

Introducing deep learning -based

methods into the variant calling

analysis pipeline

Master's Thesis

University of Turku

Department of Future Technologies

Master’s Degree Programme in Bioinformatics

2019

Vladislav Lysenkov

The originality of this thesis has been checked in accordance with the University of Turku
quality assurance system using the Turnitin OriginalityCheck service.

ii

Abstract

Department of Future Technologies, University of Turku

VLADISLAV LYSENKOV: Introducing deep learning -based methods into the variant

calling analysis pipeline

Supervisors: Sofia Khan, Laura Elo, Timo Knuutila

Master’s Thesis, 64p

Master’s Degree Programme in Bioinformatics

May 2019

Biological interpretation of the genetic variation enhances our understanding of

normal and pathological phenotypes, and may lead to the development of new

therapeutics.

However, it is heavily dependent on the genomic data analysis, which might be

inaccurate due to the various sequencing errors and inconsistencies caused by

these errors. Modern analysis pipelines already utilize heuristic and statistical

techniques, but the rate of falsely identified mutations remains high and variable,

particular sequencing technology, settings and variant type.

Recently, several tools based on deep neural networks have been published. The

neural networks are supposed to find motifs in the data that were not previously

seen.

The performance of these novel tools is assessed in terms of precision and recall, as

well as computational efficiency. Following the established best practices in both

variant detection and benchmarking, the discussed tools demonstrate accuracy

metrics and computational efficiency that spur further discussion.

Keywords: next generation sequencing, variant calling, machine learning, deep

learning, benchmark, accuracy, precision, recall

iii

Acknowledgements

I would like to express my gratitude to my supervisors, Dr. Sofia Khan, Dr. Laura Elo

and Prof. Timo Knuutila for their patience and timely guidance. In particular, I would

like to thank Sofia for her eager engagement in scientific and otherwise discussion,

Laura for sharing her strategic thinking, and Timo for challenging my understanding

of the topics discussed.

I am thankful to my colleagues, especially Esko and Sami for their assistance with

infrastructure; Markku for providing statistical advice; Satu for organizational support;

Deepankar, Niklas and Ning for their insightful talk on related matters; and Maria,

Mehrad, Thomas, Veronika and Xu for sharing their vision and friendly

encouragement.

I wish to thank my family for their kindness and support during my period of study

and their tolerance toward my choices and goals in life. Another warm thank you

goes to my closest friends Michael and Victoria for keeping my spirits up.

iv

Abbreviations

NGS / SGS: Next Generation Sequencing / Second Generation Sequencing

SBS: Sequencing By Synthesis

SBL: Sequencing By Ligation

CRT: Cyclic Reversible Termination

SMS: Single Molecule Sequencing

WGS: Whole Genome Sequencing

WES (WXS): Whole EXome Sequencing

DNA: Deoxyribonucleic Acid

RNA: Ribonucleic Acid

FFPE: Formalin-Fixed Paraffin-Embedded

SNP/SNV: Single Nucleotide Polymorphism / Single Nucleotide Variation

CIGAR: Concise Idiosyncratic Gapped Alignment Report

HMM: Hidden Markov Models

GMM: Gaussian Mixture Model

SGD: Stochastic Gradient Descent

ANN / DNN: Artificial Neural Network / Deep Neural Network

CNN / RNN: Convolutional Neural Network / Recurrent Neural Network

MLP: Multilayer Perceptron

TP: True Positive

FP: False Positive

TN: True Negative

FN: False Negative

v

Contents

Abstract ii

Acknowledgements iii

Abbreviations iv

Contents v

Chapter 1: Introduction 1

Objectives 1

Structure 2

Chapter 2: Background on the genetic variation 3

Genetic variation 3

Genetic information 3

Classification of genetic variation 3

Obtaining genetic information with NGS technologies 5

Genomic analysis methods and implementations 7

Overview of workflows 7

Variant calling and variant filtering 8

Interpretation of genetic variation 9

Chapter 3: Probability and Machine Learning in Variant Calling 10

Application overview 10

Methods and implementations 10

Genotyping with probabilistic models 10

Variant filtering with machine learning methods 13

Machine learning 14

VQSR 16

Chapter 4: Deep Learning in Variant Calling 18

Application overview 18

Methods 19

Architectures 19

Relevant concepts 21

Implementations 24

Clairvoyante 24

CNNScoreVariants (GATK4) 25

DeepVariant 26

vi

GARFIELD-NGS 28

VariationAnalysis 29

Summary table 30

Chapter 5: Workflow and data management 31

The overview of the project 31

Setting up the computing environment 32

Cluster 32

Cloud with GPU 32

Data management 33

Input / output 33

Reference genome 38

Sequencing data 38

Variant datasets 40

Setup and usage of the pipelines 41

Pre-processing 41

Processing 43

Evaluation 43

Fitness evaluation 44

Convenience in use 44

Computational efficiency 44

Performance benchmark 44

Versions 46

Chapter 6: Comparison of the variant calling pipelines 47

Overview of the approaches 47

Clairvoyante 47

CNNScoreVariants (GATK4) 48

GARFIELD-NGS 49

DeepVariant 50

VariationAnalysis 52

Fitness evaluation 52

Convenience in use 52

Computational efficiency 53

Performance benchmark 55

vii

Chapter 7: Conclusions 66

References 68

Appendices 81

Supplementary table 1. 81

Supplementary table 2. 82

 1

Chapter 1: Introduction

This chapter introduces the objectives of the study, and covers the structure of this

document.

Objectives

In the past several years, it has become apparent that the development and the

adoption of next-generation sequencing technologies procured a massive amount of

discoveries in molecular biology, genetics and medicine. Today, next-generation

sequencing (NGS), also referred to as second generation sequencing (SGS) and

high-throughput sequencing (HTS), is an umbrella term representing a range of

principles, applications, and technologies.

The most widely used technologies include whole genome sequencing (WGS),

targeted sequencing (from targeted regions to whole exome sequencing -

WES/WXS), RNA-Seq (a study of RNAs that in practice is based on DNA

sequencing), and others. They are used for assembling and annotating genomes, for

studying genetic evolution and interactions and variations, gene expression, for

predicting protein structure.

All these methods, including the methods for detecting genetic variations (variant

calling), are essentially analyzing sequences of nucleotides that are produced with

specific NGS platforms and procedures. A genomic data analysis relies on the

understanding of the goal of the particular analysis, the sources and features and

flaws of the data, and the techniques and tools in processing the data. The

processing approach must be able to accommodate, for instance, the variability of

the real data in respect to the sample size, sample origin (fresh tissue or formalin-

fixed paraffin-embedded tissue), and sequencing protocol (target enrichment vs.

amplification based).

By convention, such an analysis is conducted in the form of a pipeline that passes

through the necessary steps, such as quality control, alignment to the reference

genome, variant calling, as well as potential downstream analysis. An appropriate

pipeline would not only take into account the variability of the data, but also be based

on the best practices in the field and be convenient in use, efficient and accurate.

The aim of this work is the evaluation of the novel methods for variant calling with

regard to the suitability to being a part of the variant calling pipeline. The pipeline is

intended to be used mainly on NGS data produced with Illumina instruments (as the

most abundant in the field). The required variant types for this pipeline are single

nucleotide variations and small (less than 50 base pairs) insertions and deletions.

The existing pipeline is based on the well-known best practices and tools from the

Broad Institute; beside their functionality and recognition, they also have well-known

intricacies and downsides. The utilization of the more appropriate (according to the

 2

evaluation criteria) methods for identification of genomic variation would elevate the

value of the analysis and could, eventually, lead to a better understanding of genetic

causes of traits and diseases. Therefore, this work is relevant to the field.

Structure

Chapter 1 introduces this work, its objective and structure.

Chapter 2 introduces the motivation and the principles of genomic analysis and the

methods of variant calling.

Chapter 3 elaborates on the modern, established methods of variant calling, as well

as the machine learning background that is necessary for understanding them.

Chapter 4 provides further background on deep learning and examines the neural

networks that were designed for the task.

Chapter 5 details how this work was organized and how the variant calling tools

should be evaluated.

Chapter 6 compares the neural network based variant calling tools with the

established method.

Chapter 7 concludes this work by discussing its progress and the results.

 3

Chapter 2: Background on the genetic variation

This chapter describes modern genomic analysis. It starts with the very concept of

the genetic variation, that is followed by a description of the methods for obtaining

and analyzing such information. Both molecular mechanisms and computational

processes are introduced, including challenges and applications. The focal point for

the rest of the study is given.

Genetic variation

Genetic information

The genetic information, stored in DNA molecules in the form of nucleotide ‘bases’

— Adenine (A), Thymine (T), Guanine (G), and Cytosine (C) — affects the

phenotype to the extent that of regulating functional development, its diversity,

heritability and predisposition. The bases form sense and antisense strands of DNA

molecules, that are complementary to each other, and therefore each base has a

‘pair’. In literature, the term ‘base pair’, abbreviated as ‘bp’, amply denotes a unit of

length of a nucleic acid sequence. The human genome (DNA molecules in the

nucleus and in mitochondria) contains instructions that guide the development and

interaction of the cells. Approximately 2% of the roughly 2994.26 bp long1 human

genome is transcribed to the protein-coding messenger RNAs (mRNAs) that get

translated to the proteins and hence these genomic regions are called coding

regions. The rest (more than 98%) consists of non-coding, regulatory sequences,

instructing the production of RNAs that are involved in catalytic and maintenance

processes2. Altogether, the coding and non-coding DNA provide the genetic

instructions that are responsible for gene expression — the process of transcribing

the DNA into the into RNA sequences and potential translation into the protein

sequences3.

The genetic code contains mutations, occurring due to the inner processes of the

cell, such as damage repair or reproduction, or external mutagenic mechanisms,

such exposure to harmful substances and ionizing radiation, interfering with

nucleotides or bonds. These mutations, being either gain-of-function, equally viable

or loss-of function changes, result in corresponding gene products. Thus, the

changes concern various functional consequences, from the growth and movement

and interplay of macromolecules to that of the cells.

Classification of genetic variation

Variants differ by their size, complexity, and frequency. One of the most basic, and

common types of genetic variants is a point mutation (single nucleotide variation, or

SNV), where a one nucleotide is substituted by another. For example, a sickle cell

disease originates from the wrong amino acid (E/Glu instead of V/Val), translated

from the corresponding coding region, where one nucleotide was replaced by

another:

 4

Wild-type: ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACT...

Mutant: ATGGTGCACCTGACTCCTGTGGAGAAGTCTGCCGTTACT...

Both of these sequences are parts of the β-globin protein gene. The first, wild-type

sequence functions normally, producing proteins that form torus-like erythrocytes

capable of carrying oxygen. The second, mutant (rs334 variant in the dbSNP variant

database4) sequence causes erythrocytes to take a form that resembles a sickle,

lowering their transporting ability5.

Another frequently occurring type of small variants is an indel: an insertion or a

deletion. Unlike SNV, an indel can span across more than one nucleotide, potentially

up to 50 base pairs (bp) according to modern evaluation guidelines and variant truth

sets6. In a case that an indel's length is not divisible by 3, i.e. it cannot be described

as a composition of a whole number of codons (3-base sequences translated as

amino acids), such an indel represents a frameshift mutation. With the reading frame

being disrupted, the mRNA starts off the wrong nucleotide and thus produces a

different set of amino acids (resulting in, most likely, an abnormal protein7). Non-

frameshifting indels on the coding region, on the other hand, cause entire amino

acids to be inserted into the amino acid chain or deleted from it.

In addition, insertions and deletions can be categorized as conservative and non-

conservative depending on the place of their occurrence (between codons or inside

a codon) and the subsequent effect on the neighboring amino acids. The majority of

them are conservative; as studies show, indels that are or based on repetitive

sequences (interspersed and tandem repeats) are abundant in the genome8-11.

Tandem repeats are dynamic. In a case a repeat is located inside or near a gene, it's

expansion may lead to severe neurodegenerative diseases. In the following well-

studied example, a trinucleotide repeat expansion of the CAG sequence

(Q/glutamine) significantly increases the rate (up to being a cause if the amount of

repeats is 36 or more) of developing a Huntington disease12-16. The first sequence

belongs to the reference genome GRCh38.p7, the second represents the

rs71180116 variant from dbSNP:

TCCCTCAAGTCCTTC (CAG)19 CA ACAGCCGCCACCGCCGC

TCCCTCAAGTCCTTC (CAG)41 CA ACAGCCGCCACCGCCGC

The structural variants span beyond 50 bp and up to several megabase pairs (Mbp)

and whole chromosomes (aneuploidy), typically being several kilobase pairs (kbp)

long. This category is comprised of deletions, insertions, duplications, inversions,

and translocations. It has been argued that their size and potential complexity, along

with current sequencing methods, set limitations to their reliable discovery and

characterisation17-19. As a result, experimental and computational approaches

 5

focused on structural variants differ from the approaches focused on small variants.

This work explores the latter.

Obtaining genetic information with NGS technologies

Modern sequencing of nucleic acids is, in essence, a parallel reading of millions of

short fragments (hence the name - short-read massively parallel sequencing, or

MPS) of the source nucleic acid. During the preparation of a library (a collection of

reads), the DNA is extracted from the sample, physically or chemically fragmented,

and its fragments are size-selected and amplified. Every individual fragment is

composed of a sequence of nucleotides, and altogether they may constitute overlaps

sufficient for further analysis with computational methods (sequence alignment,

variant calling and interpretation). The likelihood of the correct determination of a

particular nucleotide (base calling) depends on many factors, from the preparation of

library to the exact method of determining the sequence20.

Sample processing starts with the DNA extraction and purification21-23. For fresh and

frozen samples, such as blood, buccal swab, bone marrow or other tissues, the

nucleic acids are separated from the surroundings by the chemical, enzymatic or

mechanical cell lysis that disrupts, degrades or breaks cellular membranes and

components. For formalin-fixed paraffin-embedded (FFPE) tissues, common in

clinical research, the paraffin must be dissolved first, and then chemically and

enzymatically lysed. The detached DNA rests in lysate and must be purified using

either phase extraction (centrifugation in a phenol-chloroform mixture) or column-

based extraction (binding of nucleic acids to silica-based gel).

DNA fragmentation can be done via sonication (acoustic effect), hydroshearing

(hydrodynamic effect), nebulization (atomizing effect), or enzymatic shearing (bond

cleavage effect). The choice of the fragmentation method depends on the sample

and fragmentation resources available as well as on the desired final fragment size,

and may influence how the original sample is represented.

For instance, while the physical methods have higher reproducibility (more control

over fragment sizes) and lower dependence on the actual sequence, they are not

designed to scale and are material and time consuming. In comparison, the

enzymatic methods are scalable and do not result in as much loss of the sample

material, but exhibit sensitivity to contamination and bias towards enzyme-specific

sequences (leading to a poor representation of the sample). In the end, a properly

degraded DNA is a set of fragments distributed along the Gaussian curve with a

mean in the desired fragment sizes' range.

These fragments undergo adapter ligation. The particular ligation procedure is

determined by a 'library preparation kit' used in the sequencing experiment. Such a

kit contains reagents and adapters and optionally targeted panel, ultimately dictating

how ligation, amplification and validation steps are performed. In general, in a

 6

process called end repair, the ends of the fragments are tailed with platform-specific

'blunt ends' (synthetic oligonucleotides containing 5′ and 3′ groups and often

barcodes for identification). In single-end sequencing, the read is read only once (in

5' to 3' direction). In paired-end sequencing, both ends can be utilized, producing two

(forward and reverse, complementary) reads with known distance between them and

thus aiding alignment algorithms.

 Forward read: 5’ TTTTTTTCTGAGGCAAGTCCCACTCTCTTGCCCAGGCTGGAG 3’

(Reverse read: 3’ AAAAAAAGACTCCGTTCAGGGTGAGAGAACGGGTCCGACCTC 5’)

 Reverse read: 5’ CTCCAGCCTGGGCAAGAGAGTGGGACTTGCCTCAGAAAAAAA 3’

In the case that a significant portion of fragments is too long or too short for a

particular method of sequencing, a bioinformatic analysis (assembly, mapping, etc.)

may suffer from low read coverage of that portion or from unsuccessful addition of

the adapter sequence onto the end of the read. To circumvent biased distribution of

sizes, the adapter-ligated fragments are size-selected, or separated by the desired

size from all others. Such a selection is carried out via gel electrophoresis method

(where the naturally negatively charged fragments move towards the positively

charged end of the electrified lane with gel, forming a ‘DNA ladder’) or magnetic

beads method (where beads bind to the fragments according to the ratio of bead

suspension to the solution, and are attracted by a magnetic field).

The optical and semiconductor-based detectors in the MPS instruments are not able

to receive sufficient signal from single molecules, and so require an amplification of

the DNA material. It is possible to amplify and then sequence only a selection of

fragments, apt for a particular research question or a budget. In that case, a set of

verified biotinylated oligonucleotides from a kit is utilized to target complementary

fragments (binding to, or hybridizing with them), wash away the unbound ones, and

amplify the elution (perform target enrichment24). The oligonucleotides (oligos,

probes) can be either of mRNA or cDNA origin, while a set of them can belong to

exonic regions (for whole exome sequencing, WES25,26) or a panel of relevant genes.

The amplification is conducted in several rounds and cycles via polymerase chain

reaction (PCR)27,28. Within one cycle, consecutively, the initial double-stranded DNA

is denatured (as hydrogen bonds break), the DNA primer is annealed to the 3' end of

each strand, and the complementary DNA strands are synthesized (elongated,

extended) by the polymerase enzyme using the deoxynucleoside triphosphates

(dNTPs). The primers and the polymerase are selected beforehand, and added to

the solution along with dNTPs. The reaction effectively duplicates DNA strands in the

solution, thus reaching billions of copies by the end of ~20th cycle, and trillions by

the end of ~40th cycle.

According to the reviews of the evolution and modern state of NGS technologies29-31,

he reading of the amplified DNA is achieved either via ‘sequencing by synthesis’

 7

(SBS) or ‘sequencing by ligation’ (SBL). SBS of the discussed ‘second generation’

sequencing methods comprises two technologies:

● Cyclic reversible termination (CRT), where the immobilized DNA strands are

DNA-polymerase-supplemented with fluorescent nucleotides of particular

colors, imaged with TIRF (total internal reflection fluorescence) detector, and

washed with the removal of the fluorescent nucleotides with the strand

complements they are attached to; all this cyclically repeated. The method is

utilized by Illumina32.

● Pyrosequencing, where the beads with the DNA strands on them are placed

into PTP (PicoTiterPlate) wells along with the beads with catalytic and

bioluminescent enzymes on them; after that, the wells are filled with dNTPs of

a particular type, which are added to the strands by the DNA polymerase that

is also present in the wells; the addition of a dNTP causes a pyrophosphate

reaction resulting in the release of light, captured by the CCD (charge-coupled

device) detector. After the washing, the cycle repeats. The method was

utilized by 454 Life Sciences (on its own and later as part of Roche) until

2016, when the production of instruments was abolished33,34.

In SBL, the DNA strands hybridize with oligonucleotides with one or two

‘interrogation bases’ and fluorescent dyes, which are ligated to the template with

universal primers. After washing of the leftover oligonucleotides, the ligated ones are

imaged and identified. The oligonucleotides are then cleaved of the dye, and the

cycle repeats. The method is utilized by Thermo Fisher Scientific for their SOLiD

sequencing instruments35,36.

The ‘third generation sequencing’ methods are able to capture whole DNA

molecules, hence they are primarily called ‘single molecule sequencing’ (SMS)

methods37. These still relatively new and unused technologies bring kbp-long reads

and increased sequencing speed at the cost of lower accuracy and scalability. For

instance, Pacific Biosciences (PacBio) applies a ‘real-time’ variant of SBS38, while

Oxford Nanopore Technologies (ONT) relies on the detection of changes in the ionic

current that occur when the DNA strands pass through the nanoscale pores39. This

data, however, is not used in this work.

Genomic analysis methods and implementations

Overview of workflows

Efficiency and accuracy of the alignment, variant calling and interpretation is

sensitive to the systematic errors and biases in the NGS data. The widely recognized

issues here are the quantity of the data and the errors induced at various stages of

obtaining and processing (sampling, sequencing, mapping) of the data. Because of

these issues, the demand for the sophisticated methods of the analysis is on the

rise.

 8

In a typical NGS processing workflow, the raw data from the sequencer passes

through several pre-processing steps, before a detection algorithm for a particular

variation type (dedicated to finding particular types of errors) would start identifying

likely variants. Pre-processing includes quality control of the reads (trimming bad

quality reads, marking duplicates from library preparation, adjusting quality score

observations) and their alignment (mapping the reads to the reference, sorting the

alignment files according to the reads’ positions) or de novo assembly. During the

alignment or de novo assembly, the reads are positioned to overlap each other and

assemble contigs (contiguous sequences representing consensus regions). The task

of de novo assembly is notably more difficult than that of the alignment: the

alignment relies on the index of the reference genome, whereas de novo assembly is

used to obtain first versions of reference genomes. Neither can be considered a

solved problem, but a number of established methods is used in production

environments to-date (discussed in Chapter 5). The choice of the aligner may

depend on the source data (DNA or RNA, genome or exome), the types of variants

to call (short variants, structural variants), the variant caller(s) used in combination,

and any existing best practices. As an example of the latter, the Broad Institute

proposes certain workflows for their widely used software suite GATK (Genome

Analysis Toolkit)40,41. Other developers, too, might suggest datasets, parameters and

other tools to use with their software.

The variant detection differs for germline variants and somatic variants from the

tumor and hence the genomic pipelines utilize either germline or somatic variant

detection methods. Tumors are known to be heterogeneous, consisting of cell

subpopulations with independent novel somatic mutations. As a consequence, the

frequency of their appearance in the data tends to be significantly lower than the

frequency of the germline variation. In addition, in the somatic variant detection a

matched normal sample (from the same individual) is utilized to distinguish between

somatic and germline variants. This work, however, focuses on germline analysis

and features germline variant callers.

Variant calling and variant filtering

Variant calling is, in essence, a calculation of the difference between two or more

samples - with one being of interest (e.g. from a patient) and another a reference.

Such a calculation can be as simple as counting alternate alleles at the inconsistent

positions. However, the biases discussed above make this approach, at best,

inefficient. Modern variant calling tools such as GATK, VarScan, SNVer, Strelka2

utilize bayesian, heuristic, frequentist approaches for inferring correct statistics about

the variants. Moreover, reads can carry or help to derive complementary information

such as base and mapping quality scores, strand orientation, GC content (proved to

be limiting sequencing capabilities42,43), distances and other metrics that can

influence the confidence of the call. If the variant detection method is designed to be

permissive, such criteria are helpful in filtering out false positive (FP) variants.

 9

The filter decision boundary has, so far, passed through three evolutionary stages.

The hand-crafted decision boundary, or ‘hard filtering’, is based on the evaluation of

the above criteria made by biological experts. Whenever some of their values

reaches a specified threshold, the corresponding variant is classified either as true or

false positive. This linear approach, however, affects other variants as they may

have different suitable values: a portion of the true positives will be either removed

from or included in the final callset together with the false positives. Hence, currently

this approach is considered crude and is resorted to only when the variant callset is

underpowered, containing annotations with values that are not computable by more

sophisticated methods.

The more sophisticated methods, in turn, employ probabilistic models that rely on the

expert-made criteria utilized as features. The decision boundary is then described by

these models, enabling the selection of variants by their fitness to multiple variant

profiles. As an example, the two competing variant callers GATK and Strelka2

depend on different machine learning methods (Gaussian mixture model (GMM) and

random forest, respectively) to improve the accuracy and consistency of their variant

callsets, yet both apply feature sets and trained models to do so. Still, this kind of

approaches has limitations, as discussed in Chapters 3 and 6.

The state-of-the-art mode of variant filtering eliminates the limits of human-defined

criteria, instead focusing on architectures of artificial neural networks (ANN) that train

models on real data. This way, the decision boundary is modelled with features that

are learned rather than explicitly set. Several variant detection tools utilizing deep

neural networks (DNN) have been published already. The capability of these novel

tools to be incorporated into existing variant calling pipelines is yet to be determined.

Interpretation of genetic variation

Variant calling allows researchers to select and identify various types of genetic

variations, and eventually perform downstream analysis, from biological annotation

to clinical annotation and association with phenotypes. The variants in the callset

may have specific functional significance such as encoding a change on a protein or

a contribution to a gene; methods of computational prediction of these effects such

as SnpEff or Ensembl VEP are often applied to novel variants44,45. The variants can

also be characterised by passing them through the relevant genomic databases,

such as dbSNP and ClinVar4,46; annotated, the variants can be arranged according

to their clinical significance43,47. With known clinical association, the variants can give

insight to the genetic architecture, inheritance patterns48, pathogenesis of complex

genetic diseases49, and, eventually, aid medical evaluation50,51. A reliable variant

detection is increasingly important for these analyses, as the callsets are expected to

be both specific and sensitive52-54.

 10

Chapter 3: Probability and Machine Learning in Variant Calling

This chapter reviews probabilistic and machine learning methods in application to

variant calling. It starts with the application overview and continues to the algorithms

and models utilized for the task. The methods are designed to rely on the outcome of

another and so described consecutively. Some of the commonly used terms and

concepts are straightforward and explained briefly; others require a formal definition

to be given separately. In the end, the limitations of these techniques are discussed.

Application overview

Statistical and probabilistic modeling play a key role in modern variant calling. The

first problem that requires probabilistic methods is discovering the positions of

interest (the ‘active regions’) and candidate haplotypes. For any particular position,

the probability of containing a variant is calculated using the data from the alignment.

Next, the very problem that genotyping (calculating genotype likelihoods) methods

are designed to solve brings the uncertainty: given the position of a base in the

reference genome where the base is not completely concordant with the alleles in

the aligned reads, and given that the reads may have errors and biases encoded in

them, what is the true genotype at this position? To make the decision, the majority

of genotyping methods use Bayesian inference, but frequentist, heuristic, and

machine learning methods are applied as well or in combination. Finally, variant

filtering solutions rely on decision boundaries that are modeled with features that are

determined by the human experts.

Accordingly, variant callers of all kinds encompass multiple scores and likelihoods in

their execution phases. Here, the emphasis is on the approach conceived by the

Broad Institute (GATK HaplotypeCaller + VQSR), due to its consistent performance

and a potential neural network based successor (discussed in Chapters 4 and 6), as

well as widespread use and an established community.

Methods and implementations

Genotyping with probabilistic models

Genome Analysis Toolkit (GATK), being a toolkit, consists of more than 200 different

tools for quality control, read and variant manipulation, variant discovery, filtering,

annotation and evaluation (considering major version 4, and including tools that are

in beta or experimental state and tools that belong to Picard, a quality control toolset

that is built in GATK). Germline short variant discovery starts with one tool:

HaplotypeCaller55. HaplotypeCaller, as a collection of tasks, accepts alignment and

reference sequence data, finds 'active regions' in the alignment, finds haplotypes

and their likelihoods therein, finds genotypes with Bayes' rule, and outputs the most

likely ones into a variant callset (Chapter 5). The program progresses step-wise and

locus-by-locus.

 11

Step 1. To determine 'active regions', at first, it sifts through pileups of each position

and, based on any alternative allele count in a given variant context (SNVs or indels

or portions of unsuccessful alignments) as evidence and heterozygosity rates of

SNVs and indels as priors, assigns a 'profile state' probability value. Resulting ‘raw’

probability profile of every one-residue loci ranges from 0.0 to 1.0, with the default

threshold of 0.002 for being ‘active’. This threshold, along with the default standard

deviation (17 bp), is then used to create a Gaussian kernel based band-pass filter in

order to smoothen (convolve) the probabilities over the regional intervals. The ‘active

region’ is always extended by 100 bp on each side.

Step 2. Each ‘active region’ contains a number of candidate haplotypes, the best

(most supported) of which are selected via assembling a De Bruijn-like graph of the

reference sequence in region’s coordinates and matching each of the reads with

each of the graph’s paths. In such a graph, the more consecutive read segments (k-

mers) correspond to the adjacent vertices, the more weight the edge will have. The

resulting graph is adjusted, or pruned (Figure 1): the paths with edges of weight

lower than threshold (2 by default) are removed, the paths without a terminal k-mer

(a ‘dangling tail’) are either removed or merged to the reference path via the Smith-

Waterman alignment (SWA) algorithm56. After pruning, the remaining paths define

the candidate haplotypes. Each of these haplotypes is then realigned to the

reference by the SWA, producing CIGAR strings (Concise Idiosyncratic Gapped

Alignment Report, or an indication of the amount and order of matches, mismatches,

insertions and deletions of the sequence in relation to reference) and pinpointing the

location of the candidate variants.

Figure 1. An example of a local haplotype reassembly. Here, the red edges represent the reference

path, the grey and dotted represents the pruned one, and black represent the reads’ contribution. This

graph was collected using a “--graph-output” argument intended for debugging.

Step 3. The support for these haplotypes is determined by the pairwise alignment of

each read against each candidate haplotype (Figure 2). The pair-HMM (pair Hidden

Markov Models)57,58 algorithm calculates a matrix of transition probabilities (𝑇𝑃) of

the alignment states (transiting to a Match, an Insertion, or a Deletion), individually

characterized as

 12

𝑇𝑃 = 𝐺𝑃 or 𝑇𝑃 = 1 − 𝑥 ∗ 𝐺𝑃, with 𝐺𝑃 = 10
−𝑞

10 ,

where 𝐺𝑃 denotes a gap penalty that is based on 𝑞, which is either a gap extension

penalty (a constant of 10) or an insertion or deletion gap open penalty (a constant of

45 or a base quality present in the recalibrated alignment), and the subtraction and 𝑥

depend on the alignment state of a particular position. The exponential function is

antipodal to the Phred Quality Score’s logarithmic function.

For any particular read and haplotype combination, the alignment states are

computed recursively, producing also a matrix of emission probabilities (𝐸𝑃) of all of

the positions in a read against all of the positions in a haplotype, individually

characterised as

𝐸𝑃𝑛𝑜𝑛−𝑚𝑎𝑡𝑐ℎ𝑒𝑑 = 𝐺𝑃/3 or 𝐸𝑃𝑚𝑎𝑡𝑐ℎ𝑒𝑑 = 1 − 𝐺𝑃,

depending, accordingly, on whether a corresponding 𝑇𝑃 showed a match. 𝐸𝑃

describe the observed probabilities of the read-haplotype alignments. Once aligned,

the matrix of likelihoods is summarised to a total likelihood score of a read-haplotype

pair. These scores, in turn, form a matrix of likelihoods of all of the reads against all

of the haplotypes.

Figure 2. The pair-HMM workflow with matrices of probabilities. The matrices are loosely based on

GATK workshop materials.

Step 4. The acquired haplotype likelihoods are then derived to allele likelihoods. For

every potential variant (extracted from CIGAR), there is a number of haplotypes

supported by any particular read, of which the highest-scoring haplotype gets to

represent the allele of the chosen read (Figure 3).

Figure 3. Transforming haplotype likelihoods to allele likelihoods. The elements chosen for the

example are loosely based on GATK workshop materials.

 13

The knowledge of haplotype likelihoods associated with chosen alleles is crucial for

determining the ‘raw genotype probability’ (called so by Poplin et al.55, in reality

describing the conditional probability of the read given the genotype) and,

consequently, the posterior genotype probability of every variant (the goal of the

HaplotypeCaller). The posterior genotype probability is calculated with the Bayes’

rule:

𝑃(𝐺𝑖| 𝑅𝑗) =
𝑃(𝐺) ∗ 𝑃(𝑅𝑗| 𝐺𝑖)

𝛴𝑖 𝑃(𝑅𝑗| 𝐺𝑖) ∗ 𝑃(𝐺𝑖)
, where

𝑃(𝐺) is the prior probability of a genotype that is either default

(
1

2 ∗ 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 + 1
) or user-defined, and therefore made flat (identical) for all

possible genotypes,

𝑃(𝑅𝑗| 𝐺𝑖) = 𝛱𝑗(
𝑃(𝑅𝑗| 𝐴1)

2
+

𝑃(𝑅𝑗| 𝐴2)

2
) is the mentioned probability of the read with

that genotype, that relies on the allele likelihoods,

and the denominator sums all possible genotypes of these alleles.

By design, the HaplotypeCaller’s approach to draw genotype likelihoods is sensitive

rather than specific: it looks for every candidate region, haplotype or allele, but it

does not account for potential sequencing and initial alignment artifacts and errors,

apart from the option to undervalue the repetitive sequences’ indel base qualities to

make the pair-HMM more stringent against such regions. Both repetitive and non-

repetitive indel, as well as SNV calls may or may not represent actual variants, and

thus are officially not suitable for a comprehensive downstream analysis (the validity

of that statement is evaluated in Chapter 6). Fortunately, HaplotypeCaller leaves

multiple ‘annotations’ as auxiliary information (reporting of number of chromosomes,

depth of coverage, mapping quality, allele frequency, strand bias, as well as just

computed genotype likelihoods) for every discovered variant, making the filtering of

false positive variants possible.

Variant filtering with machine learning methods

Variant filtering, as mentioned in Chapter 2, can be performed by cutting off variants

which annotations did not pass the empirical threshold. For example, any variant

with ‘MQ’ (mapping quality) annotation lower than 40 or ‘FS’ (Fisher's Exact Test for

alleles’ support on both strands) annotation greater than 60 could be discarded. It

stands to reason that different variants in the callset exhibit different values in their

annotations, albeit without an extensive deviation.

Therefore, even if the threshold is optimal, the variants with annotation values close

to the threshold could be classified unjustly: both true and false positive variants

would reside on both sides of the threshold. If the threshold favors keeping more true

positives, the filter keeps more false positives along; if the threshold favors the

removal of false positives, the filter clips true positives as well. Moreover, if two or

 14

more filters are applied to the callset, they can be contradictory and, as a result, too

loose or too stringent. For this reason, the ‘hard filtering’ is considered inefficient and

expensive in terms of manual selection of appropriate annotations and thresholds.

To remove unwanted variants from the callset more efficiently, their selection should

be non-linear, with effect from multiple, if not all annotations taken into account. In

GATK, a proposed solution is to consider a combined effect of these annotations,

modeling ‘annotation profiles’ of true positive variants. The VQSR method, part of the

GATK package, implements it as a machine learning estimator, ‘learning’ these

profiles from the datasets of known variants and then using them to label new

variants41,59-61. Because its description requires an understanding of fundamental

machine learning concepts, a primer on machine learning is supplied.

Machine learning

Machine learning is an algorithmic approach for finding robust solutions to problems,

in which the model is trained on the existing data, instead of being defined as an

exact algorithm. Such models are able to extract patterns from heterogeneous, multi-

dimensional datasets, and use these patterns to characterize the new data. Machine

learning algorithms comprise several branches, each of which is applied to the most

suitable tasks: supervised learning includes classification and regression algorithms;

unsupervised learning includes dimensionality reduction and clustering algorithms;

semi-supervised learning algorithms may consist of a combination of the previous

two; and reinforcement learning algorithms tackle tasks that do not have a clear

definition but do provide a feedback, such as playing a game. In variant calling, as of

today, only supervised and unsupervised methods are known.

Learning from data means training on the incoming data until the model is able to

generalize the predicting output to the new, unseen data. In supervised learning, the

training data is labeled: its instances (observations, examples) are associated with a

description value, the likes of which the model is supposed to predict. In

unsupervised learning, there are no labels: the algorithm is set to find the similarities

or dissimilarities between the instances of data that it is fed. The instances consist of

the features, which can be categorical, continuous or mixed values; the type-specific

data is analyzed by type-specific algorithms and techniques.

The central idea of training is based on minimizing an error measure, thus

maximizing the correctness of the prediction. The way it is obtained is fundamentally

different between the branches: with labels, it is the training error (loss function,

defined as a measurement of loss from a prediction being wrong, e.g. as a mean

squared error (MSE)) and the testing error (generalization error); without labels, the

only alternative is the general criterion, such as a distance measure.

For supervised learning, its labeled dataset is divided into the two or three separate

sets: the training set, the validation set and, possibly, the testing set. The training set

is used to fit (update) the parameters (e.g. coefficients, weights, biases) of an

 15

algorithm, by predicting the label for every available instance and computing the loss

function. The error is minimized, or optimized, via the gradient descent algorithm:

knowing the current value of the loss function 𝐽(𝜃) and the parameter 𝜃, a partial

derivative is able to find the gradient (the extent) to which the parameter value

should be changed:

𝜃 = 𝜃 − 𝛼 ∗
𝜕𝐽(𝜃)

𝜕𝜃
,

where 𝛼 represents an arbitrary learning rate that defines the speed of the gradient,

and that depends on the particular implementation.

The validation set serves as an indicator of the trained model’s ability to generalize,

i.e. predict as accurately on the unseen data; at this point, a researcher may want to

optimize the hyperparameters (tunable aspects such as the learning rate for

minimization algorithm or the amount of trees in a random forest) of the model to

improve the fitness. Here, cross-validation techniques may be utilized to iteratively

partition the initial dataset and obtain an averaged estimation of fitness; a nested

cross-validation may be utilized to select the best-performing hyperparameter set.

Finally, the testing set, that is in good practice completely independent from the

training, evaluates the final model (or models) performance.

With unsupervised learning, the structure of the data or the relationships between

the instances are decided without any external criterion. The clustering algorithms

calculate the metrics (distances, variances) for instances, assign the clusters upon

them, and adjust with each new iteration, until there is nothing left to adjust (until the

convergence is reached). As a result, the distributions, densities, similarities are

learned from the given features, and these properties correspond to the user-defined

hyperparameters (like the amount of clusters or instances in a cluster).

Training on the noisy or biased data or with wrongly chosen hyperparameters may

lead to unwanted results, such as overfitting (‘memorizing’ the prediction instead of

generalizing) or underfitting (ignoring the actual structure of the data by rendering

simplistic prediction). Accordingly, the methods of dealing with these issues involve

manipulation of the data or the model. To avoid overfitting, the model is regularized,

by applying a penalizing technique (such as L1 Lasso or L2 Ridge) to the parameters

or reducing the amount of the selected features. To avoid underfitting, the existing

regularization could be reduced, or more features could be selected or engineered.

 16

VQSR

The ‘raw’ callset, obtained with HaplotypeCaller, contains both unseen variants that

are supposed to pertain to the analyzed sample or individual, and variants that can

be found in databases of validated and recognised variants (more on databases in

Chapter 5). The latter variant sites can be categorized as

● true sites, validated high-confidence variants that will be used in training;

● non-true sites, partially true and partially false variants that will be used for

training, too;

● non-true sites, ‘known’ variants that will be used for additional metric

stratification rather than training.

The datasets of human variants, adjusted to several widely-used human genomes,

are supplied by the Broad Institute. The method utilizes the datasets of these

variants (‘resources’), separately for SNVs and indels. Accordingly, the annotations

of the called variants with such associations are used to train positive and negative

Gaussian Mixture Models (GMM) for SNVs and for indels. The Gaussian mixture

distribution here is chosen due to its ability to represent a realistic dataset, that may

consist of more than one Gaussian distribution, as in this case (Figures 4a, 4b).

The variational Bayesian algorithm learns the GMM cluster parameters and fits the

other variants in that callset to these GMM clusters, to estimate them as close to

being true or false with a VQSLOD (Variant Quality Score Log-ODds) score and a

corresponding tranche (designating variant’s sensitivity to the true sites). The

hyperparameters for the variational Bayesian algorithm such as the number of

Gaussian distributions per model, and shrinkage and dirichlet parameters (used for

computation of multivariate Gaussian distribution) are made default, but the user can

change them with the tool’s arguments. In the end, the VQSLOD-tranche threshold is

applied, and the false positive variants filtered according to it.

It may happen that annotations of a variant are too divergent, in which case they will

not be used in the GMM. VQSR accepts additional arguments for tweaking, such as

the standard deviation threshold for these annotations. In a general case, VQSR

tools accept input callsets, resources, resources’ prior probability notations, and

annotation list for modeling as arguments. The method often relies on tailoring

settings according to the needs of a particular project; it has been noticed that it may

be prone to underfitting or overfitting the data62.

 17

(a)

(b)

Figure 4. An example of the recalibration plot from the VQSR output, showing the distribution of (a)

SNV variants along FS/ReadPosRankSum annotation scales and (b) indel variants along

SOR/MQRankSum annotation scales; other annotation dimensions are available. The ‘novelty’ plot

describes the distribution of ‘novel’ and ‘known’ variants. The ‘training’ plot describes the variants in

the positive and negative GMMs. The ‘outcome’ plot describes how the variants were filtered.

 18

Chapter 4: Deep Learning in Variant Calling

This chapter extends the previous chapter on machine learning with the concept of

deep learning. It starts with the origins of neural networks and continues to the range

of architectures and methods used today. Then, several neural network based

variant detection tools are discussed.

Application overview

At least five variant calling and filtering tools that utilize one or another kind of neural

network architecture are already available. The claims about their performance

compared with conventional machine learning models are tested in Chapter 6; here,

the deep learning techniques that these tools rely on are examined.

Deep learning is a division of machine learning focused solely on multilayered neural

networks. A neural network is composed of processing nodes (‘neurons’) organized

in layers, receiving the input signals from neighboring nodes, computing the weights

and passing the result (net input) to the next layer, making the network learn or

process the features. A particular ordered combination of layers - a model - defines

how training or inference can proceed. The models may differ in the amount of layers

('depth' of the network), layers’ dimensionality ('width' of the network), activation

function, and optional regularization and constraint functions; each model employs

an appropriate loss function that is optimized using an appropriate minimization

algorithm.

During the training, the parameters (weights, thresholds) of the connections between

the nodes are assigned as zeroes or randomly and then adjusted until the model is

trained. As with machine learning approaches discussed in Chapter 3, the input

(feature) signals can be used as a learning material to predict the output (label)

signal. The features, however, are not (necessarily) engineered by a human expert;

they are extracted from the dataset. With every iteration, as the cost function

estimates how far the prediction is from the true values, its value is supposed to

decrease, nearing zero. This optimization is performed by a training algorithm,

usually stochastic gradient descent, where the gradient itself is procured by the

backpropagation algorithm.

During the inference, the nodes in layers, after receiving their part of the data,

multiply it with the assigned weight and sums with the analogous result from another

connections, until certain threshold is reached, upon which the data is passed on

again. The weights and the thresholds are only changed (‘trained’) during the training

process, and are fixed for the inference.

Feedforward neural networks (FFNN), recurrent neural networks (RNN),

autoencoders (AE) and deep belief networks (DBN) constitute major types of

 19

networks developed and applied today, with many more subtypes designed for more

specific tasks.

In the next section, the general methods behind neural networks are discussed.

Methods

Architectures

As the name implies, a feedforward neural network is unidirectional, passing the data

only forward - to the layers above the observed one. Therefore the nodes in such

networks receive the data from the nodes beneath. Feedforward neural networks,

originating from the simplest of neural network architectures, multilayer perceptron

(MLP), are often initially applied to various kinds of tasks requiring analysis of high-

dimensional data.

An MLP only consists of fully connected (FC) layers, where every node has a

connection with every node of the layer above, apart from the output layer (Figure

5a,b). The nodes of the input layer feed the data they receive to the nodes of the

following layer, where the data from every input node is multiplied by the current

weight, and summed with such multiplications from every other input node. The

result is passed through the activation function ('activating' the node and passing the

value further upon a condition, such as removing negative values in ReLU). Between

the input and output layers the hidden layers are hidden. An MLP may have an

arbitrary number of hidden layers, modeling complex, nonlinear functions; however,

too large number of connections could set limits to training63,64.

Another subtype of a feedforward network, a convolutional neural network (CNN),

has more complicated structure: convolutional layers pass their computed weights to

pooling layers, to new convolutional layers, and in the end, to FC layers again

(Figure 5c). As CNNs are often used to process multidimensional, large-scale data

such as images, the layers of the network, too, must become multidimensional

(usually 3-dimensional), by creating multiple filters (kernels) of the fitting depth and

particular width and height dimensions. The nodes in such layers only connect to a

subset (a neighboring region) of the layer above, due to the exponentially larger

amount of weights and inability to scale and generalize well otherwise.

The input convolutional layer slides over the input tensor (a data structure that holds

multiple dimensions), convolving (merging by multiplication of values in a given filter

and the input, and summing the results) the features into a feature map. The maps

stack onto each other, forming the input for the next layer from the higher to the

lower level features. The convolutional layer is followed by the activation layer, which

is followed by the pooling layer (that reduces the size of the input by picking an

average or maximum value in another sliding window). The output of the network is

made by the FC layer or layers, producing vector or vectors with label values

corresponding to the ones the network was trained with65,66.

 20

Recurrent neural networks, now divergent from feedforward neural networks, allow

feedback connections from the output to be added to the input, and therefore

process the inputs in a looped, sequential manner. The number and the location of

the feedback loops can be arbitrary. Inside the loop, RNN updates information, but

not the parameters, creating a series of hidden states with memory of the previous

timesteps (loop operations are considered individual passes). This memory,

however, has a known property of vanishing over time (vanishing gradient problem),

with rate depending on the activation and optimization functions used66,67. A subtype

of RNN, a Long short-term memory (LSTM) network was designed to control the

gradient growing or shrinking via the ‘gate’ units associates with nodes, that

represent the possible ‘cell states’ (Figure 5d). The gates determine, based on

weights and the hidden state, the portion of memory of the previous state that gets to

‘input’ the node, and ‘forget’ or ‘output’ the current state to the next node. Thus, the

network remembers relatively long sequences, and can learn and predict relevant

sequence relationships68,69.

Autoencoders are used to reconstruct the input, first encoding them with the

compression, and then decoding the compressed representation. This is done

without any labeled data, by calculating the reconstruction error. With one or more

hidden fully connected or convolutional layers, autoencoders reconstruct the data,

leaving only the most important, meaningful features (Figure 5e).

Figure 5. A selection of neural network architectures from Neural Network Zoo65. Here, a) shows

possible node (here, ‘cell’) types of the included architectures; b) shows basic feedforward

architectures, with MLP being the second and the third ones; c) shows CNN architecture, dubbed as

DCN; d) shows RNN and subtype LSTM architectures; and e) shows the architecture of an

autoenconder.

Neural networks are flexible in that they can take various forms and combinations of

different layers. This property has been utilized by many authors of methods,

including the authors of the observed variant calling methods.

 21

Relevant concepts

In the previous section, several concepts have been introduced, that have not been

explained in Chapter 3, or need further elaboration.

The training of a neural network is an iterative process: the algorithms pass through

a multitude of epochs that are processed in a number of iterations. In one iteration,

exactly one batch from a dataset is processed; the size of the batch indicates the

amount of instances contained within it. Often, the batch input is normalized by its

mean and standard deviation (standard score) for the hidden layers, improving the

training speed, initialization and regularization70.

The process starts with the initialization of weights, which will be used from the very

beginning of the training. The weights can be set randomly, or using a distribution-

generating initialization algorithm that complements the activation function, so that

the rate of convergence of the network is high. Then, for feedforward networks, three

iterative steps are performed:

1. The layers are activated with their respective activation functions, i.e. the

weights are recalculated and ‘forward propagated’ up to the output layer that

makes the prediction. Accordingly, an activation function determines, by

computing the parameter with a condition, whether its node should pass the

parameter to the layer above. The function is nonlinear, so that it would not

result in only a linear model. Some of the activation functions are used in the

output layer, i.e. before computing the loss. The particular functions are

selected as corresponding to the task, such as classification or regression,

and with regard to the position of the layer and to the potential vanishing

gradient66:

o The Sigmoid function, defined as 𝑓(𝑥) =
1

1+𝑒−𝑥, produces values in the

range of [0:1] that form a steep curve with most of the changes in the

input range of [-2:2]; it could be a choice for classification, but also for

the output function in binary classification.

o The Tanh (hyperbolic tangent) function, defined as 𝑓(𝑥) =
2

1+𝑒−2𝑥 − 1,

produces values in the range of [-1:1] with even more steep curve than

that of Sigmoid. It is more commonly used in RNN than other

architectures, especially in LSTM gates due to their efficient

convergence.

o The ReLU (rectified linear unit) function, defined as 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥),

produces values in the range of [0:∞] and is, in fact, nonlinear; it is able

of zeroing the negative values and excluding the node from the

computation chain, making it more efficient. ReLU may be seen as a

more universal approximator, therefore many deep learning models

rely on it.

 22

o The Softmax function, defined as 𝑓(𝑥𝑖) =
𝑒𝑥𝑖

𝛴𝑗 𝑒
𝑥𝑗

, produces a vector of

values in the range of [0:1] totaling to 1. It serves as the output function

in multi-class classification.

2. The appropriate loss function is calculated, registering the error of the

prediction (Chapter 3). Two types of loss functions may apply:

o For the general case and especially for classification problems, the

cross-entropy (negative log likelihood) loss function is suitable. The

function tends to stay convex and is thus often preferable for gradient

descent optimization. The cross-entropy measures entropy, or distance

between two probability distributions, the true distribution and the

predicted distribution:

𝐶𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑦, �̂�) =
1

𝑚
∑ 𝐿(𝑥(𝑖), 𝑦(𝑖), 𝜃)𝑚

𝑖=1 ,

where 𝐿(𝑥, 𝑦, 𝜃) = − log 𝑝(𝑦|x; 𝜃)

o For regression problems, where the prediction values may or may not

stay within the range of [0:1], a sum of differences error such as Mean

Squared Error (MSE) is more applicable:

𝑀𝑆𝐸(𝑦, �̂�) =
1

𝑚
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑚

𝑖=1

3. The gradient descent algorithm aims to reach the minimum of the loss

function in a steep manner, causing the network to converge rather than

diverge (Chapter 3). Most modern neural networks utilize a variation of the

stochastic gradient descent (SGD) algorithm, which picks random (stochastic)

examples (in minibatches) from the training set rather than processing the

whole training set in each iteration. The loss function is optimized by

calculating the adjustment of the weights needed for a current gradient

descent step for every layer backwards, i.e. backpropagating the error down

the network.

o The backpropagation is done through a chain of derivatives of the loss

function with respect to the weights between the output nodes and their

parent nodes down to the first input nodes. Accordingly, the derivative

of an output is a composite function of the derivatives of the weights

that led to the output:

𝜕𝑧

𝜕𝑤
=

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑥

𝜕𝑥

𝜕𝑤
= 𝑓′(𝑦)𝑓′(𝑥)𝑓′(𝑤) = 𝑓′(𝑓(𝑓(𝑤)))𝑓′(𝑓(𝑤))𝑓′(𝑤)

o The weights of the network are updated by a gradient, which is an

average over each individual derivative. The gradient itself is adjusted

by a learning rate hyperparameter, which defines the size and

therefore the effect of the step. Its choice may lead to the unwanted

consequences, such as reaching a suboptimal global minimum or a

high loss function value. The following methods may be used to set or

leverage this hyperparameter:

 23

i. Using a default or otherwise fixed learning rate, e.g. with a

typical value. Today this is not considered an appropriate

method, because it may not correspond to the updates.

ii. The learning rate may be decayed over time, which is referred to

as the learning rate schedule. This involves setting an initial

learning rate and a linear decrease over a number of iterations.

iii. Using another hyperparameter to aid calculating the moving

average over the gradient history. The moving average also

decays over time, and the speed of the decay is determined by

this hyperparameter. The momentum algorithm leaves the

learning rate fixed and multiplies the step size following the

latest succession of gradients.

iv. Using adaptive optimization algorithms that adjust the learning

rates for individual weights according to the condition, such as

the scale of the derivative (and weight, by extension),

implemented in the AdaGrad algorithm. AdaGrad and its

variations with moving average or momentum, such as

RMSProp, AdaDelta, Adam are commonly used as optimizers in

neural networks.

o The gradient descent may lead the loss function to a position of global

minimum (globally lowest value) or local minimum (locally lowest

value), or other critical point such as a saddle point (neither higher nor

lower than a local region). In deep learning, the optimization is

considered to be difficult due to non-convex loss function, that may

have many global minima and infinite local minima.

For recurrent networks, the backpropagation is turned into the backpropagation

through time (BPTT): after the network made the prediction, the loss functions of the

repeated parameters of the timesteps are summed, and the adjustment is

backpropagated, again, through the timesteps and down the network.

The regularization in deep learning is supplemented by the dropout, where an

arbitrary number of nodes of the network are randomly ‘dropped out’ (excluded) in

order to hinder overfitting71. Currently, it is not recommended to apply the dropout

technique to non-fully connected layers72.

 24

Implementations

The five variant callers utilizing deep learning models are: Clairvoyante from R. Luo

et al.73; GATK CNNScoreVariants from the Broad Institute74; GARFIELD-NGS from

E. Giacopuzzi et al.75; DeepVariant from the Google Brain team76; and

VariationAnalysis from Campagne Laboratory77. Three of them (DeepVariant,

CNNScoreVariants and Clairvoyante) are based on the convolutional neural network

(CNN) architecture, a variation of FFNN; the rest rely on a custom kind of FFNN. The

CNN callers convert either the aligned reads (DeepVariant, Clairvoyante) or the raw

variant calls (CNNScoreVariants) into multichannel tensors, encoding alleles, base

and mapping quality scores and read/base properties for the CNN-based classifier.

After that, the classifier detects various motifs among these properties and selects

the most likely variant positions from the candidate variants. The raw variant calls

are also feeding GARFIELD-NGS’ neural network, enabling the prediction of a new

variant property based on the other properties in a variant call record. The

VariationAnalysis framework allows the user to train a combined (with FC and LSTM

layers) model or apply a pre-trained model to the pre-converted alignment file, thus

predicting genotypes. The models for the prediction have been designed and trained

by the developers of each tool, but limited options to retrain the models are offered,

too.

Clairvoyante

Architecture. The CNN of the tool is a composed of five layers, beside the input and

output: three convolutional layers of different dimensions for feature learning, and

two fully connected feedforward layers for making predictions of different types. The

activation function of all hidden layers is SELU (Scaled Exponential Linear Units that

bring ‘self-normalization’, derived from ReLU, defined as 𝑓(𝑥) = 𝜆𝑥 𝑖𝑓 𝑥 > 0 OR

𝑓(𝑥) = 𝜆𝛼𝑒𝑥 − 𝛼 𝑖𝑓 𝑥 ≤ 0, where the parameters 𝜆 and 𝛼 are fixed for known mean

and variance)78. Aptly, the He algorithm initializes the model. For regularization, the

L2 and dropout methods are used. For optimization, the Adam algorithm (variant of

SGD) with two distinct learning rates is used.

Training. Clairvoyante was trained on two whole-genome human samples (HG001

and HG002, see Chapter 5 for details79), sequenced with Oxford Nanopore, PacBio,

and Illumina instruments. Clairvoyante employs a supervised approach and so

learns from the labeled data; the Genome In A Bottle (GIAB)80 truth variant dataset

served for this purpose. The samples were randomly partitioned into a training set

(taking 90% of the data) and a validation set (10% of the data). No cross-validation is

mentioned in the documentation.

I/O. The input layer takes in ‘multi-dimensional’ (33x4x4) tensors that encode

sequence positions surrounding the candidate variants (16+1+16), counts of different

alleles on the reads (A, C, G, T), and notations of the supporting source of these

alleles (reference, insertions, deletions and mismatches). The output consists of the

four vectors, encoding the called variant (either or a combination of A, C, G, T), the

 25

zygosity (homozygous or heterozygous variant), the variant type (either of reference,

insertion, deletion, or mismatch), the length of a variant (from 0 to more than 4).

Rationale. Clairvoyante was developed to tackle primarily single molecule

sequencing data, that is known to have rather large amount of errors but significantly

longer reads (Chapter 2). Additionally, the reads from PacBio are not accompanied

by the base qualities. This kind of data sets further limitations to variant calling by the

conventional methods. With the advancements of neural networks in analyzing

complex data, the authors saw the opportunity to develop a deep learning approach.

The network’s design may have been influenced by the DeepVariant variant caller

that was introduced earlier; nonetheless, the specific architecture was devised from

scratch. Clairvoyante’s network targets a variant calling task, as opposed to utilizing

an image analysis network by DeepVariant.

CNNScoreVariants (GATK4)

Disclaimer. As of the time of writing, CNNScoreVariants is out of beta81. However,

the technical information remains sparse, consisting only of the developer blog

post74, four similar conference talks82-85, and the tool’s documentation86. No article

has been released. Some intuition was drawn from the code in the GitHub

repository87.

Architecture. The tool utilizes two different models in its ‘1D’ and ‘2D’ modes,

respectively. Other models can be trained and applied using the related tools from

GATK, the architectural files and the CNNScoreVariants’ arguments. The default ‘1D’

model is composed of seven hidden layers: five convolutional and two fully

connected layers. The ‘2D’ model comprises five hidden layers: four convolutional,

all considerably wider than that of ‘1D’ model, and one fully connected layer. Before

passing to the fully connected layer(s), the convolutional layers are concatenated

with a multilayer perceptron (MLP) that is used to compute variant annotation

features. The activation functions of both models depend on the usage of batch

normalization, which is by default applied to convolutional layers in ‘1D’ model and

not in ‘2D’; the fully connected layers are not normalized. With batch normalization,

the activation is linear; without it the ReLU activation is used. All layers are initialized

by the Glorot normal initializer. For regularization, the spatial and convolutional

dropout is used. For optimization, the Adam algorithm is used.

Training. The models were trained on the data associated with both validated and

non-validated callsets. The HG001, HG002 (Chapter 5)79 and SynDip (from the

‘synthetic-diploid’ dataset derived from the PacBio sequence data88,89) samples were

partitioned into the training, validation and test sets (with unknown shares). The truth

sets used are from Platinum Genomes (likely only for HG001)90, GIAB (either or both

HG001, HG002)80, and SynDip (CHM WGS1).

I/O. CNNScoreVariants relies on HaplotypeCaller to create a ‘raw’ callset and takes

it for the input. The variants in the callset are converted into the ‘multichannel’

 26

tensors. With the ‘1D’ model, the tensors consist of the alternative allele options,

flags for the variant types, input annotations, and reference sequence data. The ‘2D’

tensors add the read data (aligned reads showing the position, strands, mapping

quality) to that list. The output labels of the network are formed into a score for each

variant, which is a natural logarithm of the true over false prediction of the variant

state (𝑆𝑁𝑃 / 𝑆𝑁𝑃, 𝐼𝑁𝐷𝐸𝐿 / 𝐼𝑁𝐷𝐸𝐿). The score is written in the form of a ‘CNN_1D’ or

‘CNN_2D’ annotation in the updated callset (Chapter 6).

Rationale. The CNNScoreVariants’ network was designed with the existing GATK

workflow in mind. That is, the goal was to complement and potentially replace variant

filtering step, currently conducted with VQSR method. Unlike VQSR models,

however, CNNScoreVariants models were pre-trained on the labeled datasets,

allowing for classification of true variants against sequencing errors. With the

architecture able to process comprehensive information about a particular variant in

a tensor, and multiple sources of training data, the CNN is supposed to be able to

generalize well.

DeepVariant

Architecture. DeepVariant is based on the Inception v2 and later v3 CNN

architectures91, originally developed to solve the image classification problem. In

2014, this kind of CNN marked an algorithmic milestone by achieving accurate

prediction on both large and small scales of the image by stacking together

‘Inception modules’ consisting of multiple filters of different sizes. These modules

were acting in place of the commonly used convolutional or fully connected layers. In

essence, the filters in one ‘Inception module’ are convolved and then concatenated

together, creating a network inside a bigger network. The original Inception

(GoogLeNet) network contained 22 layers overall with 9 double-layered ‘Inception

modules’92, while Inception v2 contained 42 layers with 5 triple-layered and 5

quintuple-layered ‘Inception modules’. The adapted network incorporates nine

modules, called ‘partitions’. The exact enclosed layers and filters are not clarified.

The authors of the Inception network series introduced branch layers of ‘auxiliary

classifiers’ with softmax loss, encouraging the convergence during training and

regularization (with branch batch normalization or dropout). They have also

estimated whether linear or ReLU activation function yields more accurate results,

with ReLU performing noticeably better. The authors of DeepVariant do not disclose

such details.

The DeepVariant network was initialized with weights from the Inception v2

presented for the ImageNet challenge in 2015. For optimization, it relies on the SGD

algorithm.

Training. DeepVariant includes two models, for WGS and for WES data. While not

architecturally different, the models have been trained on WGS and WES datasets,

respectively. The WGS dataset used to train the model v0.4 (from the publication)

 27

includes 9 samples of the HG001 genome, both public and independent; the current

version (v0.7) includes 14 HG001 samples and 2 samples of the HG005 genome

(Chapter 5)79. The WES dataset includes 78 HG001 samples and 1 HG005 sample.

All of the samples have an associated variant truth set from GIAB (Chapter 5)80. The

datasets had been split by chromosomes: 1-19 chromosomes had been used for the

training, and 20-22 chromosomes had been held out for the testing.

I/O. The adapted architecture processes candidate variant’s data represented as

tensor. The first publicly demonstrated (in the precisionFDA challenge93)

DeepVariant version encoded the data into three channels: for the read base (A, C,

G, T), base quality scores, and mapping quality score, allowing to contain it in an

RGB ‘pileup image’ (Figure 6). In the released versions more channels were added;

in v0.7, they encode the strand of the read, and the allele support in the read and in

the reference, totaling six channels.

The input layer of the CNN further transforms the tensors, raising their dimensions to

the dimensions of the ‘receptive field’ (221x100→299x299), apparently increasing

the accuracy of the model. The output layer assigns one of the three genotypes

(homozygous reference, homozygous alternative, heterozygous) to a candidate

variant.

Rationale. DeepVariant utilizes a complex, deep and wide neural network with

multiple training sources in an attempt to overcome the shortcomings of conventional

modeling methods, such as a lack of generalization. It is claimed to not apply

thematic knowledge, instead relying on the sophisticated design that is exercised in

a spectrum of computer vision tasks. The network does take advantage of a

HaplotypeCaller-like algorithm that looks for candidate variants.

The authors have shown that the method is able to generalize to different

sequencing instruments (Illumina, Ion Torrent, 10X, SOLiD, PacBio), reference

genomes (b37 and b38, see Chapter 5) and even species (human, mouse and

rice94).

 28

Figure 6. DeepVariant’s inference and training workflows. Reprinted with permission from Poplin et

al.76.

GARFIELD-NGS

Architecture. GARFIELD-NGS utilizes four MLP models with five hidden layers

each. The models are intended for different types of data and variants (an indel and

an SNV models for the callsets from Illumina and Ion Torrent sequencing data) and

are bound to the appropriate hyperparameters. For instance, both indel models are

activated with ReLU, while SNV models are activated with Tanh; the layers’

dimensions and regularization (L1 and L2) values were determined as the best-

performing among randomly assigned during hyperparameter optimization. For the

parameter optimization of the models, the network uses ADADELTA algorithm, a

version of the SGD algorithm with an adaptive learning rate; its hyperparameters

epsilon and rho were drawn out of the random search, too.

Training. The training data consisted of variant callsets with both true and false

variants, identified. The sequencing of the HG001 sample have been conducted

internally79. To train each of the four models, the data was split to pre-training,

training, validation and testing sets. An autoencoder have been applied to the pre-

training sets, and the weights of every prediction model were initialized from the pre-

training ones. The search for hyperparameters that was decisive in building of the

prediction models, was conducted with a 10-fold cross-validation. The resulted

models were evaluated with the test sets, containing 50% of variants in the initial

 29

sets. Lastly, the models were validated using additional WES callsets, that have not

been part of the initial data.

I/O. The models employ 18 variant annotations as features for Ion Torrent variants

and 10 annotations for Illumina variants. For each analyzed variants, the network

outputs a ‘confidence probability’.

Rationale. Instead of developing another variant caller, the authors aim to refine

variant callsets produced by the widely used GATK HaplotypeCaller v3.6 (for

Illumina data) and TVC v5.0.2 (for Ion Torrent data). Both of these callers produce

sets of variant annotations associated with each variant, albeit different. The choice

of the architecture to base models on was dictated by the framework (H2O.ai95),

where the only natively supported neural network is the MLP.

VariationAnalysis

Architecture. FFNN of the tool v1.2, described in the preprint by Campagne et al.77,

comprises four fully connected hidden layers, all activated with ReLU. In v1.2.2 (not

described in the preprint), the LSTM layer(s) were introduced (one by default) to

work with indel sequences, along with the two other fully connected layers. The

number of both kinds of layers can be configured with the tool’s arguments. The

LSTM layer(s) are activated with the Softsign (defined as 𝑓(𝑥) =
𝑥

1+|𝑥|
, similar to the

hyperbolic tangent). The model is initialized with the Xavier algorithm. The network

uses L2 regularization and an AdaGrad optimizer, another variation of the SGD

algorithm. The latest version of VariationAnalysis is v1.4.0, retaining the architectural

details of v1.2.2.

Training. The network was trained on the NA12877 sample and truth data from

Platinum Genomes (Chapter 5)90. The data have been divided into the training,

validation and testing sets with a 80/10/10 proportion. The validation set is used to

incite early stopping of training when the performance does not improve for 10

epochs.

I/O. VariationAnalysis utilizes a number of ‘feature mapping’ functions that convert

the input alignment around a variant site into a tensor with selected features, such as

number of variants in read, mapping quality, base qualities, strand orientation. The

features are ‘label mapped’ to a heterozygous or homozygous genotype label. The

output layers define the identity of the genotype at each variant site, whether it a

base mismatch (A, C, G, T, N) or an indel, and their probability of being called.

Rationale. The authors aimed to build a flexible and efficient model that does not

require heavy preprocessing such as conversion of the alignment to images

(tensors) as in DeepVariant. The ‘feature mapping’ functionality allows to select

additional or reduce unwanted features, experimenting with accuracy of prediction.

The authors claim that the resulted architecture is able to work with polyploid

 30

organisms (e.g. with plants) and different sequencing instruments, in addition to their

previously developed somatic model (that is not discussed in this work).

Summary table

Table 1. Summary table, showing architectural details of networks of every tool.

 Clairvoyante CNNScoreVariants DeepVariant GARFIELD-NGS VariationAnalysis

Architecture CNN CNN CNN MLP FFNN /
FFNN+LSTM

N of
hidden layers

5 7 9 enclosed 5 4 / 6+1

Initialization He Glorot Pre-training
network

Pre-training
network

Xavier

Regularization L2, dropout Dropout Auxiliary
classifiers

L1, L2 L2

Activation SELU Linear / ReLU ReLU Tahn / ReLU ReLU /
Softsign

Optimization SGD (Adam) SGD (Adam) SGD SGD
(ADADELTA)

SGD
(AdaGrad)

N of
parameters

1631496 1681156 Unknown,
probably
between
6797700 and
25000000
(GoogLeNet
and
Inception v2)

Unknown,
allegedly
between 5600
and 18600
depending on
the exact model

Unknown

 31

Chapter 5: Workflow and data management

This chapter explains the study design and the practicalities of the project. It starts

with the general workflow, then elaborates on the materials used. This is followed by

the variant calling workflow that was introduced in Chapter 2, here supplied with the

particular choices and justifications. In the end, the means of the evaluation of the

results are detailed.

The overview of the project

Figure 7. The flowchart depicting the progression of the project.

The practical side of the project has been carried out in several steps (Figure 7).

First, it was necessary to account for and prepare the computing environment, as the

hardware and all possible virtual environments and software packages' features and

limitations have a significant influence on the depth of the study that can be

performed in the field. Second, the data flow for the future pipelines had to be

determined, including the kind of files to be processed, the kind of files to be

expected in the end, as well as the order of processing. Third, the pipelines in

question had to be designed and built, involving a selection of the particular tools

and settings for the pre-processing and processing steps. Finally, the pipelines had

to be thoroughly evaluated in terms of their performance and fitness to the existing

genomic workflows.

 32

Setting up the computing environment

Cluster

As it was noted in previous chapters, genomic and specifically alignment and variant

calling applications rely on statistical models, mathematical optimization, and pattern

recognition. While this alone does not have to be computationally demanding,

genomic analysis is normally large-scale and as such, it benefits from the extensive

use of computational resources. As an example, a recommended amount of WES

samples for joint genotyping with GATK is no less than 30, with any of them taking

up to 10 GB of disk space96. Further, WGS data files can easily occupy 50-500 GB

per sample. Researchers' workstations are seldom designed to handle that kind of

analysis once, let alone do it efficiently and on a regular basis.

At the moment, the bottleneck is resolved by two methods, often in combination.

First, the problems are decomposed and operations are parallelized. This way, CPU

threads, cores or computing nodes can be made to perform their part of the job as

distinct tasks, effectively scaling computational capacity for the right kind of problem.

Second, as with many other heavy operations, a high-performance computing (HPC)

infrastructure - a server, a cluster of servers, a datacenter - is utilized. Some

problems and tasks remain aggregated, but may still require large amount of RAM or

a dedicated CPU (vCPU) available.

The cluster environment, however, does have certain restrictions. Because it is

shared by many users, the system administration needs to balance their needs with

the reliability and availability of the system. This implies that software packages or

their dependencies that are not readily available in the official, supported repositories

might not be installed or updated properly. If that is the case, it might be more

feasible to run the required software in a Docker97 container (a self-contained virtual

environment) or in a Conda98 virtual environment.

In addition, the computational resources on the cluster are allocated via the job

scheduler. The scheduler is accessed with a range of batch commands that can put

the jobs on a queue and request information about their behavior (logs and

parameters such as states, memory usage, time of execution). The scheduler is

immensely useful for the long-term projects, because it allows to monitor the

pipelines.

Cloud with GPU

An investigation of multiple deep learning techniques, especially with stated amounts

of data, automatically implies the utilization of a considerable amount of

computational resources. The cluster was initially considered sufficient, however, the

testing showed that the processing of the large WGS files leaves room for

improvement (see Chapter 6). Since deep learning training and inference are

working well with parallel processing, and since GPUs (graphics processing units)

 33

are designed for the task, it was decided to get access to the GPU in the cloud.

Fortunately, local centre for scientific computing provides that kind of resource for

research institutions.

The GPU comes as a part of a virtual machine (VM) that is, in turn, based on an

actual compute node. Three flavors, or types of VM with graphics processors are

available: with 1 GPU, 2 GPUs and 4 GPUs. Each GPU is accompanied by 14 cores

of vCPU and 120 GiB of RAM. None of the deep learning tools, at the time of the

writing, is able to utilize more than 1 GPU for the inference. In theory, it is possible to

simultaneously process different methods or parameters or samples on different

GPUs. In practice, it is out of the scope of this work. Therefore, a 1-GPU node had

been selected for testing.

The only available GPU to be used in a GPU node was NVIDIA Tesla P100, a high-

end card with 16 GB HBM2 memory, 3584 CUDA Cores, and an official support of

FP16 and FP64 (half-precision and double-precision floating-point, respectively)

computation99. This makes it one of the top performing graphics processors for both

deep learning and pure numeric operations such as scientific simulations. Therefore,

it should be noted that with any other GPU the run times and even the capacity to

run heavy models may vary.

The VM instance is running on the OS of user's choice, in this case it is Ubuntu

16.04 because of the support from NVIDIA and a large user base. Inside the VM

instance, that is accessed via a secure shell protocol, the user must install version-

specific NVIDIA CUDA (name of the parallel computing and graphics API for the

general-purpose programming tasks100) Toolkit and corresponding libraries, such as

cuDNN (Deep Neural Network library), cuBLAS (for basic linear algebra),

cuSOLVER (for accelerated calculation of selected applications), cuRAND (for

generating random numbers), cuFFT (for accelerated Fast Fourier Transforms), and

CUDART (for CUDA runtime API)101. It was important to install the version that is

compatible with frameworks that were used to train the neural networks. For the

convenience of running the tools, the NVIDIA-Docker102 and Conda have been be

installed as well. The root access for the instance was provided by default, so the

system update did not pose a challenge.

Data management

Input / output

In general, processing of the resequencing data requires at least 2 types of inputs.

Those are the sequences to be analyzed ('raw' sequences that come in the FASTA

or FASTQ format) and a reference genome to map against (next section). For the

position-based variant calling, one also needs to obtain the targeted regions file

(comes in the BED format) and, if needed, fulfill filter-specific requirements. The

latter can differ: for instance, VQSR toolset of the GATK package needs known

 34

variants sets to learn to filter out false positive (FP) variants, while

CNNScoreVariants from the same package relies on the pre-trained model to do the

same job.

The roots of the 'raw' sequences format are in the sequence similarity search

software FASTP, developed in 1985 by W. Pearson and D. Lipman103,104. Today, the

file format used by that software and its successor FASTQ (that includes quality

metrics) are the de facto formats for storing nucleotide and peptide sequences105.

The quality scores are defined by the sequencer software and represent the

probability that the wrong base have been called:

 𝑄𝑝ℎ𝑟𝑒𝑑 = −10 𝑙𝑜𝑔10(𝑒),

where 𝑄 scales exponentially, as in 𝑄 = 10 means 10% probability of the base being

wrong base, 𝑄 = 20 means 1% probability, and 𝑄 = 30 means 0.1% probability, and

so on. The score rarely exceeds 40. The qualities are expressed in a range of ASCII

symbols from 33 to 126:

! " # $ % & \' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B

C D E F G H I J K L M N O P Q R S T U V W X Y Z [\\] ^ _ ` a b c d

e f g h i j k l m n o p q r s t u v w x y z { | } ~

The following represents what an individual read stored in FASTQ file may look like:

@HWI-D00360:6:H81VLADXX:1:1101:1245:2105 1:N:0:CGATGT

TTTTTTTCTGAGGCAAGTCCCACTCTCTTGCCCAGGCTGGAGTGCAGTAGTGTGACCTCGGCTCACTG

CAACCTCCGTCCCCCAGGTTCAAGTGATTCTCCTGCCTTANCCTCCCAAGTNNCTGNGNTCACAGGNN

NCCACCATCATG

+

@@@DDDDDD?DBFFF?GCFGEHIE@GGIIEGGIICBFEC<CGG;=B<FCDCDFE@DG:DA<EEEEE;(

;>CCBCCB:9<BBBB9?7::ACCCD>@DDDCCC@@@BCC@#++<@BBCC<C##++8#+#+++8<C1##

#+++8@B@CAC:

where the first line is an identifier, containing the instrument name, run and flow cell

ID, lane, tile, instrument’s camera pixel coordinates, read number, filter flag, and

sample name; the second line is the read sequence; the third line is an actual plus

sign; the fourth line consists of the phred quality scores.

In the example above, the quality scores in a more human-readable form would look

like the following:

 35

31, 31, 31, 35, 35, 35, 35, 35, 35, 30, 35, 33, 37, 37, 37, 30, 38,

34, 37, 38, 36, 39, 40, 36, 31, 38, 38, 40, 40, 36, 38, 38, 40, 40,

34, 33, 37, 36, 34, 27, 34, 38, 38, 26, 28, 33, 27, 37, 34, 35, 34,

35, 37, 36, 31, 35, 38, 25, 35, 32, 27, 36, 36, 36, 36, 36, 26, 7,

26, 29, 34, 34, 33, 34, 34, 33, 25, 24, 27, 33, 33, 33, 33, 24, 30,

22, 25, 25, 32, 34, 34, 34, 35, 29, 31, 35, 35, 35, 34, 34, 34, 31,

31, 31, 33, 34, 34, 31, 2, 10, 10, 27, 31, 33, 33, 34, 34, 27, 34,

2, 2, 10, 10, 23, 2, 10, 2, 10, 10, 10, 23, 27, 34, 16, 2, 2, 2, 10,

10, 10, 23, 31, 33, 31, 34, 32, 34, 25

Clearly, most (127 out of 148) bases have quality score higher or equal than 20, and

103 out of 148 higher or equal than 30. This is not the best possible read, although

its source has more than sufficient average quality metrics. It is also apparent that

the read sequence quality starts to deteriorate closer to the end - which is expected.

Aligned sequences are commonly stored in the BAM (BGZF-compressed SAM, a

'sequence alignment map' text-based, tab-delimited file) format, describing the

alignments read by read, preceded by the header section106,107. The following

example is an excerpt from the header of the BAM file corresponding to the FASTQ

sequence shown above:

@HD VN:1.5 SO:coordinate

@SQ SN:1 LN:249250621

...

@SQ SN:22 LN:51304566

@SQ SN:X LN:155270560

@SQ SN:Y LN:59373566

@SQ SN:MT LN:16569

...

@RG ID:HWI-D00360:6:H81VLADXX:1:1101:1245:2105

LB:LIB-HG001-NA12878

PL:ILLUMINA

SM:HG001-NA12878

PU:H81VLADXX.1.CGATGT

@PG ID:bwa

PN:bwa

VN:0.7.17-r1188

CL:/app/bwa-0.7.17/bwa mem -t 16 -M /data/reference-

genome/hs37d5/bwa0717/hs37d5 /data/precision/HG001-NA12878-

50x_1.fastq.gz /data/precision/HG001-NA12878-50x_2.fastq.gz

where @HD line represents the first line of the header, containing VN (version

number) and SO (sorting order); @SQ lines represent reference sequence

dictionary, with contig (most often chromosome) names and their lengths; @RG

represents read group, with the identifier, library, sequencing platform, sample name,

and platform unit barcode; and @PG represents the program(s) used for the

alignment and quality control.

 36

Read lines in the alignment section contain, column by column: template name,

segment flags, sequence (contig) name, position of the given aligned sequence

segment, its mapping quality, CIGAR string, the next sequence (contig) name, the

next aligned segment position, template length, the segment sequence itself, and its

quality scores. In addition, the read line can be extended with 'optional' fields,

carrying information such as edit distance to the reference, software-specific

alignment score, or duplicating data from the header. In this example, mandatory

fields for one read line are shown, separated by newlines for clarity:

HWI-D00360:6:H81VLADXX:2:2103:5668:31370

65

1

9998

19

48M1I63M1I35M

8

62666624

0

CCATAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCAAACCCTACCCCTAAC

CCTAACCCTAACCCTAACCCTACCCCTACCCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC

TAACCCTAACCC

DDGHGKGHGIHKGGGIHKGGGJILHHHJILHHHJILHHHIIJGHHJILHHH;,E&DEC.DDEHE:DFE

FFGEFEGDG?<FEEB>4AFE<@*<FD=@@EGDEC@FFDHD'AA<E@'<DDED>AFDCDFFFDEE>BEF

08(+=><@(A?E

The BAM files can be indexed to allow random retrieval of the alignment. The

indexes are stored in the BAI binary files, consisting of BGZF block offsets.

Variant callsets are commonly stored in the VCF format, developed by the Global

Alliance for Genomics and Health (GA4GH). Text-based files also exhibit a certain

structure: they start with a header with meta-information lines (describing formats,

filters, contigs, and software-dependent info) that are followed by a data table with

variants and their properties. For instance, the header may look like:

 37

##fileformat=VCFv4.2

##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Approximate read

depth ...">

##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype

Quality">

##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">

...

##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in

genotypes ...">

##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency

...">

##INFO=<ID=BaseQRankSum,Number=1,Type=Float,Description="Z-score

from Wilcoxon rank sum test ...">

##INFO=<ID=SOR,Number=1,Type=Float,Description="Symmetric Odds Ratio

...">

...

##contig=<ID=1,length=249250621>

...

##contig=<ID=22,length=51304566>

##contig=<ID=X,length=155270560>

##contig=<ID=Y,length=59373566>

##contig=<ID=MT,length=16569>

While the body with variants table may look like:

where the #CHROM column represents current contig; ID column represents

possible variant identifier from the dbSNP database; REF represents base(s) from

the reference genome and ALT - from the investigated (alternate) one; QUAL column

is for phred quality scores; FILTER values are added by the filtering methods and

can be either ‘PASS’, a list of failed filters, or missing; INFO fields contain various

information about a particular variant/base, that can be helpful for filters (variant

annotation); finally, FORMAT and SAMPLE columns indicate genotype status,

likelihoods and qualities.

It should be noted that certain variants may be recorded in more ways than one. For

instance: repetitive insertions may be represented as several smaller or one larger

insertion (‘GCAT → GATCACAT’); a deletion in a region of identical bases

(homopolymer, ‘TAAA → TAA’) may be represented as a deletion of either one of

these bases; complex variants may or may not be described as conjoined indels and

mismatches, only indels, or only mismatches (‘TAAA → TAT’).

 38

FASTQ, FASTA, SAM and VCF files can be compressed; as a convention, it is done

in BGZF (Blocked GNU Zip Format)106. The blocked compression allows faster

random and selective access, while the compression ratio remains almost as high as

with GNU Gzip (shown as size reduction percentage in the output of the gzip -l

[file.gz] command, from 73.08% to 74.80% for GNU Gzip and from 72.86% to

74.26% for BGZF, assessing the WES raw data files discussed in the ‘Sequencing

data’ section). Some of the sequencing data processing tools are able to

decompress compressed FASTQ and FASTA files with a built-in functionality, while

others may require a decompressed input. The BGZF compression or

decompression can be performed with e.g. the bgzip tool from the HTSlib

toolset107,108.

Reference genome

The reference genome holds the genetic information of several different individuals.

Being an assembly by design, it is sub-optimal and contains gaps, variations, and

quality issues. Therefore it is regularly updated with the latest reliable findings and

techniques. The chosen reference, however, is not always up-to-date, as it is bound

to the target library preparation kit (from the manufacturer of sequencing equipment)

that was used for the enrichment, and a corresponding targeted regions (“manifest”)

file with genomic coordinates from a particular reference genome.

The reference genomes are assembled and curated by Genome Reference

Consortium (GRC). Currently, there are two major versions of the human reference

genome that are in production: GRCh37 (b37) and GRCh38 (b38). Both of them

exist in several alternate editions that may or may not include ALT contigs, non-

chromosomal contigs (mitochondrial and unlocalized (GL*) sequences), not inherited

additions such as viral genomes, as well as updates over the previous builds. In

addition, the builds may follow a different segment nomenclature, such as ‘1’ in

GRCh37 or ‘chr1’ in hg19 (an initial version of GRCh37 released by UCSC,

containing only the original contigs), which can be converted with a ‘liftover’

procedure109,110. The reference genomes are supplied and stored in the FASTA file

format.

Here. the reference genome used is hs37d5. It is composed of the chromosome

sequences, mitochondrial sequence, HPV (Human herpesvirus 4 type 1) sequence,

GL* contigs, and a decoy sequence111,112.

Sequencing data

The selection of the test dataset was based on the following variables:

➔ Public availability: the data should be accessible to allow testing and

evaluation procedures to be reproducible.

➔ Availability of the truth set: the evaluation involves a comparison of the

variants called using the methods under evaluation to the actual variants.

 39

➔ Sample type and size: WGS, WES or targeted samples require allocation of

different amount of resources (the less the better) and can be more or less

practicable for a given type of a study (individual, cohort or population; rare or

common variants seeked).

➔ Sample source diversity: relates to the type of a study; in this case, several

individuals are more desirable because the goal is to test how the new

methods perform with the different setting and data.

➔ Sample bias: involvement in any training of any of the tools in the comparison

supposedly renders the sample unsuitable; the comparison of tools’

performance on the biased vs unbiased samples, however, may present an

additional interest.

➔ Sequencing technologies: alignment and variant calling tools’ documentation

often informs of the specific method the tool works best with; in addition,

sources of research and clinical genomic data often utilize methods that are

more convenient or conventional than others.

The sample sources included the Utah family with the pilot genome NA12878

(HG001) collected by Centre d’Etude du Polymorphisme Humain (CEPH), and 2 trios

from the Personal Genome Project (PGP) they have participated in79. The trios are

Ashkenazi Jewish family of NA24385 (HG002, son), NA24143 (HG003, father) and

NA24149 (HG004, mother), and the Han Chinese family of NA24631 (HG005, son),

NA24694 (HG006, father) and NA24695 (HG007, mother). Their genetic material

(cells and DNA) is distributed by the Coriell Institute for Medical Research, NIST

(National Institute of Standards and Technology) and several companies for both

non-commercial and commercial purposes. For example, NA12878 may serve as a

source of the control samples in routine sequencing experiments. In fact, this

material have been extensively sequenced over the last several years. As a result, a

number of different sequencing methods have been used to obtain the genetic data

of listed individuals.

Sources of the data that have been considered include all Genome In A Bottle

(GIAB) samples79, precisionFDA Truth Challenge samples93, and Illumina Platinum

Genomes samples90. Genome in a Bottle is a name of a NIST-based consortium that

aims to characterize and standardize human genomic data for the research and

clinical use. The consortium collects and studies the sequencing data of NIST

Reference Materials genomes mentioned above. The relatively regularly updated

variant datasets are considered to be among the few high-confidence variant callsets

(‘ground truths’) in the industry. The GIAB has also contributed WGS data of the

NA12878 and NA24385 to the precisionFDA Truth Challenge, an open contest

organized by the FDA to improve the consistency and accuracy of variant calling

pipelines. In fact, the chemical and sequencing parameters (sample preparation kit,

read length, target insert size, instrument) of one particular batch of the samples at

GIAB (HiSeq 300x) is remarkably similar to that of the precisionFDA samples. In

addition, the NA24385 sample from the challenge had been adapted for the ‘case

 40

studies’ (testing and demonstration) of one of the tools evaluated in this work

(DeepVariant). All of these sources are summarized in Supplementary table 1.

Platinum Genomes sample data have been generated exclusively by Illumina, the

sequencing equipment manufacturer. Unlike the trios, this dataset consists of 17

family members, i.e. father and mother and their parents and a total of 11 children.

This pedigree allowed Illumina to explore the range of familial variation, i.e. infer

haplotype inheritance and genotype combinations.

In the end, the primary sequencing data for this project was selected to be from Oslo

University Hospital - as the only exome sample set that spans across four individuals

and that did not participate in training of most of the tools (with the exception of

DeepVariant models that were partially trained on HG005/NA24385), and are

compatible with the truth set from GIAB, and were sequenced with the one of the

most widespread platforms (Illumina HiSeq 2500). For the variant calling evaluation,

the data was pre-processed and downsampled to the 10% of the original coverage

with a 10% step (Supplementary table 2). Such a setup allows to estimate the

accuracy of variant calling from the real data that, for economical or technical

reasons, may be well below the recommended coverage. The secondary sequencing

data was selected to be from the precisionFDA Truth Challenge - as the known

genome sample set that had been utilized in a large variant calling competition and

that is also compatible with the truth set from GIAB, and that contains one biased

sample (HG001/NA12878).

The data files of the exome GIAB samples are available on the FTP site of NCBI

(National Center for Biotechnology Information)113. The original sequencing data for

them is available by the SRA accession numbers given in the data description

publication. The precisionFDA dataset can be downloaded after registration at the

precisionFDA portal, and the adapted versions are available in Google Cloud

buckets. The Platinum Genomes can be downloaded from the Illumina FTP site, as

well as Illumina, Amazon AWS, and Google Cloud repositories114,115.

Variant datasets

Variant datasets of various kinds are used to train algorithms and validate their work.

These resources may differ in the degree of confidence (in the authentic variant

existing at a particular position), the source of original sequencing data, and the

known state of the included variants (the presence in the variant database, as of the

time of writing).

Gold standard, also called ground truth and high-confidence variant callsets, are

rare: as of this writing, only three exist for short variants (GIAB, Platinum Genomes

and the new CHM-eval from SynDip)80,88,89,90. They are always defined in the

confidence intervals; the GIAB variant callsets, used in this work, come with BED

files that are later used in the evaluation - for the purpose of not wasting

computational resources on the whole reference genome. Their development

 41

consisted of integrating and curating several high-quality datasets from different

sequencing instruments and variant callers; the development continues62. The

version of all GIAB truths in this work is 3.3.2.

Individual variant’s biological and clinical consequences may be recorded. In dbSNP

database4, SNVs (SNPs) and small indels are assigned an accession number in

‘rsID’ format. Variant callers and callset evaluation tools, as well as human experts

can use it to access associated information (position, gene, consequence,

frequency, publications, possible phenotype). Not many dbSNP variants, however,

have a known clinical outcome; such variants are collected in the OMIM and ClinVar

databases116,46, while ‘normal’ or common variants are covered by the HapMap117

and 1000 Genomes118 databases.

Setup and usage of the pipelines

Given that the analysis is supposed to be conducted regularly, the researcher should

be able to use the tools with as little hassle and as much reproducibility as possible.

This imposes certain features had to be built in the pipeline, such as comprehensible

order of execution, management of I/O paths, and the ability to distribute across

multiple files or parallelize across multiple threads where necessary. In addition, in

order to achieve interchangeability of the variant calling pipelines that is necessary

for this project, a common ground had to be established. The pre-processing

procedure is well-suited for this purpose, as the majority of variant callers use

mapped sequences in BAM file(s) as an input. The GATK Best Practices have been

used as a blueprint to create a pre-processing pipeline41,59.

Pre-processing

During pre-processing, ‘raw’ reads from the sequencer get ready for the variant

calling. The data passes through the following phases:

1. Quality Control (QC), the process of collecting quality metrics of reads and

adjusting however necessary. QC is performed before and after alignment. It

starts with locating and trimming the reads with bad base qualities or

contaminated with adapter sequences (as of today, a rare occurrence in DNA

sequences). For quality assessment of the FASTQ files, often a combination

of tools such as FastQC, HTSeq, Kraken, multiQC is applied. For trimming,

tools such as Trimmomatic, Sickle, BBDuk or others may be applied. After

alignment, positions and structure information for each read become

available, allowing for the new quality scores. Based on this information, the

Broad Institute's Picard and GATK toolsets offer the way to assign read

groups (if not done or incorrectly done during alignment), merge multiplexed

reads (from multi-sample lanes), and detect and remove (or correct) library

preparation or sequencing errors, reducing potential bias and consequent

false positive calls.

 42

Here, QC included:

a. no trimming as FastQC demonstrated ‘good’ quality of all data files119;

b. marking duplicate reads using MarkDuplicates tool from the Picard

toolset, that inputs a sorted alignment SAM/BAM file, sifts through the

records and collects read pairs with 5’ end coordinates (locating them

via SAM flags), traverses and ranks reads in 'duplicate sets' (containing

reads that are comparable by barcodes, coordinates, orientation)

based on quality score, and adds the duplication flags to all but the

highest-ranking ('representative') read records in the output BAM120;

c. recalibrating (calculating and comparing) base quality scores using

BQSR method (BaseRecalibrator + ApplyBQSR + AnalyzeCovariates +

PrintReads tools) from the GATK toolset, that finds sequence

mismatches and adjusts observations41;

d. collecting alignment, exon- and genome-specific measurements using

CollectAlignmentMetrics, CollectHsMetrics, CollectWgsMetrics

respectively from the Picard toolset.

2. Alignment, the process of finding and adding position, quality, structure

information for each read, complemented by sorting the reads according to

the position. The given sequences, genome or exome, are compared against

the reference genome, and mapped according to the discovered matches.

The goal of the mapping is to find the correct position of each sequence,

considering possible sequencing errors and actual differences in the genetic

code (variations).

With the amount of data produced by high-throughput sequencing

experiments, the alignment requires effective computation methods. Hence, a

number of algorithms specifically for the alignment of short reads have been

developed. Most of these algorithms are index-assisted and belong to the

family of dynamic programming methods. The problem they are designed to

solve is called ‘approximate matching’ problem, that is based on the idea of

defining the distance (edit distance) between one string and another. At first,

the indexing algorithm sifts through the available genome and compiles an

index, or a binary dictionary, with sub-strings or suffixes of particular patterns,

either sorted or grouped. This index allows to perform fast ‘exact matching’ for

sequences (strings) that share identical parts with the query, ridding the

dynamic programming approach of the regions in genome that don’t have a

match with the particular string. The index, however, does not operate with

mismatches and gaps (substitutions and indels) that naturally occur in a

library of short reads.

 43

The dynamic programming complements the index by looking for the

‘approximate matches’ in the indexed regions (of the reference genome).

There, the strings are compared against other strings on the dynamic

programming matrix, with reads’ bases represented as rows and selected

regions’ bases represented as columns. The matrix is then filled with edit

distances between the row and the column bases, and with regard to the

penalties that correspond to mismatches and gaps in the alignment. After that,

the matches can be traced back to their locations.

In biological sequence analysis, the ‘approximate matching’ problem can be

broadly divided into ‘global alignment’ and ‘local alignment’ problems. The

goal of global alignment is to identify occurrences of reads (sequences) along

the reference genome; the goal of local alignment is to identify most similar

parts of a pair of sequences.

An appropriate selection of a method or software, as mentioned in Chapter 2,

depends on the data type (DNA, RNA, ChIP-Seq, other), sequencing platform

(some methods take into account specific technological characteristics like

quality degradation in Illumina, color coding in SOLiD, or homopolymer

segments reading in Ion Torrent instruments), computational capabilities,

expected performance and recommendations from the developers of

downstream analysis methods.

Here, alignment was performed by the BWA tool using the BWA-MEM algorithm121

with -M argument (resolving potential MarkDuplicates issue of not understanding

splitting of the alignment that often happens in local alignment), along with the

sorting by samtools107,108.

Processing

The tools are fed inputs according to their documentation. For the tools that are

designed to process alignments and output variant callsets, the alignment files of the

mentioned sequencing data are given as input. For the variant filtering tools, the

input is a ‘raw’ callset from the GATK HaplotypeCaller, that was made to process the

same alignment files.

Evaluation

The computational load was measured in CPU-hours (time spend as computed) and

in wall time hours (time spend as perceived). The two can be different due to the

extensive parallelization of processes. The final part of the assessment described

how well does a particular variant caller fits into the production pipeline, taking into

account the effort it required for the set up and how user-friendly it is in everyday

use.

 44

The performance evaluation part of the project included the variant calling

benchmark, and the assessment of the computational load, flexibility and ease of

use. The variant calling benchmark was performed according to the established best

practices.

Fitness evaluation

Convenience in use

As a part of the pipeline, the tools must be able to process multiple samples

repeatedly or at the same time. It depends on tools’ ability to be executed via a

SLURM command or script (starting multiple instances, feeding multiple inputs).

Required software dependencies may or may not be difficult to install globally, locally

or virtually. For instance, they might conflict with other versions already installed or

be challenging to run coordinatively if the computing or scheduling platform imposes

restrictions. Creating a local environment implies additional obstacles in updating to

a newer version of the software.

Computational efficiency

For algorithmic problems, the computational cost is commonly approached as

computational complexity. For algorithms, the complexity is commonly defined by a

‘big O notation’: 𝑂(𝑛), where 𝑛 represents the amount of steps an algorithm takes for

its execution122,123, such as 𝑛,𝑛 2, 2 𝑛, 𝑙𝑜𝑔(𝑛). In machine learning and especially

in deep learning, the models contain a multitude of steps (iterations and inner steps)

that may or may not be solved in Polynomial time by the optimization algorithms124.

A model converges when it reaches its desired accuracy or mathematical optimum,

which generally depends on the amount of parameters and may take considerable

time. As for any algorithm, this is considered a practical limitation, and techniques for

reducing the number of parameters by e.g. compression of filters are actively

developed.125-128 This number, however, is not always explicitly stated or can be

derived from the documentation (Chapter 4).

For a software or a pipeline executed on the cluster, the amount of resources utilized

for processing influences whether the particular software is used instead of the

competitor. The resources are seen as the wall (perceived) and computing time

spent, and the consumption of disk storage and memory. Such information can be

extracted from the scheduler or system utilities such as time, du and df.

Performance benchmark

The general guidelines, metrics, and the toolset for benchmarking small variants are

developed and provided by the Global Alliance for Genomics and Health (GA4GH), a

worldwide organization managing the regulation and technical standardization of the

usage of genomic data.

 45

Per these recommendations, the datasets for the benchmark should include high-

confidence (baseline, ‘true’) variant calls in corresponding confidence intervals, such

as GIAB or Platinum Genomes. The test dataset from GIAB has been selected, as

described in the ‘Sequencing data’ section. The comparison of the inferenced variant

calls against the high-confidence ones can be accomplished by either

● a genotype match - ‘replaying’ (attempting to converge) query and truth

haplotypes into each other and choosing the ‘path’ (a variation of the resulting

sequence) with most TP and least FP and FN variants;

● an allele match - counting any agreeing alleles (including FP genotypes, as

shown in Table 2) along the query and truth haplotypes;

● a local match - counting query variants that are within a matching distance of

the truth variants (including FP genotypes and alleles, as shown in Table 2).

Table 2. Possible types of matches and mismatches of variants6,129. FP.GT = False Positive genotype

variant, FP.AL = False Positive allele variant. Adapted with permission from Krusche et al., 2018.

Due to the possible differences in variant representation in query and truth VCF

records, the use of the more sophisticated methods such as 'replay' may be desired

for the more stringent matching. Alternatively, the local match method along with the

manual curation would be more allowing for differences. The hap.py toolset5,

recommended by GA4GH, includes several variant comparison engines that support

 46

these methods: xcmp (default, matching entire haplotypes or genotypes), scmp

(local matching), vcfeval (a built-in part of the RTG Tools toolset, matching

genotypes)130.

The toolset calculates several metrics for the whole callsets and for parts of it that

correspond to various conditions, taken as variant subtypes (indels of different

lengths) and annotations. The metrics in use are defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
, 𝐹1 =

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
,

where TP (True Positives) are variants that match with the truth set, FP (False

Positives, Type I error) are variants that do not match with the truth set, and FN

(False Negatives, Type II error) are true variants that are missed in the query. Note

that TN (True Negative) would mean a match with a reference, or no variant at all;

therefore, they are not present in the test callset from the GIAB, and obtaining

specificity (true negative rate) values would not be possible6,131.

The F1 score is defined as a ‘harmonic’ or balanced average of precision and recall,

and is useful as a single measure combining them, and providing better

discrimination. For example, the two different data points could yield different

metrics, such as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1 = 0.8, 𝑅𝑒𝑐𝑎𝑙𝑙1 = 0.7, and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛2 = 0.9, 𝑅𝑒𝑐𝑎𝑙𝑙2 = 0.6,

resulting in the same precision-recall average of both data points (0.75). The F1

score gives a better sense of their relative position: 0.747 for the first data point and

0.72 for the second.

The precision and recall metrics for variant conditions (‘discrimination thresholds’)

are used to construct Precision-Recall curves. Different methods may call variants

with more or less of these conditions (considered by the toolset), therefore the

amount of data points generated by comparison with each callset varies. The plots in

Chapter 6 were prepared with R, using the happyR developer package132.

Versions

The following versions of the software have been used in this work.

For preprocessing: FastQC 0.11.7, Picard 2.17.8, BWA 0.7.17, BQSR of GATK

4.0.7.0, Samtools 1.9.

For processing: HaplotypeCaller, VQSR and CNNScoreVariants of GATK 4.0.7.0,

Clairvoyante 1.0, DeepVariant 0.6.0 and 0.7.0, GARFIELD-NGS 1.02.

For evaluation: hap.py 0.3.10, R 3.5.1.

 47

Chapter 6: Comparison of the variant calling pipelines

This chapter delivers the selection and the evaluation of the DNN-based variant

detection methods. It starts with comparing their approaches to the problem, then

reflects the usability and ease of integration with the existing genomic pipelines.

Along with that, tools’ use of computational resources is taken into account. Finally,

the benchmark results are showcased.

Overview of the approaches

The neural network based variant callers (Clairvoyante, CNNScoreVariants (GATK),

DeepVariant, GARFIELD-NGS, and VariationAnalysis) were designed to achieve the

same goal (correct and accurate detection of the genetic variation), but their

approaches differ. Neither of the presented tools is an all-in-one solution; all of them

require pre-processing (which in this case is identical, as described in Chapter 5),

some of them require post-processing (producing a subsequent analysis-ready VCF

file). The DNN-based tools are supposed to replace or complement known, reliable

solutions in the production-grade genomic pipeline. As such, the comparison

includes these solutions, namely HaplotypeCaller producing ‘raw’ variant calls and

HaplotypeCaller with VQSR-filtering from the GATK package; their working principles

are detailed in Chapter 3. The deep learning -based tools are outlined in this section;

their models are described in Chapter 4.

Clairvoyante

Implementation. Clairvoyante73,133 is implemented as set of Python 3 scripts; it relies

on the presence of GNU Parallel134 utility in the execution environment and Python

modules such as Tensorflow135 framework for machine learning, intervaltree for

handling eponymous data structures, and blosc for data compression. GNU Parallel

allows concurrent computation, which is useful for heavy tasks like training and

inference of neural networks, while Tensorflow provides multithreading; together,

they can create multiple multithreaded ‘jobs’, each working on its own chunk of the

data. A version of Tensorflow for running on the GPU, in this case, is only used for

training. The execution can be sped up further by installing the optimized Pypy136

version of Python. In the cluster, Python 3 and Pypy, and consequently Clairvoyante

scripts were called through the Conda virtual environment.

Workflow. For input, the tool accepts an alignment file (BAM) along with a possible

regions file (BED), reference genome, and arguments for the model and

parallelization. The output is tens of regional callsets in separate VCF files. For the

evaluation, as well as for a potential downstream analysis, they need to be

concatenated into one VCF (done with vcfcat, part of the vcflib137) and then sorted

(done with vcfsort, another part of the vcflib).

Behavior. Being the only variant caller with a CNN model initially developed for the

analysis of long reads (Oxford Nanopore, Pacific Biosciences sequencing

 48

instruments), Clairvoyante is a technical outlier in the reviewed group of variant

calling software. However, the availability of the ‘Illumina’ model (though trained

using the ‘hg38’ reference genome) allows Clairvoyante to participate in the

comparison.

Once started, the tool extracts variant candidates with the help of samtools mpileup

(Bayesian inference of genotype likelihoods)107,138, creates tensors for each of the

candidate variant sites, and inferences desired variants. In essence, it is a filtering

approach, conceptually similar to the one implemented in CNNScoreVariants and

DeepVariant.

CNNScoreVariants (GATK4)

Implementation. CNNScoreVariants74,87 is included in the GATK4 toolkit as

‘experimental’ method (for the reviewed 4.0.7.0 version) for annotating ‘raw’ VCF

files with scores. The main GATK4 engine requires installed Java environment for

running; the tool, however, runs on Python and utilizes a custom package vqsr_cnn,

which in turn relies on the following libraries: Keras139 for deep learning (depending

on Tensorflow and Theano140 backends), scikit-learn141 for machine learning, NumPy

and SciPy142 for mathematical and scientific computing, Matplotlib143 for plotting, and

Biopython144, PyVCF145 and Pysam146 for processing biological data. Multithreading

is supported; to utilize a GPU, a Tensorflow-GPU must be installed. Conveniently,

GATK4 can be started from an official Docker image or a Conda virtual environment.

Workflow. CNNScoreVariants is operated from the GATK command line interface,

with input in form of the ‘raw’ VCF file and a reference genome, and output in form of

the revised VCF file:

path/to/gatk CNNScoreVariants

 --variant [raw_variants.vcf]

 --reference [reference.fa]

 --output [revised_variants.vcf]

The output file is, in fact, almost identical to the input, with the addition of a new

annotation ‘CNN_1D’ in the INFO column, denoting the score assigned by the neural

network (the evaluation of the ‘2D’ model was not conducted). After that, in order for

the variants to be actually filtered (as was designed) and then evaluated, another

GATK tool should be applied:

 49

path/to/gatk FilterVariantTranches

 --variant [revised_variants.vcf]

 --resource [hapmap.snps.vcf]

 --resource [1000G.indels.vcf]

 --info-key [CNN_1D]

 --tranche [99.9]

 --tranche [99.0]

 --tranche [95]

 --output [filtered_variants.vcf]

Where the resources contain common variant sites, info-key indicates the new

annotation, and tranche values designate truth sensitivity (recall) to them.

Behavior. The scoring tool traverses the input and feeds each previously called

variant with its position, reference and alternative alleles, contextual window and

several annotations, encoded into the tensors, to the selected model. The model’s

architecture and weights are loaded from their respective temporal files. Variants are

processed in batches of variable size, and each variant is given a Log Odds Score.

The filtering tool traverses the variants twice. In the first pass, it seeks the variants

with added score (the ‘CNN_1D’ value) and counts how many of these have

corresponding sites in the resources. In the second pass, it compares the scores

with the cutoff calculated using the counts of sites in resources, and filters out a

number of filters that are below the cutoff.

GARFIELD-NGS

Implementation. GARFIELD-NGS75,147 is a Perl script, reading and writing the data

and invoking neural network models. The models are based on the H2O.ai95

machine learning platform and enclosed into the Java packages (Jar). Thus, the tool

can be executed in most of the *nix systems, especially ones targeted for HPC.

Despite the theoretical possibility of engaging multiple CPU threads or a GPU, it

does not happen and is not mentioned in the documentation; in fact, the models are

small enough to allow both inference and training at a negligible cost.

Workflow. The script takes in a ‘raw’ VCF file (e.g. from HaplotypeCaller) and

outputs another VCF file with added annotation ‘sample-name_true’ in the INFO

field, i.e.

AC=2;AF=1;AN=2;DP=2;ExcessHet=3.0103;FS=0;MLEAC=2;MLEAF=1;MQ=27;QD=1

8.37;SOR=2.303;sample-name_true=0.338

This file is to be filtered based on the recommended threshold (separately for

Illumina and Ion Torrent data, for SNVs and indels). The authors do not clarify the

preferred method of filtering. Two methods have been devised:

 50

1. A Python script removing every variant surpassing the threshold. Proved to be

cutting off too many variants, so the performance had suffered;

2. Four-step filtering using corresponding programs:

a. Edit the annotation name to make it recognizable and filterable with

sed -i 's/sample-name_true/sample_name_true/g' input.vcf

b. Separate indels and SNVs into separate VCF files with

vcftools --remove-indels --recode --recode-INFO-all --vcf

input.vcf --out output.snvs[.vcf]

and

vcftools --keep-only-indels --recode --recode-INFO-all --

vcf input.vcf --out output.indels[.vcf]

c. Apply indel- and SNV-specific filter threshold with

rtg vcffilter -i [output.snvs.vcf / output.indels.vcf]

-o [output.snvs.filt.vcf / output.indels.filt.vcf]

--keep-expr 'SAMPLES.some(function(s)

{ return INFO.sample_name_true>REC_THRESHOLD })'

d. Join indels and SNVs back together with

bcftools concat

output.snvs.filt.vcf output.indels.filt.vcf

-o output_joined.vcf -a -O z

The second method has been applied.

Behavior. The tested Illumina model works unexpectedly fast, spending only from a

few seconds to a few minutes on one VCF file, depending on its size. The script

reads the file and assesses the amount of SNV and indel variants; a multiallelic

portion (up to ~1.5%) of them is dropped and therefore not analyzed. Two models

are used sequentially: one for indels, another for SNVs. In the end, the predictions

are written into the output VCF file.

DeepVariant

Implementation. DeepVariant76,148 is written in Python and its main execution

environment is Python; nonetheless, the reading and writing sequencing and serial

data require specific versions of additional software packages like Protobuf and

Nucleus, which in turn may need a specific version of a building system Bazel or

other dependency149. The neural network relies on the Tensorflow framework. In

addition, DeepVariant is hardware-dependent, as its binaries require support for

certain vector instructions in the CPU (most x86-64 CPUs produced after 2011

 51

support them). Altogether, it might cause compatibility issues in the cluster

environment. This can be solved by preparing a local environment with all possible

dependencies, or by running DeepVariant in a Docker image that the authors

provide. The special version of a Docker image can utilize a GPU on an appropriate

machine.

Workflow. Between the input BAM and the output VCF file, the tool passes through

three steps: make_examples that converts alignments into tensor records,

call_variants that performs the genotyping with the CNN, and postprocess_variants

that converts the CNN output into a common format for variant callsets. The steps

are implemented in the form of zip-packaged Python modules and therefore can be

executed provided a Python interpreter and a correct set of arguments, i.e.

path/to/python path/to/deepvariant/exec args

The input and output options of the DeepVariant scripts allow to have it process only

part of the data, thus making it easy to parallelize and scale using independent

processes or even nodes. If necessary, the output of ‘sharded’ (parallelized) run can

be combined into a single file. Although not explicitly stated in the documentation,

the outputs of the first two steps are archived internal files, and as such they can be

decompressed, concatenated and compressed again. Such an action might be

useful if the plans or the available computational power change between the steps.

For the production environment, three scripts corresponding to these three steps

have been developed. The scripts allow quick substitution of inputs and

parallelization of the workload across multiple computing nodes in the SLURM

scheduling system. The scripts are based on the ‘case study’ workflows from the

authors of DeepVariant; they were adapted and extended to allow running with

variable number of cores and running the second step (that involves CNN inference)

either in the same way or on the GPU machine.

Behavior. The make_examples step looks for candidate variants from start to end of

the supplied alignment. For convenience, it logs the amount of candidates per every

1000 positions. The call_variants step inferences variants in several hundreds of

examples per batch, and logs it accordingly. The postprocess_variants step

combines previously parallelized outputs if necessary, sorts variant calls according to

the position, and writes them to the VCF file. For each variant, measures such as

genotype likelihoods, qualities, and allelic depths and frequencies are logged.

 52

VariationAnalysis

Implementation. The tool76,150 is built upon a Goby framework151 from the same

Campagne Laboratory, which is intended to handle various aspects of NGS analysis,

from DNA and RNA sequence alignment to somatic and germline variant calling,

differential expression, methylation analysis, and various file conversions. The

framework integrates multiple ‘plugins’ of corresponding methods, such as BWA for

DNA sequence alignment or pieces of GATK for somatic and germline variant

analysis. Goby reportedly has a web version called GobyWeb152; as of this writing,

its demo is not available online, but the software is downloadable and can be

installed on a web server. The installation of Goby requires the Java environment

and the Apache Maven building system to be preinstalled.

Workflow. VariationAnalysis is used to train genotyping models that can be applied

with Goby. During the training, it converts BAM alignments with the corresponding

truth VCF into a proprietary Sequence Base Information (SBI) file format that

contains features that are mapped to variant sites. The SBI file is then split into the

training, validation and test sets using a supplied bash script, trained using another

bash script, and tested in the same fashion. Alternatively, pre-trained models can be

downloaded.

The prediction of the genotypes with a trained model is done by calling the Goby

binary with arguments stating the input alignment, reference genome, format

(‘variant_discovery’), and a model.

Behavior. Unfortunately, running the scripts or the framework turned out to be

unsuccessful. The described stages of the workflow, such as converting the

alignment to the SBI format, training the model, making predictions with it, – often

ended up with errors (about missing or unexpected command or option or file),

without a clear possibility to troubleshoot. In addition, the documentation is not

maintained well: part of it is outdated, part is missing.

Fitness evaluation

The presented tools must be able to complement or integrate with the existing

variant calling pipeline. They exhibit two approaches: one is to filter the GATK

HaplotypeCaller ‘raw’ output (CNNScoreVariants, GARFIELD-NGS, and the

established method VQSR), and another is to control variant calling from the BAM

alignments to the final VCF by the means of the tool under evaluation (Clairvoyante,

DeepVariant, VariationAnalysis). Per Chapter 6, there is two parts to the fitness: the

ability of being conveniently operated and the ability of being efficiently executed.

The latter is demonstrated in a form of a summary table.

Convenience in use

Clairvoyante is dependent on Python 3 with additional modules and benefits from the

use of Pypy and GNU Parallel, and therefore has to be executed via the environment

 53

that supports at least Python 3 and the modules. In this case, Clairvoyante was run

through the Conda environment system, installed for the user on the cluster, which

had caused conflict with the SLURM scheduling system. When the tool was run from

the shell, it did not generate other issues.

CNNScoreVariants, being a part of the GATK toolkit, utilizes a combination of Java

and Python backends, with Java sending requests for processing to Python and

expecting to receive an answer in a temporal FIFO file. These kind of pipes can be

broken and result in a timeout or a freeze. The authors are supposedly familiar with

the issue153,154, and supply each release of GATK with the Conda YML file, listing the

exact versions of the dependencies that work together. In a Conda environment or in

a locally recreated environment, CNNScoreVariants works as expected.

DeepVariant requires a number of software packages installed, some of which might

be unsuitable depending on the OS. The tool can be run via one of the official

Docker images or the unofficial Conda recipe. Apart from the installation, the tool has

been running as expected from the extensive practical documentation. It was

possible to schedule and distribute the execution of a locally installed DeepVariant.

GARFIELD-NGS is the simplest tool of the observed, requiring only Perl and Java,

both of which are present in most HPC systems. An additional shell script can be

used to start several instances analyzing their part of the data.

VariationAnalysis is an immediate outlier from the other tools due to its infeasibility

as a reliable variant calling utility. The tool did not produce any results apart from

errors and, therefore, was discarded from the evaluation of efficiency and

performance.

VQSR, again a part of GATK, but a relatively old one (introduced in 2013) and only

relying on Java, processes the data in a well-tested, stable manner. The errors may

originate from insufficient understanding or preparation of the data by the user: for

example, it is recommended to perform filtering on a joint callset (from several

samples), as it gives more power to the analysis. Given the age and the advanced

technical support on the GATK forum, most issues are likely to be known or even

solved.

Computational efficiency

The measurements were taken from runs of all presented tools against four WES

samples (with original coverage), with respect to the required workflows from the

alignment to the final variant callset file. Therefore, the runtime of filtering tools

includes the runtime of HaplotypeCaller.

The boxplot below (Figure 8) shows the distribution of times spent on computation

and from the perspective of the user, using the effective but not exhausting 8-core

configuration. The ‘1 core’ notes indicate that the method or its part is not able or

does not benefit from the use of more than 1 core. For instance, the last step of

 54

DeepVariant is relatively simple (writing tensor records into text-based file) and only

utilizes 1 thread (this is mentioned in the documentation and was verified);

HaplotypeCaller in GATK4 is only able to utilize multiple cores if run in Spark or on

Intel hardware with modern vector instructions (limited by 4).

Figure 8. Run times comparison.

Clearly, the tools significantly differ in their use of computing resources. While the

samples are supposed to be comparable, the tools may spend twice or even thrice

more time on one sample over another (e.g. CNNScoreVariants, VQSR). For filtering

tools, HaplotypeCaller noticeably contributes to the time and its variation, especially

in the case of GARFIELD-NGS, that only takes several minutes on the cluster or

several seconds on the laptop. Clairvoyante demonstrates little variation and good

overall efficiency.

Two versions of DeepVariant were run, as the developers claimed that they have

reduced the run time by 65% in v0.7.0. The claim is correct, although the

performance in calling variants was slightly reduced as well.

Additionally, the CNN run times were measured for CNNScoreVariants and

DeepVariant. The GPU instance was only utilized with them, because their models

were the most demanding of the presented tools. On average, CNNScoreVariants is

able to process one WES sample in 0.5 minutes, and one WGS sample in 13

minutes, while DeepVariant processes one WES sample in 2 minutes 30 seconds,

and one WGS sample in 141 minutes.

 55

For the memory usage, at their most, Clairvoyante have utilized 1.66 GB of RAM,

CNNScoreVariants utilized 1.04 GB, one instance of parallelized DeepVariant 0.6.0

utilized 1.63 GB, one instance of DeepVariant 0.7.0 utilized 1.29 GB, VQSR was

able to use 8.23 GB, and ‘raw’ HaplotypeCaller 9.17 GB.

For the disk storage usage, DeepVariant of both evaluated versions creates ~800

MB of intermediate files per sample, while the rest create temporary files of relatively

smaller size (not exceeding the size of the VCF) in the specified or /tmp/user

directory.

Performance benchmark

The benchmarking procedures were performed according to the ‘Evaluation’ section

of Chapter 5, with four Oslo University Hospital samples (WES) gradually

downsampled to 10% of the original coverage. With these high-quality samples, the

full range of downsampled samples is redundant, as the performance starts to

significantly deteriorate only after the coverage reaches around ~50x (40% of the

original coverage). Therefore the focus is on the lower coverages.

Figures 9-13 accommodate the PR-ROC curves (Chapter 5) for four samples in four

rows, and for SNVs and indels in corresponding columns. Hence, it is possible to see

how well the tools are able to work with the data of different origin.

In Figure 9, the differences between all tools but Clairvoyante are barely

distinguishable with the naked eye. This is done on purpose: such scale

demonstrates how poorly Clairvoyante performed. This is reasonable: the tool and

the model were designed for the long read data, and while the selected model was

trained on short read data (Illumina), the authors have used the hg38 reference for it,

which is not completely compatible with the hs37d5 reference used in this study. The

shape of the curves is interesting, too: Ashkenazi father and mother (HG003 and

HG004) are more similar to each other than to their son (HG002), which has patterns

that are close to that of Chinese son (HG005). This behaviour could have been a

result of similarities in corresponding sequencing or alignment, yet the description of

the data suggests equal parameters for all samples.

Clairvoyante is not included in further analysis. The remaining five out of six

assessed methods performed well in SNV detection at high coverage, where

precision and recall are known to be high with most modern approaches. In indel

detection, the tools showed comparable performance at all coverages.

 56

PR-ROC curves

Figure 9. Precision and recall of calling SNVs and indels on four different samples. Small-scale

overview showing all six methods at the original coverage.

 57

Figure 10. Precision and recall of calling SNVs and indels on four different samples. Close-up

showing five methods at the original coverage (Clairvoyante is underperforming).

 58

Figure 11. Precision and recall of calling SNVs and indels on four different samples. Close-up

showing five methods at the 40% coverage. The precision starts to decrease at a notable pace.

 59

Figure 12. Precision and recall of calling SNVs and indels on four different samples. Close-up

showing five methods at the 20% coverage. Indel calling seems to be more robust than SNV calling.

 60

Figure 13. Precision and recall of calling SNVs and indels on four different samples. Close-up

showing five methods at the 10% coverage. VQSR could not handle the filtering. DeepVariant in SNV

detection suffered more than other tools.

 61

At the original coverage, DeepVariant is the best performer on both indel and SNV

calling. In indel detection, next is GARFIELD-NGS, showing improved (to 0.97 and

higher) precision from 'raw' variants (HaplotypeCaller), at the expense of recall. In

SNV detection, GARFIELD-NGS does not improve the result of HaplotypeCaller,

practically repeating the curve points (0.998/0.99 and higher for the precision).

CNNScoreVariants and VQSR improve on it, but worsen the precision/recall result of

HaplotypeCaller for indel calling (0.95/0.825). CNNScoreVariants has lower recall

than VQSR and pure HaplotypeCaller.

At 40% coverage, DeepVariant remains a clear winner in indel calling (0.97/0.77 and

higher for the precision), but shows average to worst performance in SNV calling

(0.998/0.95 and higher for the precision). Here, the benefit of applying the tools to

the four samples instead of one (HG002 is commonly used in comparison and

method studies (Refs)) is manifested: the curves are more consistent for Ashkenazi

son (HG002) than for other samples. It is appropriate to think of data leakage - a

machine learning scenario in which a model has access to the prediction data,

usually due to a poor feature selection or cross-validation practice; however, without

an unprotected access to the models and the data they were trained on, it is

impossible to prove. Also at this point, VQSR shows slightly better indel calling

precision over HaplotypeCaller (0.98/0.65 over 0.97/0.65 precision/recall) for

Ashkenazi father and mother (HG003 and HG004), and better SNV calling precision

and recall over all other tools for all samples (0.999/0.97 over 0.9985/0.96 closest).

CNNScoreVariants shows better precision than HaplotypeCaller and DeepVariant for

SNV calling (0.9995/0.8125), but otherwise for indel calling (0.96/0.75 against

0.97/0.75 closest). GARFIELD-NGS shows similar performance to that of VQSR in

indel calling (0.97/0.75), and again follows the HaplotypeCaller curve in SNV calling.

At 20% coverage (the least sensible coverage for exome sequencing), DeepVariant

shows better precision in indel calling than the rest, but concedes to VQSR in recall.

The performances of CNNScoreVariants, GARFIELD-NGS and HaplotypeCaller in

indel calling are very close, their curves are intermingled. In SNV calling, VQSR has

superior precision and recall, GARFIELD-NGS and HaplotypeCaller form one curve

again, relative to which CNNScoreVariants shows slightly better precision and

slightly worse recall. DeepVariant does not perform so well in SNV calling. Still, for

all tools, in SNV detection, recall is higher than 0.75 and precision is higher than

0.996; in indel detection, recall is higher than 0.7 and precision is higher than 0.95.

Figure 13 does not reflect a realistic scenario, but does give insight into variant

calling in regions with small coverage, which can be found in a regular sequencing

experiment, as well as into approaches to indel and SNV calling. Recall falls to 0.6

and lower in indel calling and to 0.5 and lower in SNV calling; precision remains

higher than 0.85 in indel calling and higher than 0.995 in SNV calling. The curves of

all tools but DeepVariant are close; DeepVariant shows recall lower than 0.25 in

SNV calling. Filtering does not always work, VQSR could not process this low-

coverage sampleset at all.

 62

Apparently, indel detection is more tolerable to the quality of the data and more

difficult to break; at the same time, the tools demonstrate better overall performance

at higher coverages in SNV detection. Additionally, the tools are focused on

improving precision rather than recall, which does not always make sense for a

potential clinical setting: while it is definitely preferable to make correct calls, missing

the other correct calls for this sake could disagree with the goal of screening for the

known variants.43,155

Interestingly, the comparison of the callsets from tools with truths generated the

following amounts of data points (variant conditions): from 889 to 890 for

Clairvoyante, from 13729 to 15685 for CNNScoreVariants, from 297 to 301 for

DeepVariant, from 13563 to 15478 for GARFIELD-NGS, from 29663 to 31130 for

VQSR, and from 13729 to 15685 for the ‘raw’ HaplotypeCaller. This is congruous to

the methods: the filtering solutions build on the output of HaplotypeCaller, adding or

removing variant annotations, while solutions that work with alignments create their

annotations from scratch, and less. The relatively small amount of data points from

DeepVariant and Clairvoyante can be observed on the curves, given sufficiently

large scale. A further study of the consistency of the final variants or errors could be

justifiable; however, it is beyond the limits of this work.

Tables

The following tables summarize variant calling performance of the five tools (all

neural network based tools but Clairvoyante, and VQSR) at the original coverage.

The F1 metric and absolute numbers of TP, FP and FN variants are added.

The tables represent the whole callsets compared with truth, as opposed to plotting

the metrics for variants that meet particular conditions.

Two DeepVariant versions were selected to show the difference; it is negligible.

Three versions of CNNScoreVariants have been evaluated - 4.0.4.0, 4.0.5.0, 4.0.7.0;

they show no difference in the results, hence only one (last) is selected.

 63

Table 3. Summary evaluation of the performance of the tools on the HG002 sample.

Table 4. Summary evaluation of the performance of the tools on the HG003 sample.

 64

Table 5. Summary evaluation of the performance of the tools on the HG004 sample.

Table 6. Summary evaluation of the performance of the tools on the HG005 sample.

In indel calling, the tools are not always able to surpass 0.9 mark of the F1 score. At

the same time, in SNV calling the tools are most often improving 0.99 mark of F1.

It is clear that Clairvoyante is out of place in this comparison; yet for two samples

(HG003 and HG004) it can outperform CNNScoreVariants. The comparison using an

alignment to a more suitable reference (hg38) could yield more practical results;

however, it would require a new analysis of other tools and as such, is beyond the

limits of this work.

CNNScoreVariants, in turn, would benefit from a more sensitive filtering. In addition,

the analysis of a high-quality sample such as the ones that were used, does seem to

marginally reduce the amount of FP variants, but takes down the amount of TP

variants as well, and increases the amount of FN variants.

 65

DeepVariant demonstrates outstanding performance in indel calling, where the

variation of outcome is high. The newer version of its model may or may not improve

on the old; the significantly reduced computational load makes it a reasonable

update.

GARFIELD-NGS does filter the output of HaplotypeCaller in indel calling, gaining

precision at the expense of recall. In SNV calling, its model does not significantly

improve, but does not significantly degrade the result either.

Finally, for SNVs, VQSR retains a level of filtering lower that other calls, but still with

0.99+ range. For indels, it filters out too much in both precision and recall, worsening

the result of HaplotypeCaller. VQSR works noticeably better on lower coverages.

 66

Chapter 7: Conclusions

The aim of this work was to test whether the neural network based methods for

variant calling are applicable in the given pipeline conditions. In doing so, the

theoretical background had to be leveraged and the workflow of the project had to be

designed and followed accordingly; the practical solutions had to be selected, built,

and applied.

At first, the knowledge regarding the state of variant detection had been established.

It spans from the basics of genetics and sequencing technologies to the principles of

handling genomic data to the machine learning concepts and techniques. The

inspection of the deep learning tools had shed the light on the architectural details

and development history of their models; it did not, however, aid in interpretation of

models as it is a far bigger issue. The latter could have been easier given the means

for the interaction with or visualization of the model (which is highly unrealistic) or

given the elaborate and consistent documentation from the authors of the particular

methods (which is less unrealistic).

Secondly, the search for and preparation of the appropriate data revealed the the

lack of the publicly available sequencing data, reflecting the real-world rather than

ideal application, coupled with the variant callset representing the ground truth. As of

this writing, only three such truth sets exist, giving room for the potential bias, but

also for the improvement. The exome data corresponding to them is not abundant,

even though at least one sample (HG001 / RM 8398) is intended to be routinely

included as control in the genomic studies. This particular sample, however, was

often used for the training, and therefore is not the best possible choice for the

testing.

Thirdly, the installation and the usage of the currently available deep learning based

tools exposed the heterogeneity of the approaches to their development and

utilization. Certain callers, such as DeepVariant, are clearly intended to be run on the

powerful, distributed production systems, while others, such as GARFIELD-NGS or

GATK, are suitable for the desktop environment. A practical workflow for each of the

working tools have been extracted or devised and the required steps, commands,

and options have been documented. The convenience, the turnaround time and the

computational efficiency criteria were taken into account during the evaluation.

Lastly, the evaluation of the performance showed several interesting and thought-

provoking results. For instance, why would VQSR and CNNScoreVariants decrease

both the precision and the recall at the high coverage? One reason for VQSR could

be a poor statistical power from joint genotyping of only 4 samples; yet at lower

coverages VQSR performs well or even better than the others. One reason for the

aforementioned behaviour in CNNScoreVariants could be a weak generalization to

different conditions with the pre-trained model. These conclusions are premature.

 67

Another interesting observation is that at high coverages, DeepVariant showed

significant improvement in precision and a generally high score in recall metric at the

expense of using more computational resources (which correlates with its immensely

deep model). And yet another observation is that GARFIELD-NGS performs fairly

well on indels, despite the initial apprehension from the unusually fast execution, but

does not improve SNV calling by large. All observations are listed in Chapter 6.

The comparisons, evaluations and reviews of variant callers had been conducted

before. The advantage of this work over similar studies are in the theoretical and

practical detail, as well as in the range of samples used for the evaluation.

The desired result here was the eventual augmentation of the established variant

calling pipeline. Several tools proved to be reliable in given conditions; certain others

(Clairvoyante, VariationAnalysis) did not, but nonetheless gave points to the potential

further development of the pipeline, the methods that it utilizes, and the effect that it

may have on understanding of the genetic variation.

 68

References

1. Homo sapiens (ID 51) - Genome - NCBI [Internet]. Available from:

https://www.ncbi.nlm.nih.gov/genome/51

2. Elgar G, Vavouri T. Tuning in to the signals: noncoding sequence

conservation in vertebrate genomes. Trends Genet. 2008;24(7):344–52.

3. Alberts B, et al. Molecular Biology of the Cell. 6th ed. W. W. Norton &

Company; 2014.

4. Sherry ST. dbSNP: the NCBI database of genetic variation. Nucleic Acids

Res. 2001;29(1):308–11.

5. rs334 RefSNP Report - dbSNP - NCBI [Internet]. Available from:

https://www.ncbi.nlm.nih.gov/snp/rs334

6. Krusche P, Trigg L, Boutros PC, Mason CE, De FM, Vega L, et al. Best

Practices for Benchmarking Germline Small Variant Calls in Human

Genomes. 2018; Available from: http://dx.doi.org/10.1101/270157

7. Hu J, Ng PC. Predicting the effects of frameshifting indels. Genome Biol.

2012;13(2).

8. De La Chaux N, Messer PW, Arndt PF. DNA indels in coding regions reveal

selective constraints on protein evolution in the human lineage. BMC Evol

Biol. 2007;7.

9. Gemayel R, Vinces MD, Legendre M, Verstrepen KJ. Variable Tandem

Repeats Accelerate Evolution of Coding and Regulatory Sequences. Annu

Rev Genet. 2010;44(1):445–77.

10. Richard G-F, Kerrest A, Dujon B. Comparative Genomics and Molecular

Dynamics of DNA Repeats in Eukaryotes. Microbiol Mol Biol Rev.

2008;72(4):686–727.

11. Sharp AJ, Zeng H, Guilmatre A, Georgiev S, Price AL, Erlich Y, et al.

Abundant contribution of short tandem repeats to gene expression variation in

humans. Nat Genet. 2015;48(1):22–9.

12. Myers RH. Huntington’s Disease Genetics. NeuroRx. 2004;1(2):255–62.

13. Langbehn DR, Stout JC, Scahill RI, Long JD, Wexler A, Warner JH, et al.

Huntington disease: natural history, biomarkers and prospects for

therapeutics. Nat Rev Neurol. 2014;10(4):204–16.

14. Moss DJH, Tabrizi SJ, Mead S, Lo K, Pardiñas AF, Holmans P, et al.

Identification of genetic variants associated with Huntington’s disease

 69

progression: a genome-wide association study. Lancet Neurol.

2017;16(9):701–11.

15. Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, et al.

Huntington disease. Nat Rev Dis Prim [Internet]. Macmillan Publishers

Limited; 2015 Apr 23;1:15005. Available from:

https://doi.org/10.1038/nrdp.2015.5

16. Theilmann J, Squitieri F, Kremer B, Zeisler J, Telenius H, Bird TD, et al. A

Worldwide Study of the Huntington’s Disease Mutation: The Sensitivity and

Specificity of Measuring CAG Repeats. N Engl J Med. 2002;330(20):1401–6.

17. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome.

Nat Rev Genet. 2006;7(2):85–97.

18. Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and

genotyping. Nat Rev Genet. 2011;12(5):363–76.

19. Spielmann M, Lupiáñez DG, Mundlos S. Structural variation in the 3D

genome. Nat Rev Genet. 2018;19(7):453–67.

20. Tucker T, Marra M, Friedman JM. Massively Parallel Sequencing: The Next

Big Thing in Genetic Medicine. Am J Hum Genet. 2009;85(2):142–54.

21. Ramos L. Miodrag Mićić (Ed): Sample Preparation Techniques for Soil, Plant

and Animal Samples. Chromatographia. 2016;79(23–24):1683–4.

22. Mullegama S V., Alberti MO, Au C, Li Y, Toy T, Tomasian V, et al. Nucleic

acid extraction from human biological samples. Methods Mol Biol.

2019;1897:359–83.

23. Ali N, Rampazzo R de CP, Costa ADT, Krieger MA. Current Nucleic Acid

Extraction Methods and Their Implications to Point-of-Care Diagnostics.

Biomed Res Int. 2017;2017:1–13.

24. Mamanova, L., Coffey, A. J., Scott, C. E., Kozarewa, I., Turner, E. H., Kumar,

A., … Turner, D. J. (2010). Target-enrichment strategies for next-generation

sequencing. Nature Methods, 7(2), 111–118.

https://doi.org/10.1038/nmeth.1419

25. Teer JK, Mullikin JC. Exome sequencing: The sweet spot before whole

genomes. Hum Mol Genet. 2010;19(R2).

26. Watson M, Hume D, Archibald A, Deeb N, Warr A, Robert C. Exome

Sequencing: Current and Future Perspectives. G3&#58;

Genes|Genomes|Genetics. 2015;5(8):1543–50.

 70

27. Horn G, Saiki R, Erlich H, Faloona F, Scharf S, Mullis K. Specific Enzymatic

Amplification of DNA In Vitro: The Polymerase Chain Reaction. Cold Spring

Harb Symp Quant Biol. 1986;51(0):263–73.

28. Pray LA. The Biotechnology Revolution: PCR and the Use of Reverse

Transcriptase to Clone Expressed Genes [Internet]. Scitable. 2008. Available

from: https://www.nature.com/scitable/topicpage/the-biotechnology-revolution-

pcr-and-the-use-553

29. Metzker ML. Sequencing technologies — the next generation. Nat Rev Genet.

2010;11(1):31–46.

30. Heather JM, Chain B. The sequence of sequencers: The history of

sequencing DNA. Genomics. 2016;107(1):1–8.

31. Mardis ER. DNA sequencing technologies: 2006-2016. Nat Protoc.

2017;12(2):213–8.

32. Novo SM, Banerjee S, Benoit VA, Rasolonjatovo IMJ, Bridgham JA, Golda

GS, et al. Accurate whole human genome sequencing using reversible

terminator chemistry. Nature. 2008;456(7218):53–9.

33. Ronaghi M, Uhlén M, Nyrén P. A sequencing method based on real-time

pyrophosphate. Science (80-). 1998;281(5375):363–5.

34. Volkmer GA, Irzyk GP, Gomes X V., Makhijani VB, Roth GT, Plant R, et al.

Genome sequencing in microfabricated high-density picolitre reactors. Nature.

2005;437(7057):376–80.

35. Landegren U, Kaiser R, Sanders J, Hood L. A ligase-mediated gene detection

technique. Science (80-). 1988;241(4869):1077–80.

36. Sidow A, Stuart J, McKernan K, Ichikawa J, Tonthat T, Zeng K, et al. A high-

resolution, nucleosome position map of C. elegans reveals a lack of universal

sequence-dictated positioning. Genome Res. 2008;18(7):1051–63.

37. Schadt EE, Turner S, Kasarskis A. A window into third-generation

sequencing. Hum Mol Genet. 2010;19(R2).

38. Turner S, Otto G, Murphy D, Luong K, Eid J, Lundquist P, et al. Real-Time

DNA Sequencing from Single Polymerase Molecules. Science (80-).

2008;323(5910):133–8.

39. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base

identification for single-molecule nanopore DNA sequencing. Nat

Nanotechnol. 2009;4(4):265–70.

 71

40. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et

al. The genome analysis toolkit: A MapReduce framework for analyzing next-

generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.

41. DePristo MA, Rivas MA, McKenna A, Hartl C, del Angel G, Sivachenko AY, et

al. A framework for variation discovery and genotyping using next-generation

DNA sequencing data. Nat Genet. 2011;43(5):491–8.

42. Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, et al.

Characterizing and measuring bias in sequence data. Genome Biol.

2013;14(5).

43. Roy S, Coldren C, Karunamurthy A, Kip NS, Klee EW, Lincoln SE, et al.

Standards and Guidelines for Validating Next-Generation Sequencing

Bioinformatics Pipelines: A Joint Recommendation of the Association for

Molecular Pathology and the College of American Pathologists. J Mol

Diagnostics. 2018;20(1):4–27.

44. Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic

variants from high-throughput sequencing data. Nucleic Acids Res.

2010;38(16).

45. Butkiewicz M, Blue EE, Leung YY, Jian X, Marcora E, Renton AE, et al.

Functional annotation of genomic variants in studies of late-onset Alzheimer’s

disease. Bioinformatics. 2018;34(16):2724–31.

46. Malheiro A, Riley G, Hart J, Jang W, Ovetsky M, Hoffman D, et al. ClinVar:

improving access to variant interpretations and supporting evidence. Nucleic

Acids Res. 2017;46(D1):D1062–7.

47. Kulkarni S, Roy S, Younes A, Lindeman NI, Duncavage EJ, Datto M, et al.

Standards and Guidelines for the Interpretation and Reporting of Sequence

Variants in Cancer. J Mol Diagnostics. 2016;19(1):4–23.

48. Shirts BH, Pritchard CC, Walsh T. Family-Specific Variants and the Limits of

Human Genetics. Trends Mol Med. 2016;22(11):925–34.

49. Lubitz SA, Haas ME, Khera A V., Aragam KG, Kathiresan S, Ellinor PT, et al.

Genome-wide polygenic scores for common diseases identify individuals with

risk equivalent to monogenic mutations. Nat Genet. 2018;50(9):1219–24.

50. Jain P, O’Roak BJ, Cooper GM, Witten DM, Shendure J, Kircher M. A general

framework for estimating the relative pathogenicity of human genetic variants.

Nat Genet. 2014;46(3):310–5.

51. Smith LD, Herd S, Willig LK, Marrs T, Walter A, Thiffault I, et al. A 26-hour

system of highly sensitive whole genome sequencing for emergency

management of genetic diseases. Genome Med. 2015;7(1).

 72

52. Kalman L, Liu CSJ, Zook JM, Reese MG, Johnson PLF, Voelkerding K V, et

al. Assuring the quality of next-generation sequencing in clinical laboratory

practice. Nat Biotechnol. 2012;30(11):1033–6.

53. Matthijs G, Swinnen E, Müller CR, Corveleyn A, Wallace A, Mattocks CJ, et

al. A standardized framework for the validation and verification of clinical

molecular genetic tests. Eur J Hum Genet. 2010;18(12):1276–88.

54. Truitt Cho M, Wynn J, Iglesias A, Anyane-Yeboa K, Chung WK, Guzman E, et

al. The usefulness of whole-exome sequencing in routine clinical practice.

Genet Med. 2014;16(12):922–31.

55. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Auwera GA

Van der, et al. Scaling accurate genetic variant discovery to tens of thousands

of samples. bioRxiv [Internet]. 2017;201178. Available from:

https://www.biorxiv.org/content/early/2017/11/14/201178.1

56. Smith TF, Waterman MS. Identification of common molecular subsequences.

J Mol Biol. 1981;147(1):195–7.

57. Durbin R, Eddy S, Krogh A, Mitchison G. Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids. Combridge University

Press. 1998.

58. Eddy SR. What is a hidden Markov model? Nat Biotechnol.

2004;22(10):1315–6.

59. Garimella K V., Levy-Moonshine A, Jordan T, Van der Auwera GA, Hartl C,

del Angel G, et al. From FastQ Data to High-Confidence Variant Calls: The

Genome Analysis Toolkit Best Practices Pipeline. Curr Protoc Bioinforma.

2013;11.10.1-11.10.33.

60. Poplin R. Variant Quality Score Recalibration (VQSR) — GATK-Forum

[Internet]. 2012. Available from:

https://gatkforums.broadinstitute.org/gatk/discussion/39/variant-quality-score-

recalibration-vqsr

61. GATK | Doc #11084 | Variant Quality Score Recalibration (VQSR) [Internet].

2017. Available from:

https://software.broadinstitute.org/gatk/documentation/article?id=11084

62. Zook J, McDaniel J, Parikh H, Heaton H, Irvine SA, Trigg L, et al.

Reproducible integration of multiple sequencing datasets to form high-

confidence SNP, indel, and reference calls for five human genome reference

materials. bioRxiv [Internet]. 2018;281006. Available from:

https://www.biorxiv.org/content/early/2018/05/25/281006.full.pdf+html

 73

63. Reed R, Marks II RJ. Neural Smithing: Supervised Learning in Feedforward

Artificial Neural Networks. The MIT Press; 1999.

64. Marsland S. Machine Learning: An Algorithmic Perspective. 2nd ed. Chapman

and Hall/CRC; 2014.

65. Veen F. The Neural Network Zoo - The Asimov Institute [Internet]. 2016.

Available from: http://www.asimovinstitute.org/neural-network-zoo/

66. Goodfellow I, Bengio Y, Courville A. Deep Learning [Internet]. MIT Press;

2016. Available from: https://www.deeplearningbook.org/

67. Lipton ZC, Berkowitz J, Elkan C. A Critical Review of Recurrent Neural

Networks for Sequence Learning. 2015; Available from:

http://arxiv.org/abs/1506.00019

68. Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Comput.

1997;9(8):1735–80.

69. Olah C. Understanding LSTM Networks -- colah’s blog [Internet]. 2015.

Available from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

70. Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training

by Reducing Internal Covariate Shift. 2015; Available from:

http://arxiv.org/abs/1502.03167

71. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout:

A Simple Way to Prevent Neural Networks from Overfitting. J Mach Learn Res

[Internet]. 2014;15:1929–58. Available from:

http://jmlr.org/papers/v15/srivastava14a.html

72. Jansma H. Don’t Use Dropout in Convolutional Networks. – Towards Data

Science [Internet]. 2018. Available from: https://towardsdatascience.com/dont-

use-dropout-in-convolutional-networks-81486c823c16

73. Luo R, Sedlazeck FJ, Lam T-W, Schatz MC. A multi-task convolutional deep

neural network for variant calling in single molecule sequencing. Nat Commun

[Internet]. 2019;10(1):998. Available from: https://doi.org/10.1038/s41467-019-

09025-z

74. Friedman S. Deep learning in GATK4 [Internet]. GATK | Blog. 2017. Available

from: https://software.broadinstitute.org/gatk/blog?id=10996

75. Ravasio V, Ritelli M, Legati A, Giacopuzzi E. GARFIELD-NGS: Genomic

vARiants FIltering by dEep Learning moDels in NGS. Bioinformatics.

2018;34(17):3038–40.

 74

76. Dijamco J, DePristo MA, McLean CY, Afshar PT, Colthurst T, Newburger D,

et al. A universal SNP and small-indel variant caller using deep neural

networks. Nat Biotechnol. 2018;

77. Torracinta RR, Campagne F. Training Genotype Callers with Neural

Networks. bioRxiv [Internet]. 2016;097469+. Available from:

http://dx.doi.org/10.1101/097469

78. Klambauer G, Unterthiner T, Mayr A, Hochreiter S. Self-Normalizing Neural

Networks. 2017; Available from: http://arxiv.org/abs/1706.02515

79. Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, et al. Extensive

sequencing of seven human genomes to characterize benchmark reference

materials. Sci Data. 2016;3.

80. Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, et al.

Integrating human sequence data sets provides a resource of benchmark

SNP and indel genotype calls. Nat Biotechnol. 2014;32(3):246–51.

81. Friedman S. CNN deep learning pipeline out of beta! [Internet]. GATK | Blog.

2019. Available from: https://software.broadinstitute.org/gatk/blog?id=23457

82. Friedman S. MIA: Primer: Classifying genomic sequences with convolutional

neural networks [Internet]. 2017. Available from:

https://www.youtube.com/watch?v=jWDnK-CLIzk

83. Friedman S. Broad Genomics Community Meeting: Deep Learning with

Convolutional Neural Networks for Variant Filtering and Calling. 2018;

Available from: https://www.youtube.com/watch?v=y5to43kNmkY

84. Friedman S. MIA: Variant Filtering and Calling with Convolutional Neural

Networks. 2018; Available from:

https://www.youtube.com/watch?v=vWmepxBi0kI

85. Friedman S. MIA: Deep Learning Convolutions for Variant Filtration. 2019;

Available from: https://www.youtube.com/watch?v=gWcFJiYZNZ0

86. CNNScoreVariants [Internet]. GATK | Tool Documentation. Available from:

https://software.broadinstitute.org/gatk/documentation/tooldocs/4.0.7.0/org_br

oadinstitute_hellbender_tools_walkers_vqsr_CNNScoreVariants.php

87. GitHub - broadinstitute/gatk: Official code repository for GATK versions 4 and

up [Internet]. Available from: https://github.com/broadinstitute/gatk/tree/4.0.7.0

88. Farjoun Y. What is truth? Or, how an accident of nature can illuminate our

path [Internet]. GATK | Blog. 2017. Available from:

https://software.broadinstitute.org/gatk/blog?id=10912

 75

89. Fleharty M, Bloom JM, MacArthur D, Li H, Neale B, Gauthier L, et al. A

synthetic-diploid benchmark for accurate variant-calling evaluation. Nat

Methods. 2018;15(8):595–7.

90. Eberle MA, Fritzilas E, Krusche P, Källberg M, Moore BL, Bekritsky MA, et al.

A reference data set of 5.4 million phased human variants validated by

genetic inheritance from sequencing a three-generation 17-member pedigree.

Genome Res. 2017;27(1):157–64.

91. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the

Inception Architecture for Computer Vision. 2015; Available from:

http://arxiv.org/abs/1512.00567

92. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going

deeper with convolutions. Proc IEEE Comput Soc Conf Comput Vis Pattern

Recognit. 2015;07–12–June:1–9.

93. PrecisionFDA Truth Challenge [Internet]. 2016. Available from:

https://precision.fda.gov/challenges/truth

94. Variant Calling on a Rice genome with DeepVariant [Internet]. Google

Codelabs. Available from:

https://codelabs.developers.google.com/codelabs/genomics-deepvariant/#0

95. The H2O.ai team. H2O: Scalable Machine Learning [Internet]. 2015. Available

from: http://www.h2o.ai

96. GATK | Doc #1259 | Which training sets / arguments should I use for running

VQSR? [Internet]. 2012. Available from:

https://software.broadinstitute.org/gatk/documentation/article.php?id=1259

97. Anderson C. Docker [Software engineering]. IEEE Softw. 2015;32(3):102-c3.

98. Conda documentation [Internet]. 2018. Available from:

https://docs.conda.io/en/latest/

99. Whitepaper: NVIDIA Tesla P100: The Most Advanced Datacenter Accelerator

Ever Built [Internet]. 2016. Available from:

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-

whitepaper.pdf

100. Nickolls J, Buck I, Garland M, Skadron K. Scalable parallel programming with

CUDA. Queue. 2008;6(2):40.

101. cuDNN Installation Guide [Internet]. [cited 2018 Jul 17]. Available from:

https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html

https://software.broadinstitute.org/gatk/documentation/article.php?id=1259
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

 76

102. NVIDIA Docker: GPU Server Application Deployment Made Easy [Internet].

NVIDIA Developer Blog. 2016. Available from:

https://devblogs.nvidia.com/nvidia-docker-gpu-server-application-deployment-

made-easy/

103. Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches.

Science (80-). 1985;227(4693):1435–41.

104. Pearson WR, Lipman DJ. Improved tools for biological sequence comparison.

Proc Natl Acad Sci. 2006;85(8):2444–8.

105. Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file

format for sequences with quality scores, and the Solexa/Illumina FASTQ

variants. Nucleic Acids Res. 2009;38(6):1767–71.

106. The SAM/BAM Format Specification Working Group. Sequence

Alignment/Map Format Specification. 2010; Available from:

http://samtools.github.io/hts-specs/SAMv1.pdf

107. Wysoker A, Fennell T, Marth G, Abecasis G, Ruan J, et al. The Sequence

Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

108. Samtools - Documentation (HTSlib manual pages). Available from:

http://www.htslib.org/doc/

109. Zhan X. LiftOver. In: Genome Analysis Wiki [Internet]. 2015. Available from:

https://genome.sph.umich.edu/wiki/LiftOver

110. Gao B, Huang Q, Baudis M. segment_liftover : a Python tool to convert

segments between genome assemblies. F1000Research. 2018;7:319.

111. Li H. The missing human sequences (version 5). 2011; Available from:

http://lh3lh3.users.sourceforge.net/download/decoyseq.pdf

112. Minikel EV. The decoy genome. 2013; Available from:

http://www.cureffi.org/2013/02/01/the-decoy-genome/

113. FTP locations of the GIAB samples [Internet]. Available from: ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/O

sloUniversityHospital_Exome/

ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG003_NA24149_father/

OsloUniversityHospital_Exome/

ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG004_NA24143_mothe

r/OsloUniversityHospital_Exome/

ftp://ftp-

 77

trace.ncbi.nlm.nih.gov/giab/ftp/data/ChineseTrio/HG005_NA24631_son/OsloU

niversityHospital_Exome/

114. Platinum Genomes [Internet]. Illumina. Available from:

https://www.illumina.com/platinumgenomes.html

115. Illumina Platinum Genomes [Internet]. Cloud Genomics | Google Cloud.

Available from: https://cloud.google.com/genomics/docs/public-

datasets/illumina-platinum-genomes

116. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University

(Baltimore M. OMIM - Online Mendelian Inheritance in Man [Internet].

Available from: https://omim.org/

117. Zacharia LF, Daly MJ, Gibbs RA, Kanani A, Cunningham F, Fukushima Y, et

al. The International HapMap Project. Nature. 2003;426(6968):789–96.

118. Campbell CL, Scheller C, Horn H, Kidd JM, Doddapaneni H, Underhill PA, et

al. A global reference for human genetic variation. Nature.

2015;526(7571):68–74.

119. Andrews S. FastQC: A quality control tool for high throughput sequence data

[Internet]. Babraham Bioinformatics. 2010. Available from:

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

120. Broad Institute. Picard Tools [Internet]. 2009. Available from:

http://broadinstitute.github.io/picard/

121. Li H. Aligning sequence reads, clone sequences and assembly contigs with

BWA-MEM. 2013; Available from: http://arxiv.org/abs/1303.3997

122. Christos H. Papadimitriou. Computational Complexity. Pearson; 1993.

123. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms.

The MIT Press; 2009.

124. Zadeh R. The hard thing about deep learning [Internet]. O’Reilly Media. 2016.

Available from: https://www.oreilly.com/ideas/the-hard-thing-about-deep-

learning

125. Wang Y, Xu C, You S, Tao D, Xu C. CNNpack: Packing Convolutional Neural

Networks in the Frequency Domain. In: Lee DD, Sugiyama M, Luxburg U V,

Guyon I, Garnett R, editors. Advances in Neural Information Processing

Systems 29 [Internet]. Curran Associates, Inc.; 2016. p. 253–61. Available

from: http://papers.nips.cc/paper/6390-cnnpack-packing-convolutional-neural-

networks-in-the-frequency-domain.pdf

 78

126. Han S, Pool J, Tran J, Dally WJ. Learning both Weights and Connections for

Efficient Neural Networks. 2015; Available from:

http://arxiv.org/abs/1506.02626

127. Han S, Mao H, Dally WJ. Deep Compression: Compressing Deep Neural

Networks with Pruning, Trained Quantization and Huffman Coding. 2015;

Available from: http://arxiv.org/abs/1510.00149

128. Aghasi A, Abdi A, Nguyen N, Romberg J. Net-Trim: Convex Pruning of Deep

Neural Networks with Performance Guarantee. 2016; Available from:

http://arxiv.org/abs/1611.05162

129. Zook J. GitHub - Benchmarking Performance Metrics Definitions for SNVs

and Small Indels [Internet]. 2015. Available from:

https://github.com/ga4gh/benchmarking-

tools/blob/master/doc/standards/GA4GHBenchmarkingPerformanceMetricsDe

finitions.md

130. Cleary JG, Braithwaite R, Gaastra K, Hilbush BS, Inglis S, Irvine SA, et al.

Comparing Variant Call Files for Performance Benchmarking of Next-

Generation Sequencing Variant Calling Pipelines. bioRxiv [Internet].

2015;023754. Available from:

http://biorxiv.org/content/early/2015/08/03/023754.abstract

131. Olson ND, Lund SP, Colman RE, Foster JT, Sahl JW, Schupp JM, et al. Best

practices for evaluating single nucleotide variant calling methods for microbial

genomics. Front Genet. 2015;6(JUL).

132. GitHub - Illumina/happyR: R tools to interact with hap.py output [Internet].

Available from: https://github.com/Illumina/happyR

133. GitHub - aquaskyline/Clairvoyante: Clairvoyante: a multi-task convolutional

deep neural network for variant calling in Single Molecule Sequencing

[Internet]. Available from: https://github.com/aquaskyline/Clairvoyante

134. Tange O. GNU Parallel 2018. 2018; Available from:

https://zenodo.org/record/1146014#.WrT_U9Yh0xM

135. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, et al. TensorFlow: Large-Scale Machine Learning on

Heterogeneous Systems [Internet]. 2015. Available from:

https://www.tensorflow.org/

136. PyPy documentation [Internet]. Available from: http://doc.pypy.org/en/latest/

137. Garrison E. GitHub - vcflib/vcflib: a simple C++ library for parsing and

manipulating VCF files [Internet]. Available from:

https://github.com/vcflib/vcflib

 79

138. Li H. A statistical framework for SNP calling, mutation discovery, association

mapping and population genetical parameter estimation from sequencing

data. Bioinformatics. 2011;27(21):2987–93.

139. Chollet F, others. Keras [Internet]. 2015. Available from: https://keras.io

140. Theano Development Team. Theano: A Python framework for fast

computation of mathematical expressions. arXiv e-prints [Internet].

2016;abs/1605.0. Available from: http://arxiv.org/abs/1605.02688

141. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.

Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011;12:2825–

30.

142. Jones E, Oliphant T, Peterson P, others. SciPy: Open source scientific tools

for Python [Internet]. Available from: http://www.scipy.org/

143. Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng. 2007;

144. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al.

Biopython: Freely available Python tools for computational molecular biology

and bioinformatics. Bioinformatics. 2009;25(11):1422–3.

145. Casbon, J. GitHub - jamescasbon/PyVCF: A Variant Call Format reader for

Python [Internet]. Available from: https://github.com/jamescasbon/PyVCF

146. Jacobs, K. GitHub - pysam-developers/pysam: a Python module for reading

and manipulating SAM/BAM/VCF/BCF files [Internet]. Available from:

https://github.com/pysam-developers/pysam

147. GitHub - gedoardo83/GARFIELD-NGS: GARFIELD-NGS: Genomic vARiants

FIltering by dEep Learning moDels in NGS [Internet]. Available from:

https://github.com/gedoardo83/GARFIELD-NGS

148. GitHub - google/deepvariant: DeepVariant [Internet]. Available from:

https://github.com/google/deepvariant/tree/r0.7

149. GitHub - google/nucleus: Python and C++ code for reading and writing

genomics data [Internet]. Available from: https://github.com/google/nucleus

150. GitHub - CampagneLaboratory/variationanalysis at r1.4.0. Available from:

https://github.com/CampagneLaboratory/variationanalysis/tree/r1.4.0

151. Campagne, F., Dorff, K. C., Chambwe, N., Robinson, J. T., & Mesirov, J. P.

(2013). Compression of structured high-throughput sequencing data. PLoS

ONE, 8(11). https://doi.org/10.1371/journal.pone.0079871

 80

152. Chambwe N, Shaknovich R, Zeno Z, Campagne F, Simi M, Dorff KC.

GobyWeb: Simplified Management and Analysis of Gene Expression and

DNA Methylation Sequencing Data. PLoS One. 2013;8(7):e69666.

153. [CNNScoreVariants] A timeout ocurred waiting for output from the remote

Python command · Issue #4696. (2018) [Internet]. Available from:

https://github.com/broadinstitute/gatk/issues/4696

154. Timeout Error while using CNNScoreVariants — GATK-Forum. (2018)

[Internet]. Available from:

https://gatkforums.broadinstitute.org/gatk/discussion/12263/timeout-error-

while-using-cnnscorevariants

155. Roy S, LaFramboise WA, Nikiforov YE, Nikiforova MN, Routbort MJ, Pfeifer J,

et al. Next-generation sequencing informatics: Challenges and strategies for

implementation in a clinical environment. Arch Pathol Lab Med.

2016;140(9):958–75.

 81

Appendices

Supplementary table 1.

 82

Supplementary table 2.

