10,312 research outputs found

    Material Classification via Machine Learning Techniques: Construction Projects Progress Monitoring

    Get PDF
    Nowadays, the construction industry is on a fast track to adopting digital processes under the Industrial Revolution (IR) 4.0. The desire to automate maximum construction processes with less human interference has led the industry and research community to inclined towards artificial intelligence. This chapter has been themed on automated construction monitoring practices by adopting material classification via machine learning (ML) techniques. The study has been conducted by following the structure review approach to gain an understanding of the applications of ML techniques for construction progress assessment. Data were collected from the Web of Science (WoS) and Scopus databases, concluding 14 relevant studies. The literature review depicted the support vector machine (SVM) and artificial neural network (ANN) techniques as more effective than other ML techniques for material classification. The last section of this chapter includes a python-based ANN model for material classification. This ANN model has been tested for construction items (brick, wood, concrete block, and asphalt) for training and prediction. Moreover, the predictive ANN model results have been shared for the readers, along with the resources and open-source web links

    Opportunities of industry 4.0 for SMEs in the area of rebar steel distribution within the construction industry –a PPC potential analysis

    Get PDF
    Industry 4.0coins a global trend towards applying digital technologies to manufacturing. However, the openness towards related innovations varies among different industries. Whilst for instance many manufacturers within automotive or logistics industries have optimized their factories already, the German construction sector falls back regarding adaptation. Reinforcement steel distributors reflect a fundamental part of this sector and are broadly hesitant to initiate their factory transformation. This research provides an overview of the opportunities of Industry 4.0 in the area of reinforcement steel trade and processing. It analyzes how to derive an innovative factory design leveraging on state-of-the-art production planning methods, by aggregating market information and technology

    The development of a rebar-counting model for reinforced concrete columns: Using an unmanned aerial vehicle and deep-learning approach

    Get PDF
    Inspecting the number of rebars in each column of a reinforced concrete (RC) structure is a significant task that must be undertaken during the rebar inspection process. Conventionally, counting the rebars has relied on a manual inspection carried out by visiting inspectors. However, this approach is very time-consuming, labor-intensive, and poses a potential safety risk. Previous studies have focused on the applications of counting the rebars for a production line and/or warehouse, using vision-based methods. Therefore, this study aims to propose an innovative approach incorporating the use of an unmanned aerial vehicle (UAV) on real construction sites to count the rebars automatically. For analyzing the images, robust object detection methods based on deep learning (Faster R-CNN, R-FCN, SSD 300, SSD500, YOLOv5, and YOLOv6) were developed. A total of 384 models generated from six different methods were trained and implemented using data sets based on the original and augmented images with adjustments made for the hyperparameters. In a test, the best optimized model based on Faster R-CNN produced an accuracy of 94.61% at AP50. In addition, video testing demonstrated a coverage of up to 32 frames per second in the experimental environment, suggesting that this method has potential for real-time application

    Emerging technologies for learning report (volume 3)

    Get PDF

    The Internet of Things Will Thrive by 2025

    Get PDF
    This report is the latest research report in a sustained effort throughout 2014 by the Pew Research Center Internet Project to mark the 25th anniversary of the creation of the World Wide Web by Sir Tim Berners-LeeThis current report is an analysis of opinions about the likely expansion of the Internet of Things (sometimes called the Cloud of Things), a catchall phrase for the array of devices, appliances, vehicles, wearable material, and sensor-laden parts of the environment that connect to each other and feed data back and forth. It covers the over 1,600 responses that were offered specifically about our question about where the Internet of Things would stand by the year 2025. The report is the next in a series of eight Pew Research and Elon University analyses to be issued this year in which experts will share their expectations about the future of such things as privacy, cybersecurity, and net neutrality. It includes some of the best and most provocative of the predictions survey respondents made when specifically asked to share their views about the evolution of embedded and wearable computing and the Internet of Things

    Automatic Scaffolding Productivity Measurement through Deep Learning

    Get PDF
    This study developed a method to automatically measure scaffolding productivity by extracting and analysing semantic information from onsite vision data

    Smart Biofeedback

    Get PDF
    Smart biofeedback is receiving attention because of the widespread availability of advanced technologies and smart devices that are used in effective collection, analysis, and feedback of physiologic data. Researchers and practitioners have been working on various aspects of smart biofeedback methodologies and applications by using wireless communications, the Internet of Things (IoT), wearables, biomedical sensors, artificial intelligence, big data analytics, clinical virtual reality, smartphones, and apps, among others. The current paradigm shift in information and communication technologies (ICT) has been propelling the rapid pace of innovation in smart biofeedback. This book addresses five important topics of the perspectives and applications in smart biofeedback: brain networks, neuromeditation, psychophysiological psychotherapy, physiotherapy, and privacy, security, and integrity of data

    The Post Industrial Patent System

    Get PDF

    The 1st Advanced Manufacturing Student Conference (AMSC21) Chemnitz, Germany 15–16 July 2021

    Get PDF
    The Advanced Manufacturing Student Conference (AMSC) represents an educational format designed to foster the acquisition and application of skills related to Research Methods in Engineering Sciences. Participating students are required to write and submit a conference paper and are given the opportunity to present their findings at the conference. The AMSC provides a tremendous opportunity for participants to practice critical skills associated with scientific publication. Conference Proceedings of the conference will benefit readers by providing updates on critical topics and recent progress in the advanced manufacturing engineering and technologies and, at the same time, will aid the transfer of valuable knowledge to the next generation of academics and practitioners. *** The first AMSC Conference Proceeding (AMSC21) addressed the following topics: Advances in “classical” Manufacturing Technologies, Technology and Application of Additive Manufacturing, Digitalization of Industrial Production (Industry 4.0), Advances in the field of Cyber-Physical Systems, Virtual and Augmented Reality Technologies throughout the entire product Life Cycle, Human-machine-environment interaction and Management and life cycle assessment.:- Advances in “classical” Manufacturing Technologies - Technology and Application of Additive Manufacturing - Digitalization of Industrial Production (Industry 4.0) - Advances in the field of Cyber-Physical Systems - Virtual and Augmented Reality Technologies throughout the entire product Life Cycle - Human-machine-environment interaction - Management and life cycle assessmen
    • …
    corecore