less distortion) after motion compensation but usually requires a

larger number of bits (higher bitrates) to present the motion vectors and choice of

partitions, and vice versa.

To solve this problem, a method called rate-distortion optimization is employed

in the coding controller of the H.264/AVC encoder. Rate-distortion optimization

uses Lagrange multiplier [14] to change this problem into a constrained problem -

optimize the distortion subject to bitrates constraint. For a current block si coding

controller chooses the mode M∗ by the following equation:

M∗ = arg min
M⊆{M}

(
D(si,M) + λMODE ·R(si,M)

)
, (2.14)

where D(si,M) is the distortion between original macroblock si and reconstructed

macroblock under coding mode M , R(s,M) is the bitrates of coding block si under

coding mode M . λMODE is a Lagrange multiplier, which reveals the tradeoff between

distortion and bitrates. For a given QP , the Lagrange multiplier is determined by,

λMODE = 0.85× 2

(QP − 12

3

)
. (2.15)

2.6 Visual Artifacts in Compression

The H.264/AVC standard is widely employed in video coding applications to achieve

good compression performance with high visual perception quality [8]. However, the

lossy compression techniques used in the H.264/AVC standard may result various

visual artifacts in compression, such as blocking, ringing, blurring, color bleeding,

mosquito noise, etc [15].

Blocking artifacts are defined as the discontinuities found at the adjunct blocks

in a decoded frame. There are several causes of blocking artifacts in compression.

First, each frame is divided into macroblocks and each macroblock can be further

divided into variable size blocks in compression process. Second, as it was mentioned

in Section 2.3, both transform and quantization used in the H.264/AVC standard are

block-based procedures. The coarse quantization of transformed coefficients leads

to blocking artifacts among adjunct blocks. One example of occurrence of blocking

14

2. Video Compression using the H.264/AVC Standard

Figure 2.8: Occurrence of blocking artifacts

artifacts is shown in Figure 2.8. In the H.264/AVC standard, a deblocking filter (see

Section 2.7) is adopted in both encoder and decoder to reduce the blocking artifacts.

Ringing artifacts are spurious signals near sharp edges in the frame. They are

caused by the loss of some high frequency coefficients. High frequency coefficients

play an important role in representation of object edges. But after transformation

and coarse quantization some high frequency coefficients are quantized to zeros,

resulting in errors in the reconstructed block.

Blurring artifacts are a loss of spatial detail and a reduction in sharpness of

edges in frames [15]. They are due to the attenuation of high spatial frequencies,

which occurs in quantization (similar to ringing artifacts). In H.264/AVC, blurring

artifacts become obvious when the deblocking filter becomes heavier at low bitrates.

Color bleeding is an artifact where a color component “bleeds” into other areas

with different color. Usually, it is caused by color subsampling and heavy quantiza-

tion of chrominance components [15].

Mosquito noise is an artifact seen mainly in smoothly textured regions as fluctu-

ations of luminance or chrominance around high contrast edges, or moving objects in

a video sequence. This effect is related to the high-frequency distortions introduced

by both ringing artifacts and prediction error produced during motion estimation

and compensation [15].

15

2. Video Compression using the H.264/AVC Standard

(a) 16× 16 luminance (b) 8×8 chrominance

Figure 2.9: Edge filtering order in a macroblock

2.7 Deblocking Filter

The H.264/AVC standard employs a deblocking filter after the inverse transform in

both encoder and decoder (see Figures 2.2 and 2.4). The filter is applied to each

macroblock to reduce the blocking artifacts without decreasing the sharpness of the

frame, so the filtered frame is frequently a more reliable reproduction of the original

frame than an unfiltered one. Therefore, video compression performance can be

improved by using filtered frame for motion-compensated prediction.

Filtering is applied to vertical or horizontal edges of each block except for slice

boundaries. One example of filtering a macroblock is shown in Figure 2.9. First,

four vertical edges of luminance components (vu1, vu2, vu3 and vu4) are filtered.

Second, it filters four horizontal edges of luminance components (hu1, hu2, hu3 and

hu4). Then, two vertical and horizontal edges of chrominance components (vc1,

vc2 and hc1, hc2) are filtered. It is also possible to change the filter strength or to

disable the filter. Each filtering operation affects up to three samples on either side

of the boundary. Figure 2.10 shows four samples on vertical edges and horizontal

edges in adjacent blocks p and q. p0, p1, p2, and p3 are four horizontal adjacent

pixels in block p, and respectively q0, q1, q2, and q3 are four horizontal adjacent

pixels in block q.

The operation of the deblocking filter can be divided into three main steps: filter

strength computation, filter decision and filter implementation [13, 7].

Filter strength for a block is indicated by a parameter named boundary strength

(BS). The boundary strength depends on the current quantizer, macroblock type,

motion vector and gradient of image samples across the boundary. The boundary

strength (BS) can be selected as any integer from 0 to 4, according to the rules

illustrated in Table 2.2. Note that the BS values for chrominance edges are not

independently calculated, and the same values calculated for luminance edges are

applied. Application of these rules results in strong filtering at places where there is

16

2. Video Compression using the H.264/AVC Standard

p3 p2

p2

p3

q0 q2p0p1

p0

p1

q2

q0

q3

q1

q1

q3

Vertical boundary

Horizontal
boundary

Figure 2.10: Adjacent samples at vertical and horizontal edges

likely to be significant blocking distortion, such as the boundary of the intra coded

macroblock or the boundary between blocks which contain coded coefficients.

Table 2.2: Boundary strength (BS) in different conditions

Condition BS

One of the blocks is Intra coded and the boundary is a

macroblock boundary
4

Two blocks are intra coded and the boundary is not a

macroblock boundary
3

Both blocks are not intra coded and contain coded co-

efficients
2

Both blocks are not intra coded and do not contain

coded coefficients
1

Both blocks are not intra coded; their motion compen-

sation is from different reference frames or their motion

vector values that differ by one or more lumimance sam-

ples

1

Else 0

Filter decision depends on both boundary strength and gradient of image samples

across the boundary. The main reason is that image features with sharp transitions

(e.g. object edges) should be preserved rather than to be filtered. When pixels values

do not change much across the edge, it should be a smooth region and deblocking

filtering is desirable.

If a set of samples (p2, p1, p0 and q0, q1, q3) is filtered, the following conditions

must be satisfied.

1. BS > 0.

17

2. Video Compression using the H.264/AVC Standard

2. |p0 − q0| < α, |p1 − p0| < β and |q1 − q0| < β ,

where α and β are thresholds defined in the standard [7], and they increase with the

average quantization parameter (QP) of the two blocks.

When QP is small, the small transition across the boundary may cause by im-

age features rather than blocking artifacts. The transition should be preserved, so

thresholds α and β should be low. When QP is large, blocking artifacts is likely to

be much noticeable. Thresholds α and β should be high, so that more boundary

samples can be filtered.

Filter implementation can be mainly divided into two modes [13]: one mode is

applied when BS ∈ {1, 2, 3}; the other mode is a stronger filtering compared to

the first mode, and is applied when BS is equal to 4. Those two blocks shown in

Figure 2.10 are used as examples for edges filtering, and the filtering process for

luminance is described below.

(1) Filtering for edges with BS ∈ {1, 2, 3}.
(a) On the boundary, the filtered values p

′
0 and q

′
0 are calculated as:

p
′

0 = p0 +4′

0, (2.16)

q
′

0 = q0 −4
′

0, (2.17)

where 4′
0 is calculated in two steps. First, a 4-tap filter is applied with inputs p1,

p0, q1 and q0 to get 40, where

40 = (4 (q0 − p0) + (p1 − q1) + 4)� 4. (2.18)

Second, the value 40 is clipped to obtain 4′
0, defined by

4′

0 = Min (Max (−c0,40) , c0) , (2.19)

where c0 is a parameter that is determined based on a table in H.264 standard [7].

The purpose of clipping is to avoid blurring. Since the intermediate value 40 is

directly used in filtering operation, it would result in too much low-pass filtering [13].

(b) The values of p1 and q1 are modified only if the following two conditions are

satisfied. Otherwise the values of p1 and q1 are not changed.

|p2 − p0| < β, (2.20)

|q1 − q0| < β. (2.21)

If Equation (2.20) is true, then the filtered value of p
′
1 is calculated as:

p
′

1 = p1 +4′

p1, (2.22)

where 4′
p1 is obtained in two steps as well. First, the a 4-tap filter is applied as

follows:

4p1 = (p2 + ((p0 + q0 + 1)� 1)− 2p1)� 1. (2.23)

18

2. Video Compression using the H.264/AVC Standard

Second, similar with clipping process in (a), this value 4p1 is clipped by:

4′

p1 = Min (Max (−c1,4p1) , c1) , (2.24)

where c1 is also a parameter that is determined based on a table in H.264 stan-

dard [7].

If Equation (2.21) is true, filtered value q
′
1 is calculated in the same way, by

substituting q2 and q1 for p2 and p1 respectively. As for a chrominance, only the

values of p0 and q0 are modified, and there is no need to clip the value.

(2) Filtering for edges with BS = 4

(a) If |p2 − p0| < β and |p0 − q0| < (α� 2) + 2, then,

p
′

0 = (p2 + 2p1 + 2p0 + 2q0 + q1 + 4)� 3, (2.25)

p
′

1 = (p2 + p1 + p0 + q0 + 2)� 2, (2.26)

p
′

2 = (2p3 + 3p2 + p1 + p0 + q0 + 4)� 3, (2.27)

else only p0 is modified according to the following equation, and p1 and p2 are left

unchanged:

p
′

0 = (2p1 + p0 + q1 + 2)� 2. (2.28)

(b) Similarly, the values of the q block are modified, by substituting Equation |q2−
q0| < β for |p2 − p0| < β and replacing pi by qi and vice versa.

2.8 Influence of Source Noise to Compression Per-

formance

Digital video sequences can easily be corrupted by noise during acquisition, record-

ing, processing or transmission. Figure 2.11 describes an original video x(t) that

is corrupted by noise n(t) to produce a noisy video y(t). Then y(t) is given to the

H.264/AVC codec.

x(t)

n(t)

y(t) z(t)

Figure 2.11: Compress noisy video

In this case, y(t) can be expressed as,

y(t) = x(t) + n(t). (2.29)

As for the noise n(t), one of the most common mode is a Gaussian noise. Gaussian

noise is a common noise in images or videos and has Gaussian probability density

19

2. Video Compression using the H.264/AVC Standard

function. Generally, the noise component n is defined as an independent and iden-

tically distributed zero-mean Gaussian random variable with a variance σ2. The

zero-mean Gaussian noise model can be expressed as,

n (·) ∼ N
(
0, σ2

)
. (2.30)

In order to see the influence of source noise in the H.264/AVC codec, two exper-

iments have been carried out.

Figure 2.12: Rate-distortion curves for noisy video compression: video foreman

corrupted with different level of Gaussian noise is compressed by the H.264/AVC

codec with different QPs (QP ∈ {20, 22, 24, ...46}).

In the first experiment, we compare the system outputs z(t) for an input video

sequence corrupted by Gaussian noise at different variances. Video foreman (352×
288) is corrupted by Gaussian noise with different variances (σ2 ∈ {52, 102, 152, 202}),
and these noisy videos are compressed by the H.264/AVC reference software JM

V.17.1 with different quantization parameters (QP ∈ {20, 22, 24, ...46}). The rate-

distortion curves are shown in Figure 2.12.

This Figure 2.12 reflects that noise contained in the video decreases the com-

pression performance of the codec, and the stronger noise is the lower PSNR values

are. The curves of noisy videos show that the bitrates increases very fast as the

QP decreases. In addition, when the noise level is high and QP is low, we find that

as the bitrates are increased, the PSNR values get smaller. This kind of feature is

not acceptable in real applications, and it should be avoided. The reason for this

feature is as follows: when QP is high, the video is highly quantized. This process

20

2. Video Compression using the H.264/AVC Standard

smoothens the frames and decreases the noise. However when QP is small, the codec

tries to preserve the noise in the corrupted video.

Table 2.3: Percentages of inter and intra coded macro-blocks when video hall is

corrupted by Gaussian noise with different variances

PPPPPPPPPPP
Mode

Sigma
0 5 10 15 20

Inter coded blocks 98.4% 94.5% 54.4% 38.8% 28.2%

Intra coded blocks 1.6% 5.5% 45.6% 61.2% 71.8%

In the second experiment, the percentages of inter and intra coded macroblocks

is recorded while compressing a input video sequence corrupted by Gaussian noise

at different variances. Hall (352× 288) is a test video with a static background and

it is corrupted by Gaussian noise with different variances (σ2 ∈ {52, 102, 152, 202}).
These videos are compressed by the H.264/AVC reference software JM V.17.1 at

QP=28. The results are shown in Table 2.3.

This table tells that the number of intra coded macroblocks increases with sigma.

Our analysis shows that with the increase of noise, motion estimation does not work

well. The coding controller finds the energy contained in residual which is equal or

even higher than the original block. So it chooses intra mode to code blocks even if

the video has a static background between frames.

2.9 Conclusion

The H.264/AVC is an excellent video coding standard in terms of both coding effi-

ciency and flexibility for different applications. However, the H.264/AVC standard

does not perform well in the presence of noise, and the stronger noise is the lower

PSNR values are. In addition, motion estimation does not work well when the noise

level is high in the video, and the codec tends to code macroblocks at intra mode.

Furthermore, the bitrates increase very fast due to many intra coded data that are

transmitted. Therefore, we need to find some methods to reduce the noise level in

videos before compression, and we discuss some common video denoising methods

in the next chapter.

21

Chapter 3

Video Denoising using

Block-Matching and 3D filtering

3.1 Introduction

Digital video sequences are almost always corrupted by noise during acquisition,

recording, processing or transmission. The noise in video sequences not only de-

grades the subjective quality, but also affects the effectiveness of further processing

(Section 2.8). Therefore, video denoising is important, because it improves the qual-

ity of perceived video sequences and enhances subsequent processes in video coding

(e.g. motion estimation).

+
video x(t)

noise n(t)

y(t)
Filter

denoised z(t)

Figure 3.1: Typical flowchart of video denoising

A general case of original video x(t) corrupted by noise n(t) is shown in Fig-

ure 3.1, and the noisy video can be expressed as:

y(t) = x(t) + n(t). (3.1)

The task of video denoising is to filter corrupted video sequence y(t) so as to minimize

the difference between filtered output z(t) and original video x(t). The noise n(t)

represents the Gaussian noise (see in Section 2.8).

In this chapter, contents are organized as follows: Section 3.2 gives a brief

overview of basic video denoising methods and then Section 3.3 discusses the Video

Block-Matching and 3D filtering algorithm. Furthermore, Section 3.4 proposes a

real-time implementation of the simplified version of VBM3D.

22

3. Video Denoising using Block-Matching and 3D filtering

3.2 Classification of Video denoising Algorithms

A large number of research has been carried out on video restoration and enhance-

ment, and many different algorithms and principles have been presented during the

past several decades ([26]-[39]). These approaches basically can be classified into

four categories:

• Spatial domain video denoising;

• Temporal domain video denoising;

• Spatio-temporal domain video denoising;

• Transform domain video denoising.

Many different kinds of filters are designed based on various denoising strategies,

then some of the denoising methods are illustrated here:

Spatial domain denoising is a way of utilizing spatial correlation of video con-

tent to suppress noise. It is normally implemented with a weighted local 2D or 3D

windows, and the weights can be either fixed or adapted based on the image con-

tent. 2D Wiener filter [27], 2D Kalman filter [28], non-local means [29] and wavelet

shrinkage [30] denoising methods were proposed in the last few decades. However,

spatial-only denoising is rarely considered in real applications, as it often leads to

visible artifacts.

Temporal domain denoising is an approach of exploiting temporal correlations

to reduce noise in a video sequence. A video sequence contains not only spatial

correlation but also temporal correlation between consecutive frames. Temporal

denoising methods [31, 32] utilize temporal correlations to achieve video denoising.

Normally, motion estimation methods, which can be based on block matching [1, 36]

or optical flow [38, 39], are employed to find the prediction of the reference block.

For each reference block, its temporal predictions are combined with the block itself

to suppress noise.

Spatio-temporal denoising exploits both spatial and temporal correlations in

video sequence to reduce noise. It is generally agreed that in many real video appli-

cations, spatio-temporal filtering performs better than temporal filtering [26], and

the best performance can be achieved by exploiting information from both past and

future frames. 3D Kalman filter [33], spatio-temporal shrinkage [34], 3-D non-local

means [35] and VBM3D [1] are some spatio-temporal denoising methods.

Transform domain denoising methods first decorrelate the noisy signal using a

linear transform (e.g. DCT or wavelet transform [37]), and then recover the trans-

form coefficients (e.g. by hard thresholding [1]). Then this signal is subjected to

inverse transform to get the signal back to spatial domain. Typically, transform do-

main methods are used together with temporal or spatial domain denoising methods.

23

3. Video Denoising using Block-Matching and 3D filtering

3.3 Video Block-Matching and 3D filtering

3.3.1 General Scheme of the Video Block-Matching and 3D

filtering

As it was mentioned in the previous section, spatio-temporal domain filtering, trans-

form domain filtering, and motion information can be used together to improve the

filtering performance. There are some filtering approaches that exploit correlations

using combined filtering strategies. In this section, we present Video Block-Matching

and 3D filtering [1], which is one of the best current video denoising filters.

Video Block-Matching and 3D filtering is an effective video denoising method

based on highly sparse signal representation in local 3D transform domain [1]. It

is an extension of Block-Matching and 3D filtering for images [16], and achieves

state-of-the-art denoising performance in terms of both peak signal-to-noise ratio

and subjective visual quality.

Figure 3.2: Flowchart of VBM3D denoising algorithm. The operation enclosed by

dashed lines are repeated for each reference block.

The general procedure consists of the following two steps (see Figure 3.2). In

the first step, a noisy video is processed in raster scan order and a block-wise man-

ner. As for each reference block, a 3D array is grouped by stacking blocks from

consecutive frames which are similar to the currently processing block. In grouping,

a predictive-search Block-Matching is used. Then a 3D transform-domain shrinkage

(hard-thresholding in the first step, and Wiener filtering in the second step) is ap-

plied to each of the grouped 3D array. Since the estimates of those obtained blocks

are always overlapped, they are aggregated by a weighted average to obtain an in-

termediate estimate. In the second step, the intermediate estimate from the first

step is used together with a noisy video for grouping and applying 3D collaborative

empirical Wiener filtering.

The VBM3D algorithm has three important concepts: grouping, collaborative

filtering, and aggregation. Prior to the VBM3D algorithm, let us discuss these three

important concepts.

24

3. Video Denoising using Block-Matching and 3D filtering

3.3.2 Grouping

The term grouping refers to the concept of collecting similar d-dimensional fragments

of a given signal into a d+1-dimensional data structure. In the case of a video, the

fragments can be any of the 2D blocks, and a group is a 3D array formed by stacking

together similar blocks from consecutive frames (e.g. besides current frame, search

among N forward and N backward frames). Similarity between blocks is computed

using the l2-norm of the difference between two blocks. In order to achieve efficient

grouping, a predictive-search Block-Matching [1] is used to efficiently find similar

blocks. The main idea of this method is to perform a full-search within a NS ×NS

window in current frame to obtain the NB best-matching blocks. Then in following

NFR frames, it inductively searches for another NB best-matching blocks within a

smaller window size of NPR ×NPR (NPR � NS). The window centers at the same

position of the previous block. The benefit of grouping is to enable the use of high

dimensional filtering, which utilizes the potential similarity between grouped blocks.

3.3.3 Collaborative filtering

Once a 3D array is obtained from grouping, collaborative filtering can be used to ex-

ploit both spatial correlation inside single block and the correlation between grouped

blocks. Then it is followed by a shrinkage in the transform domain. The collabora-

tive filtering is executed as following steps:

• Perform a linear 3-dimensional transform (e.g. 3D DCT) to the group.

• Shrink transformed coefficients by hard-thresholding or Wiener filtering to

attenuate noise.

• Invert linear transform (e.g. inverse 3D DCT) to obtain estimates of grouped

blocks.

The benefit of Collaborative filtering is to utilize both kinds of correlations to pro-

duce a sparse representation of the group, and the sparsity is desirable for effective

shrinkage in noise attenuation.

3.3.4 Aggregation

In general, estimates of denoised 3D groups can be overlapped. In other words, there

can be multiple estimates obtained from different filtered 3D groups but have exactly

the same coordinates. This leads to an over-complete representation of original video

sequence. To produce fine representation of the original video, aggregation is carried

out to produce estimates of filtered 3D groups by a weighted averaging with adaptive

weights.

25

3. Video Denoising using Block-Matching and 3D filtering

3.3.5 Algorithm

In VBM3D filtering, we consider a noisy video as:

z (x) = y (x) + n (x) , x ∈ X ⊂ Z3, (3.2)

where y is the true video signal, n (·) ∼ N (0, σ2) is i.i.d. zero-mean Gaussian noise

with variance σ2, σ is assumed a prior known value, x is a 3D coordinate that belongs

to the three-dimensional spatio-temporal domain X ⊂ Z3, and it can be expressed

as following:

x = [x1, x2, t] . (3.3)

The first and second coordinates are the 2D spatial coordinates in one video frame,

and the third coordinate t ⊂ Z, which indicates the frame number.

As for VBM3D algorithm, it can be divided into two steps [1], which are de-

scribed below.

Step 1. Produce a basic estimate using grouping and collaborative hard-thresholding.

Each reference block ZxR with xR ∈ X of size Nht × Nht is taken from both

horizontal and vertical directions with a step length of Nstep. VBM3D groups a set

of similar blocks by using predictive-search Block-Matching (PS-BM),

ShtxR = PS-BM(ZxR), (3.4)

where ZxR indicates a block whose upper-left corner is at xR (similar notation is

used for others), ShtxR are similar blocks for ZxR . All these similar blocks are grouped

to form a set:

ZSht
xR

= {ZxR : x ∈ ShtxR}. (3.5)

Then a collaborative hard-thresholding is carried out with threshold λ3Dσ to

produce an estimates of the set ZSht
xR

:

ŶSht
xR

= T−13D (HARD-THR(T3D(ZSht
xR

), λ3Dσ)), (3.6)

where ŶSht
xR

is a set with filtered blocks and can be expressed as:

ŶSht
xR

= {Ŷ xR
x : x ∈ ShtxR}. (3.7)

After that the basic estimate ŷbasic is calculated by aggregation of blockwise

estimates Ŷ xR
x according to the formula,

ŷbasic =

∑
xR∈X

∑
x∈Sht

xR

whtxRŶ
ht,xR
x∑

xR∈X
∑

x∈Sht
xR

whtxRχx
, (3.8)

where χx: X → {0, 1} is the characteristic function of the square support of a block

located at x ∈ X, and whtxR is the weight for the current block. This weight whtxR is

obtained by:

whtxR =
1

σ2NxR
har

W2D, (3.9)

26

3. Video Denoising using Block-Matching and 3D filtering

where NxR
har is the number of non-zero coefficients after hard-thresholding T3D(ZSht

xR
),

and NxR
har > 0 because the DC value is always reserved, ensuring that division by

zero never happens in aggregation, and W2D is a 2D Kaiser window of size Nht×Nht

which is used for reducing border effect.

Step 2. Obtain the final estimate by grouping within the basic estimate and col-

laborative Wiener filtering that uses the spectra of the corresponding groups from

the basic estimates.

For each block Ŷ basic
xR

with the size of Nwie ×Nwie, algorithm applies predictive-

search Block-Matching:

SwiexR
= PS-BM(Ŷ basic

xR
), (3.10)

and based on the set SwiexR
, two three-dimensional arrays are formed:

Ŷ basic
Swie
xR

= {Ŷ basic
xR

: x ∈ SwiexR
}, (3.11)

ZSwie
xR

= {Zx : x ∈ SwiexR
}. (3.12)

Then collaborative filtering is performed in second step by an empirical Wiener

filtering, and it is defined as,

ŶSwie
xR

= T−13D

T3D(ZSwie
xR

)

(
T3D(Ŷ basic

xR
)
)2

(
T3D(Ŷ basic

xR
)
)2

+ σ2

 . (3.13)

The final estimate (Ŷ final) is produced by aggregation of those overlapped esti-

mates. It is given by,

ŷfinal =

∑
xR∈X

∑
x∈Swie

xR

wwiexR
Ŷ wie,xR
x∑

xR∈X
∑

x∈Swie
xR

wwiexR
χx

, (3.14)

with the weight of

wwiexR
= σ−2

∥∥∥∥
(
T3D(Ŷ basic

x)
)2

(
T3D(Ŷ basic

x)
)2

+ σ2

∥∥∥∥−2
2

W2D, (3.15)

where ‖ · ‖2 denotes l2-norm, and W2D is a 2D Kaiser window of size Nwie ×Nwie.

3.3.6 Complexity Analysis

In this analysis, complexity is measured based on the number of basic arithmetic

operations, however other factors, such as memory consumption and the number of

memory accesses have not been considered.

The complexity of VBM3D (CV BM3D) consists of the complexity of hard-thresholding

stage (Cht
V BM3D) and Wiener-filtering stage (Cwiener

V BM3D) [19] and the descriptions of

the parameters in the following equations are shown in Table 3.1:

CV BM3D = Cht
V BM3D + Cwiener

V BM3D. (3.16)

27

3. Video Denoising using Block-Matching and 3D filtering

Hard-thresholding stage, for each processed block, at most M similar blocks are

extracted within the search window of size NS×NS and stacked together as a group.

Then a 3D transform and hard-thresholding are applied to the 3D group. Finally,

the basic estimate is obtained by aggregating the inversed coefficients. Thus the

complexity of hard-thresholding stage can be expressed as:

Cht
V BM3D = T

n

N2
step

((
N2
S + zNBN

2
PR

)
3N2︸ ︷︷ ︸

Grouping

+ 2
(
2MC(N,N,N) + C(M,M,N2)

)︸ ︷︷ ︸
3D forward and inverse transform

+ MN2︸ ︷︷ ︸
Aggregation

)
.

(3.17)

Wiener-filtering stage, the most processes are the same as those in hard-thresholding

stage, but two groups instead of one need to be transformed. Element-wise mul-

tiplications are applied for obtaining coefficients shrinkage, which involves a set of

weights in computation and requires 6 arithmetic operations per pixel:

Cwiener
V BM3D = T

n

N2
step

((
N2
S + zNBN

2
PR

)
3N2︸ ︷︷ ︸

Grouping

+ 4
(
2MC(N,N,N) + C(M,M,N2)

)︸ ︷︷ ︸
3D forward and inverse transform

+

6MN2︸ ︷︷ ︸
Shrinkage

+ MN2︸ ︷︷ ︸
Aggregation

)
. (3.18)

Table 3.1: Parameters involved in the VBM3D complexity analysis

Parameter Description

T Total number of frames in a video

n Number of pixels in a frame

N Length of the 2-D block

z Length of temporal search window in grouping

NS Length of the spatial search window

Nstep Sliding step to process every next reference block

M Number of blocks in a grouped 3-D array

C(a,b,c)

Numeric operation required by a multiplication between two

matrices of size a× b and b× c

3.3.7 Practical Results

In this section, we present and discuss some experimental results obtained by VBM3D.

The results of VBM3D filtering on three standard videos foreman1 (352 × 288),

vassar2 (640 × 480) and ballroom2 (640 × 480) corrupted by Gaussian noise with

variance of 202 are shown in Table 3.2. Comparisons of subjective visual quality

between original, noisy and denoised frames are illustrated in Figure 3.3.

1Video foreman is from http://media.xiph.org/video/derf/.
2Video vassar and ballroom are from http://www.merl.com/pub/avetro/mvc-testseq/orig-yuv/.

28

3. Video Denoising using Block-Matching and 3D filtering

Table 3.2: Performance of VBM3D among different test videos sequences corrupted

by Gaussian noise with σ = 20 in computer with Intel Core 2 Duo 3GHz and 3.2GB

of RAM.

σ = 20 foreman vassar ballroom

Resolution 352× 288 640× 480 640× 480

Noisy (dB) 22.11 22.11 22.11

denoised (dB) 34.44 36.28 35.84

Speed (fps) 3.47 1.02 1.06

On one hand, the results reflect that VBM3D filter achieves state-of-the-art

denoising performance in terms of both peak signal-to-noise ratio and subjective

visual quality. On the other hand, due to the high complexity of the algorithm,

the speed at which current implementation of VBM3D executes makes it hard to

meet the real-time requirements. We define the real-time requirements as: filter has

at least 25 fps for processing frames with resolution of 640 × 480 under computer

platform with Intel Core 2 Duo 3 GHz and 3.2 GB of RAM. However, the speed

of current implementation is only 1.02 fps for vassar (640 × 480) and 1.06 fps for

ballroom (640×480). To solve this problem, we simplify the VBM3D algorithm and

propose a fast integer implementation in the next section.

29

3. Video Denoising using Block-Matching and 3D filtering

(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Examples of VBM3D filtering: two test videos vassar and ballroom are

corrupted by Gaussian noise with σ = 20, and (a),(c),(e), respectively are original,

noisy and denoised frames for vassar, and (b),(d),(f), respectively are original, noisy

and denoised frames for ballroom.

30

3. Video Denoising using Block-Matching and 3D filtering

3.4 Real-time Implementation of the Video Block-

Matching and 3D filtering

VBM3D achieves state-of-the-art denoising performance in terms of both peak signal-

to-noise ratio and subjective visual quality. However the speed at which the current

implementation performs is slow (around 1 fps for video (640 × 480) in computer

with Intel Core 2 Duo 3GHZ and 3.2GB of RAM). This speed is far from the require-

ments of real-time applications, at least 25 fps for video (640 × 480) in computer

with Intel Core 2 Duo 3GHZ and 3.2GB of RAM.

In order to accelerate the filter and preserve the good denoising performance,

we propose to use proper complexity-scalable filter C(Fi) according to this platform

and find optimal filtering parameters F ∗. The optimization task can be formulated

by the following equations:
F ∗ = arg min

F⊆{F}

∑
i

D(Fi),∑
i

C(Fi) ≤ CMax,
(3.19)

where Fi are filtering parameters for the noisy frame i, respectively D(Fi) is the

distortion between denoised and the original frame after filtering current noisy frame

with parameters Fi, C(Fi) is the complexity for filtering frame i with parameters

Fi, C
Max is complexity restriction.

Recall the concept of complexity from Section 2.1.4. Complexity can be defined

as the number of basic arithmetic operations per pixel or per time interval. But

in real applications, the number of operations does not show the full complexity

because it does not include memory accesses and logical operations. In this thesis,

complexity is defined as the number of frames which can be filtered in one second

for given computer platform and frame resolution. Following this definition, we set

CMax = 25 fps for frame resolution 640× 480 in computer platform with processor

of Intel Core 2 Duo 3GHz and 3.2GB of RAM.

In this optimization task, two approaches are used,

1. Simplify VBM3D filter by using only the most influential parts for noise at-

tenuation.

2. Propose a fast integer implementation of the simplified VBM3D.

In the first approach, we need to find which parts of VBM3D are most influential

for noise attenuation. The VBM3D filter can be divided into two steps, and each step

has several sub-steps as presented in Section 3.3. Some experiments are carried out

to find the noise attenuation ability of each sub-step. We “turn off” one sub-step and

“turn on” all the other parts of the VBM3D filter, then we record filter performance.

31

3. Video Denoising using Block-Matching and 3D filtering

After experiments, we find that temporal correlation contributes more than spatial

correlation in noise reduction. As a result, we choose only to use temporal search,

temporal transform and hard-thresholding in the first step, but to remove Wiener

filtering part due to its high complexity. At the same time, we change the values

of two parameters in the filter settings. One is the number of temporal searching

frames, reducing from 9 to 5. In other words, it only searches the current frame, the

two previous and the two following frames. The other is N2 (maximum length of

the 3-dimension transform), using 4 instead of 8. By doing this, the computational

complexity of VBM3D is considerably decreased. The comparison of the standard

VBM3D1 and the simplified VBM3D2 algorithm is shown in Table 3.3.

Table 3.3: Comparison of the standard VBM3D and the simplified VBM3D algo-

rithm

Filters
Standard

VBM3D

Simplified

VBM3D

Step 1

Spatial search + –

Spatial transform + –

Temporal search + +

Temporal transform + +

Hard thresholding + +

Step 2

Spatial search + –

Spatial transform + –

Temporal search + –

Temporal transform + –

Wiener filtering + –

Temporal searching frames 9 5

N2 (maximum length of the haar transform) 8 4

Two video sequences vassar (640 × 480) and ballroom (640 × 480) are used in

our experiments, and both of these two videos are corrupted by Gaussian noise with

different variances. The comparison of performance between the standard VBM3D

and the simplified VBM3D is shown in Table 3.4. As we can see from Table 3.4, for

small sigma value, such as 5, even though the performance of the simplified VBM3D

is not as good as the standard VBM3D due to simplification of the algorithm, the

simplified VBM3D still has good denoising ability. This is because human eyes

usually cannot tell the difference among images which have PSNR values above 37

1Standard VBM3D is the Matlab version with default settings from

http://www.cs.tut.fi/ foi/GCF-BM3D/index.html.
2Simplified VBM3D means a simplified version by switching off some features of the standard

VBM3D.

32

3. Video Denoising using Block-Matching and 3D filtering

Table 3.4: Comparison of the performance between the standard VBM3D and the

simplified VBM3D for denoising video sequences vassar and ballroom which are

corrupted by Gaussian noise with different variances, in computer platform with

Intel Core 2 Duo 3GHz and 3.2GB of RAM

σ/PSNR
Resolution: 640× 480 Standard Simplified

Number of frames: 250 VBM3D VBM3D

5/34.13

vassar
Denoised (dB) 40.74 38.36

Speed (fps) 1.09 7.22

ballroom
Denoised (dB) 41.44 37.74

Speed (fps) 1.11 7.29

10/28.12

vassar
Denoised (dB) 38.21 33.67

Speed (fps) 1.14 7.67

ballroom
Denoised (dB) 38.69 33.15

Speed (fps) 1.09 7.22

15/24.63

vassar
Denoised (dB) 36.57 30.23

Speed (fps) 1.10 7.28

ballroom
Denoised (dB) 36.71 29.97

Speed (fps) 1.13 7.12

20/22.18

vassar
Denoised (dB) 35.32 27.84

Speed (fps) 1.13 7.28

ballroom
Denoised (dB) 35.20 27.24

Speed (fps) 1.15 7.01

dB. As the increase of sigma values, the simplified VBM3D performs worse than the

standard VBM3D. But in general the simplified VBM3D improves the PSNR values

of noisy videos by 4 to 6 dB. Moreover, it is important to note, that the speed of the

simplified VBM3D is about 7 times faster than the speed for the standard VBM3D.

However, it is still not fast enough for real-time applications since it needs to have

at least 25 fps. Therefore, we continue to accelerate the simplified VBM3D by using

the second approach.

In the second approach, an integer implementation of the simplified VBM3D

is proposed. The algorithm comparison of the proposed implementation and the

simplified VBM3D is shown in Table 3.5. The proposed implementation has several

improvements compared to the simplified VBM3D, and they are described below.

1. Instead of float type, integer type is used for all variables.

2. Instead of buffer whole video, proposed implementation only buffers 4 frames.

3. Instead of full search, we propose to use a modified approach of diamond

33

3. Video Denoising using Block-Matching and 3D filtering

Table 3.5: Algorithm comparison of the proposed implementation and the simplified

VBM3D

Proposed implementation Simplified VBM3D

Data type integer float

Memory buffer only 4 frames buffer whole video

Block matching modified diamond search full search

Temporal search window 4 5

search [11], and the algorithm is described in detail in Table 3.6.

4. Decrease the number of temporal searching frames from 5 to 4, so all blocks

grouped from searched frames are utilized in Haar transform, reducing the

computational complexity.

Table 3.6: Description of modified Diamond search

Modified Diamond search algorithm

Step 1. Center a large diamond search pattern (LDSP) at a predefined search

window, and search 5 check blocks in a predefined order: center, horizontal

and vertical. The first check block, with sum squared difference less than

threshold, is the final solution. If the sum squared differences of all check

blocks are greater than threshold, and the minimum block distortion point,

abbreviated as MBD, is found to be at the center, jump to Step 3; otherwise,

go to Step 2.

Step 2. Create a LDSP centered at the position of MBD point from previous

search. Search within 5 check blocks with a predefined order: center, horizontal

and vertical. The first check block, with sum squared difference less than the

threshold, is the final solution. If the sum squared differences of all check

blocks are greater than threshold, and the minimum block distortion point,

jump to Step 3; otherwise, repeat this step.

Step 3. Switch the search pattern from the large pattern to a small diamond

search pattern (SDSP). Then create a SDSP at the position of MBD point

from previous search. The minimum block distortion among check blocks is

the final solution

Table 3.7 illustrates the performance comparisons of the proposed implementa-

tion and the simplified VBM3D. From the results, we find that the proposed im-

plementation is about 4 to 5 time faster than the simplified VBM3D. The proposed

filter has above 30 fps, which meets the requirements for real-time video denoising

34

3. Video Denoising using Block-Matching and 3D filtering

Table 3.7: Comparison of the performance between the standard VBM3D, the sim-

plified VBM3D and the proposed implementation for denoising video sequences vas-

sar and ballroom which are corrupted by Gaussian noise with different variances, in

computer platform with Intel Core 2 Duo 3GHz and 3.2GB of RAM

σ/PSNR
Resolution: 640× 480 Standard Simplified Proposed

Number of frames: 250 VBM3D VBM3D implementation

5/34.13

vassar
Denoised (dB) 40.74 38.36 38.41

Speed (fps) 1.09 7.22 34.11

ballroom
Denoised (dB) 41.44 37.74 37.73

Speed (fps) 1.11 7.29 34.40

10/28.12

vassar
Denoised (dB) 38.21 33.67 33.92

Speed (fps) 1.14 7.67 34.47

ballroom
Denoised (dB) 38.69 33.15 32.78

Speed (fps) 1.09 7.22 30.49

15/24.63

vassar
Denoised (dB) 36.57 30.23 30.94

Speed (fps) 1.10 7.28 34.25

ballroom
Denoised (dB) 36.71 29.97 29.82

Speed (fps) 1.13 7.12 34.94

20/22.18

vassar
Denoised (dB) 35.32 27.84 28.37

Speed (fps) 1.13 7.28 33.94

ballroom
Denoised (dB) 35.20 27.24 27.80

Speed (fps) 1.15 7.01 34.54

applications. Furthermore, for video vassar which has a static background, the pro-

posed implementation outperforms the simplified VBM3D in terms of PSNR values,

with PSNR improvement up to 0.7 dB. This is mainly because of the motion search

method used in our algorithm. The modified diamond search algorithm gives a

strong preference to the position of the reference block, which produces more pre-

cise prediction for static background. As a result, our proposed implementation is

much faster than the simplified VBM3D, and it outperforms the simplified VBM3D

for videos with a static background, just as in video conference applications.

35

3. Video Denoising using Block-Matching and 3D filtering

3.5 Conclusion

In this section, we have a general review of video denoising algorithms and VBM3D.

VBM3D has excellent filtering ability, but current implementation does not suit

for real-time implementations. In order to accelerate VBM3D and preserve good

filtering performance, we simplify VBM3D algorithm and implement it in real-time.

From our experiments, we conclude that even though the proposed implementation

has some PSNR degradation as compared with the standard VBM3D, it still has

good denoising performance, with PSNR improvement of around 4 dB over noisy

videos. Moreover, it is important to note that the proposed implementation is

30 times faster than the standard VBM3D, and it can be used in real-time video

applications.

36

Chapter 4

Joint Rate-distortion Oriented

Video denoising and Compression

4.1 Introduction

In Chapters 2 and 3, we discussed about video compression by using the H.264/AVC

standard and video filtering by using VBM3D. We know that pre-filtering is desirable

in video coding, since it can enhance both the visual quality and coding efficiency

of the compression system [4]. However heuristic methods are typically employed

in traditional video pre-filtering and compression systems. In other words, filter-

ing parameters and quantization parameters for pre-filtering and compression are

independently selected. But this kind of system does not guarantee the optimal

parameters with respect to the rate-distortion framework.

To solve the problem and improve the compression performance of H.264/AVC,

we propose two filtering and compression algorithms in this chapter, and they are

• A joint rate-distortion oriented pre-filtering and compression algorithm.

• A joint rate-distortion oriented in-loop filtering and compression algorithm.

We organize this chapter in the following order: Section 4.2 describes the tradi-

tional algorithm of separate pre-filtering and compression and its drawbacks. Sec-

tion 4.3 proposes a joint rate-distortion oriented pre-filtering and compression al-

gorithm. In this system, parameters for filtering by VBM3D and compression by

the H.264/AVC encoder are selected together with respect to the rate-distortion

framework. Furthermore, Section 4.4 describes the traditional scheme of in-loop

filtering in the H.264/AVC standard and its limitations, and then proposes a joint

rate-distortion oriented in-loop filtering and compression algorithm.

37

4. Joint Rate-distortion Oriented Video denoising and Compression

4.2 Pre-filtering in Typical Video Compression

Scheme

Typical video compression systems [40, 41, 42] have two separate parts for prepro-

cessing and compression, and parameters are chosen separately. In other words,

heuristic methods are typically employed. The typical scheme of this system is

shown in Figure 4.1.

*F *Q
y(t)x(t) z(t)

MaxR

Figure 4.1: Typical pre-filtering and compression scheme

Video sequence x(t) is filtered using a pre-processing filter with parameters F ∗

and the filtered sequence y(t) is obtained. Then we input y(t) to video encoder with

quantization parameters Q∗ and the compressed sequence z(t) is received as the

output. Since filtering parameters F ∗ and quantization parameters Q∗ are selected

separately without consideration of the rate-distortion framework, this system does

not guarantee optimal parameters. In order to solve this problem, we need to find

a better mode of pre-filtering and compression.

4.3 Joint Rate-distortion Oriented Pre-filtering and

Compression

4.3.1 Definition of Optimization Task

In [4], an integrated approach of pre-filtering and compressing image sequences is

introduced, where Gaussian filter and the MPEG-2 video compression standard are

jointly employed to improve the compression performance by removing blocking

artifacts with consideration of the operational rate-distortion framework.

We continue this research of joint parameters selection, and propose a compres-

sion system with pre-filtering by VBM3D (from Section 3.3) and compression by

the H.264/AVC encoder. This system is shown in Figure 4.2. Video sequence x(t)

is filtered by VBM3D with parameter F ∗ and the filtered sequence y(t) is obtained.

Then y(t) is introduced to the H.264/AVC encoder with quantization parameters

Q∗ and a compressed sequence z(t) is received as the output. Filtering parame-

38

4. Joint Rate-distortion Oriented Video denoising and Compression

ters F ∗ and quantization parameters Q∗ are chosen based on bit-budget and the

rate-distortion framework by Joint Rate controller.

*F *Q
y(t)x(t) z(t)

MaxR

Figure 4.2: Joint pre-filtering and compression scheme

The task of the joint video denoising and compression system is to select the

optimal filtering parameters F ∗ and quantization parameters Q∗, so that
F ∗, Q∗ = arg min

F⊆{F}
Q⊆{Q}

∑
i

D(Fi, Qi),∑
i

R(Fi, Qi) ≤ RMax,
(4.1)

where Fi and Qi are filtering and quantization parameters for frame i, respectively

D(Fi, Qi) and R(Fi, Qi) are the distortion and rate of frame i with filtering param-

eter Fi and quantization parameter Qi, R
Max is the bit-budget, which means the

maximum bandwidth in data transmission.

We provide a set of filtering parameters F and a set of quantization parameters Q

(see Section 4.3.2). A full search is used here to find the optimal solution according

to bit restriction and the rate-distortion framework.

In addition, we can treat the three parts - VBM3D, the H.264/AVC encoder

and joint controller, together as one component, because from another point of

view VBM3D reduces the redundancy contained in the video x(t) to make it more

compressible.

4.3.2 Practical Results

In our experiments, the proposed joint pre-filtering and compression algorithm is

based on VBM3D (see settings in Table 4.1 and parameters’ explanations in Ta-

ble 4.2) and the H.264/AVC reference software JM V.17.1 [25] in baseline profile

(see codec setting in Table 4.3).

Recall Equation 4.1, filtering parameters F ∗ here include two parts: the first

part is fixed, which is shown in Table 4.1; the second part has different sigma

values, varying from 0 to 5 with a step of 0.5. We choose maximum sigma as 5,

because the source noise usually contained in a video is quite small. Sigma value is

less than 5 according to experiments. Practical results were obtained for the test

39

4. Joint Rate-distortion Oriented Video denoising and Compression

video sequences hall and foreman with 352×288 resolution at a frame rate of 30 fps.

The performance of the proposed approach is compared with that of the JM V.17.1

encoder in baseline profile (codec setting is the same as in Table 4.3).

Two modes are used in the experiments: constant quantization mode and con-

stant bitrates mode.

• Constant quantization mode: while filtering a video, eleven σ values are used,

varying from 0 to 5 with a step of 0.5, because the noise level in original

video sequences is typically small. When a video is compressed, we set the

quantization parameter QPI ∈ {21, 22 . . . 45} for I frame, and respectively

QPPi = QPIi+5 for P frames [43]. In our experiments, for each quantization

parameters Q∗, we use full search to find the best filtering parameters F ∗ .

• Constant bitrates mode: while filtering a video, we use the same strategy as

in the first mode. But when a video is compressed, we enable the constant

bitrates control in the H.264/AVC encoder and fix the bitrates with a proper

value.

Table 4.1: VBM3D setting for pre-filtering

Parameters Settings

denoiseFrames 5

transform-2D-HT-name Identity transform

transform-3rd-dim-name Haar

N1 8

Nstep 6

Nb 16

N2 4

Ns 5

tau-match 3000

lambda-thr3D 2.7

Wiener filtering –

Figure 4.3 shows the case of constant quantization mode for IPPP coding : quan-

tization parameter QPI ∈ {21, 22 . . . 45} for I frame, and respectively QPPi =

QPIi + 5 for P frames. For video sequence hall (352×288), the joint pre-filtering

and compression system gains consistent PSNR values with a maximum of 0.5 dB,

and uses less bitrates which is as low as 13.4%. Figure 4.4 shows that for video

sequence foreman (352×288), the joint pre-filtering and compression system gains

consistent PSNR values with a maximum of 0.1 dB, and uses less bitrates which is

as low as 1.2%.

40

4. Joint Rate-distortion Oriented Video denoising and Compression

Table 4.2: Summary of parameters involved in VBM3D setting

Parameters Description

denoiseFrames Temporal window length

transform-2D-HT-name 2D transform used for hard-thresholding filtering

transform-3rd-dim-name transform used in the 3rd dim

N1
N1 x N1 is the block size used for the hard-thresholding

(HT) filtering

Nstep sliding step to process every next reference block

Nb
number of blocks to be used in the predictive-search BM

for the next frame

N2
maximum number of similar blocks (maximum size of

the 3rd dimension of the 3D groups)

Ns
length of the side of the search neighbourhood for full-

search block-matching (BM)

tau-match threshold for the block distance (d-distance)

lambda-thr3D
threshold parameter for the hard-thresholding in trans-

form domain

Table 4.3: Setting of JM codec

Setting JM codec V.17.1

Profile Baseline

Motion estimation 16×16 block in radius 16

search mode Simplified UMHexagon search

Number of reference frames 1

Skip mode Enable

deblocking filter Enable

RD optimization Low complexity mode

Rate control Disable

slice size 50 macroblocks

41

4. Joint Rate-distortion Oriented Video denoising and Compression

Figure 4.3: Rate-distortion comparison for video hall (352×288) in two compression

modes: H.264/AVC compression; joint pre-filtering and H.264/AVC compression

Figure 4.4: Rate-distortion comparison for video foreman (352×288) in two com-

pression modes: H.264/AVC compression; joint pre-filtering and H.264/AVC com-

pression

42

4. Joint Rate-distortion Oriented Video denoising and Compression

Figure 4.5 shows that in constant bitrates mode (bitrates = 215 kbit/s), for video

sequence hall (352×288), the joint pre-filtering and compression consistently gains

PSNR values which is up to 1.2 dB. Figure 4.6 and 4.7 are two frames taken from

output video sequences under two compression modes: H.264/AVC compression

with enabled constant bitrates control; joint pre-filtering and H.264/AVC compres-

sion with enabled constant bitrates control. The results show that the proposed

joint pre-filtering and compression system can improve the visual quality of out-

put videos by removing some noise at the door (compare (c) and (e)) and ringing

artifacts around the foot (compare (d) and (f)).

Figure 4.5: Enable constant bitrates control (bitrates = 215 kbit/s), frame by frame

PSNR comparison for video hall (352×288) in two compression modes: H.264/AVC

compression; joint pre-filtering and H.264/AVC compression.

43

4. Joint Rate-distortion Oriented Video denoising and Compression

(a) (b)

(c) (d)

(e) (f)

Figure 4.6: For video hall, (a) is the 23rd frame of the output video from the

H.264/AVC compression system with enabled constant bitrates control, (b) is the

23rd frame of the output video from the joint VBM3D pre-filtering and H.264/AVC

compression system with enabled constant bitrates control, (c) and (d) are fragments

from (a), (e) and (f) are fragments from (b).

44

4. Joint Rate-distortion Oriented Video denoising and Compression

(a) (b)

(c) (d)

Figure 4.7: For video hall, (a) is the 91st frame of the output video from the

H.264/AVC compression system with enabled constant bitrates control, (b) is the

91st frame of the output video from the joint VBM3D pre-filtering and H.264/AVC

compression system with enabled constant bitrates control, (c) and (d) are fragments

from (a) and (b) respectively.

45

4. Joint Rate-distortion Oriented Video denoising and Compression

4.3.3 Summary

Typical pre-filtering and compression systems do not guarantee optimal filtering

and compression parameters. Thus we propose joint parameters selection for pre-

filtering and compression system with pre-filtering by VBM3D and compression by

the H.264/AVC encoder, and a full search is employed to find optimal filtering and

compression parameters. Our results show that the joint pre-filtering and compres-

sion produces output video frames with less compression artifacts and increased

PSNR up to 1.2 dB under constant bitrates mode and up to 0.5 dB under constant

quantization mode. In addition, the joint pre-filtering and compression system uses

less bitrates which is as low as 13.4% in comparison with only compression. In our

future work, it is desirable to use a more efficient approach instead of full search to

find optimal filtering and quantization parameters for this joint system.

4.4 In-loop Filtering in Typical Video Compres-

sion Scheme

In the H.264/AVC encoder, an in-loop deblocking filter is used for removing the

blocking artifacts (see Figure 2.2), and the simplified scheme is shown in Figure 4.8.

Recall the encoding process: previously coded and reconstructed frames x
′
(t+ ∆t)

are motion estimated (ME), compensated (MC) and subtracted from x(t) to form

the residual. Then the integer transform (T) and quantization (Q) is applied to the

residual signal to obtain the coefficients ∆X which are later entropy coded in the

bitstream. In the reconstruction path, the coefficients ∆X are scaled and inverse

transformed. Then the result is added to motion compensated frame and finally it

is filtered by an in-loop deblocking filter (DF) to produce the reconstructed frame

x
′
(t).

T

-1T

Q

-1Q

X

'x (t+ t)

x(t)

'x (t)

Figure 4.8: Simplified block diagram of the H.264/AVC encoder

As we have discussed in Section 2.7 and Section 2.8, deblocking filter functions

well for removing blocking artifacts however it is not efficient for reducing other

types of source noise. If we can remove other types of source noise in videos, it

46

4. Joint Rate-distortion Oriented Video denoising and Compression

is possible to improve the compression performance. Therefore a better in-loop

filtering strategy is needed.

4.5 Joint Rate-distortion Oriented In-loop Filter-

ing and Compression

4.5.1 Definition of Optimization Task

It has been suggested that adding an in-loop spatial-temporal filter in the H.264/AVC

standard enhances the compression performance of the H.264/AVC standard [5].

We continue this research and propose a joint rate-distortion oriented in-loop

filtering and compression algorithm. We add a VBM3D based real-time filter (pro-

posed in Section 3.4) as an enhancing part after deblocking filter in both the encoder

and decoder of H.264/AVC. This filter denoises the current frame with the assistance

of previously processed frames and tunes the filtering parameters by using original

frame as a target (see Figure 4.9).

T

-1T

Q

-1Q

X

'x (t+ t)

x(t)

'x (t)

Figure 4.9: Using VBM3D as an enhancing part in H.264/AVC codec

nF '
nF

n-1F
n-2F
n-3F

norigF *

'
n-1F
'

n-2F
'

n-3F

Figure 4.10: Optimization task

Implementation of the enhancing part can be further simplified as in Figure 4.10.

The optimization task is to filter current frame with the best filtering parameter σ∗

47

4. Joint Rate-distortion Oriented Video denoising and Compression

by which this VBM3D based filter minimizes the difference between denoised frame

F
′
n and original frame origFn: F

′

n = V BM3D(Fn, σ, Fn−1, Fn−2, Fn−3, F
′

n−1, F
′

n−2, F
′

n−3),

σ∗ = arg min
σ⊆{σ}

{SSE(origFn, F
′

n)}, (4.2)

where Fn is the output of deblocking filter, Fn−1, Fn−2 and Fn−3 are previous noisy

frames, F
′
n−1, F

′
n−2 and F

′
n−3 are previously filtered frames, σ∗ is the best filtering

parameter among a set of σ used in the filter - which is transmitted to the decoder

later so that the filter inside the decoder can directly use σ∗ to repeat the same

filtering as in the encoder. F
′
n is the filtered frame which is obtained from two

filtering strategies: filter Fn together with the noisy frames or filter Fn together

with the filtered frames, depending on the least sum of squared errors.

4.5.2 Practical Results

In our experiments, the joint in-loop filtering and compression algorithm is based

on the proposed real-time filter which is mentioned in Section 3.4 (see filter setting

in Table 4.4) and the H.264/AVC reference software JM V.18.0 in mainline profile

(codec settings are from Table 4.5 or Table 4.6).

Recall Equation (4.2), for each input frame Fn, there is a set of σ, i.e., {σ} =

{0, 0.1, 0.2, ..., 9.9, 10}. For each σ, the proposed VBM3D based filter calculates the

filtered frame F
′
n by two strategies: by using Fn together with three previous noisy

frames Fn−1, Fn−2 and Fn−3; by using Fn together with three previous denoised

frames F
′
n−1, F

′
n−2 and F

′
n−3. The filter then searches the F

′
n with the highest PSNR

value among those filtered results, gives it as the output and transmits the best

sigma value σ∗ to video decoder.

While compression, both inter and intra modes are tested.

• In inter mode: we set the quantization parameter QPI ∈ {21, 22 . . . 45} for I

frame, and respective QPPi = QPIi + 5 for P frames [43]. Codec settings for

JM V.18.0 are shown in Table 4.5.

• In intra mode: we set the quantization parameter QPI ∈ {21, 22 . . . 45} for I

frame. Codec settings for JM V.18.0 are shown in Table 4.6.

Practical results were obtained for the test video sequences hall and foreman

with the resolution of 352×288 at a frame rate of 30 fps. The performance of the

proposed approach is compared to that of the H.264/AVC reference software JM

V.18.0 encoder in mainline profile.

48

4. Joint Rate-distortion Oriented Video denoising and Compression

Table 4.4: Setting of proposed filter

Parameters Settings

denoiseFrames 4

transform-3rd-dim-name Haar

N1 8

Nstep 6

Nb 1

N2 4

Ns 11

tau-match 3000

lambda-thr3D 2.7

Table 4.5: JM Codec setting under inter mode

Setting JM codec V.18.0

Profile Mainline

Inter mode Enable

Motion estimation 8×8 block in radius 8

search mode Enhanced Predictive Zonal Search (EPZS)

Number of reference frames 1

Skip mode Enable

deblocking filter Enable

RD optimization Low complexity mode

Rate control Disable

Slice Mode Off

Table 4.6: JM Codec setting under intra mode

Setting JM codec V.18.0

Profile Mainline

Intra mode Enable

deblocking filter Enable

RD optimization Low complexity mode

Rate control Disable

Slice Mode Off

49

4. Joint Rate-distortion Oriented Video denoising and Compression

Figure 4.11: For video hall, comparison of rate-distortion performance in two com-

pression modes: H.264/AVC under inter mode; H.264/AVC with enhanced in-loop

filtering under inter mode

Figure 4.12: For video foreman, comparison of rate-distortion performance in two

compression modes: H.264/AVC under inter mode; H.264/AVC with enhanced in-

loop filtering under inter mode

50

4. Joint Rate-distortion Oriented Video denoising and Compression

Figure 4.13: For video hall, comparison of rate-distortion performance in two com-

pression modes: H.264/AVC under intra mode; H.264/AVC with enhanced in-loop

filtering under intra mode

Figure 4.14: For video foreman, comparison of rate-distortion performance in two

compression modes: H.264/AVC under intra mode; H.264/AVC with enhanced in-

loop filtering under intra mode

51

4. Joint Rate-distortion Oriented Video denoising and Compression

Figure 4.11 shows that under inter mode, for video sequence hall (352×288),

the joint in-loop filtering and compression system gains consistent PSNR values

with a maximum value of 0.22 dB, and uses less bitrates which is as low as 2.1%.

Figure 4.12 shows that under inter mode, for video sequence foreman (352×288),

the joint in-loop filtering and compression system has consistent PSNR gains which

is up to 0.1 dB.

Figure 4.13 shows that under intra mode, for video sequence hall (352×288), the

output videos of the joint in-loop filtering and compression system have consistent

higher PSNR values with a maximum value of 0.87 dB than only compression.

Moreover, this joint approach can save the bitrates up to 10.5% in comparison with

only compression. Figure 4.14 shows that under intra mode, for video sequence

foreman (352×288), the joint in-loop filtering and compression system has consistent

PSNR gains with a maximum value of 0.35 dB and bitrates savings up to 6.3%.

4.5.3 Summary

Typical in-loop filtering and compression system only has one deblocking filter which

focuses on removing blocking artifacts. However, it is desirable to have an additional

filter to remove other types of noise contained in the video. Thus, we present a joint

in-loop filtering and compression system, in which we add a real-time filter into the

H.264/AVC encoder and decoder to improve the compression performance. Results

show that this joint approach consistently improves the compression performance

of H.264/AVC under intra mode, but it gains little under inter mode. Under intra

mode, compared to only compression, the proposed joint approach gains consistent

PSNR values with a maximum value of 0.87 dB and uses less bitrates which is as

low as 10.5%.

52

Chapter 5

Conclusion

In this study, we have presented a real-time video denoising filter, a joint pre-filtering

and compression algorithm, and a joint in-loop filtering and compression algorithm.

VBM3D achieves state-of-the-art video denoising performance in terms of both

peak signal-to-noise ratio and subjective visual quality. The proposed filter is based

on VBM3D. Even though the simplification of the VBM3D algorithm leads to some

PSNR degradation, the proposed filter has good denoising performance. Moreover,

this filter is over 30 times faster than the original implementation of VBM3D, and

makes it possible to be employed in real-time applications.

In traditional video pre-filtering and compression systems, pre-filtering and com-

pression are two separate processes, and they do not guarantee optimal filtering and

quantization parameters with respect to the rate-distortion framework. To solve

this problem, we present a joint approach with pre-filtering by VBM3D and com-

pression by H.264/AVC. Practical results show that this joint approach produces

output video frames with less compression artifact and consistently increased PSNR

values with a maximum value of 1.2 dB under constant bitrates mode and 0.5 dB

under constant quantization mode. Besides, this joint approach uses less bitrates

which is as low as 13.4% in comparison with only compression. Because the joint

approach enhances the compression performance of the H.264/AVC standard with-

out changing anything in the standard, the video coding standard can be replaced

by any other kinds of video coding standards. Flexibility is the main advantage of

this joint video pre-filtering and compression algorithm. In our future work, we plan

to use a more efficient method instead of full search to find optimal filtering and

quantization parameters.

A deblocking filter is used to reduce blocking artifacts in traditional video com-

pression systems. However, other types of noise are introduced while compression

decrease the compression performance of video coding standard. Therefore, we pro-

pose a joint in-loop filtering and compression algorithm, in which we add the pro-

posed real-time filter as an enhancing part after deblocking filter in the H.264/AVC

codec. Experiments illustrate that this joint approach consistently improves the

53

5. Conclusion

compression performance of H.264/AVC under both intra and inter mode. Under

intra mode, compared to only compression, the proposed joint approach gains con-

sistent PSNR values with a maximum value of 0.87 dB and uses less bitrates which

is as low as 10.5%. However, the gain under inter mode is little, and this may be

caused by the simplicity of the added filter. In other words, the filtering strength

of current filter is not enough. Therefore, we can enhance the filtering strength by

implementing a real-time filter with the full features of VBM3D and apply it in this

joint approach.

In real-life applications, this joint rate-distortion oriented video denoising and

compression algorithm can be used among the H.264/AVC standard based video

applications, such as video conferencing or high-definition DVD. Furthermore, the

idea of this joint video denoising and compression scheme is possible to be used in

next video compression standard, High Efficiency Video Coding (HEVC) or H.265.

Besides standard codecs, this joint video denoising and compression algorithm can be

employed by non-standard video codec to improve their compression performance.

54

References

[1] K. Dabov, A. Foi and K. Egiazarian. Video denoising by sparse 3D transform-

domain collaborative filtering. European Signal Processing Conference (EU-

SIPCO), Poznan, Poland, September 2007.

[2] Hantao Liu, N. Klomp and I. Heynderickx. A Perceptually Relevant Ap-

proach to Ringing Region Detection. IEEE Transactions on Image Processing,

19(6):1414-1426, June 2010

[3] T. Wiegand, G.J. Sullivan, G. Bjontegaard and A. Luthra. Overview of the

H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems

for Video Technology, 13(7):560-576, July 2003

[4] P.V. Karunaratne, C.A. Segall and A.K. Katsaggelos. A rate-distortion opti-

mal video pre-processing algorithm. Proceedings of International Conference on

Image Processing, 1:481-484, 2001

[5] D.T Vo and T.Q. Nguyen. Optimal motion compensated spatio-temporal fil-

ter for quality enhancement of H.264/AVC compressed video sequences. IEEE

International Conference on Image Processing (ICIP), page 3173-3176, 2009.

[6] A. Hallapuro, M. Karczewicz and H. Malvar. Low Complexity Transform and

Quantization Part I: Basic Implementation. JVT document JVT-B038, Geneva,

February 2002.

[7] ISO/IEC 14496-10 and ITU-T Rec. H.264, Advanced Video Coding, 2003.

[8] I. E. G Richardson. Front Matter, in H.264 and MPEG-4 Video Compression:

Video Coding for Next-Generation Multimedia. John Wiley and Sons, 2004.

[9] N. Ahmed, T. Natarajan and K.R. Rao. Discrete Cosine Transform. IEEE

Transactions on Computers, C23(1):90-93, 1974.

[10] K. R. Rao and P. Yip. Discrete Cosine Transform: Algorithms, Advantages,

Applications. Academic Press, Boston, 1990.

55

[11] Shan Zhu and Kai-Kuang Ma. A new diamond search algorithm for fast block

matching motion estimation. Proceedings of International Conference on Com-

munications and Signal Processing, 1:292-296, 1997.

[12] Ce Zhu, Xiao Lin and Lap-Pui Chau. Hexagon-based search pattern for fast

block motion estimation. IEEE Transactions on Circuits and Systems for Video

Technology, 12(5):349-355, May 2002.

[13] P. List, A. Joch, J. Lainema, G. Bjontegaard and M. Karczewicz. Adaptive

deblocking filter. IEEE Transactions on Circuits and Systems for Video Tech-

nology, 13(7):614-619, July 2003.

[14] D. Gluss and E.W Weisstein. Lagrange Multiplier. From MathWorld.

[15] M. Yuen and H. R. Wu. A survey of hybrid MC/DPCM/DCT video coding

distortions. Signal Processing, 70(3):247-278, 1998.

[16] K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian. Image denoising by

sparse 3D transform-domain collaborative filtering. IEEE Transactions on Im-

age Processing,16(8):2080-2095, August 2007.

[17] K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian. Image denoising with block-

matching and 3D filtering. Proceedings of SPIE Electronic Imaging, San Jose,

California, USA, January 2006.

[18] D. Rusanovskyy, K. Dabov and K. Egiazarian. Moving-Window Varying Size

3D Transform-Based Video Denoising. Proceedings of International Workshop

on Video Processing and Quality Metrics (VPQM), USA, 2006.

[19] M. Maggioni, G. Boracchi, A. Foi and K. Egiazarian. Video Denoising, De-

blocking and Enhancement through Separable 4-D Nonlocal Spatiotemporal

Transforms. IEEE Transactions on Image Processing, preprint, January 2011.

[20] D. Marpe, T. Wiegand and G.J. Sullivan. The H.264/MPEG4 advanced video

coding standard and its applications. IEEE Transaction on Communications,

44(8):134-143, August 2006.

[21] X. Shen and Y. Wu. Exploiting sparsity in dense optical flow. IEEE Interna-

tional Conference on Image Processing (ICIP), page 741-744, 2010.

[22] Advanced video coding for generic audiovisual services. ITU-T Recommenda-

tion H.264, March 2005.

[23] Iain E. G. Richardson. H.264 and MPEG-4 Video Compression: Video Coding

for Next-generation Multimedia. John Wiley and Sons Publisher, 2003.

56

[24] P.V. Karunaratne, C.A. Segall and A.K. Katsaggelos. A rate-distortion opti-

mal video pre-processing algorithm. Proceedings of International Conference on

Image Processing, 1:481-484, , 2001.

[25] H.264/AVC JM Reference Software, http://iphome.hhi.de/suehring/tml/

[26] M.K. Ozkan, M.I. Sezan and A.M. Tekalp. Adaptive motion-compensated fil-

tering of noisy image sequences. IEEE Transactions on Circuits and Systems

for Video Technology, 3(4):277-290, August 1993.

[27] F. Jin, P. Fieguth, L. Winger and E. Jernigan. Adaptive Wiener filtering of

noisy images and image sequences. Proceedings of International Conference on

Image Processing, September 2003.

[28] J. Woods and C. Radewan. Kalman filtering in two dimensions. IEEE Trans-

actions on Information Theory, 23(4):473- 482, July 1977.

[29] A. Buades, B. Coll and J.M. Morel. A non-local algorithm for image denoising.

IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion, 2:60-65, June 2005.

[30] D.L. Donoho. De-noising by soft-thresholding. IEEE Transactions on Informa-

tion Theory, 41(3):613-627, May 1995.

[31] G. de Haan. IC for motion-compensated de-interlacing, noise reduction,

and picture-rate conversion. IEEE Transactions on Consumer Electronics,

45(3):617-624, August 1999.

[32] R. Rajagopalan and M.T. Orchard. Synthesizing processed video by filtering

temporal relationships. IEEE Transactions on Image Processing, 11(1):26-36,

January 2002.

[33] A.J. Patti, A.M. Tekalp and M.I. Sezan. A new motion-compensated reduced-

order model Kalman filter for space-varying restoration of progressive and in-

terlaced video. IEEE Transactions on Image Processing, 7(4):543-554, April

1998.

[34] E.J. Balster, Y.F. Zheng and R.L. Ewing. Combined spatial and temporal do-

main wavelet shrinkage algorithm for video denoising. IEEE Transactions on

Circuits and Systems for Video Technology, 16(2):220-230, February 2006.

[35] A. Buades, B. Coll and J.M. Morel. Denoising image sequences does not re-

quire motion estimation. IEEE Conference on Advanced Video and Signal Based

Surveillance, page 70-74, September 2005.

57

[36] S. Zhu and Kai-Kuang Ma. A new diamond search algorithm for fast

block-matching motion estimation. IEEE Transactions on Image Processing,

9(2):287-290, February 2000.

[37] I. Johnstone, D. Donoho and I.M. Johnstone. Ideal spatial adaptation by

wavelet shrinkage. Biometrika, 81:425-455, 1993.

[38] B. K. P. Horn and B. G. Rhunck. Determining optical flow. Artificial Intell.,

17:185-203, April 1981.

[39] C. Liu and W.T. Freeman. A High-Quality Video Denoising Algorithm Based

on Reliable Motion Estimation. Proceedings of ECCV, page 706-719, 2010.

[40] N. Young and A.N. Evans. Digital video pre-processing with multi-dimensional

attribute morphology. International Conference on Visual Information Engi-

neering, page 89-92, July 2003.

[41] J. Goel, D. Chan and P. Mandl. Pre-processing for MPEG compression us-

ing adaptive spatial filtering. IEEE Transactions on Consumer Electronics,

41(3):687-689, August 1995.

[42] N. Young and A.N. Evans. Psychovisually tuned attribute operators for pre-

processing digital video. IEEE Proceedings of Image and Signal Processing,

150(5):277-86, October, 2003.

[43] H. Schwarz, D. Marpe and T. Wiegand. Overview of the Scalable Video Coding

Extension of the H.264/AVC Standard. IEEE Transactions on Circuits and

Systems for Video Technology, 17(9):1103-1120, September 2007.

[44] J.L. Liang and A. Ortega. Perceptually based video rate control using pre-

filtering and predicted rate-distortion characteristics. , 1997. Proceedings of

International Conference on Image Processing, 2:57-60, October 1997.

[45] MPEG-2, Test Model 5. Test Model Editing Committee, April 1993.

58

	Introduction
	Video Compression using the H.264/AVC Standard
	Main Characteristics of Video Codec
	Introduction
	Visual quality
	Bitrate
	Complexity

	General Scheme of H.264/AVC
	Integer Transform and Quantization
	Block-based Motion Estimation and Compensation
	Rate-distortion Optimization
	Visual Artifacts in Compression
	Deblocking Filter
	Influence of Source Noise to Compression Performance
	Conclusion

	Video Denoising using Block-Matching and 3D filtering
	Introduction
	Classification of Video denoising Algorithms
	Video Block-Matching and 3D filtering
	General Scheme of the Video Block-Matching and 3D filtering
	Grouping
	Collaborative filtering
	Aggregation
	Algorithm
	Complexity Analysis
	Practical Results

	Real-time Implementation of the Video Block-Matching and 3D filtering
	Conclusion

	Joint Rate-distortion Oriented Video denoising and Compression
	Introduction
	Pre-filtering in Typical Video Compression Scheme
	Joint Rate-distortion Oriented Pre-filtering and Compression
	Definition of Optimization Task
	Practical Results
	Summary

	In-loop Filtering in Typical Video Compression Scheme
	Joint Rate-distortion Oriented In-loop Filtering and Compression
	Definition of Optimization Task
	Practical Results
	Summary

	Conclusion
	References

