6,101 research outputs found

    SNPredict: A Machine Learning Approach for Detecting Low Frequency Variants in Cancer

    Get PDF
    Cancer is a genetic disease caused by the accumulation of DNA variants such as single nucleotide changes or insertions/deletions in DNA. DNA variants can cause silencing of tumor suppressor genes or increase the activity of oncogenes. In order to come up with successful therapies for cancer patients, these DNA variants need to be identified accurately. DNA variants can be identified by comparing DNA sequence of tumor tissue to a non-tumor tissue by using Next Generation Sequencing (NGS) technology. But the problem of detecting variants in cancer is hard because many of these variant occurs only in a small subpopulation of the tumor tissue. It becomes a challenge to distinguish these low frequency variants from sequencing errors, which are common in today\u27s NGS methods. Several algorithms have been made and implemented as a tool to identify such variants in cancer. However, it has been previously shown that there is low concordance in the results produced by these tools. Moreover, the number of false positives tend to significantly increase when these tools are faced with low frequency variants. This study presents SNPredict, a single nucleotide polymorphism (SNP) detection pipeline that aims to utilize the results of multiple variant callers to produce a consensus output with higher accuracy than any of the individual tool with the help of machine learning techniques. By extracting features from the consensus output that describe traits associated with an individual variant call, it creates binary classifiers that predict a SNP’s true state and therefore help in distinguishing a sequencing error from a true variant

    ISOWN: accurate somatic mutation identification in the absence of normal tissue controls.

    Get PDF
    BackgroundA key step in cancer genome analysis is the identification of somatic mutations in the tumor. This is typically done by comparing the genome of the tumor to the reference genome sequence derived from a normal tissue taken from the same donor. However, there are a variety of common scenarios in which matched normal tissue is not available for comparison.ResultsIn this work, we describe an algorithm to distinguish somatic single nucleotide variants (SNVs) in next-generation sequencing data from germline polymorphisms in the absence of normal samples using a machine learning approach. Our algorithm was evaluated using a family of supervised learning classifications across six different cancer types and ~1600 samples, including cell lines, fresh frozen tissues, and formalin-fixed paraffin-embedded tissues; we tested our algorithm with both deep targeted and whole-exome sequencing data. Our algorithm correctly classified between 95 and 98% of somatic mutations with F1-measure ranges from 75.9 to 98.6% depending on the tumor type. We have released the algorithm as a software package called ISOWN (Identification of SOmatic mutations Without matching Normal tissues).ConclusionsIn this work, we describe the development, implementation, and validation of ISOWN, an accurate algorithm for predicting somatic mutations in cancer tissues in the absence of matching normal tissues. ISOWN is available as Open Source under Apache License 2.0 from https://github.com/ikalatskaya/ISOWN

    Computational analysis of human genomic variants and lncRNAs from sequence data

    Get PDF
    The high-throughput sequencing technologies have been developed and applied to the human genome studies for nearly 20 years. These technologies have provided numerous research applications and have significantly expanded our knowledge about the human genome. In this thesis, computational methods that utilize sequence data to study human genomic variants and transcripts were evaluated and developed. Indel represents insertion and deletion, which are two types of common genomic variants that are widespread in the human genome. Detecting indels from human genomes is the crucial step for diagnosing indel related genomic disorders and may potentially identify novel indel makers for studying certain diseases. Compared with previous techniques, the high-throughput sequencing technologies, especially the next- generation sequencing (NGS) technology, enable to detect indels accurately and efficiently in wide ranges of genome. In the first part of the thesis, tools with indel calling abilities are evaluated with an assortment of indels and different NGS settings. The results show that the selection of tools and NGS settings impact on indel detection significantly, which provide suggestions for tool selection and future developments. In bioinformatics analysis, an indel’s position can be marked inconsistently on the reference genome, which may result in an indel having different but equivalent representations and cause troubles for downstream. This problem is related to the complex sequence context of the indels, for example, short tandem repeats (STRs), where the same short stretch of nucleotides is amplified. In the second part of the thesis, a novel computational tool VarSCAT was described, which has various functions for annotating the sequence context of variants, including ambiguous positions, STRs, and other sequence context features. Analysis of several high- confidence human variant sets with VarSCAT reveals that a large number of genomic variants, especially indels, have sequence features associated with STRs. In the human genome, not all genes and their transcripts are translated into proteins. Long non-coding ribonucleic acid (lncRNA) is a typical example. Sequence recognition built with machine learning models have improved significantly in recent years. In the last part of the thesis, several machine learning-based lncRNA prediction tools were evaluated on their predictions for coding potentiality of transcripts. The results suggest that tools based on deep learning identify lncRNAs best. Ihmisen genomivarianttien ja lncRNA:iden laskennallinen analyysi sekvenssiaineistosta Korkean suorituskyvyn sekvensointiteknologioita on kehitetty ja sovellettu ihmisen genomitutkimuksiin lähes 20 vuoden ajan. Nämä teknologiat ovat mahdollistaneet ihmisen genomin laaja-alaisen tutkimisen ja lisänneet merkittävästi tietoamme siitä. Tässä väitöstyössä arvioitiin ja kehitettiin sekvenssiaineistoa hyödyntäviä laskennallisia menetelmiä ihmisen genomivarianttien sekä transkriptien tutkimiseen. Indeli on yhteisnimitys lisäys- eli insertio-varianteille ja häviämä- eli deleetio-varianteille, joita esiintyy koko genomin alueella. Indelien tunnistaminen on ratkaisevaa geneettisten poikkeavuuksien diagnosoinnissa ja eri sairauksiin liittyvien uusien indeli-markkereiden löytämisessä. Aiempiin teknologioihin verrattuna korkean suorituskyvyn sekvensointiteknologiat, erityisesti seuraavan sukupolven sekvensointi (NGS) mahdollistavat indelien havaitsemisen tarkemmin ja tehokkaammin laajemmilta genomialueilta. Väitöstyön ensimmäisessä osassa indelien kutsumiseen tarkoitettuja laskentatyökaluja arvioitiin käyttäen laajaa valikoimaa indeleitä ja erilaisia NGS-asetuksia. Tulokset osoittivat, että työkalujen valinta ja NGS-asetukset vaikuttivat indelien tunnistukseen merkittävästi ja siten ne voivat ohjata työkalujen valinnassa ja kehitystyössä. Bioinformatiivisessa analyysissä saman indelin sijainti voidaan merkitä eri kohtiin referenssigenomia, joka voi aiheuttaa ongelmia loppupään analyysiin, kuten indeli-kutsujen arviointiin. Tämä ongelma liittyy sekvenssikontekstiin, koska variantit voivat sijoittua lyhyille perättäisille tandem-toistojaksoille (STR), jossa sama lyhyt nukleotidijakso on monistunut. Väitöstyön toisessa osassa kehitettiin laskentatyökalu VarSCAT, jossa on eri toimintoja, mm. monitulkintaisten sijaintitietojen, vierekkäisten alueiden ja STR-alueiden tarkasteluun. Luotettaviksi arvioitujen ihmisen varianttiaineistojen analyysi VarSCAT-työkalulla paljasti, että monien geneettisten varianttien ja erityisesti indelien ominaisuudet liittyvät STR-alueisiin. Kaikkia ihmisen geenejä ja niiden geenituotteita, kuten esimerkiksi ei-koodaavia RNA:ta (lncRNA) ei käännetä proteiiniksi. Koneoppimismenetelmissä ja sekvenssitunnistuksessa on tapahtunut huomattavaa parannusta viime vuosina. Väitöstyön viimeisessä osassa arvioitiin useiden koneoppimiseen perustuvien lncRNA-ennustustyökalujen ennusteita. Tulokset viittaavat siihen, että syväoppimiseen perustuvat työkalut tunnistavat lncRNA:t parhaiten

    Knowledge Driven Approaches and Machine Learning Improve the Identification of Clinically Relevant Somatic Mutations in Cancer Genomics

    Get PDF
    For cancer genomics to fully expand its utility from research discovery to clinical adoption, somatic variant detection pipelines must be optimized and standardized to ensure identification of clinically relevant mutations and to reduce laborious and error-prone post-processing steps. To address the need for improved catalogues of clinically and biologically important somatic mutations, we developed DoCM, a Database of Curated Mutations in Cancer (http://docm.info), as described in Chapter 2. DoCM is an open source, openly licensed resource to enable the cancer research community to aggregate, store and track biologically and clinically important cancer variants. DoCM is currently comprised of 1,364 variants in 132 genes across 122 cancer subtypes, based on the curation of 876 publications. To demonstrate the utility of this resource, the mutations in DoCM were used to identify variants of established significance in cancer that were missed by standard variant discovery pipelines (Chapter 3). Sequencing data from 1,833 cases across four TCGA projects were reanalyzed and 1,228 putative variants that were missed in the original TCGA reports were identified. Validation sequencing data were produced from 93 of these cases to confirm the putative variant we detected with DoCM. Here, we demonstrated that at least one functionally important variant in DoCM was recovered in 41% of cases studied. A major bottleneck in the DoCM analysis in Chapter 3 was the filtering and manual review of somatic variants. Several steps in this post-processing phase of somatic variant calling have already been automated. However, false positive filtering and manual review of variant candidates remains as a major challenge, especially in high-throughput discovery projects or in clinical cancer diagnostics. In Chapter 4, an approach that systematized and standardized the post-processing of somatic variant calls using machine learning algorithms, trained on 41,000 manually reviewed variants from 20 cancer genome projects, is outlined. The approach accurately reproduced the manual review process on hold out test samples, and accurately predicted which variants would be confirmed by orthogonal validation sequencing data. When compared to traditional manual review, this approach increased identification of clinically actionable variants by 6.2%. These chapters outline studies that result in substantial improvements in the identification and interpretation of somatic variants, the use of which can standardize and streamline cancer genomics, enabling its use at high throughput as well as clinically

    Machine learning and computational methods to identify molecular and clinical markers for complex diseases – case studies in cancer and obesity

    Get PDF
    In biomedical research, applied machine learning and bioinformatics are the essential disciplines heavily involved in translating data-driven findings into medical practice. This task is especially accomplished by developing computational tools and algorithms assisting in detection and clarification of underlying causes of the diseases. The continuous advancements in high-throughput technologies coupled with the recently promoted data sharing policies have contributed to presence of a massive wealth of data with remarkable potential to improve human health care. In concordance with this massive boost in data production, innovative data analysis tools and methods are required to meet the growing demand. The data analyzed by bioinformaticians and computational biology experts can be broadly divided into molecular and conventional clinical data categories. The aim of this thesis was to develop novel statistical and machine learning tools and to incorporate the existing state-of-the-art methods to analyze bio-clinical data with medical applications. The findings of the studies demonstrate the impact of computational approaches in clinical decision making by improving patients risk stratification and prediction of disease outcomes. This thesis is comprised of five studies explaining method development for 1) genomic data, 2) conventional clinical data and 3) integration of genomic and clinical data. With genomic data, the main focus is detection of differentially expressed genes as the most common task in transcriptome profiling projects. In addition to reviewing available differential expression tools, a data-adaptive statistical method called Reproducibility Optimized Test Statistic (ROTS) is proposed for detecting differential expression in RNA-sequencing studies. In order to prove the efficacy of ROTS in real biomedical applications, the method is used to identify prognostic markers in clear cell renal cell carcinoma (ccRCC). In addition to previously known markers, novel genes with potential prognostic and therapeutic role in ccRCC are detected. For conventional clinical data, ensemble based predictive models are developed to provide clinical decision support in treatment of patients with metastatic castration resistant prostate cancer (mCRPC). The proposed predictive models cover treatment and survival stratification tasks for both trial-based and realworld patient cohorts. Finally, genomic and conventional clinical data are integrated to demonstrate the importance of inclusion of genomic data in predictive ability of clinical models. Again, utilizing ensemble-based learners, a novel model is proposed to predict adulthood obesity using both genetic and social-environmental factors. Overall, the ultimate objective of this work is to demonstrate the importance of clinical bioinformatics and machine learning for bio-clinical marker discovery in complex disease with high heterogeneity. In case of cancer, the interpretability of clinical models strongly depends on predictive markers with high reproducibility supported by validation data. The discovery of these markers would increase chance of early detection and improve prognosis assessment and treatment choice

    ForestQC: Quality control on genetic variants from next-generation sequencing data using random forest.

    Get PDF
    Next-generation sequencing technology (NGS) enables the discovery of nearly all genetic variants present in a genome. A subset of these variants, however, may have poor sequencing quality due to limitations in NGS or variant callers. In genetic studies that analyze a large number of sequenced individuals, it is critical to detect and remove those variants with poor quality as they may cause spurious findings. In this paper, we present ForestQC, a statistical tool for performing quality control on variants identified from NGS data by combining a traditional filtering approach and a machine learning approach. Our software uses the information on sequencing quality, such as sequencing depth, genotyping quality, and GC contents, to predict whether a particular variant is likely to be false-positive. To evaluate ForestQC, we applied it to two whole-genome sequencing datasets where one dataset consists of related individuals from families while the other consists of unrelated individuals. Results indicate that ForestQC outperforms widely used methods for performing quality control on variants such as VQSR of GATK by considerably improving the quality of variants to be included in the analysis. ForestQC is also very efficient, and hence can be applied to large sequencing datasets. We conclude that combining a machine learning algorithm trained with sequencing quality information and the filtering approach is a practical approach to perform quality control on genetic variants from sequencing data

    Introducing deep learning -based methods into the variant calling analysis pipeline

    Get PDF
    Biological interpretation of the genetic variation enhances our understanding of normal and pathological phenotypes, and may lead to the development of new therapeutics. However, it is heavily dependent on the genomic data analysis, which might be inaccurate due to the various sequencing errors and inconsistencies caused by these errors. Modern analysis pipelines already utilize heuristic and statistical techniques, but the rate of falsely identified mutations remains high and variable, particular sequencing technology, settings and variant type. Recently, several tools based on deep neural networks have been published. The neural networks are supposed to find motifs in the data that were not previously seen. The performance of these novel tools is assessed in terms of precision and recall, as well as computational efficiency. Following the established best practices in both variant detection and benchmarking, the discussed tools demonstrate accuracy metrics and computational efficiency that spur further discussion

    RareVar: A Framework for Detecting Low-Frequency Single-Nucleotide Variants

    Get PDF
    Accurate identification of low-frequency somatic point mutations in tumor samples has important clinical utilities. Although high-throughput sequencing technology enables capturing such variants while sequencing primary tumor samples, our ability for accurate detection is compromised when the variant frequency is close to the sequencer error rate. Most current experimental and bioinformatic strategies target mutations with ≥5% allele frequency, which limits our ability to understand the cancer etiology and tumor evolution. We present an experimental and computational modeling framework, RareVar, to reliably identify low-frequency single-nucleotide variants from high-throughput sequencing data under standard experimental protocols. RareVar protocol includes a benchmark design by pooling DNAs from already sequenced individuals at various concentrations to target variants at desired frequencies, 0.5%-3% in our case. By applying a generalized, linear model-based, position-specific error model, followed by machine-learning-based variant calibration, our approach outperforms existing methods. Our method can be applied on most capture and sequencing platforms without modifying the experimental protocol
    corecore