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For cancer genomics to fully expand its utility from research discovery to clinical adoption, 

somatic variant detection pipelines must be optimized and standardized to ensure identification 

of clinically relevant mutations and to reduce laborious and error-prone post-processing steps. To 

address the need for improved catalogues of clinically and biologically important somatic 

mutations, we developed DoCM, a Database of Curated Mutations in Cancer (http://docm.info), 

as described in Chapter 2. DoCM is an open source, openly licensed resource to enable the 

cancer research community to aggregate, store and track biologically and clinically important 

cancer variants. DoCM is currently comprised of 1,364 variants in 132 genes across 122 cancer 

subtypes, based on the curation of 876 publications. To demonstrate the utility of this resource, 

the mutations in DoCM were used to identify variants of established significance in cancer that 

were missed by standard variant discovery pipelines (Chapter 3). Sequencing data from 1,833 

cases across four TCGA projects were reanalyzed and 1,228 putative variants that were missed 

http://docm.info)/
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in the original TCGA reports were identified. Validation sequencing data were produced from 93 

of these cases to confirm the putative variant we detected with DoCM.  Here, we demonstrated 

that at least one functionally important variant in DoCM was recovered in 41% of cases studied. 

A major bottleneck in the DoCM analysis in Chapter 3 was the filtering and manual review of 

somatic variants. Several steps in this post-processing phase of somatic variant calling have 

already been automated. However, false positive filtering and manual review of variant 

candidates remains as a major challenge, especially in high-throughput discovery projects or in 

clinical cancer diagnostics. In Chapter 4, an approach that systematized and standardized the 

post-processing of somatic variant calls using machine learning algorithms, trained on 41,000 

manually reviewed variants from 20 cancer genome projects, is outlined.  The approach 

accurately reproduced the manual review process on hold out test samples, and accurately 

predicted which variants would be confirmed by orthogonal validation sequencing data. When 

compared to traditional manual review, this approach increased identification of clinically 

actionable variants by 6.2%.  These chapters outline studies that result in substantial 

improvements in the identification and interpretation of somatic variants, the use of which can 

standardize and streamline cancer genomics, enabling its use at high throughput as well as 

clinically.
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Chapter 1: Introduction and Background 
1.1 Introduction 
Cancer is the second leading cause of death in the United States and is a devastating disease 

caused by genetic alterations that lead to uncontrolled cell growth and proliferation in various 

tissues and organs of the body.  Although improvements in cancer detection and treatment have 

improved outcomes for many cancer types, this disease remains a significant killer.  In their 

seminal paper, Hanahan and Weinberg described six traits or “hallmarks”, that make cancer cells 

unique from normal cells, including: uncontrolled growth (“self-sufficiency in growth signals”), 

lack of response to inhibitory signals (“insensitivity to antigrowth signals”), evasion of cell death 

(“evading apoptosis”), uncontrolled cell division (“limitless replicative potential”), stimulated 

development of vasculature (“sustained angiogenesis”), and spread to other tissues (“tissue 

invasion and metastasis”)1. In 2011, Hanahan and Weinberg updated their paper to include 4 

additional hallmarks: (1) abnormal metabolic pathways, (2) immune system evasion, (3) genome 

instability, and (4) inflammation2. These hallmarks develop from alterations in the genome or 

epigenome that, in normal cells, carry the instructions for normal cell biology. These alterations 

can occur in the germline or in differentiated cells (somatic), and act to change normal cell 

biology to exhibit one or more hallmarks, leading to cancer onset and progression. One primary 

reason for updating the hallmarks was that new types of genomic and epigenomic alterations, 

along with many that were already known, were revealed by large-scale discovery genomics in 

cancers, facilitated by massively parallel sequencing (MPS) and computational approaches to 

discover different types of alterations.  
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 Relevant types of alterations include: single nucleotide variants (SNVs), insertions and 

deletions (INDELs), and structural variants (SVs). SNVs are the most easily identified type of 

genomic variant and are single nucleotide substitutions (point mutations) that may or may not 

change the amino acid sequence when they occur in a protein coding gene. INDELs are small (1-

50bp) insertions of novel sequence or deleted nucleotides and typically have deleterious effects 

on amino acid sequences when they occur in genes and affect the translational reading frame. 

SVs are a broad class of alterations, including inversions, translocations and copy number 

alterations (CNAs). CNAs are deleted or amplified regions of the genome wherein a segment of 

a chromosome is either deleted (one or both copies) or amplified (more than two copies).  CNAs 

sometimes, but not always, change the expression level of the proteins encoded in the segment 

that is copy number altered. Epigenetic alterations, like changes in DNA methylation or 

chromatin packaging, are also important in cancer onset and progression, because they can result 

in changes in gene expression levels. For a more detailed description of how different alterations 

are detected in sequencing data see section 1.2 and of their importance in cancer genomics see 

section 1.3. The work described in this dissertation has primarily focused on improving the 

detection of SNVs and INDELs. 

 A critical challenge in the research and clinical management of cancer is accurately 

identifying the genetic alterations that cause the disease and have clinical value, such as 

therapeutic response or resistance, or are of prognostic or diagnostic significance. Somatic 

alterations are unique to the tumor and are not present in normal tissues. In practice, somatic 

alterations are typically identified by obtaining tissue samples of the tumor and a patient-

matched, non-malignant tissue normal, isolating DNA from each and sequencing genomic 

regions of interest for each tissue isolate.  Here, the regions of interest are defined by the study 



3 
 

and can include a panel of known cancer genes, all coding gene sequences (the “exome”) or the 

entire genome.  Current methods to explore cancer genomics utilize MPS instruments and a 

variety of preparatory methods that are specific to the type of study being performed. MPS 

instruments typically produce short read lengths of DNA sequence from in situ amplified library 

fragments. The resulting read data from tumor and normal libraries are aligned separately to the 

human genome reference sequence and the read coverage depth is evaluated.  Statistical 

algorithms compare genomic alterations identified from the tumor data alignments to those 

identified from the normal data alignments to ‘call’ putative somatic alterations. The use of MPS 

has revolutionized the field of cancer genomics by facilitating the sequencing of entire cancer 

and normal genomes as opposed to the use of Sanger sequencing of PCR-targeted genes or loci.  

 However, there are challenges to the use of MPS methods in cancer research and 

diagnostics that lead to difficulties in properly interpreting MPS data from cancer samples. Some 

difficulties include inadequate amounts of tumor tissue available for MPS studies, inaccuracies 

in the identification of somatic alterations, and the time investment required to carefully interpret 

the results, especially in the setting of clinical diagnostics. In this dissertation work, these 

limitations were addressed by improving somatic analysis pipelines to (1) better identify 

literature-supported clinically and/or biologically important mutations and (2) become more 

standardized and automated through the removal of manual analyses. As a result, this work will 

improve the accuracy and efficiency of MPS data in clinical cancer diagnostics. 

1.2 Overview of Massively Parallel Sequencing 
The introduction of dideoxynucleotide chain termination DNA sequencing by Dr. Frederick 

Sanger in 1977, coupled with the concepts of molecular cloning from the 1980s, enabled 

development of the scientific discipline of genomics. These concepts permitted the decoding of 
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several model organism genomes and culminated with sequencing the Human Reference 

Genome in 20043. Shortly after the completion of the Human Reference Genome, the emergence 

of several MPS technologies brought about another revolution that eventually led to the use of 

MPS in clinical cancer diagnostics4,5. MPS methods dramatically reduced sequencing costs in 

comparison to Sanger sequencing by performing sequencing reactions in a ‘massively parallel’ 

way which, for most technologies, compromised sequencing read lengths in exchange for greater 

throughput6. While several MPS sequencing technologies are available in the market, Illumina’s 

technology has obtained dominant market share due to its superior accuracy, sequencing 

throughput, low cost, and versatility of applications (i.e. whole genome, exome, RNA 

sequencing, etc.)7.  

 While MPS methods have made the production of DNA sequencing data cheaper and 

faster, they have made the computational analysis of sequence data more difficult and expensive.  

This is due to the greater quantities of data produced, to the complexities of data analysis and to 

the need to align short-read sequences as a first step to analysis.  Correct read alignment of short 

sequence reads is compute-intensive, especially considering the size and repetitive nature of the 

human genome. While analysis strategies have, for the most part, kept pace with MPS 

technologies, cancer variant identification are still in need of method optimization8. 

1.2.1 Illumina Sequencing Technology and Sources of Sequencing Error 
Overview of the Illumina sequencing technology 
Illumina sequencing technology comprises three main steps: 1) DNA fragmentation, 2) library 

construction, and 3) sequencing (on the Illumina sequencing instrument). For example, to 

sequence the entire human genome, genomic DNA is isolated and amplified (if necessary). Then, 

the high molecular weight DNA is fragmented physically (via sonication or shearing) and size 

selected by agarose gel or magnetic bead sizing. Next, in the library construction step, end repair 
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and A-tailing are followed by the ligation of platform-specific adapters to the size selected DNA 

fragments. The resulting whole genome sequencing (WGS) library can then be quantified (by 

qPCR or a fluorimeter) and diluted to Illumina’s specifications to ensure the proper library 

concentration is loaded onto the sequencing instrument, for optimized data yield per instrument 

run9.  

 Optionally, since only 1.5% of the human genome encodes proteins (the “exome), it is 

often more cost effective from a sequence data generation and analysis standpoint to sequence 

the exome (all coding genes) or a panel of selected genes or regions. This selection of specific 

regions from a whole genome library is accomplished by “hybridization capture” using synthetic 

probes that select for the genomic DNA targets based on shared sequence similarity.  These 

probes are either DNA or RNA and contain derivatized biotin molecules so the resulting hybrid 

molecules composed of probe and complementary DNA fragment can be isolated from solution 

by complexing with streptavidin-coated magnetic beads.  Applying a magnetic field to the hybrid 

capture magnetic bead mixture permits selective pull-down of the regions of interest. The 

resulting library fragments are amplified by a second PCR step and quantitated/diluted prior to 

Illumina sequencing. 

 Illumina MPS occurs in 3 steps: A) cluster generation, B) sequencing by synthesis (SBS), 

C) paired end sequencing (optional). Cluster generation occurs on the surface of the Illumina 

flow cell which has a lawn of covalently attached adapters across its surface, each of which is 

complementary to one of the Illumina specific adapters used in library construction. Due to 

complementarity, the library fragments hybridize to the flow cell surface and are then amplified 

on the flow cell surface using an isothermal bridge amplification process that is timed to produce 

a sufficient fragment density for each cluster. This density of fragments, in turn, permits the 
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instrument’s optics to detect the subsequent SBS reactions. One end of the fragment is released 

by a chemical cleavage step that releases one end of each of the fragments in each cluster, and 

permits the detached strands to be washed away under denaturing conditions. Following this 

step, a sequencing primer is introduced and anneals to the single strands in each cluster, 

permitting SBS. Sequencing by synthesis is initiated with the addition of DNA polymerase and a 

mixture of custom nucleotides, each with unique fluorescent labels attached to identify the 

corresponding nucleotide (A, C, G, or T) and with a 3’-OH blocking group that prevents chain 

extension once it is incorporated into the synthesized strand. Following the nucleotide 

incorporation step, the clusters are read by determining the emission wavelength of each cluster 

after scanning the flow cell surfaces by a laser. Once the instrument’s optics scan both upper and 

lower flow cell surfaces to detect which nucleotide was added to each cluster, the fluorescent 

label is cleaved from the nucleotides added in that step, and the 3’-OH blocking group is also 

cleaved, permitting the polymerase to continue chain elongation by incorporating the subsequent 

nucleotide in the next synthesis step. This process is repeated for 100 to 300 nucleotides 

depending on the number of cycles specified (# of cycles=read length). With sequencing 

complete on one strand of each library fragment, paired end sequencing can be performed by 

first performing a second, shorter bridge amplification cycle, followed by cleavage of the second 

adapter from the flow cell strand, which releases the opposite end from the flow cell surface and 

makes it available for priming by a unique sequencing primer. The sequencing by synthesis then 

is repeated, as above. Paired end reads have an analytical advantage because read pairs can be 

matched computationally and then aligned to the human reference genome.  Since the 

approximate distance between the read pairs is known due to the DNA size selection step prior to 
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library construction, read pairs that do not map at the anticipated distance, or map with high 

quality onto different chromosomes can be interpreted as identifying a structural variant10. 

Sources of Sequencing Error 
Sequencing error is defined as nucleotides misread by the sequencing instrument, an event that 

occurs on a per-base basis between 0.01% and 1%11. These errors are a result of a variety of 

factors including unavoidable inefficiencies in sequencing chemistry, technical errors due to the 

camera system, and interference from neighboring clusters or stray nucleotides. Chemical errors 

are a result of the reality that chemical reactions used to produce the reagents are never 100% 

efficient and these lead to accumulated noise as the step-wise sequencing reactions progress. 

Some examples of this type of error include “dephasing” errors which occur, for example, when 

a nucleotide without a proper 3’ -OH blocking group is incorporated, and permits a second 

nucleotide to be incorporated due to the absence of the blocking group. Similarly, if the 3’-OH 

blocking group is not properly cleaved, elongation by the polymerase is terminated for that cycle, 

and the affected fragment(s) will be out of sync with others in the cluster, contributing 

background noise to the correctly extended and detected fragments in the cluster. These errors 

are called ‘dephasing’ errors because they result in affected library fragments in the cluster to be 

out of phase with others. Examples of interference errors, or noise that interferes with the 

detection of true signals include: failure of enzymatic cleavage of the fluorescent label after 

detection, incorporation of multiple fluorescent labels in the same incorporation cycle, or stray 

fluorescent labeled nucleotides near a cluster (not removed during the wash cycle following 

incorporation). These errors, while small and inconsequential individually (as they typically 

affect one of many reads in a cluster), occur with sufficiently common frequency that eventually, 

at higher numbers of sequencing cycles, it is impossible to ascertain the signal of the in phase 

read fragments in a cluster from the compromised read fragments. As such, Illumina reads tend 
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to be more error prone toward the end of the sequence read. Accumulated noise rates are what 

ultimately determines the maximum read length of an Illumina sequencing instrument. 

Downstream computational approaches model this error rate in their identification of sources of 

false positivity. 

1.2.2 Computational Analysis of Massively Parallel Sequencing Data 
Following production of short read sequencing data, the single- or paired-end reads must be 

aligned to the human reference genome as the first step in variant detection.  Following 

alignment, duplicate reads, which have same start and end positions as aligned to the reference 

genome, are typically removed and variants are called.  

Mapping Illumina Sequencing Reads to the Reference Genome 
Aligning a ~100 base pair sequencing read to the 3 billion base pair human genome is a 

challenging computational problem. Substantial development in short read alignment software 

has provided researchers with many viable solutions12-14. Alignment algorithms are typically able 

to uniquely map only 70-80% of reads produced to the reference genome due to a high rate of 

homologous or repetitive sequences in the reference genome15. The number of uniquely mapped 

reads has increased as Illumina read lengths have increased. While there are dozens of alignment 

algorithms available, they are implemented with one of two main architectures: hash based 

designs (like Novoalign), or Burrows-Wheeler transform (BWT) aligners (like BWA16, BWA-

mem17, or bowtie218). Hash based aligners use indexes (hashes), which are short ‘seeds’ of the 

reference genome, to identify where portions of the read occur in the genome, and thereafter 

these alignments are presented to a local alignment algorithm, like Smith-Waterman19 or 

Needleman Wunsch20, where the maximum number of contiguous seeds from the reference 

match the read. The local alignment algorithm then produces a high quality alignment (see 

Figure 1.1a)14. Hash based aligners tend to be more accurate, but are more computationally 
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intensive and memory inefficient than BWT aligners. BWT aligners concatenate the entire 

reference genome into one string, and use a BWT algorithm to store the reference genome in 

approximately 2GB of RAM. This approach permits the entire sequence read to be aligned to the 

reference genome in a computationally efficient way via a Burrows-Wheeler search followed by 

local alignment via Smith-Watterman19. BWT aligners produce an alignment that is extremely 

comparable to the alignment accuracy of hash based approaches, yet with substantially improved 

computational performance (see Figure 1.1b)14. 

 
Figure 1.1 Comparison of hash based and BWT alignment algorithms. Figure originally published in 
Trapnell et. al.14 "(a) Algorithms based on spaced-seed indexing, such as Maq, index the reads as 
follows: each position in the reference is cut into equal-sized pieces, called 'seeds' and these seeds are 
paired and stored in a lookup table. Each read is also cut up according to this scheme, and pairs of seeds 
are used as keys to look up matching positions in the reference. Because seed indices can be very large, 
some algorithms (including Maq) index the reads in batches and treat substrings of the reference as 



10 
 

queries. (b) Algorithms based on the Burrows-Wheeler transform, such as Bowtie, store a memory-
efficient representation of the reference genome. Reads are aligned character by character from right to 
left against the transformed string. With each new character, the algorithm updates an interval (indicated 
by blue 'beams') in the transformed string. When all characters in the read have been processed, 
alignments are represented by any positions within the interval. Burrows-Wheeler–based algorithms can 
run substantially faster than spaced seed approaches, primarily owing to the memory efficiency of the 
Burrows-Wheeler search. Chr., chromosome.” 14 

Germline Variant Calling Approaches 
DNA sequencing variation is typically called with respect to the reference genome. Specifically, 

deviations from the reference sequence are identified and reported as variation. This is 

accomplished through different types of variant calling algorithms that use a statistical model to 

identify deviations from reference, taking into consideration the known error profile of 

sequencing and read alignment. In its simplest form, a variant calling algorithm identifies 

positions with one or more reads supporting a non-reference base. It then performs a statistical 

test to determine whether the number of reads supporting the putative variant could be expected 

by chance given the total number of reads, the error rate of the instrument, and other factors. In 

general, high-confidence variants will have a higher proportion of variant reads compared to the 

total coverage at the locus. This proportion (variant supporting reads over the total read 

coverage) is often referred to as variant allele fraction (or frequency VAF) and is one of several 

important metrics used by variant calling algorithms, filtering steps, and in the process of manual 

review (see Figure 1.2 for an illustration of the VAF concept). In the germline context, these 

variants should occur at 50% (heterozygous) or 100% (homozygous) VAF. In the somatic 

context, variants may occur at a variety of VAF percentages, as determined by numerous factors 

including their prevalence in the tumor cell population, and overall, by the percentage of tumor 

cells present in the piece of tumor used for DNA isolation prior to sequencing. There are variant 

callers that are specifically designed for a single type of genetic alteration (SNVs, INDELs, SVs) 

and others that are designed to call multiple types of variation. The following section outlines 
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representative examples of callers for each variant type. (for more information on how somatic 

alterations are identified in tumor samples see section 1.4)  

 Many different SNV callers are available. Some widely used germline SNV callers 

include GATK21, VarScan22, FreeBayes23, Platypus24, and SAMTools25 (some of these callers 

also are able to call somatic variants with matched tumor-normal aligned sequence data inputs; 

see subsection 1.4.2). Many SNV callers also identify INDELs including FreeBayes23, 

VarScan22, and Platypus24, however, there are INDEL-specific callers that perform more 

advanced techniques like local re-alignment around INDELs to improve the accuracy of 

identification (GATK21, SAMTools25). This type of specialized treatment is needed because 

INDELs are very difficult to uniquely identify and report.  This is true because gapped 

alignments are generally more challenging to produce and because the same event can be 

represented in multiple ways by read alignments, especially as these events increase in length or 

occur around repetitive sequences. 
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Figure 1.2  Illustration of VAF in MPS sequencing data. This screenshot of the integrative genomics 
viewer (IGV)26,27 gives a visual representation of MPS data. The histogram near the top of the screen 
illustrates the sequencing coverage at each position. The reads are visualized in the middle of the screen 
with the red and blue reads signifying forward and reverse strands, respectively. The green in the reads 
illustrate those that contain a variant (A) base. At the variant position, the coverage histogram bars are 
colored for the variant (green=’A’) and reference (orange=’G’). The pop up window shows the overall 
coverage, the count of each base and the VAF in parentheses (shown as a percentage). VAF is calculated 
by dividing the count of variant bases (26) by the total coverage (49). 

 Since SVs are much more variable in their presentation (event type includes insertions, 

deletions, CNVs, inversions, and translocations, all over 50bp), there are a variety of techniques 

to identify them, as Alkan et. al. outline in their review28. These computational techniques 

include read-pair methods (VariationHunter29-31, BreakDancer32, SPANNER33,34 etc.) that assess 
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the span and read orientation of read pairs and perform a clustering step on discordant pairs to 

identify SVs. This approach is particularly powerful in detecting insertions, deletions, inversions 

and translocations, however, small insert sizes and reads that span the breakpoints are necessary 

for fine mapping of the SVs. Additionally, it is very difficult to detect CNVs using read pair 

relationships alone because they are primarily focused on the relationship between paired-end 

read alignment and not read coverage. Read-depth methods are much better suited to call CNVs 

(examples include Breakdancer32, cn.MOPS35, and Tigra-SV36) which model coverage to a 

Poisson distribution to identify regions that diverge from the distribution. These methods 

generally have poor breakpoint resolution and CNVs are generally hard to call in repetitive 

regions or from any capture-based sequencing strategy like exome sequencing because of the 

noise introduced by variable/biased hybrid probe capture efficiency37. Split-read methods (like 

Pindel38) attempt to identify the breakpoints of SVs by splitting a read and aligning each piece to 

the genome. While these approaches can finely map SV breakpoints, short read lengths often 

make it difficult to align the splits uniquely to the genome.  

1.3 Cancer Genomics Overview 
As mentioned in section 1.1, the prevailing strategy for identifying somatic mutations in cancer 

is to obtain matched tumor and normal tissue samples from the same individual, perform MPS-

based data production, and computationally determine which mutations are unique to the tumor. 

This was the prevailing strategy used in the TCGA39 and ICGC40,41 projects, two examples of 

large-scale cancer genomics discovery projects that sought to survey the mutational landscape of 

human cancers. Somatic mutations can also be inferred when only tumor samples are available 

by filtering out presumed germline variation using large scale population databases like 1000 

Genomes42, ExAC43, or gnomAD43, although this approach is largely avoided in genomic 
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discovery projects. Following identification of somatic mutations, functional impact is predicted 

via in silico, in vitro, or in vivo methods, each of which has highly variable cost and throughputs. 

Examples of functional prediction include (in order from least costly/time intensive to most): use 

of automated algorithms (SIFT44,45, PolyPhen-246, MutationAssessor47, CHASM48, ParsSNP49), 

annotation of whether variants are present in other tumor sequencing datasets (COSMIC50, 

TCGA, ICGC), and literature review of variants identified to annotate discovered etiology. More 

definitive answers can be pursued by experimental functional strategies using cell lines, 

xenografts, or mouse models. Computational procedures are often used to filter and focus 

downstream analyses to prioritize interpretation and experimentation. In vitro and in vivo 

functional evaluation is generally necessary for full confidence of a mutation’s impact on cancer. 

1.3.1 The Genomic Landscape of Human Cancer 
Upon completion of the human genome project, there was keen interest in the scientific 

community to use this resource and establish sequencing methods to help uncover the mutational 

landscape of cancer. The general hypothesis was that the most frequently mutated genes and 

amino acid residues (or non-coding positions) were likely to be important in the onset and 

progression of the disease. The sequencing of the first complete cancer genome was reported by 

Ley et. al. in 200851. In 2009 the U.S. National Cancer Institute launched the Cancer Genome 

Atlas (TCGA) project followed soon-after by the creation of the International Cancer Genome 

Consortium (ICGC). To date these consortia have sequenced tumors in 21 cancer types from 

over 20,000 individuals identifying about 63.5 million somatic mutations 

(http://dcc.icgc.org)41,52. Meta-analyses across many of these cancer types has revealed 

significant heterogeneity of mutation rates with hematological and pediatric tumors being the 

least mutated and tumors from tissue types that are highly exposed to mutagens, such as tobacco 

http://dcc.icgc.org/
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smoke or ultra violet radiation in lung cancers and melanomas, having the highest mutational 

burden (Figure 1.3)53.  

 

Figure 1.3 Mutational heterogeneity of cancer. Figure originally published in Lawrence et. al.53. "Each 
dot corresponds to a tumor–normal pair, with vertical position indicating the total frequency of somatic 
mutations in the exome. Tumor types are ordered by their median somatic mutation frequency, with the 
lowest frequencies (left) found in hematological and pediatric tumors, and the highest (right) in tumors 
induced by carcinogens such as tobacco smoke and ultraviolet light. Mutation frequencies vary more than 
1,000-fold between lowest and highest across different cancers and also within several tumor types. The 
bottom panel shows the relative proportions of the six different possible base-pair substitutions, as 
indicated in the legend on the left." 53 

1.3.2 Challenges and Error Sources Caused by Cancer Tissues in Genomic 
Studies 
Since cancers are localized in specific tissues, they are more challenging to obtain or to sample 

for genomic sequencing studies, in comparison to germline genetic diseases; where blood, hair, 

or saliva samples can be used. Tumor biopsies (or surgical resections) are typically obtained for a 

pathologist to evaluate if cells are cancerous by examining their anatomy under a microscope, 

often in conjunction with immunohistochemistry. These procedures typically require most of a 

limited tissue sample. Additionally, in pathology, it is very common for tumor samples to be 

formalin-fixed and paraffin-embedded (FFPE) to preserve the cellular anatomy. Unfortunately, 
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this technique can lead to degradation of tumor DNA due to crosslinking of the backbone which 

introduces errors that must be accounted for in subsequent analyses54. Flash freezing of a portion 

of the cancer tissue after biopsy or resection in addition to traditional FFPE preservation can be 

specified by only when sufficient material is available.  

 Assuming adequate tumor DNA is obtained for sequencing, cancer biology poses 

several additional limitations that impede the accurate detection of somatic mutations in a tumor. 

One example is tumor cellularity; it is very rare for a tumor to be composed of 100% cancerous 

cells. Rather, normal cells are commonly interspersed with the cancer cells in a tissue sample 

such that nucleic acid isolation of the tissue will yield corresponding percentages of tumor and 

normal cell genomes. This proportionality can significantly limit the ability to detect somatic 

variants when there are more normal cells than tumor, in the worst case making it difficult to 

separate variants from the MPS error rate55,56. Additionally, cancer cells are heterogeneous and 

constantly evolving, meaning that all cells contain mutations in their genomes that were present 

in the founder population of cancer cells, yet may have added new mutations that are not present 

in all other tumor cells . This heterogeneity is manifest in the presence of subclonal tumor cell 

populations, each with unique mutations and potentially novel drivers57,58. Because of these and 

other factors, there is a great need for methodological developments that improve the sensitivity 

and accuracy of somatic variant discovery. 

1.4 Somatic Variant Identification and Sources of Error 
Accurately identifying the somatic SNVs and INDELs from matched tumor/normal sequencing 

data is an immense challenge because of the technical limitations of MPS technologies and the 

biological and sampling challenges that lead to reduced variant signal in tumor tissue samples as 

discussed above. Ideally, robust user-friendly tools would accept aligned bam files, for tumor 
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and normal samples, and output a high-quality list of somatic variants. However, such a tool 

must also perform well on a wide variety of cancer types, each with distinct mutational burdens, 

varying degrees of tumor cellularity, and clonal architecture. Additionally, the ideal tool must 

adapt well to the research budget, i.e. perform as well on lower coverage levels (<50x) as it does 

on ultra-deep sequencing(<500x) or on various sequencing assay types including WGS, exome, 

and custom capture sequencing. These ‘features’ are desired to overcome the limitations of the 

MPS workflow and accurately detect variants. In practice, we see a variety of somatic variant 

callers used in the literature with no convergence to any specific caller because each has distinct 

strengths and weaknesses. Many studies have compared the performance of various variant 

callers and the only consensus is that there is very imperfect to poor concordance between 

callers59,60, each exhibits variable performance at different coverage limits61, and performance 

varies based on the aligner used62. A primary concern of researchers and clinicians analyzing and 

interpreting tumor sequencing data is that they do not miss important functional variants. Thus, 

they are often as concerned about false negatives as they are about false positives. A common 

analysis strategy is therefore to run multiple variant callers, combine their results via 

intersections or unions and filter out the false positives61,63. In the following section, 

representative variant calling error profiles observed in MPS data, somatic variant calling 

algorithms, false positive filtering strategies, and validation strategies will be introduced and 

explained. 

1.4.1 Sources of Error in Variant Calling 
Errors that lead to downstream false positive (and false negative) somatic variant calls can be 

caused by a variety of factors at each phase of the sequencing workflow, including sample 

preparation (e.g. low DNA yield, DNA degradation, sample swaps), library preparation (e.g. 
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PCR substitution errors, barcode errors), and sequencing and imaging errors (e.g. cluster 

crosstalk, cluster dephasing)64. In addition to processing-related errors, there are several sources 

of variant calling errors due to: low variant read data support, low quality variant calling due to 

noise, mapping errors to low complexity regions, and others. 

Low Variant Read Data Support 
Confidence that a putative variant signal is real is the result of observing sufficient numbers of 

variant- supporting reads, given coverage at the locus, that means it is highly unlikely that the 

observed variant is due to random noise, improper read alignment, and/or analysis-related errors. 

As mentioned above, this situation occurs when the tumor cell percentage of the isolated sample 

is low, or if the variant is present in a minor subclonal population of cells in the tumor mass.   

Both situations can be addressed by sequencing tumors at higher depths, and by the development 

of variant callers designed to detect variants at lower VAFs65,66. However, as coverage depth 

increases and variant signal decreases, per-base error rates of Illumina sequencing remain the 

same, which can diminish the power to confidently call such low VAF variants at extraordinarily 

high depths of coverage. As such, accurately separating variant signal from random sequencing 

error may require using complicated variant filtering combined with manual review to make 

sensitive calls with accuracy. Intricate sequencing strategies, like error corrected sequencing, 

exist that directly address this limitation by barcoding unique DNA fragments prior to library 

construction and sequencing55,56. The development of computational approaches to improve the 

detection of low VAF variants have also been beneficial as they can be incorporated more easily 

into existing cancer genomics analytical workflows (see Chapter 3 & 4). 

Somatic Variant Interference 
A variety of noise sources in the sequencing process can impact the detection of true variant 

signals including sequencing errors and sample contamination. While sequencing errors occur at 
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a low rate, errors can accumulate at very high depth coverage and thereby are detected as true 

variants based on depth of variant-containing reads, as discussed above. Additionally, due to 

accumulated sources of noise in Illumina’s technology, sequencing errors occur more commonly 

at the ends of sequencing reads. Similarly, there are reads that have a higher mismatch rate, due 

to low complexity repeats, and if many such reads pile up at a locus, a somatic variant could be 

called. Alternatively, sequencing errors can occur because of enzymatic substitution errors 

during PCR amplification steps, particularly in samples with low DNA input, which require 

more PCR amplification. 

 Another problem with low input samples is caused by PCR ‘jackpotting’, wherein 

smaller fragments are preferentially amplified and the overall rate of duplication is significantly 

elevated. Absent correction, jackpotting can result in erroneous variant calls but computational 

de-duplication, found in tools like SAMTools25 or SAMBLASTER67, can help alleviate PCR 

jackpotting by removing all but one read of the duplicated read set as defined by shared start and 

stop points in the genome alignment. However, reads with the same start and end location, are 

still observed occasionally in manual review of variant calls, even after computational de-

duplication has been performed. 

 Sample contamination is another source of somatic variant caller interference. 

Contamination can occur in a variety of ways, but tends to predominate in preparatory steps, 

especially when performed manually instead of by robotic preparation. Here, a trace amount of 

contaminating DNA in a library can provide reads that invite variant calls in somatic pipelines. 

Additionally, the biology of hematological malignancies, as discussed in subsection 1.3.1, opens 

up the possibility for tumor contamination of the normal sample (circulating tumor cells found in 

the capillaries of the skin sample that often is used as normal tissue). This type of contamination 
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also should be taken into account in somatic variant detection as this is a significant source of 

false negative calls. 

 Multiplexing of samples into sequencing lanes also is a source of sample contamination 

that can interfere with somatic variant calling. For example, as Illumina introduces higher 

throughput instruments, it has become common to add DNA barcode identifiers (indices) onto 

the adaptors used in library construction, and then to pool multiple samples into a single 

sequencing lane on the flow cell.  Once the sequencing is completed, samples with the same 

barcodes can be grouped computationally and aligned to the reference genome. However, 

Illumina instruments that use the new ExAmp chemistry, found on the HiSeq X ten/3000/4000 

and Novaseq platforms, suffer from index switching on up to 5-10% of sequencing reads on 

multiplexed samples68. This process occurs because of low levels of free primers that in 

conjunction with ExAmp reagents, results in spurious extension of the library with reads that 

have the wrong index, and is especially problematic when single or dual combinatorial indexing 

schemes are used69. Index switching at the level of even 1% per lane per flow cell with multiple 

samples can introduce interfering reads from common SNPs of unrelated individuals. 

Downstream, these errors manifest exactly like a low-level sample contamination issue 

originating from preparatory steps as described above, and can lead to putative somatic variants 

(low VAF) that are false-positives. Although such contamination can be identified 

computationally by performing extra filtering against databases of known SNPs like ExAC or 

gNOMAD43, this filtering may miss rare variants. Alternatively, adding unique dual same-same 

indexes can completely correct for sample barcode switching69. 

Low Complexity Regions and Mapping Errors 
As mentioned earlier, the repetitive nature of the human genome causes specific problems in 

proper mapping of short reads to the reference genome that impact somatic variant calling, 
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specifically in low complexity and homologous regions. This is principally due to the fact that 

many such regions are larger than either the sequence read or the insert size of the library 

fragment. Approximately 48% of the human reference is composed of repeats (when considering 

all types) that are longer than a typical Illumina read (100bp)15. Li et al found that the error rate 

of raw calls of SNVs and INDELs is as high as 1 in 10-15kb, with most errors resulting from low 

complexity regions and the incomplete reference genome70. Similarly, highly homologous 

regions of the genome exist for many pseudogenes, gene families, or segmental duplication 

regions. As a result, a number of sequence reads fail to align or align ambiguously to multiple 

positions in the genome. General purpose alignment algorithms will randomly place reads that 

map equally to multiple loci, resulting in a putative variant arising from several mis-mapped 

reads at the wrong locus. 

Other Sources of Variant Calling Errors 
Some additional examples of signatures that have been associated with false positive variant 

calls are strand bias and short inserts. Strand bias describes a signature where the forward strands 

of the sequencing read produce a different result than the reverse strands, or vice-versa71. Short 

inserts occur when a DNA fragment with an insert size less that 2 times the length of a 

sequencing read is sequenced. This results in the forward and the reverse strand overlapping one 

another, and causes problems when there are discrepancies between the two read directions, by 

artificially inflating variant counts and VAFs due to false positive variant calls. 

 While this subsection outlines numerous variant calling error profiles, it is not 

comprehensive because new technologies and protocols introduce new sources of error. 

Although great care is taken in post-variant calling analysis to remove as many false positives as 

possible, without sacrificing false negatives, these sources of error persist. 
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1.4.2 Current Practices in Somatic Variant Calling 
Somatic variant callers use at least two primary statistical methods to calculate a probabilistic 

estimate of a variant being somatic; 1) Bayesian classification (e.g. Strelka65, MuTect66, and 

SomaticSniper72) and 2) simple categorical statistics such as Fisher’s Exact Test (e.g. Varscan273 

or Shimmer74). This subsection will present the approaches by which these callers make their 

classification, their strengths and weaknesses, and opportunities to improve upon their methods. 

 All Bayesian variant callers are similar in their use of Bayesian mathematics to compute 

the probability that a candidate variant is somatic. This is accomplished by encoding known 

genomic features (such as the expected somatic mutation rate of a cancer, the error rate of 

sequencing instruments, or the expected VAF of germline variants) into probabilistic priors.  

These are then interpreted in conjunction with sequencing data features obtained from an aligned 

tumor and normal, such as the count of variant/reference reads (and other important metrics like 

base qualities) at each variant position. After candidate variant site probabilities are calculated, 

heuristic false positive filters are often used to increase sensitivity and specificity (Table 1.1). 

 In practice, different callers accomplished this approach differently. For example, 

MuTect uses a Bayesian Classifier to identify putative variants in tumor and normal samples 

independently, performs false positive filtering, and then utilizes another Bayesian Classifier to 

calculate which calls are somatic, germline, or ‘variants’ (insufficient evidence in the normal 

sample to call the variant somatic). By contrast, SomaticSniper and Strelka use a Bayesian 

Classifier followed by false positive filtering. Additionally, SomaticSniper assumes that variants 

will present as heterozygous (~50% VAF) or homozygous (~100% VAF), which is rare for 

somatic variants in tumor samples because of clonal diversity and sample purity. The strict 

assumptions of homo- and heterozygous VAF substantially limit Somatic Snipers ability to call 

low VAF somatic variants. Conversely, Strelka and MuTect make the simplifying assumption 
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that the tumor VAF observed is equal to the tumor cell fraction of the sample (in other words, the 

sample has perfect representation of tumor cellularity and clonality and the VAF observed is 

equal to the proportion of cancer cells with those variants in the sample). While this is an over-

simplification, both methods have more statistical power to detect lower VAF somatic variants 

because they correct for the heterogeneity or sample purity that does not generalize well to 

traditional heterozygous or homozygous models. All of these algorithms utilize prior knowledge 

about mutational load in cancer to prevent calling more somatic mutations than one would expect 

by chance. However, this can be problematic because of the vast differences in mutational load 

in different cancer types. While these callers each have parameters that can be modified to 

appropriately adjust for mutational burden, in practice these priors are not commonly updated in 

a disease specific manner, and often are not known in advance.  

 Fisher’s Exact Test (FET) somatic variant callers use FET to statistically model if the 

observed counts of variant and reference reads are significantly different between the tumor and 

normal sample. In practice this is implemented quite differently in Varscan2 and Shimmer. 

Varscan2 uses heuristics to identify candidate variant sites, such as minimum coverage of 3x, 

PHRED base quality >20, and VAF >= 8%. Once candidate sites are identified in the tumor and 

normal sample independently, sites that occur in the tumor sample but not in the normal are fed 

into an FET for somatic evaluation. Sites that occur in the tumor and the normal sample are 

evaluated via FET designed for germline evaluation. The somatic FET compares the counts for 

reference and variant reads from the tumor and the normal samples and identifies tumor variants 

that are statistically significant by virtue of having more variant read support than does the 

normal sample. Those sites that are not statistically significant are evaluated by the germline 

FET for variant status. The germline FET compares the count of reference and variant reads from 
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the normal sample to the null hypothesis of the expected error profile of the sequencing 

instrument for a given coverage level, i.e. with 1000x coverage and a 0.001 error rate, one would 

expect 1 read to be a sequencing error and 999 to be reference sequence. In Varscan2 this entire 

process is followed by false positive filtering. Shimmer is a much simpler workflow, performing 

an FET on any candidate variant that has more variant read support than an arbitrary threshold. 

The FET tests a null hypothesis that variant reads are randomly distributed between the tumor 

and normal sample. It also differs from Varscan2 through the utilization of multiple test 

correction to ensure that false positives are not called due to the substantial number of tests 

performed in somatic variant detection. 

 Both Bayesian classifier and FET based algorithms rely heavily on filtering to remove 

false positives and improve sensitivity and specificity (MuTect, Strelka, Somatic Sniper, and 

Varscan2). However, these filters are often identified empirically and set as heuristics. Different 

thresholds can wildly influence the performance of each caller. Additionally, there is no 

consensus, between the different methods, on which filters should be used. Of the 4 callers that 

utilize false positive filtering, 16 features were listed in the publications for these somatic callers. 

Of these, no features were used by all 4 callers, only 3 features were used by 3 callers, 5 features 

were used by two callers, and 8 features were used by only one caller (Table 1.1). As a result, 

there is significant room for improvement and standardization in the development of high 

quality, automated false positive filtering and prediction for somatic variants (see Chapter 4). 
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False Positive Filter Description Callers 
Mismatches in variant 
reads 

A high number of mismatches in a variant read 
can be indicative of a mapping error 

Strelka,  
Somatic sniper, 
Varscan2 

Variant repetitive regions MPS technologies perform more poorly in low 
complexity regions, including repetitive and 
homopolymer runs, of the genome 

Strelka, 
MuTect, 
Varscan2 

Poor mapping quality Mapping quality scores for variant reads are low MuTect, 
Somatic sniper, 
Varscan2 

Low base quality in 
variant read or read 
pileup 

Low base qualities across the variant reads, 
signifying a sequencing error of the read, or 
across all the reads in the locus. 

Strelka, 
Somatic sniper 

Strand bias All variant supporting reads are oriented in the 
same direction 

MuTect, 
Varscan2 

Average variant read 
position 

Variants positioned near the end of the read are 
more likely to be artefactual 

MuTect, 
Varscan2 

Proximal gap to variant INDEL in vicinity of variant read. These variants 
are likely alignment errors and are a result of the 
INDEL not an independent substitution. 

MuTect, 
Somatic sniper 

Minimum variant support Number of variant reads above a defined 
threshold 

Somatic sniper, 
Varscan2 

High normal coverage Unusually high coverage in the normal sample Strelka 
Short insert Variant called in both overlapping paired-end 

variant reads 
Strelka 

Observed in normal Variant support in the normal sample MuTect 
Tri-allelic site Multiple variants in the same site  MuTect 

Presence in panel of 
normals 

Panel of germline mutations observed in normal 
samples. 

MuTect 

Minimum VAF VAF above a defined threshold. Varscan2 
Distance to 3’ end Variant distance to 3’ end of read fragment Varscan2 
Distance to clipped reads Distance to soft-clipped reads Varscan2 
Table 1.1   False positive filtering strategies used in somatic variant callers. Many somatic variant 
callers use heuristic false positive filters to increase accuracy. These values can be modified by the user 
at runtime to tune performance.  

1.4.3 Post-processing of Somatic Variant Calls 
Because the different somatic callers have substantially different performance in different 

situations (e.g. MuTect is better at detecting low VAF mutations) it is common practice for 

somatic calling pipelines to run multiple callers and union (concatenate the calls from each 

caller) together to get a highly sensitive candidate somatic variant list. This list will typically 
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then undergo extensive false positive filtering, manual review via integrated genomic 

viewer(IGV)75, and validation sequencing61. By following this workflow, the entire variant 

calling pipeline undergoes project-, and sample-specific post-processing where the relevant 

disease biology and sample details are carefully considered when setting thresholds for various 

heuristics. Often due to budget constraints, extremely stringent filtering is used to winnow 

candidate variants down to a manageable number for the costly and time consuming manual 

review and validation steps.  

 Manual review typically occurs on the filtered candidate call list via visualization of the 

raw MPS sequence alignments through a genomic visualization tool like IGV26. Human 

reviewers can readily recognize patterns that are missed by variant calling and filtering. Manual 

reviewers look for error patterns like those described in Table 1.1, that were missed in the 

filtering of the somatic caller. Such errors occur when certain types of filtering are omitted (note 

the lack of overlap between filters in Table 1.1), when multiple of these error features occur in 

the same site, or when a variant does not surpass the arbitrary threshold for a given feature, but is 

nevertheless plainly obvious to the human eye. For standard procedures on how manual review is 

performed on somatic variants as well as illustrative examples of errors, see Appendix 1. 

 Validation on an orthogonal sequencing technology that (ideally) does not exhibit the 

same biases as that used for discovery sequencing, is ideal in somatic variant confirmation. The 

most relied on technology for validation sequencing remains Sanger sequencing, however, this is 

also the most costly and time consuming. Other MPS technologies, like IonTorrent, are also 

commonly used in somatic variant validation as they exhibit different error signatures than the 

Illumina platform. Remaining on the Illumina platform, but performing targeted custom capture 

sequencing to much greater depth is also a cost effective and trusted source for validation 
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sequencing. Other methods to consider include digital droplet PCR, which has excellent 

sensitivity to detect variants. Validation sequencing is often limited by the availability of the 

tissue to perform the experiment and the cost. 

1.5 The Interpretation Bottleneck in Cancer Genomics 
The MPS workflow in cancer genomics has been streamlined and optimized from DNA isolation 

to somatic variant calling such that throughput is enormous. Despite advances in these areas, post 

processing and clinical or biological interpretations of somatic variant calls are becoming 

increasingly laborious, resulting in massive bottlenecks that impede the widespread adoption of 

precision medicine (see Figure 1.4)76. 
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Figure 1.4   The interpretation bottleneck of precision medicine. Figure originally published be Good 
et. al. 201476 “A typical cancer genomics workflow, from sequence to report, is illustrated. The upstream, 
relatively automated steps (shown by their light color here) involve the production of millions of short 
sequence reads from a tumor sample; alignment to the reference genome and application of event 
detection algorithms; filtering, manual review and validation to identify high-quality events; and 
annotation of events and application of functional prediction algorithms. These steps culminate in the 
production of dozens to thousands of potential tumor-driving events that must be interpreted by a skilled 
analyst and synthesized in a report. Each event must be researched in the context of current literature 
(PubMed), drug-gene interaction databases (DGIdb), relevant clinical trials (ClinTrials) and known 
clinical actionability from sources such as My Cancer Genome (MCG)… [This] attempt to infer clinical 
actionability represents the most severe bottleneck of the process. The analyst must find their way 



29 
 

through the dark by extensive manual curation before handing off a report for clinical evaluation and 
application by medical professionals.” 76 

 Analysts faced with large sets of variant calls are over-burdened with the need to perform 

validation or manual review of variant calls and then provide interpretations for those variant 

observations in the context of clinical and biological knowledge. The current standard procedure 

is to annotate variants that have been observed in cancer genomic studies and perform literature 

review to explain a variant’s impact on cancer. Resources like TCGA39, and ICGC40,41, or 

databases like COSMIC50 are very comprehensive and allow for easy annotation against the 

know mutational landscape of human cancers. However, resources that ascertain the biological 

or clinical importance of a variant in cancer are much more scarce. Examples include the cancer 

gene focused database PHIAL54, or databases that outline clinically important variants and their 

impact like MyCancerGenome77, or the Gene Drug Knowledge Database78. While these 

databases allow users to quickly browse their contents for identified variants, there are no 

programmatic application programming interface (APIs) available to allow this information to 

annotate variant calls automatically, resulting in a large manual analysis burden. Additionally, 

these resources only capture a small part of what is known in the literature. As a result, to find 

biological or clinical information about any given somatic variant, time-consuming literature 

review often is necessary. When thousands of somatic variants are called in a genomic study, it is 

not tractable to perform literature review on every single variant for studied functional 

consequences. Significant developments are necessary to develop resources that streamline the 

interpretation of somatic variants and improve their detection (see Chapter 2 & 3). 
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1.6 Machine Learning Applications to Variant 
Identification, Filtering, and Assessment 
As discussed in section 1.4, false positive filtering is used extensively in somatic variant calling 

pipelines to produce high quality somatic variant lists. Most often these filters are set as 

heuristics with cut off thresholds defined by analysis of experimental data. This approach is 

limited by the experimental data used to discover thresholds. If the reference set for delineating 

variant calling errors was defined with a significantly different cancer type representation, 

sample heterogeneity, or analysis/sequencing strategy used, it may be necessary to manually alter 

filters for a new study. This increases analysis cost and complexity by requiring implementation 

of increasingly sophisticated hierarchical filters (e.g. if feature W is above X, then filter feature 

Y by Z). Traditional programming defines rules and procedures that are then used to process data 

(an example is the traditional filtering strategy used in somatic calling pipelines where specific 

thresholds need to be set for every variable to define heuristic filters). However, divergent from a 

traditional programing paradigm, machine learning algorithms allow a computer to automatically 

calculate procedures based on labeled training data. Specific to the filtering strategies described 

above, a machine learning algorithm utilizes knowledge of which variants are valid or artefactual 

(labels or classes) to learn structure in input variables (features, like VAF and base quality 

metrics) that will allow the algorithm to make future classification decisions on unseen data. 

These types of machine learning methods are often referred to as classification algorithms. 

 Machine learning algorithms have many advantages. They can learn extremely 

complicated nonlinear or hierarchical data structures and allow these structures to be applied to 

previously unseen data points. They can be used to automate time consuming tasks with a great 

deal of precision, saving a substantial amount of human analysis time. For example, the manual 

review of somatic variant calls required approximately 1 hour of analysis time for 70 variants 
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reviewed. A machine learning algorithm could potentially reduce this analysis time to 

milliseconds (see Chapter 4).  

 While machine learning technology is incredibly promising, it is not without its pitfalls. 

The saying, ‘garbage in, garbage out’ aptly describes machine learning model performance on 

noisy, incomplete or biased training datasets. Great care must be taken in assembling, cleaning, 

and normalizing datasets in preparation for ‘training’ a machine learning algorithm. 

Additionally, it is important to provide a machine learning algorithm with appropriate and 

relevant features (variables) in the proper format for accurate decision making. For example, it 

should not be assumed that if a machine learning algorithm is given normal read counts, variant 

read counts, and sequencing depth that the algorithm will calculate VAF and utilize it in its 

decision making. The process of identifying and designing useful features is thus a critical step in 

the development of accurate machine learning algorithms for classification. Once training data 

are adequately assembled, experimental design steps, such as selection of cross validation 

strategy and independent (held out) test data, should be taken to ensure that the machine learning 

algorithm is not over-trained or overfit. This section will introduce standard practices for 

cleaning training data, engineering features for genomic datasets, evaluating model performance, 

avoiding overfitting, and using three common machine learning techniques (logistic regression, 

random forest, and deep learning). 

1.6.1 Training Data Assembly, Cleaning, and Feature Engineering in Cancer 
Genomics 
Assembly of high quality training data is often the most time intensive task in a machine learning 

project79. This is because data that are used for training of machine learning models are rarely 

collected and stored with machine learning in mind. Data typically are stored in various ‘silos’ 

and need to be aggregated and standardized for the purposes of machine learning. In cancer 
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genomics, data are typically organized by case or project. A case is comprised of a single 

patient’s DNA sequencing data collected at various times (e.g., at diagnosis, relapse, or after a 

treatment regimen) or tissue locations (i.e. primary tumor, normal, metastasis, etc.); a project is a 

collection of cases aggregated to answer a particular hypothesis. Independent cases and project 

data may exhibit a wide variety of details in terms of how mutations are discovered, formatted, 

and stored. 

 Bioinformatics as a discipline commonly deals with a large number of file formats and 

other caveats that must be considered when attempting to aggregate data across projects. For 

example, a common first task is ensuring that all genomic coordinates are in the same genome 

build. This typically needs to be done at the file level, such that every alignment file (BAM), 

variant call file (VCF), and/or manual review file (BED) file is standardized into the same 

context, reference genome build and variant coordinate system (i.e., zero-based or one-based). 

Once all individual data are standardized they can be aggregated. It is not uncommon for 

different projects to use the sequencing data from the same cases (e.g., if two projects focused on 

the same tumor type analyzed by the same group include samples sequenced redundantly in a 

prior project). However, if this is the case, care must be taken to eliminate duplicated data that 

would otherwise confound the machine learning algorithm (and over-estimate performance) 

downstream.  

 Sparsity, or missing data, can also be a problem for machine learning algorithms. In 

cancer genomics data aggregation, this can be a result of different tissue samples being 

sequenced between studies (tumor/normal, tumor/normal/relapse, tumor/normal/metastasis, 

tumor only, etc.), or mutational status (it is unlikely that many different samples will share a high 

number of mutations at the same loci). These missing data can be accounted for by making 
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simplifying assumptions like treating tumor-normal pairs from different individuals and different 

tissues in the same individual as independent samples, imputing missing genotypes from 

population data, or aggregating metrics irrespective of genomic location to compare all variants 

against each other.  

 An essential step in machine learning data aggregation is carefully examining the process 

seeking to be automated. In the case of somatic variant post-processing, this would require 

extracting and manipulating raw data into numerical values that are most likely to correlate with 

class labels. This process is referred to as feature engineering and requires a thorough 

understanding of the problem domain space. Once all data across projects are aggregated and 

normalized, raw sequencing information can be processed for machine learning. Because bam 

files are so large, and only a small percentage of the sequence information relates to individual 

somatic variants, it may be more efficient to extract only variant-specific metrics from the bam 

file for training. This can be done using a number of tools including SAMtools25 and bam-

readcount (https://github.com/genome/bam-readcount). Once all relevant data are extracted they 

can be aggregated with other features such as cancer type. These features can then be 

manipulated to increase their value to the downstream classifier. For example, the tools listed 

above only provide raw counts for variant and reference bases at a specified position; it is 

necessary to use the variant read count and locus coverage to calculate the VAF, a highly 

valuable and useful metric commonly used by manual reviewers in decision making. Other 

examples of feature engineering include calculating the difference in VAF between the tumor 

and the normal sample. Some machine learning methods are more capable of performing feature 

engineering as a part of their methodology than others (deep learning approaches can perform 

very well with little feature engineering beforehand), however, performance can be substantially 

https://github.com/genome/bam-readcount)
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improved by engineering the feature to focus machine learning algorithms on metrics thought (or 

known) to be important in classification. While feature engineering is an important step to 

achieve better performance, it is also an opportunity for human bias to be introduced into the 

algorithm and so great thought and care should be taken in regards to what features are included 

in the model and why they might be important. 

1.6.2 Model Performance Assessment and Overfitting 
Machine learning methods make predictions by creating a mathematical representation (or 

equation commonly referred to as a model) representing the problem at hand. The different 

methods used (e.g., logistic regression, random forest, deep learning, etc) define the 

mathematical structure of the model, although initially the parameters of that model are often 

randomly selected. This model, with random parameters, is then assessed for performance using 

a predefined error function that can use a variety of metrics for evaluation: examples include 

accuracy, F1 score, or receiver operator characteristic (ROC) area under the curve (AUC).  Once 

baseline performance has been assessed for random parameters, these parameters can be 

iteratively changed until the method converges on a minimum error. This approach is known as 

gradient descent. Each machine learning algorithm performs this process slightly differently but 

the same general architecture of slowly converging on an optimal solution is followed. 

 The metrics used to assess model performance can be used in training to converge on the 

ideal solution, given the data, and/or to evaluate and compare how different machine learning 

algorithms perform. The metric used to assess importance can therefore have a significant impact 

on model performance because it is the mathematical constraint used to measure model success 

and drive convergence. As such, each metric should be thoroughly understood. Accuracy is the 

most straightforward measure of model performance and can be defined as the number of correct 
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predictions made by the classifier compared to the total number of examples evaluated. The F1 

score is the harmonic average of precision and recall, or in other words, it considers not only the 

false positive rate, as does accuracy, but also the false negative rate. This is due to the accuracy 

paradox, where accuracy can increase even though an algorithm’s predictive value does not 

change (or even decreases)80. The F1 score accounts for this limitation. ROC AUC builds upon 

each of these metrics by evaluating how the precision and recall behaves at all decision 

boundaries. As the threshold is changed for what is considered a true positive, the classifier’s 

false positive rate and true positive rate are assessed. In contrast to accuracy and F1 score, which 

only evaluates model performance at one decision boundary. ROC AUC gives a comprehensive 

representation of model performance across all decision boundaries. 

Preventing overfitting 
Overfitting occurs when an algorithm too closely learns the specific structure of a training 

dataset, or “memorizes” the training dataset, and does not generalize well to other datasets (see 

Figure 1.581). There are two commonly used techniques to protect against overfitting: (1) cross-

validation in training; and (2) testing model performance against independent test datasets. 

 In a typical cross-validation scheme, a training sample is partitioned into k equally sized 

subsamples. These samples are used as a testing set for a model that was trained on each k-1 

superset. In this way, each sample is used in a testing set only once, and evaluation of each 

trained model only occurs on samples not used to train that model, minimizing the opportunity 

for overfitting. Stratified sampling, ensuring that equal distributions of labels are maintained 

between the whole dataset and the subsamples, is important to achieve consistent performance on 

datasets with an unbalanced distribution of class labels. While test sets are commonly used in 

cross-validation schemes, additional confidence in model performance is obtained when results 

replicate to completely independent datasets. Ideally, these would be additional datasets 
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specifically collected to test the model. However, in practice it is often too costly to collect a 

dataset solely for testing. Therefore, the data set is sometimes randomly segmented before 

training and a testing dataset is held out and never utilized in training or cross-validation phases. 

 

Figure 1.5   Visualization of over-fit and well-fit models on training and test datasets.  The left plot 
illustrates example data for a training dataset and the right plot for the test dataset. The orange line 
represents a model that is overfit to the training data and is more poorly fit to the test data. The green 
line represents the population structure that the accurattley capture the population trend seen in both 
traning and test sets. By Skbkekas (Own work) [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)], 
via Wikimedia Commons81. 

1.6.3 Supervised Learning to Perform Classification 
Logistic Regression 
Logistic regression classifiers in their simplest form estimate numerical features to a binary 

classification (true or false) by fitting experimental data to a sigmoid function82. This is 

illustrated in Figure 1.6, a hypothetical example where a sigmoid function is fitted to data that 

show how hours of studying relate to passing an exam83. The sigmoid function estimates the 

probability of passing an exam given the hours that an individual has studied. 
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Figure 1.6   Illustration of a sigmoid function fitted to a logistic regression classification estimating the 
probability that an individual will pass an exam given hours spent studying. The blue line illustrates the 
sigmoid function fit to this data. The points at 0 or 1 indicate whether an individual passed or failed an 
exam after the specified number of hours studying. By Michaelg2015 (Own work) [CC BY-SA 4.0 
(https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons83 

 Logistic regression classifiers can be extended beyond binary classification tasks via a 

process called one-versus-all classification. This is a classification scheme where each class is 

evaluated against all others, or a classifier is produced for each unique class. For example, if we 

had a dataset with classes A, B, and C, one-versus-all classification would produce 3 binary 

classifiers. The first would treat the A class as truth (1) and B and C classes as false (0), then, the 

B class would be true and A/C would be false, etc. Logistic regression can also be applied to 

multivariate datasets, data with many features, as opposed to only one feature as shown in 

Figure 1.6. For each feature a weight parameter will be learned by the model that, in conjunction 

with all the other parameters, allow the estimator to produce accurate predictions given a dataset. 

 Logistic regression models are useful because they are efficient to train and are easily 

interpretable. The coefficients learned by the model for each feature are the odds ratio, which can 
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be used to identify the impact of each feature in classification84. Specifically, the further an 

individual coefficient is from zero the more important it is in helping the classifier discern 

between classes. Logistic regression models are able to fit simple non-linear features, however, 

as training data gets more complex (i.e. the more features that are non-linear) it becomes more 

difficult for a logistic regression model to fit the data. 

Random Forest 
A random forest is an ensemble approach that uses decision trees to learn the structure of data 

and random bootstrap aggregating to correct for overfitting 85-88. A decision tree is an algorithm 

that uses thresholds for every feature to make classifications with a high degree of specificity 

(see Figure 1.789). 

 

Figure 1.7   Example decision tree of survival on the Titanic. Each of the features (blue) lead to more 
specific feature filtering or survival status (green or red).89 

Decision trees can be extremely precise in their learning of data and quick to train, however they 

are prone to overfitting especially on deeper trees90. Random forest corrects this overfitting 

problem by taking the averages of trends learned across many trees. This process sacrifices the 

innate intuitiveness of decision trees, but substantially improves the performance on unseen data. 
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Random bootstrap aggregating has 3 steps. 1) taking random samples of the training data with 

replacement (bootstrapping) to produce many trees (a forest). 2) Randomly selecting a subset of 

features that will be used to compute the decision boundary for each branch. 3) Assessing 

performance of the forest by feeding labeled examples through each tree in the forest and letting 

each tree vote for the classification status of the sample. This process is more opaque than how 

decision trees make decisions but is still able to calculate feature importance by tallying the 

‘votes’ of how often a feature is used in classification. Random forests are powerful because they 

can learn mixed numerical and categorical features, can learn complicated non-linear 

relationships, and are straightforward to work with. A drawbacks of random forests is that they 

take the same amount of time to make predictions as they do to train (input variables must 

traverse the entire forest regardless), so they can have comparatively slower prediction times 

than other algorithms. 

Deep Learning 
 In recent years, the term deep learning has become synonymous with neural networks, a 

subspecialty of machine learning that has existed for decades91. Neural networks have gone in 

and out of favor many times in the decades since their invention in 1957 and have gone by many 

names: artificial neural networks, multilayer perceptron, feed forward neural network, deep 

learning etc. While there are semantic differences referred to with each term in the field, 

colloquially many of these terms are used interchangeably to describe neural computing.  

 A neural network is a mathematical representation of how we understand the brain to 

process information. The brain’s neurons take nerve stimuli, from our body (skin, eyes, ears, 

etc.), as inputs to a complex network of neurons. These neurons process these inputs 

biochemically and send results to other neurons in an extremely complicated network. While 

artificial neural networks are mathematical abstractions of this biological reality, they are not 
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nearly as complicated in their network architecture as a brain. In their simplest form, 

computational neural networks (NN) are comprised of an input layer, a hidden layer, and an 

output layer (Figure 1.8). 

 

Figure 1.8   Simple illustration of a feed forward neural network. 

Each feature feeds into every hidden layer along with a randomly initialized weight variable. 

These values are fed through the hidden layer into the output layer. Hence the name feed forward 

neural network. What happens at each node is similar mathematically to the logistic regression 

algorithm introduced above. The feature values are fed into an activation function, like a sigmoid 

function, and they output a value between 0 and 1 that is passed into the output layer or another 

hidden layer. A variety of activation functions are common in neural networks including 

sigmoid, hyperbolic tangent (tanh), and rectified linear unit (relu). Similar to logistic regression, 

these networks are trained using some flavor of gradient descent to converge on a minimum 

error. The main difference in NN is that weights need to be updated for every node of every layer 

as opposed to updating one function in logistic regression. For this reason, training neural 

networks can be extremely costly. Recent improvements in computing speed and the discovery 

of techniques like backpropagation have led to a resurgence of NN in recent years because they 

Feature 1

Feature 2

Feature 3

Hidden layerInput layer Ouput layer
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are now utilized on enormous data sizes. Backpropagation, or backward propagation of errors, is 

a mathematical technique that allows the errors to be fed back through the network, similar to 

how features are fed into the network, and to modify the weights by gradient descent at each and 

every node with extreme efficiency92. These advances have also made training deeper networks, 

NN with more hidden layers, and other networks with complex architectures (convolutional NN 

and recurrent NN) more common (these deeper and complex architectures are commonly called 

deep learning). This has ushered in a renaissance of the field as it has allowed computer 

intelligence to exceed human performance on tasks like image recognition or even extremely 

complex strategy games such as GO93. 

 While deep learning has led to astounding advances, it has some important weaknesses. 

First, it typically takes an extremely large training dataset size for deep learning to outperform 

approaches like random forests. This, coupled with the fact that deep learning is extremely 

computationally expensive to train can be a deterrent to using this method. Perhaps deep 

learning’s biggest weakness is that it acts like a black box. In other words, it is extremely 

difficult to determine how and why a deep learning model made the decisions that it did. Despite 

these drawbacks, the ability to learn complicated structure makes deep learning an attractive 

method to implement for many machine learning tasks. (see Chapter 4) 

1.7 Addressing the Somatic Variant Identification and 
Interpretation Bottleneck 
As described in section 1.5, while substantial progress has been made in the utilization of MPS 

data for cancer genomics, substantial bottlenecks are still present that contribute to the difficulty 

of making cancer genomic information useful clinically (see Figure 1.4). Open source, openly 

licensed and computationally friendly resources are needed to widen the somatic variant 
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detection bottleneck76. In Chapter 2, DoCM a database of curated mutation in cancers is 

described as a solution to enable crowd sourced curation of variants from the literature that are 

clinically and biologically important to cancer. In Chapter 3, the utility of DoCM is demonstrated 

by rescuing clinically and biologically important somatic variants from four TCGA project 

datasets through targeted manual review and validation sequencing. In Chapter 4, a machine 

learning classifier, trained on 41,000 somatic variants from 20 cancer genomics projects, is 

presented that automates manual review and false positive filtering. This work will widen the 

somatic variant identification bottleneck and streamline and standardize analysis 
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Chapter 2: DoCM: a Database of Curated 
Mutations in Cancer 

 

 

Ainscough, B. J. et al. DoCM: a database of curated mutations in cancer. Nat Methods 13, 806-
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2.1 Introduction 
Large-scale cancer genomics discovery projects such as The Cancer Genome Atlas (TCGA) and 

the International Cancer Genome Consortium (ICGC) have systematically characterized the 

molecular lesions in human cancer genomes, thereby laying the foundation for precision cancer 

medicine. However, a curated set of somatic variants with established relevance to cancer 

biology is essential for clinical annotation and for use in computational data analysis. A variety 

of somatic cancer variant databases exist that help identify important variants, including gene-

level54, variant-level41,50, and clinically-focused variant interpretation databases77,78,94. These 

resources have greatly increased our understanding of the landscape of clinically and biologically 

relevant cancer variants, and when used in aggregate provide an understanding of the relevance 

of specific variants. We have created a database of curated mutations in cancer (DoCM, 

http://docm.info), an open-source, openly licensed resource to enable the cancer research 

community to aggregate, store, and track biologically important cancer variants with provenance 

supported by the literature. 

  

http://docm.info/
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2.2 Results 
DoCM is a curated repository that facilitates the aggregation of gene and variant information for 

variants with prognostic, diagnostic, predictive, or functional roles from these resources as well 

as from individually curated publications (Figure 2.1 and Table 2.1). 

 

Figure 2.1 Overview of DoCM resource. (A) Outline of criteria to curate a variant. Variants are 
evaluated for inclusion and then curated elements are identified. (B) Summary of current DoCM contents. 
DoCM contains SNSs and indels across many cancer subtypes with easy identification of the journal 
article that outlines the variant’s relevance. (C) Screenshot of the DoCM web application available at 
http://docm.info. (D) Illustration of the API. An HTTP GET request for a variety of parameters including 
gene, chromosome, position etc. and returns a JSON response with the PubMed ids, diseases and other 
useful information. The API is thoroughly documented at http://docm.genome.wustl.edu/api. 
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DoCM Feature Type Quantity 

Variant types SNSs 1,302 

 INDELs 35 

 DNSs 27 

Variant effect Missense 1,276 

 Stop 45 

 Frameshift 18 

 Inframe 15 

 Start lost 5 

 Synonymous 4 

 Protein 1 

Drugs  96 

Cancer subtypes  122 

Genes (transcripts)  132 (184) 

Publications  876 
Table 2.1   Summary of DoCM resource contents (v3.2) 

DoCM currently houses 1,364 variants in 132 genes across 122 cancer subtypes, based on the 

curation of 876 publications (Figure 2.1B and Table 2.1). The variant types currently in DoCM 

include SNSs (95.5% of entries), indels (2.6% of entries), and dinucleotide substitutions (DNSs; 

2% of entries). To date, the DoCM web application has approximately 24,000 page views and 

approximately 8,500 unique users. In aggregate, users have spent hundreds of hours interacting 

with the website and include individuals from every continent with the highest traffic coming 

from the USA. DoCM’s open-access model has allowed the resource to be useful to the 

community, prior to publication, being used in original research95, incorporated into other 

resources96,97, and highlighted in a review98.  
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Figure 2.2   Screenshot of DoCM batch submission form. In the batch submission form, users can enter 
all the parameters necessary for inclusion into DoCM, including the name of the batch, the rationale 
statement outlining the reason for including the variants and curation details, any relevant urls, tags to 
be applied to the whole batch, the TSV file with variants and submitter information. Following submission 
the user will be given a link to review the batch and any messages from moderators. 
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Figure 2.3   Screenshot of moderators view of the submitted batches queue. Once a batch has been 
submitted, it can be reviewed in the password protected moderator queue. A listing of current DoCM 
moderators can be viewed at http://docm.genome.wustl.edu/about. Moderators can select a batch, such as 
the Drug Gene Knowledge Database highlighted in purple above, to review the batch. Once multiple 
batches have been accepted a moderator can create a new DoCM version using the blue button at the 
bottom-right of the screen. The “Drug Gene Knowledge Database” link is highlighted in purple as it is 
the subject of Figure 2.4. 
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Figure 2.4   Screenshot of moderator review page. A moderator can review all information submitted 
with a batch and evaluate whether it fits the scope and quality requirements of DoCM. Individual variants 
can be accepted or rejected and the moderator can leave a message to the submitter. 
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DoCM's scope and its batch submission process (Figures 2.2-2.4) place it at a critical 

intersection between the two major tradeoffs of curated resources: comprehensiveness of variants 

and curation burden (Figure 2.5). The automated batch submission and the review system allow 

DoCM curations to scale easily. 

 

Figure 2.5   Putting DoCM in the context of other resources. DoCM in the landscape of selected 
databases that collect and curate variants. 

 Curation of the literature to produce a high-quality set of pathogenic somatic variants is 

not trivial, on account of the large number of papers and laborious curation process (Figure 2.6). 

Hence, we designed DoCM as an open resource that can coordinate contributions from research 

and clinical practitioners. Once important variants are identified, curation efforts are required to 

format, standardize, and structure the variants for inclusion in DoCM (see section 2.3 and Figure 

2.7). A set of such curated variants can be contributed to DoCM by batch submission at 

http://docm.info/variant_submission, whereupon it is reviewed and evaluated by DoCM editors 
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for possible inclusion. DoCM is licensed under the creative commons attribution license (CC BY 

4.0), allowing academic and industry researchers unencumbered access to the content. 

 

Figure 2.6   Number of papers in PubMed indexed by "Cancer" per year. Searching PubMed with the 
search term “Cancer” yields the number of papers relating to cancer per year. This serves as an upper- 
bound limit of the number of papers that need to be curated to accurately summarize important cancer 
variants. There is a need for public resources that reduce the duplication of curation effort. 
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Figure 2.7   Overview of variant curation for every entry into DoCM. An anecdotal example of the 
curation involved for the variant BRAF V600E is shown. Typically, the literature only lists the gene and 
amino acid change (purple in the figure), requiring extensive curation to uniquely identify the variant. 
Correct genomic coordinates on a consistent genome build need to be identified, with accompanying 
nucleotide and strand information. Occasionally there are multiple nucleotide changes that are 
synonymous with a particular amino acid change. A representative transcript that correctly models the 
variant described in the literature also needs to be specified. Cancer subtypes are specified using the 
disease ontology nomenclature. Green boxes note the class of information that needs to be captured in 
DoCM, black boxes show the subtype of each class, and white boxes denote the value. 
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2.3 Methods 

2.3.1 Somatic variant curation 
Curation of the literature to produce a high quality set of pathogenic somatic variants is not 

trivial. Once identified, these variants require significant curation efforts to format and 

standardize the variants in a structured way for storage and retrieval in a relational database. For 

example, publications often only specify the amino acid change and gene name to describe the 

variant. Hence, for each variant a curator must reconstruct the genomic location, genome 

version, relevant transcript, and nucleic acid variant from the manuscript. Even when some of 

this information is specified, it is often from an outdated genome reference or transcript 

build/version (Figures 2.1A and 2.6). 

 To be included in DoCM, variants needed to be supported by peer-reviewed literature 

and/or by expert opinion indicating their relevance to cancer or a cancer subtype. Relevant 

publications were identified by PubMed searches and inspired by other somatic variant 

databases, such as CIViC (www.civicdb.org)99, My Cancer Genome77, OncoMap94, and the Gene 

Drug Knowledge Database78. We reviewed publications referenced in these resources to 

determine the variant’s suitability for inclusion in DoCM. Where licensing permissions allowed, 

the underlying metadata from the resource was included in the DoCM knowledgebase; otherwise 

a link to the source resource was included for reference.  

 The criteria for inclusion in DoCM are as follows. Variants, single nucleotide 

substitutions (SNSs) and insertions and deletions (indels), must have published evidence of 

clinical relevance, such as prognostic or diagnostic information and/or response data for targeted 

therapies. For example, a BRAF V600E variant might be considered a clinically important 

variant, as melanomas with this variant are sensitive to the drug vemurafenib100. Additionally, 

http://www.civicdb.org/
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variants whose etiology in cancer has been established by functional experimentation, in either 

cell lines or model organisms, were included. Lastly, variation that has been observed in large 

scale sequencing efforts as being significantly associated with a particular cancer type were 

included in the resource (in this category significant recurrence and expert opinion was 

preferred). 

 Variants can be grouped into batches by commonalities like disease or mutation type if 

curated directly from the literature. Batches can also be created based on a publically available 

listing of variants that is in scope for the DoCM resource, like My Cancer Genome or the Drug 

Gene Knowledge Database. Batches can be submitted, following the instructions 

(http://docm.genome.wustl.edu/batch_submission_help), on the batch submission page (Figure 

2.2)(http://docm.genome.wustl.edu/batches/new). Curators should annotate their curation process 

and explain the reasoning for including a batch into DoCM in the batch rationale statement on 

the submission form. This statement provides transparency to the curation process and allows 

DoCM users to better understand why variants were included.  

 Variants of sufficient biological or clinical importance were included in DoCM and 

annotated with the correct genomic position, nucleic acid change, associated cancer subtype, 

transcript, and any relevant tags. The genomic location of any variant was obtained from the 

publication, and converted to reference genome build GRCh37. However, publications rarely 

specify all relevant information needed to easily identify a particular variant. Often only the gene 

and amino acid change were listed (e.g., BRAF V600E); in such cases the genomic location must 

be manually determined by referencing resources like the UCSC101 or IGV26 genome browsers 

and appropriate gene annotation tracks such as Ensembl. If there were multiple nucleic acid 

variants that could result in the same amino acid change, then they were both included in the 

http://docm.genome.wustl.edu/batch_submission_help
http://docm.genome.wustl.edu/batches/new
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database. Additionally, a representative transcript that is compatible with the amino acid variant 

was also obtained if not specified in the publication. 

2.3.2 Batch Submission and review process 
Following submission of a batch, the DoCM web app automatically annotates the variants using 

VEP102, validates the publication’s pubmed ids using PubMed, and validates the disease ontology 

ids using the disease ontology API103. After annotation and validation, the variants are reviewed 

by the moderators listed on DoCM’s about page (http://docm.genome.wustl.edu/about). DoCM 

moderators ensure that the submitted batch contains no errors in annotation and validation, that 

the batch is within the scope of the resource, and that the variants appear to be referenced in the 

listed literature. The moderator will start a dialogue with the submitter via email to correct any 

errors/discrepancies and then accept or reject the variants in the batch. These variants are then 

staged for inclusion in DoCM and upon submission of multiple batches the moderator can create 

a new version of the database (Figures 2.3-2.4). 

2.3.3 DoCM web application implementation 
The DoCM web application was built using Ruby on Rails (>= 1.9.3) with a PostgreSQL (>= 9) 

database backend. The application is open source (code available at 

https://github.com/genome/docm ) and openly licensed (MIT open source). The application is 

organized using a model-view-controller (MVC) architecture. DoCM variants can be browsed 

and searched using the web interface, which has both quick search and advanced filtering 

functions. Additionally, the web application features a RESTful application programming 

interface (API), that allows for easy integration into other computational systems. Additionally, 

the API features a versioning system that allows for users to get consistent responses even as the 

http://docm.genome.wustl.edu/about
https://github.com/genome/docm
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resource is updated and new sources are included. The web application also features the option 

for direct download of the curated variants in TSV or VCF formats.  
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3.1 Abstract 
While DoCM has utility for annotating pathogenic variants with relevant publication support, it 

can also contribute to the analysis of sequencing data. For example, it is the nature of analytical 

pipelines for somatic variant detection that bona fide somatic mutations may be missed due to 

various causes–including overly stringent filtering, alignment challenges, low tumor purity, 

tumor heterogeneity, tumor contamination of normal, lack of data coverage, and other issues. 

This is particularly problematic when a variant with a known biological function or clinical 

action, such as those populating DoCM, is not detected. While missing a variant can adversely 

impact both research and clinical sequencing, it is particularly pertinent in the clinical assay of 

tumor DNA, where a false negative may represent a missed opportunity for more optimal disease 

management. To illustrate the utility of DoCM, we performed a focused knowledge-based 

variant discovery study to identify pathogenic variants missed in 1,833 cases across four TCGA 

projects. Validation sequencing data from 93 of these cases showed that at least one functionally 

important variant in DoCM was recovered in 41% of cases.  

3.2 Results 

3.2.1  DoCM recovers missed somatic variants 
While DoCM has utility for annotating pathogenic variants with relevant publication support, it 

can also contribute to the analysis of sequencing data. For example, it is the nature of analytical 

pipelines for somatic variant detection that bona fide somatic variants may be missed due to 

various causes–including overly stringent filtering, alignment challenges, low tumor purity, 

tumor heterogeneity, tumor contamination of normal, lack of data coverage, and other issues61. 

This is particularly problematic when a variant with a known biological function or clinical 

action, such as those populating DoCM, is not detected. While missing a variant can adversely 
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impact both research and clinical sequencing, it is particularly pertinent in the clinical setting, 

where a false negative may represent a missed opportunity for more optimal disease 

management. Herein we demonstrate the use of DoCM, a knowledgebase of clinically and/or 

biologically relevant cancer variants, to recover missed somatic variants in cancer sequencing 

data.  

 As a proof of principle for DoCM’s utility, we designed a method to recover variants 

missed through traditional analysis strategies. This method utilizes DoCM to perform 

knowledge-driven identification of minimally supported variants followed by manual review and 

validation sequencing (MSRV). Here, MSRV identified pathogenic loci with two or more 

supporting sequence reads, followed by manual review for errors (Figure 3.1A), and subsequent 

validation sequencing (see section 4.3 methods). We applied the DoCM-MSRV variant recovery 

method by analyzing all DoCM sites (data freeze; 488 variants) in the sequencing data from four 

TCGA projects (Figure 3.1): AML), BRCA, OVCA, and UCEC. DoCM identified 10,174 

minimally supported variants that were manually reviewed by an expert genome analyst. Of 

these, 1,833 variants passed manual review (i.e. showed sufficient evidence to warrant validation 

sequencing). A subset of these putative somatic variants, 1,228 of 1,833 (66.99%), was not 

reported by the respective TCGA variant calling pipeline (Figure 3.1B, Table 3.1). 
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Figure 3.1   Overview of analysis and validation sequencing of four TCGA projects. (A) Outline of the 
manual review strategy. DoCM sites with two or more reads of support are evaluated for obvious errors. 
(B) Summary of the variants that passed manual review and were not identified in the original TCGA 
analyses. (C) Summary of the variants that were validated in the 93 validation samples. (D) Comparison 
of DoCM-MSRV to ClinSek and the Bayesian classifier.  

 AML BRCA OVCA UCEC 

Number of individuals 200 990 415 228 

DoCM sites counted across all samples (488 unique 
DoCM sites) 

95,406 483,120 202,520 140,544 

DoCM variant sites with >= 2 reads of support 1,641 4,055 3,239 1,239 

DoCM variants called somatic via manual review 339 885 306 303 

DoCM variants called somatic after manual review AND 
identified in TCGA 

130 256 40 180 

DoCM variants called somatic after manual review NOT 
identified in TCGA 

209 629 267 123 

Table 3.1   Summary of variants identified in TCGA data through manual review. 

 We next selected 48 cases (tumor-normal pairs) from the AML and BRCA TCGA 

projects, each of which containing one or more of the 1,833 putative variants, and performed 
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validation sequencing using a targeted hybrid capture approach on both tumor and normal 

samples (see section 4.3 methods). We generated new libraries and used differentially barcoded 

indices on either end of the sequencing libraries to limit the likelihood that observed variants 

were due to sequencing artifacts via crosstalk from a single end barcode. One BRCA case and 

two AML cases failed library construction and QC checks, leaving 93 total cases in our 

validation cohort. After sequencing, we achieved a mean coverage of 173-fold at DoCM sites, 

and 95.5% of DoCM sites had at least 50-fold coverage (Figure 3.2).  

 

Figure 3.2   Coverage of the custom capture validation sequencing. Heatmap illustrating the coverage 
obtained at all target sites in validation sequencing. Bar graphs on the x and y-axes illustrate the mean 
coverage at each case/position. 

For those cases with validation sequencing data, 253 putative somatic variants were missed in 

the original TCGA analysis and passed manual review. Of these, 19% (49) also passed the 

validation threshold (5 or more reads supporting the variant) (Table 3.2). Here, DoCM-MSRV 

was able to detect variants below 10% variant allele fraction (VAF), many of which are 
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approaching the noise level of the sequencing instrument. Assuming a 1% error rate for a 

sequencing instrument, one would expect at least one read to contain a sequencing artifact at a 

given position with a depth of 100x. Therefore, our decision to review any variant with 2 or more 

supporting data reads approaches the detection limits of the sequencing instrument. As a result, 

we expected and observed a large false positive rate among DoCM-MSRV-identified putative 

variants prior to validation sequencing (~20% of putative variants validated in subsequent 

resequencing).  

 AML BRCA 
Number of individuals where validation sequencing was performed 46 47 

Putative variants called somatic via manual review 155 143 
Putative somatic variants identified in TCGA 27 18 

Putative somatic variants not identified in TCGA 128 125 
Validated variants (>=5 reads, not called in TCGA, somatic in manual review) 27 23 

Unvalidated variants (<5 reads, not called in TCGA, somatic in manual review) 97 104 
Number of individuals with validated variant rescued 22/46 16/47 

Table 3.2   Summary of validation sequencing results. 

The presence of these validated, rescued variants observed elsewhere in TCGA coupled to the 

knowledge that all such variants are important in cancer gives high confidence in the validity of 

these variants. DoCM-MSRV was able to rescue variants across a broad range of VAFs (1.4% - 

91%)( Figure 3.3) and identified at least one biologically important variant in 38 of 93 (41%) 

cases (Figure 3.1C, Table 3.2). If we extrapolate the rate of DoCM-MSRV detected variants to 

all cases in all four TCGA projects, we estimate that approximately 238 variants would be 

rescued. Similarly, we estimate that we would identify approximately 715 (out of 1743) cases 

where we would recover at least one or more clinically relevant variants that were missed in the 

TCGA pipeline (Table 3.3). 
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Figure 3.3   Overview of validation sequencing results. Variant allele fraction plot illustrating the types 
of variants identified through manual review that validated. Variants called in the original TCGA study 
are highlighted in blue and those missed are in green. Note that TCGA was unable to call variants below 
~10% VAF while the MSRV approach was able to recover many such variants. Density plots on the x and 
y-axes show the distribution of tumor VAF and coverage depth for validated variants respectively.  

 
Extrapolated estimation AML BRCA OVCA UCEC 

Estimated number of variants that would validate  40 122 52 24 
Estimated number of samples with rescued variants 84 398 169 94 
Table 3.3   Estimated number of variants detected and samples with a recovered variant, extrapolated 
using the rate of recovery, in the validation data 

3.2.2  Variant calling of validation sequencing data and comparison to MSRV 
We performed orthogonal variant calling on the validation sequencing data using ClinSek104 to 

compare how DoCM-MSRV performed against a knowledge-driven statistical approach. ClinSek 

identified 29 total somatic variants from the AML (13 variants) and BRCA (16 variants) 

validation cases, all of which were identified via the DoCM-MSRV approach (Figure 3.1C). The 

majority of variants that ClinSek missed (14/20) were AML cases with evidence of tumor 

contamination of the normal. In a second comparison, we evaluated all sites using a Bayesian 
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classifier with a binomial log likelihood ratio filter (LLR > 10) to identify somatic sites (see 

section 4.3 methods). The filter identified 18/49 variants found through DoCM-MSRV; no 

additional variants were identified (Figure 3.1C). Of the 31 variants missed by the Bayesian 

classifier, 21 were likely not identified due to low VAFs (mean tumor VAF: 18%, st. dev.: 27%) 

and the remaining 10 variants (all from AML samples) showed evidence of tumor contamination 

of the normal upon manual review. In summary, 10 variants were called by all three methods and 

29 were called by at least two methods (Figure 3.1D). 

3.2.3 Cost benefit analysis of DoCM-MSRV approach 
Performing the manual review portion of the DoCM-MSRV approach is not very costly. Using 

our cutoffs for this experiment (488 variants per sample counted, those with 2 or more reads of 

support were manually reviewed) there were 5.5 variants on average needing review. That cost 

us an average of $2.37 per case across all 1,833 cases evaluated. Given that these putative 

variants have established importance in the literature, this is a small price to pay to ensure that 

important variants are not missed. Validation sequencing is much more costly; sequencing 96 

cases cost on average $322.01 per case. It is worth noting that sequencing costs could be reduced 

in a production assay, as we designed and purchased hybrid capture probes for this experiment 

that can be reused on many samples afterwards. Additionally, the targeted capture sequencing 

methodology could be greatly optimized for cost if performed at scale and it would not be 

necessary to assess all 488 sites as we did, merely the putative somatic sites could be assayed. 

While the DoCM-MSRV method proved to have the best sensitivity, computational approaches 

like ClinSek and the bayesian classifier had excellent specificity and could identify a majority of 

the important variants at little cost. 
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3.2.4 Clinically actionable variants rescued by DoCM-MSRV 
Using this knowledge-driven approach we were able to rescue missed variants with likely 

clinical impact, even in the relatively small sample set for which we performed validation 

sequencing (n=93). For example, FLT3 variants (D835E/N/Y and N676K) were identified in 

three AML cases (TCGA-AB-2835, TCGA-AB-2919, and TCGA-AB-2922). These variants are 

potentially sensitive to targeted therapies like sunitinib105,106. We also identified two AML cases 

with KIT N822K variants for which cell line studies indicate sensitivity to dasatinib107. We 

identified 13 BRCA cases that harbored variants in PIK3CA (E542K, E545K, and H1047R) or 

PTEN (R130Q) suggesting sensitivity to PI3-kinase pathway inhibitors108,109. Of the variants we 

validated, the mean VAF was 25.5% with a standard deviation of 23%, indicating that most 

validated sites were at low VAF (Figure 3.3) and are likely the result of sub-clonality or low 

tumor purity. Hence, DoCM can provide a vitally important capability to detect challenging 

variants that are in some cases potential harbingers of acquired resistance. 

 The identification of variants of biological import is particularly germane to clinical 

sequencing workflows, which are rapidly being established in clinical cancer care, since a false 

negative result would miss an important clinical indicator. In the research setting, DoCM has 

proven valuable in identifying previously undiscovered variants of potential clinical importance 

that were completely missed by large-scale discovery efforts such as TCGA. As our 

understanding of the functional landscape of cancer variants grows, and as that information is 

curated in DoCM, this knowledge-based variant detection strategy will become increasingly 

valuable. 

 The DoCM-MSRV method demonstrated that clinically relevant somatic variants are 

often missed. Hence, including the DoCM-MSRV approach as a failsafe in clinical analysis 

pipelines can ensure the likelihood of false negatives in a clinical assay is very low. In a 
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comparison to other methods, DoCM-MSRV rescued the largest number of known pathogenic 

variants due to its sensitivity to variants at low VAF or with contaminating tumor signatures in 

the “normal” comparator specimen. Other highly sensitive variant calling methods have been 

developed since these earlier TCGA analyses were performed65,66. However, without a 

knowledge-based filter, these algorithms have substantially higher false negative rates of variant 

detection when compared to DoCM-MSRV. 

3.3 Methods 

3.3.1 Recovery of unidentified DoCM variation in the TCGA data using 
manual review and validation sequencing (MSRV)  
Important somatic variants are sometimes missed by variant calling pipelines. To illustrate the 

utility of DoCM we applied the knowledge-base to our cancer genomics pipeline 110. We used 

data from four TCGA projects: Acute Myeloid Leukemia (AML), Breast Cancer (BRCA), 

Ovarian Carcinoma (OVCA), and Uterine Corpus Endometrial Carcinoma (UCEC)111-114. All 

publically available samples were used. These projects were chosen because of the availability of 

their data and our access to a subset of the samples allowing us to perform validation. The TCGA 

exomes are available via the database of genotypes and phenotypes (dbGaP) study accession 

number phs000178.v9.p8.  

 We developed an approach for manual review and validation sequencing that first 

involved obtaining variant and reference base supporting read counts for all variants in DoCM 

using bam-readcount (https://github.com/genome/bam-readcount). Any variant with more than 2 

reads of support was sent to an expert for manual review, a process that we typically perform on 

variants called by somatic variant callers to eliminate false positives. After manual review, we 

performed a validation sequencing experiment using targeted capture probes for all DoCM sites 

https://github.com/genome/bam-readcount
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in 46 AML and 47 BRCA individuals. Samples with the highest number of putative somatic 

variant calls were chosen for validation sequencing. For any given individual, this filtering 

strategy lead to 5-20 variants to review.  

3.3.2 Manual Review 
Manual review involves inspecting raw sequence data (alignments) to correctly identify real 

somatic variants and likely sequencing/mapping artifacts using a genome viewer such as IGV27. 

A reviewer examined the bam files for tumor and matched normal samples concurrently and 

interrogated the data for a variety of causes of error. These errors can be due to sequencing or 

alignment errors, such as those found at highly repetitive or GC-rich regions of the genome. A 

reviewer will also look for inflated support for a somatic variant. For example, if a variant with 

10 reads supporting a variant in the tumor sample is being evaluated, but 7 of those reads contain 

multiple discrepancies at other positions on the read (indicating misaligned reads), only three 

believable reads support this somatic variant at the locus and it is much less likely to be a real 

variant. In blood cancers in particular, there is often tumor cell contamination of the matched 

normal sample (e.g., skin) that leads to higher than usual levels of tumor variant signal in the 

normal data. This can result in false negatives as many somatic variant callers have a strong 

assumption that a variant will not be present in the normal above the rate expected by random 

sequencing errors. Also, the clonal heterogeneity of cancer can cause variants from a smaller 

sub-clone to not have sufficient signal to be identified by a somatic variant caller, however a 

reviewer can identify a trend of low variant allele fraction (VAF) variants with consistent levels 

throughout the sample suggesting that they are real. Low VAF can also be caused by low tumor 

cellularity.  
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 In this study, we established a baseline for missed important variations, ensuring the 

utmost sensitivity for clinically impactful variant detection. As such, we gave our reviewers 

special instructions to pass any variants that they believed were worth attempting to validate via 

custom capture sequencing. 

3.3.3 Manual review guidelines 
Manual Review Tab Delimited Reports: 

Format: 

Chromosome Start Stop Reference Variant Called Code Description Code 

1 50000 50000 A C A LV,SI 

x Called/Description Codes should all be uppercase 

x Only 1 Called Code allowed 

x Multiple Descriptions Codes allowed and should be comma separated with no spaces in 

between  

 

Called Code: 

Code Description 

A Ambiguous, variant could or could not be real 

F Fail, variant failed manual review 

G Germline, variant is a real germline variant 

S Somatic, variant is a real somatic variant 

 

Description Codes: 
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Code Description 

AI Adjacent Indel, Variant likely due to misalignment of an adjacent indel 

HDR High Discrepancy Region, Region contains many reads with multiple mismatches 

MM Multiple Mismatches, Read contains multiple mismatches from reference 

MV Multiple Variants, More than 1 non-reference variant at the same base location 

MN MonoNucleotide run, Region contains pattern of repeat ex. AAAAAA 

DN DiNucleotide run, Region contains pattern of repeat ex. AGAGAG 

TR Tandem Repeat, Region contains pattern of repeat ex. ACGACGACG 

LCT Low Coverage in Tumor, Region contains low coverage in tumor 

LCN Low Coverage in Normal, Region contains low coverage in normal 

NCN No Coverage in Normal, Region contains no coverage in normal 

TN Tumor in Normal, Variant support in normal (common in blood cancers) 

LVF Low Variant Allele Frequency, Variant has a low VAF 

LM Low Mapping quality, Reads are poorly mapped 

SI Short Insert, Reads supporting variant result from short inserts 

SIO Short Insert Only,  Reads supporting variant contain only short inserts 

SSE Same Start/END, Reads supporting variant have same start or end points 

D Directional reads, Majority of reads are in the same direction 

E End of reads, Variant only supported by the end of reads 

AO Ambiguous Other, Provide an explanation not otherwise specified here 

 

Glossary: 
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Short Insert - Fragment sequenced twice because the paired end reads overlap (i.e. the insert 

size is negative) 

3.3.4 Validation sequencing 
We designed a custom capture reagent for a data freeze of 488 loci of DoCM, comprised mainly 

from the first four batches (“My Cancer Genome”, “Drug Gene Knowledge Database”, 

“Literature”, “WashU hematologic malignancy mutation list”), using probes from Integrated 

DNA Technologies (IDT, Coralville, IA). Probes that spanned these loci that were already 

available in house were used and additional probes were designed around the remaining sites. 

We attempted to validate 48 AML and 48 BRCA samples that had the most putative somatic 

variants for which tumor and matched normal tissues were available. We created dual-indexed 

libraries that were sequenced on HiSeq2500 (AML) and HiSeq2000 (BRCA) platforms with 

paired 2x100 bp reads as previously described61,110.  

3.3.5 Analysis of validation data 
Custom capture reads were aligned to build 37 of the NCBI human reference genome (GRCh37) 

using BWA (version 0.5.9) and duplicates were removed using picard (version 1.46). DoCM 

sites were counted using bam-readcount (version 0.7.4) to assess coverage and perform 

downstream analysis. Putative variants with at least 70x coverage and 5 or more reads of support 

were classified as validated in the knowledge-driven approach. ClinSek version 0.1 was run on 

the matched tumor and normal bam files for each validation sample using the spileup option with 

default parameters and the DoCM data freeze as the site list104. The Bayesian classifier was run 

using the Genome Modeling System (GMS)110 infrastructure at the McDonnell Genome Institute 

using the ‘gmt validation identify-outliers command’ with a tumor purity value of 66% and a 

normal contamination rate of 3%. Tumor purity and normal contamination values were estimated 
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using the mean rate observed in samples identified via manual review from the TCGA exome 

data. 

3.3.6 Bayesian Classifier Methodology 
The following is an explanation of the methodology of the bayesian classifier used in the 

manuscript. The program is integrated into the Genome Modeling System110 and can be ran 

using the ‘gmt validation identify-outliers’ command as described below. 

gmt validation identify-outliers 

 SNV/Indel calls were filtered through a Bayesian classifier to select only those sites that 

were classified as somatic. Briefly, this classifier works by considering the likelihood of the data 

being generated by 7 different binomial models. Each model’s log-likelihood function takes the 

form: 

logℒ(𝑁 , 𝑁 , 𝑇 , 𝑇 ) = 𝑁 log(1 − 𝜃 ) + 𝑁 log𝜃 + 𝑇 log(1 − 𝜃 ) + 𝑇 log𝜃  

where 𝑁  is the number of reads supporting the reference allele in the normal sample, 𝑁  is the 

number of reads supporting the variant allele in the normal sample, 𝑇  is the number of reads 

supporting the reference allele in the tumor sample, 𝑇  is the number of reads supporting the 

variant allele in the tumor sample. 

Each of the different models defines 𝜃  and 𝜃  as below: 

(𝜃 , 𝜃 ) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

𝜖, 𝜖   for the Reference model 
0.5,0.5   for the Germline heterozygote model 

1 − 𝜖, 1 − 𝜖   for the Germline homozygote model 

𝜖 +
𝑓 𝑐
𝑝 , 𝑓   for the Somatic model 

0.5,1 − 𝜖   for the LOH variant model 
0.5, 𝜖   for the LOH reference model 
𝑓 , 𝑓   for the Noise model 
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where 𝜖 is a constant error rate of 1%, 𝑓  is the observed variant allele frequency in the tumor, 𝑓  

is the observed variant allele frequency at the site (across both samples), 𝑐  is the contamination 

rate of the normal sample in the tumor, and 𝑝  is the purity of the tumor sample. 

Sites pass the filter if the Somatic model has the maximum likelihood amongst all models and 

the log-likelihood ratio of the Somatic model to the next most likely model is greater than 3. 

Code available at: 

https://github.com/genome/genome/blob/master/lib/perl/Genome/Model/Tools/Validation/Identif

yOutliers.pm  

3.3.7 Code availability 
Code for the DoCM web application are available at https://github.com/genome/docm.  
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4.1 Abstract 
Cancer genomic analysis requires accurate identification of somatic variants in sequencing data. 

While most steps in identifying somatic variants have been automated, manual review, or 

‘somatic variant refinement’, is still required to remove false positives. However, this process of 

manual variant refinement is time-consuming, costly, poorly standardized, and non-reproducible. 

It remains, nonetheless, indispensable for accurate analysis of cancer data, especially as cancer 

genomics is brought into the clinic, where it is increasingly used to guide therapy. Here, we 

systematized and standardized somatic variant refinement using machine learning models, and 

training data from 41,000 manually reviewed variant calls from 21 different studies representing 

9 cancer types and 440 cases. The final model accurately reproduced the manual variant 

refinement process, and accurately predicted which variants would be confirmed by orthogonal 

validation sequencing data. Highlighting its significance, this approach identified several 

clinically actionable variants missed by manual variant refinement, increasing the number of 

actionable variants identified by 6.1%. These results indicate that systematization of the variant 

refinement process can substantially increase the efficiency, accuracy, and reproducibility of 

cancer genomic analysis. 
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4.2 Introduction 
Somatic variant callers are commonly used to identify somatic variants from aligned sequence 

reads in cancer genomics studies and in clinical cancer assays61. These callers attempt to 

statistically model sample purity, sequencing errors, zygosity, ploidy, and other factors. Post-

processing (variant filtering and manual review) of somatic single nucleotide variants (SNVs) is 

a process we term ‘somatic variant refinement’ and is an important next step and is distinct from 

variant calling because it eliminates false positives from a candidate somatic variant list by 

setting thresholds for a variety of metrics including read coverage depth, variant allele fraction 

detected, base quality metrics, and others. The manual review of somatic variants is a process 

that requires an individual to directly examine aligned reads using a read alignment viewer such 

as IGV26 to identify common error patterns that are consistently missed by state-of-the-art 

somatic variant callers75,115. 

 Somatic variant refinement often improves calls by taking into account information 

neglected or unavailable to standard variant callers. Reviewers look for several patterns that can 

increase or reduce confidence in a variant call, for example, (1) all supporting reads are oriented 

in the same read direction; (2) independent fragment support is lower due to overlapping reads 

from short DNA fragments; (3) alignment errors related to homopolymer stretches, short repeats, 

or other low-complexity sequences; (4) supporting reads include multiple errors, indicating 

possible misalignment; (5) variants consistent with tumor contamination of normal; (6) all 

support occurs at the end of the sequencing reads, where overall error rates are higher; and 

others(Figure 4.1).  
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Figure 4.1   IGV Snapshots of common false positives that allow manual reviewers to filter out 
artefactual somatic calls. (A) Example of Tandem Repeat (B) Example of a High Discrepancy Region (C) 
Example of Same Start/End (D) Example of Multiple Variants at the same loci 

If the number of problematic variant reads at a locus is high, a reviewer may eliminate the 

variant identified by a somatic variant caller. Manual reviewers often balance several 

observations to disqualify reads and make their final variant call. 

  Somatic variant refinement has a large impact on the final variant calls. A 

previous study showed that up to 44% of calls made by variant callers are failed during the 

variant refinement process116. Although post-processing of somatic SNVs can dramatically 

improve the accuracy of somatic variant calling, filtering and manual variant refinement 

strategies are often unstated or only briefly mentioned. Typically, methods for sequencing 

studies will state, “Translocation calls were manually inspected in IGV“117, or “All indels were 

manually reviewed in Integrative Genomics Viewer”118. Some methods do not even use manual 
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somatic refinement and merely require, “coverage of at least 50 reads in both tumor and normal 

samples, >20% of reads supporting the variant in tumor samples and <5% of reads supporting 

the variant in normal samples”119. These are just a small sampling of a very prevalent history of 

under-reporting the details of variant refinement processes from our institute and others 120. As a 

result, standardization of somatic variant calling or comparison between studies becomes nearly 

impossible. Discrepancies in manual review operating procedures could result in major inter- and 

intra-lab variability and error. To address the issue of reproducibility, our standard operating 

procedure for somatic variant refinement can be found in Appendix 1. Additionally, while post-

processing variant calling is extremely important, it is very time-consuming and therefore, 

expensive. Experienced reviewers can evaluate approximately 70-100 variants per hour and these 

numbers are likely lower in clinical cancer NGS assays where consequence of mislabels are 

greater. In one study completed by our lab, 10,112 variants were called by somatic variant 

callers, 1,066 were filtered out using sequencing metrics, and 9,046 variants required direct 

manual review. This manual review would have taken approximately 90-130 hours to complete 

by highly trained staff116. 

 Previous studies have used machine learning algorithms to call somatic variants121,122, 

however these studies have had small training data sizes (fewer than 3,000 variants) or were 

conducted with data from a limited number of cancer types. These studies have attempted to 

automate somatic variant calling. However, the high quality, multi-factor filtering currently 

provided by the manual refinement of putative somatic variant calls has not yet been 

automated123. In this study, we demonstrate that machine learning can be used to systematize and 

standardize somatic variant refinement, alleviating the manual review bottleneck.  



80 
 

In this study, we present a model that automates refinement of variants called from sequencing 

data. We show that the use of a model, as presented here, could substantially reduce a major 

bottleneck in cancer genomic analysis while improving reproducibility and transparency in 

genomic studies and in the clinical setting. This model is built on a training dataset of 41,000 

variants from 21 studies with 440 cases, including 9 cancer types. All cases included paired 

tumor and normal samples that had been evaluated by manual variant refinement, and required 

an estimated 585 hours of effort. For each variant, we assembled 71 features to train the model 

including cancer type, tumor and normal read depth, tumor and normal variant allele fraction, 

base quality, mapping quality, etc. (Appendix 2). This dataset is an order of magnitude larger 

than previous studies that utilized machine learning to detect somatic variants and has 

representation across both solid and hematological malignancies, which have distinct genomic 

signatures that often complicate somatic variant calling (Table 4.1). Additionally, this dataset 

includes cancer types covering a broad range of average mutation burden, from leukemia on the 

low end to lung cancer and melanoma on the high end. This broad representation should allow 

the machine learning algorithms to generalize well across different cancer subtypes. 
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  Training Set Testing Set Total 
  (n=27,470) (n=13,530) (n=41,000) 

Malignancy (410 cases)       
Leukemia (243 cases) 5,815 2,877 8,692 
Lymphoma (23 cases) 1,263 628 1,891 

Breast (135 cases) 8,986 4,320 13,306 
Small Cell Lung (18 cases) 9,177 4,601 13,778 

Glioblastoma (17 cases) 844 412 1,256 
Melanoma (1 cases) 185 100 285 

Colorectal (1 case) 842 419 1,261 
Gastrointestinal Stromal (1 case) 70 31 101 

Malignant Peripheral Nerve Sheath (1 case) 288 142 430 

Sequencing Methods       
Capture Sequencing 9,479 4,755 14,234 
Exome Sequencing 9,367 4,677 14,044 

Whole Genome Sequencing 8,624 4,098 12,722 

Variant Calls       
Somatic 12,266 6,115 18,381 

Ambiguous 7,189 3,454 10,643 
Fail 5,909 2,945 8,854 

Germline 2,106 1,016 3,122 
Table 4.1   Overview of the cancer sequence data included in the training and testing set with regard to 
malignancy, sequencing approach, and manual review variant calls. 

 Here, we present a deep learning classifier that automates manual review of aligned and 

variant called sequencing data. We show that the use of a classifier as presented here could 

substantially reduce a major bottleneck in cancer genomic analysis while improving 

reproducibility and transparency in genomic studies and in the clinical setting. 

4.3 Methods 

4.3.1 Data assembly and standardization 
We assembled manual review data from 21 different recent cancer genomic studies at the 

McDonnell Genome Institute, including 11 genomic discovery cohorts, 1 clinical trial, and 9 case 
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studies (Table 4.2)61,124-130. In total, 440 samples were evaluated, with 266 samples derived from 

hematologic malignancies and 174 samples derived from solid tumors. Samples were only 

included in the training dataset if paired tumor-normal sequencing data and manual review calls 

were available. Since some samples were used in multiple studies, we eliminated sample 

duplicates by removing all sample pairs with more than 70% co-occurrence of genomic 

mutations. Sequencing data was produced from whole genome, exome, or custom capture 

sequencing and all data were aligned to reference genome hg19/GRCh37 using bwa or bwa-

mem17,131(Table 4.1).  

 Manual review for all projects was performed as outlined in Appendix 1. Reviewers 

manually refine variants using 4 distinct classes: “somatic” (S) - a variant that has sufficient 

support in the tumor in the absence of obvious sequencing artifacts; “ambiguous” (A) - a variant 

with insufficient sequencing support to definitively classify the variant; “germline” (G) - a 

variant that has substantial support in the normal sample beyond what might be considered 

attributable to tumor contamination of the normal; and “fail” (F) - a variant with low variant read 

support and/or reads that indicate sequencing artifacts, yet has acceptable variant coverage. As 

reviewers call variants “ambiguous”, “germline”, or  “fail”, they often provide additional notes 

or tags describing the reason for each call; these tags classify common reasons for rejection. For 

example, apparent deletions can be caused by misalignment of reads to tandem repeat regions in 

the reference sequence (Figure 4.1A), high discrepancy regions can be caused by failure to 

properly align to the correct homolog (Figure 4.1B), reads with the same start and end can be 

caused by PCR amplification artifacts that were not removed by de-duplication software (Figure 

4.1C), or multiple variants can be supported at the same loci (e.g. at a site with a reference allele 

of A reads supporting a G and a T allele are present)(Figure 4.1D). “Germline” and “failed” 
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calls enumerate two distinct types of failure, however, since germline and failed calls do not 

invoke any downstream analysis procedures, they were merged into one class called “failed”. 

Therefore, the machine learning classifier will make calls for “somatic” (true positive), 

“ambiguous” (uncertain if somatic or failed) and “fail” classes.  All manual review results were 

standardized to a one based coordinate system using a Python tool developed for this purpose 

(https://github.com/griffithlab/convert_zero_one_based). Relevant metrics were extracted from 

the bam files using bam-readcount (https://github.com/genome/bam-readcount). Bam file metrics 

were merged with cancer type and reviewer information. All continuous features were 

normalized to fall between 0 and 1 using Scikit-learn’s MinMaxScaler132. All categorical 

variables were one-hot boolean indexed to split any feature with n categories into a n column 

boolean array. Following processing, the training dataset totaled 71 features (Appendix 2).  
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Project Name Cases (n=441) Malignancy Publication 
status 

Pubmed link DBGAP 
Accession # 

GTB11 98 MDS In preparation   
Benign Breast 
Cancer 

70 Breast Submitted   

Traztuzamab 48 Breast Published https://www.ncbi.nlm.nih.gov
/pubmed/28453704  

phs001291.v1.p1 

Relapse AML 47 AML Published https://www.ncbi.nlm.nih.gov
/pubmed/26305651  

phs000159.v6.p4. 

AML 
Decitabine 

39 AML Published https://www.ncbi.nlm.nih.gov
/pubmed/27959731  

phs000159 

Folicular 
Lymphoma 

22 Lymphoma Published https://www.ncbi.nlm.nih.gov
/pubmed/28064239  

phs001229.v1 

AML Quads 21 AML Published https://www.ncbi.nlm.nih.gov
/pubmed/26305651  

phs000159.v6.p4. 

MDS 
DECITABINE 

20 MDS Published https://www.ncbi.nlm.nih.gov
/pubmed/27740633  

phs000159 

SCLC 18 SCLC In preparation  phs0001049 
BKM120 17 Breast Published https://www.ncbi.nlm.nih.gov

/pubmed/26563128  
none in 
publication 

AML Post 
Transplant 
Relapse 

16 AML Submitted   

GBM 16 Glioblastoma In preparation   
GST1 1 Gastrointesti

nal Stromal 
Tumor 

Case study (no 
publication) 

  

GTB19 1 Large 
Granular 
Lymphocytic 
Leukemia 

Case study (no 
publication) 

  

GTB2 1 Melanoma Case study (no 
publication) 

  

ALL1 1 ALL Published https://www.ncbi.nlm.nih.gov
/pubmed/27181063  

phs001066.v1.p1 

AML31 1 AML Published https://www.ncbi.nlm.nih.gov
/pubmed/26645048  

phs000159 

CRC1 1 Colorectal Case study (no 
publication) 

  

DLBCL 1 Lymphoma Case study (no 
publication) 

  

LGG1 1 Glioblastoma Case study (no 
publication) 

  

MPNST 1 Malignant 
peripheral 
nerve sheath 
tumor 

Case study (no 
publication) 

  

Table 4.2   Data Availability of Sequencing Results for all Cases Used in the Machine Learning 
Classifier Development. 

4.3.2 Model Development and Analysis 
Logistic regression, random forest, and deep learning were tested as alternate models of somatic 

variant refinement. A logistic regression classifier was implemented using the keras library 

(https://github.com/fchollet/keras). Scikit-learn was used to implement the random forest 

classifier132. The random forest was trained using the parameters n_estimators=1000 and trees 

https://www.ncbi.nlm.nih.gov/pubmed/28453704
https://www.ncbi.nlm.nih.gov/pubmed/28453704
https://www.ncbi.nlm.nih.gov/pubmed/26305651
https://www.ncbi.nlm.nih.gov/pubmed/26305651
https://www.ncbi.nlm.nih.gov/pubmed/27959731
https://www.ncbi.nlm.nih.gov/pubmed/27959731
https://www.ncbi.nlm.nih.gov/pubmed/28064239
https://www.ncbi.nlm.nih.gov/pubmed/28064239
https://www.ncbi.nlm.nih.gov/pubmed/26305651
https://www.ncbi.nlm.nih.gov/pubmed/26305651
https://www.ncbi.nlm.nih.gov/pubmed/27740633
https://www.ncbi.nlm.nih.gov/pubmed/27740633
https://www.ncbi.nlm.nih.gov/pubmed/26563128
https://www.ncbi.nlm.nih.gov/pubmed/26563128
https://www.ncbi.nlm.nih.gov/pubmed/27181063
https://www.ncbi.nlm.nih.gov/pubmed/27181063
https://www.ncbi.nlm.nih.gov/pubmed/26645048
https://www.ncbi.nlm.nih.gov/pubmed/26645048
https://github.com/fchollet/keras
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max_features=8. The deep learning model was implemented using the keras library as a feed-

forward network with the input layer equaling the number of features, four hidden layers with 

20-node hidden layers, and an output layer equaling the three outputs (‘somatic’, ‘ambiguous’, 

‘fail’). The input and hidden layers used a hyperbolic tangent (tanh) activation function, the 

output layer used a softmax activation function. Categorical cross-entropy was used as a loss 

function and the Adam optimizer was used over 700 epochs with a batch size of 2,000. L2 

regularization was used with a weight of 0.001. 

 To compare model performance, one-versus-all receiver operator characteristic (ROC) 

curves were generated and area under the curve metrics (AUC) quantified using scikit-learn132. A 

random subset of two thirds of the 41,000 variant dataset was used as a training set, and the 

remaining third was withheld as a validation set. Scores for examples in the training set were 

computed using ten fold cross-validation, so performance on the training set could be used to 

estimate generalization accuracy132.  

 Feature importance for the deep learning model was calculated by training a model on the 

cross-validation dataset, independently shuffling each of the 71 features, and determining the 

change in average AUC, by comparing baseline and shuffled performance. The random forest 

feature importance metric was obtained from scikit-learn’s built in feature_importances_ 

parameter on a trained random forest model.  

4.3.3 Validation of model performance by independent sequencing data. 
 Orthogonal validation of variant calls can be obtained from a technical replicate of 

sequencing data obtained independently of the data used by the manual reviewers. To assess the 

machine learning model’s performance, we evaluated variant calls for a single acute myeloid 

leukemia case (AML31) that had orthogonal validation sequencing. Ultra-deep whole genome 
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sequencing data (average coverage = 312x) was previously produced for AML31 to evaluate 

seven different variant callers. Orthogonal custom capture validation sequencing (average 

coverage = 1000X) was used to validate mutations (n=192,241) identified by any of the seven 

variant callers61. Variants identified as somatic by orthogonal sequencing (the “Platinum SNV 

List”) were considered true positives (n = 1,343). Variants that were identified by only one of the 

seven callers but not validated by ultra deep-sequencing were considered true negatives (n = 

190,898). Features were obtained from whole genome bam files for every site that was called by 

at least one of seven variant callers in the original study and had been selected for targeted re-

sequencing (n = 192,241). The random forest and deep learning models (trained using the 41,000 

call training dataset) were used to predict calls for each of the sites in the AML31 dataset and 

receiver operator curve (ROC) figures were used to illustrate model performance. 

4.3.4 Independent Test Set 
 To assess model robustness against batch effects, an independent test dataset was 

assembled from 4 additional small cell lung cancer (SCLC) paired tumor-normal cases (2,686 

variants). This independent test dataset had been sequenced on different instruments (HiSeq 

2500 vs HiSeq 4000), utilized different false positive filtering thresholds, and was manually 

reviewed by different individuals. To test model performance on these data, we trained a deep 

learning and random forest model on the entire training dataset of 41,000 calls and made 

predictions for the 2,686 calls of the independent test samples. We assessed the model 

performance by creating ROC curves and reliability diagrams as outlined above. 

4.3.5 Annotations of Clinical Relevance  
All variants identified as somatic by either manual somatic refinement or by the classifier 

(n=21,100) were evaluated for clinical significance. False positives were defined as variants 
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identified as somatic by the manual review pipeline but labeled as ambiguous or fail by the 

classifier. False negatives were defined as variants identified as ambiguous or fail during manual 

review but identified as somatic by the classifier. Variants were annotated using two clinical 

annotation databases (The Database of Curated Mutations (DoCM)115 and the Clinical 

Interpretations of Variants in Cancer (CIViC) database99). Using the DoCM database, we 

evaluated exact overlap (chromosome, start, stop, reference base, variant base) between DoCM 

entries and misclassifications (i.e. false positives and false negatives). To evaluate overlap with 

the CIViC database, coordinates were queried from the CIViC interface using the public API 

(http://griffithlab.org/civic-api-docs/). Given that not not all variants within CIViC can be 

analyzed using whole genome or whole exome sequencing, we used the Sequence Ontology IDs 

to filter out variants that cannot be analyzed using DNA-sequencing, such as ‘increased 

expression’ or ‘methylation’, etc. (Table 4.3). We queried coordinates from the CIViC interface 

to determine overlap between CIViC annotations and misclassifications, such as therapeutic 

sensitivity, therapeutic resistance, prognosis, diagnosis, or predisposing, were determined using 

CIViC evidence statements. 
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Table 4.3   Sequence Ontology IDs used to filter variants within the CIViC database that can be 
analyzed on DNA-sequencing platforms. 

4.3.6 Code and data availability 
All analysis, preprocessing code, readcount training data, manual review calls and trained deep 

learning and random forest models are available on github at 

https://github.com/griffithlab/manual_review_classifier. Breast cancer cell line (HCC1395) 

variants and manual review calls are included in the github repo to serve as test data110. All plots 
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were produced using the MatPlotlib library133. Data availability for all the projects included in 

this study are outlined in Table 4.2. 

4.4 Results 

4.4.1 Data assembly and standardization 
The 41,000 variants used to train the model were derived from 440 individual tumors spread 

across 9 cancer types. The sequencing approach used to assess tumor genetics was evenly split 

between capture sequencing (14,234 variants), exome sequencing (14,004 variants), and whole 

genome sequencing (12,722 variants). Among all manually reviewed variant calls, 18,381 were 

confirmed as somatic, 10,643 were assessed as ambiguous, 8,854 as failed, and 3,122 as 

germline. The training data has representation of both hematopoietic (10,583 variants) and solid 

tumors (30,417 variants), which often have distinct characteristics during manual variant 

refinement (Table 4.1). 

4.4.2 Machine Learning Model Development and Analysis  
We developed three models (logistic regression, random forest, and deep learning) using the 

41,000 call data set. To test against overfitting, we randomly selected one third of the dataset as a 

holdout test set and used the remaining two thirds as a training set in a 10-fold cross-validation 

strategy for model development. In the 10-fold cross-validation, all three models (logistic 

regression, random forest, and deep learning) achieved better than random performance on the 

classification of somatic variants. The logistic regression model demonstrated the worst 

performance, indicating that a linear separator is insufficient for adequate classification (average 

AUC=0.89). Specifically, it showed limited ability to classify ambiguous calls (AUC=0.79), 

which is the most poorly defined of all the variant classes. However, both random forest and 

deep learning models performed very well across all classes attaining an average AUC of 0.98 
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and 0.96 respectively (Figure 4.2A). The random forest and deep learning models perform 

similarly across all three classes. The holdout test set also performed similarly (average AUC = 

0.97) to the prior 10-fold cross validation (Figure 4.3A). 

 

Figure 4.2   Deep learning and random forest method achieve excellent classification performance on 
manual review calls. (A) Comparison of performance of various machine learning models via receiver 
operating characteristic (ROC) curve for the three classification classes in the cross-validation data. The 
diagonal line indicates baseline performance. The deep learning and random forest classifiers perform 
approximately identically. (B) The deep learning and random forest classifier outputs are well scaled to a 
probability (between 0 and 1). The bar graphs plot the distribution of model output that agrees with the 
manual review call versus output that disagrees with the call in 10 equally distributed bins of model 
output. The diagonal line indicates a perfectly scaled probabilistic prediction. The colored points display 
the ratio of predictions that agree with the call to the total number of predictions for a given bin.  
Binomial proportion confidence intervals were calculated for each bin. Pearson’s correlation coefficient 
comparing colored points to the diagonal line was calculated to assess the output of the respective model. 

 Reliability diagrams were used to determine if model outputs could be interpreted as a 

probability of a variant call. Model output, which was a continuous value, was plotted for 10 

equally distributed bins that were separated by whether the model’s output matched or did not 
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match the manual variant refinement call. For each bin, we calculated the ratio between the 

number of sites where the model agrees with the call and the total number of sites in the bin. It is 

expected that if the model output estimates a well-scaled probability, then the calculated ratio 

will be correlated to an identity line (x=y). Pearson’s correlation coefficient was used to test for a 

well-scaled probability using the scipy.stats.pearsonr function134. Comparing the reliability 

diagrams for each model indicated that the random forest model and the deep learning model 

produced outputs that are most closely scaled to a probability. The random forest model and the 

deep learning model obtained a pearson’s correlation coefficient (r) of 0.99 and 1.00, 

respectively (Figure 4.2B). The logistic regression model output was most divergent from a 

well-scaled probability with r=0.29. When reliability diagrams are plotted independently for each 

class (somatic, ambiguous, and fail), all classes produce well-scaled output (Figure 4.4).  
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Figure 4.3   Deep learning manual review classifier performs well on hold out test data, and on cross 
validation results with a simplified disease feature and the reviewer removed. ROC curve and reliability 
diagram performance of the deep learning classifier with the cancer type feature distilled down to solid 
tumor status. Performance of deep learning model on a ⅓ holdout test set of the original training dataset. 
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Figure 4.4   Deep learning model outputs are well scaled across all predicted classes. The correlation 
between the model output and the manual review call to a well scaled probability was assessed for all 
three different classes of calls: ambiguous, fail, and somatic. The probabilities for each class were binned 
into 10 classes ranging from 0.00-1.00. For each bin, the total number of manual review calls that agree 
and disagree with the individual class were plotted. The ratio of agreement to disagreement was plotted 
for each bin and compared to the identity line (x=y) using the Pearson's correlation coefficient (r). 

4.4.3 Feature Importance 
Feature importance analysis was used to determine which features each model was relying upon 

to make predictions. The deep learning model ranked feature importance using the average 

change in the AUC after randomly shuffling individual features, and the random forest model 

using the built-in feature importance metric. To assess how manual reviewers rank the 

importance of different features, seven manual reviewers at our institute were asked to rank their 

top 15 (of 71) features, that were most important in their manual review decision-making 

process. The average importance of features to the reviewers was used as a comparison to the 

model feature rankings. All three importances were rank normalized for comparison. 

Comparison shows that the models rely on many features that expert manual reviewers also use 

to make classification decisions (Figure 4.5). The random forest feature importance was 

moderately correlated to the deep learning and manual reviewer feature importance (Pearson’s r 

= 0.47 and 0.48 respectively). The deep learning importance was only weakly correlated with 

manual reviewer survey results (pearson’s r=0.11). Of note, both the random forest model and 
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the deep learning model ranked reviewer higher than reviewers themselves ranked this feature. 

Similarly, cancer type was ranked in their top 5 most important features of each model, however, 

this was not ranked heavily by manual reviewers. 

 We hypothesized that most of the value of the cancer type feature is mediated by 

differences between liquid and solid tumors. This is because, the normal sample of 

hematological cancers is more likely to be contaminated by cancer cells than in solid tumors and 

requires special consideration. This contamination ultimately increases the risk that a somatic 

variant will be mis-called. To test this hypothesis, we collapsed the cancer type features to a 

single solid/liquid boolean. Comparison of model performance with parsed tumor types to model 

performance with simplified tumor type (solid/liquid) showed similar performance (Figure 

4.3B). This supports our hypothesis that the distinction between liquid and solid tumors is 

important for calling variants accurately and individual disease type is not as important beyond 

this key difference. 
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Figure 4.5   Deep learning and random forest models use similar features to manual reviewers in 
making manual review classification decisions. Most features ranked as important by RF and deep 
learning models agree well with features that human manual reviewers rank highly for classification 
decisions. Human manual reviewer feature importance was determined by asking 7 individuals who have 
contributed to manual review data to rank feature importance. Single feature impact for the deep 
learning model was obtained by training a model on the entire training dataset then shuffling each 
feature individually and calculating the mean ROC AUC for all three classes. The change in mean ROC 
AUC for all classes was sorted and plotted. Random forest feature importance was obtained via scikit-
learn’s feature importance parameter. The random forest feature importance is moderately correlated to 
the deep learning and manual reviewer feature importance (pearson’s r= 0.47 and 0.48 respectively). 
The deep learning importance was weakly correlated with manual reviewer survey results (pearson’s 
r=0.11). All feature importance metrics were ranked normalized. The top 30 most important features 
(average rank), of the three metrics, are shown. 

4.4.4 Inter-reviewer Variability 
Reviewer identity was also an important feature, among the top 30 features, which indicates 

reviewer-specific patterns in manual review. Consequently, we studied the inter-reviewer 

variability. To quantify the variability between manual reviewers we had three independent 

reviewers call a random subset of 176 sites from the training dataset. This resulted in 3 

independent review calls for each of the 176 variants. The calls were randomly chosen from the 

training cohort and represent various malignancies. Reviewers achieved fair agreement with a 

Fleiss’ Kappa statistic of 0.37, which is a statistic that lies between -1 and 1 where a Kappa 
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statistic below 0 indicates poor agreement and above 0 indicates good agreement. When 

evaluating all calls in the inter-reviewer variability analysis, 77.3% of all calls showed 

reasonable agreement (i.e. all three reviewers agree on the call or two reviewers agree on the call 

and the third reviewer labels the call as ‘ambiguous’) (Figure 4.6A). Model performance was 

correlated with reviewer agreement such that when all three reviewers call a variant as ‘somatic’, 

the model produces a high ‘somatic’ probability (output above 0.8). Conversely, when all 

reviewers agree that a call is ‘fail’ the model produces a low somatic probability (below 0.2). As 

expected, in times of inter-reviewer disagreement, the model produces a wider distribution of 

‘somatic’ probabilities (Figure 4.6B-C). Together, these results indicate that there is as much as 

22.7% disagreement among reviewers, especially on ambiguous calls. 
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Figure 4.6   Manual reviewers exhibit varied inter-reviewer agreement; however, model confidence 
closely parallels reviewer confidence (i.e. when all reviewers agree the model give high probabilities, 
when reviewers disagree the model assigns lower probabilities). (A) The binned agreement of 3 
reviewers on 176 variants. The x-axis outlines all possible permutations of agreement among three 
reviewers. The y-axis outlines the frequency of each group of agreement. ‘S’ denotes a somatic call, ‘A’ 
denotes ambiguous, and ‘F’ denotes a fail call. ‘SSS’ is the case where all three reviewers call the same 
variant somatic and the other permutations follow a similar pattern (e.g. ‘SAF’= somatic, ambiguous, 
fail). It is considered 1) good agreement when all three reviewers agree, 2) acceptable agreement when 
reviewers only disagree between ambiguous and somatic or ambiguous and germline calls, 3) and poor 
agreement when one reviewer gives a somatic call another fail on the same variant. Problematic sites are 
where one reviewer calls a variant somatic while another calls a variant fail. (B) Violin plots of deep 
learning somatic probability, the horizontal lines indicate the occurrence of a probability and the width 
indicates the distribution of probabilities. (C) Violin plots of random forest somatic probability. 

 Variant calls that do not depend on reviewer identity are most desirable for 

reproducibility, and to reduce the impact of idiosyncratic criteria. Previous analysis used 71 

features, whereby one feature was the individual who performed manual review. New models 

were developed after removing the reviewer feature from the training data to assess performance 

in situations when the reviewer is unknown. The deep learning model with all 71 features 
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resulted in an average AUC of 0.960 compared to an average AUC of 0.956 with the reviewer 

feature removed.  This experiment illustrates expected performance on de novo data that does 

not include a reviewer feature (Figure 4.4C).  

4.4.5 Validation of model performance by independent sequencing data. 
All the variant sites in our training and independent test datasets were obtained through matched 

tumor-normal genomic sequencing, variant calling via statistical somatic callers, various filtering 

strategies, and finally manual variant refinement. To understand how our model performs on 

unfiltered “raw” variant calls, we ran our model on 192,241 putative somatic variants called by 

one of seven variant callers in a rich sequencing dataset described by Griffith et al.61. In addition 

to the ultra-deep whole genome sequencing available in this study for discovery, orthogonal 

custom capture validation sequencing was performed on all 192,241 sites. Sites validated by the 

custom capture data were considered positives and those that failed considered negatives. 

Comparing somatic model predictions from the random forest model and the deep learning 

model to validation sequencing results achieved a ROC AUC of 0.96 and 0.95, respectively 

(Figure 4.7). 
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Figure 4.7   Deep learning and random forest classifiers accurately predict orthogonal validation 
sequencing results. Across 192,241 putative somatic variants identified by one of 7 variant callers in a 
single AML case with 300x whole genome sequencing data the random forest classifier accurately 
validation obtained from 1000x orthogonal validation sequencing data. 

4.4.6 Independent Manual Review Data 
To test model performance on independent data, we obtained a sample set that was sequenced 

independently, underwent a different filtering strategy, and was reviewed by new manual 

reviewers. This dataset had 2,686 manual review calls and genomic data from 4 paired tumor-

normal small cell lung cancer (SCLC) cases. This dataset had a different distribution of call 

classes (94.1% somatic, 5.4% fail, and 0.5% ambiguous) when compared to the training cohort 

(44.8% somatic, 29.2% fail, and 26% ambiguous). The independent test dataset had an average 

AUC of 0.70 for random forest and 0.81 for deep learning (Figure 4.8A). We tested ways to 

overcome batch effects between SCLC tumors in the training set and SCLC tumors in the 

independent test set. To overcome the apparent batch effect, we randomly selected manual 

review calls from the independent test set in 5% increments from 0% to 75% to include in 

training the model. We then tested the performance of the newly trained model on the remaining 

manual review calls from the independent test set. For the deep learning model and the random 
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forest model, model performance was restored to levels observed in cross-validation after 

inclusion of approximately 250 manual review calls (Figure 4.8B).  

 

Figure 4.8   The deep learning classifier performs better than the random forest on validation 
sequencing data. (A) ROC curves outlining deep learning and random forest model performance on the 
independent test dataset consisting of 4 SCLC cases with 2,686 variants. (B) Independent test set batch 
effect correction. Independent test set data was partitioned in random stratified increments of 5% from 0-
75% of the total independent test dataset size and used to train a new model. The x-axis outlines the 
number of test variants included in training. The y-axis plots the resulting model’s ROC AUC. The 
ambiguous class shows significant stochasticity due to low representation in the test dataset (n=15). 
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4.4.7 Recovery of Clinically Actionable Variants 
The deep learning model was used to assess if machine learning algorithms for variant analysis 

could improve detection of true clinically actionable mutations mislabeled by traditional variant 

post-processing strategies. Of the 21,100 variants identified as somatic by either the deep 

learning model or by manual variant refinement, there were 16,722 variants that were called as 

somatic by both methods, 1,659 variants called as somatic only by manual variant refinement 

(i.e. false positives), and 2,719 variants that were called as somatic only by the deep learning 

model (i.e. false negatives) (Figure 4.9).  

 Mislabeled variants were evaluated for biological importance using the Database of 

Curated Mutations (DoCM). DoCM is a database that outlines literature supported biologically 

important and clinically relevant variants. Of the 2,719 false negatives identified by the deep 

learning model, 8 variants had an exact match with an annotation in DoCM. There were 110 total 

publications associated with these variants with an average of 13-14 publications per variant. The 

average model output for the somatic class of all 8 variants identified in DoCM was 0.877. Of 

the 1,659 false positives identified by the deep learning model, 12 variants had an exact match 

with an annotation in DoCM. There were 93 publications associated with the variants. The 

average model output for the somatic class of all 12 false positives identified in DoCM was 

0.256 (Figure 4.9 and Table 4.4). The classifier could properly call several clinically actionable 

variants, as determined by DoCM, that had been improperly labeled by manual review. 
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Figure 4.9   Manual review misclassification rectified by the deep learning model. The venn diagram 
illustrates variants identified as somatic by only the manual review model (false positives), only the deep 
learning model (false negatives), and by both pipelines (true positives). For these three groups, we 
showed the number of variants that have direct overlap with both DoCM Annotations and CIViC 
annotations. For DoCM annotations, we listed the total number of publications associated with with all 
variants within each group. For CIViC annotations, we listed the total number of evidence items 
associated with all variants within each group. These evidence items are parsed by those that convey 
variant sensitivity to a drug, variant resistance to a drug, variant that confers better or worse prognosis, 
variant that confers disease diagnosis, and variant shows predisposing evidence for disease. Re-review of 
the 53 false positive somatic variants with CIViC annotations showed that 44 were erroneously called 
somatic by original manual reviewers. Similarly, re-review of the 40 false negative somatic variants with 
CIViC annotations showed that 39 variant were erroneously failed original manual review. 
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Table 4.4   There was a high level of exact overlap between false negatives recovered by the machine 
learning classifiers and DoCM annotations. For each table, the ‘Probability’ is the output of the 
classifier, the ‘MR call’ is the call made by the human manual reviewer, the ‘Classifier’ is the call made 
by the machine learning model, and the ‘Publications’ is the total number of publication hits within the 
DoCM database. (A) This table shows false negative calls derived from the Deep Learning classifier that 
had exact overlap (chr, start, stop, ref, var) with DoCM annotations. (B) This table shows false negative 
calls derived from the Random Forest classifier that had exact overlap (chr, start, stop, ref, var) with 
DoCM annotations. 

 Mislabeled variants were also evaluated for clinical relevance using the Clinical 

Interpretations of Variants in Cancer database (CIViC)99. CIViC is a freely accessible database 

that promotes community-driven expert curation of clinically relevant variants in cancer. Each 

annotation within CIViC is based on evidence summaries that detail therapeutic, prognostic, 

predisposing, or diagnostic implications in cancer. Based on filtering using the sequencing 

ontology IDs (see section 4.3) to remove annotations that could not be analyzed using DNA 

sequencing, there were 425 clinically relevant CIViC annotations. Of the false negatives 

identified by the deep learning model, 40 variants were actionable with 100 evidence items 

related to therapeutic sensitivity, 18 evidence items related to therapeutic resistance, 54 evidence 

items detailing prognostic information, 17 indicating diagnostic information, and 1 evidence item 
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that supported predisposition for cancer. Of the 1,659 false positives that were reclassified as 

‘fail’ by the deep learning model, there were 53 clinically relevant variants that had overlap with 

CIViC. Of these false positives identified by the deep learning model, there were 90 evidence 

items related to therapeutic sensitivity, 25 evidence items related to therapeutic resistance, 87 

evidence items detailing prognostic information, and 18 illustrating diagnostic information 

(Appendix 3). There are, therefore, several clinically actionable variants from the CIViC 

database that were mislabeled by manual review and rectified by the model. 

 Retrospective review of these mislabeled variants in Integrative Genomic Viewer (IGV)26 

confirmed confidence in model predictions. When re-reviewing the 53 false positives, 83% 

(44/53) were determined to be miscalls by the original manual reviewer. Four examples of 

manual review miscalls are shown in Figure 4.10. Of the 9 variants whereby the original manual 

review was deemed correct and the model was incorrect, 6 were small insertions, indicating a 

potential issue with the model’s ability to properly label small insertions as somatic. When re-

reviewing the 40 false negatives, (39/40) 97.5% appeared to be high quality somatic cells 

erroneously called ambiguous or fail by the original reviewer. In one example, 2 clinically 

relevant PIK3CA mutations were missed due to the manual reviewer assuming that two adjacent 

variants on the same strand were considered multiple mismatches (Figure 4.11). In another 

example a TP53 mutation was missed in an acute myeloid leukemia case due to the manual 

reviewer’s lack of recognition that hematologic cancers typically have tumor contamination in 

normal tissue (Figure 4.11). According to the re-review of false positive and false negative calls, 

the model is more sensitive and specific than the data on which it was trained.  

The manual variant refinement workflow identified 92.1% of all eligible clinically actionable 

mutations. In contrast, the deep learning model identified 98.2% of all possible clinically 
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relevant variants. Therefore, the model was able to recover 6.1% more variants than a traditional 

manual approach. Similarly, 8.9% of variants (n=44) were false positives via manual variant 

refinement whereas 0.2% (n=1) false positives were reported using the model. Therefore, we 

predict that model use would reduce total number of misreported variants to physicians by as 

much as 8.7%. This result suggests that automated models of variant refinement might ensure 

more accurate and reproducible analysis of cancer genome data, alleviating a key bottleneck in 

analysis. 
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Figure 4.10   IGV snapshots of clinically relevant false positives that were mislabeled during manual 
review as somatic but re-identified as failed using the Deep Learning classifier. A. Failure due to short 
inserts and directional artifacts. B. Failure due to directional artifacts C. Failure due to adjacent 
mismatches and directional artifacts. D. Failure due to ends artifact. 
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Figure 4.11   Manual visualization for two clinically relevant variants recovered by classifiers using 
IGV showed evidence of mislabeling by manual reviewer. Within IGV snapshots, the normal tracks and 
the tumor tracks show aligned reads that were obtained from normal tissue and the tumor tissue, 
respectively. Variant loci are bracketed by horizontal grey bars. Variant summaries obtained from CIViC 
show gene name, variant type, variant coordinates, clinical summary, and relevant clinical action items. 
(A) Reviewer conservatively labeled both PIK3CA variants as ambiguous due to multiple mismatches in 
reads, however, both variants appear to be somatic. (B) Evidence of tumor variant reads in normal track 
can be attributed to tumor derived from patient with AML. 
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4.5 Discussion 
The random forest and deep learning models achieved excellent classification performance with 

comparable performance across all variant refinement classes (somatic, ambiguous, and fail), 

whereas the logistic regression model achieved poorer performance, particularly with the 

ambiguous class. High performance of model predictions on cross validation data and hold-out 

test set confirms the ability of an automated strategy to dramatically reduce the need for manual 

variant refinement. Our ability to virtually eliminate manual review was further demonstrated by 

removal of the manual reviewer as a feature for training the model. Attaining high performance 

with and without reviewer information provides the ability to extrapolate the trained model onto 

new data with an unknown reviewer (Figure 4.3C). Through our inter-reviewer analysis, we 

elucidated that inter-reviewer agreement can be as low as 50% (Figure 4.6A), therefore, the use 

of a machine learning algorithm for automated somatic variant refinement should also produce a 

more reproducible and consistent result.  

 Suggesting a path to further improvements in cancer genomics pipelines, high accuracy 

on orthogonal validation data suggests that the machine learning models might even reduce the 

need for validation sequencing. Both the deep learning and random forest models showed high 

accuracy in an independent test sample for classifying the validated Platinum Level SNVs 

outlined by Griffith et al.61. Given a high level of sequencing data (300X coverage), we are 

confident that the machine learning model classifies variants with a high accuracy even without 

performing any manual review to train the model. Future investigation could explore down-

sampling reads to show if decreased variant signal alters model performance. While the 

performance of the deep learning model on the independent test data (SCLC samples) was less 

than the internal cross validation, the random forest model performed noticeably poorer. This 
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decrease in performance could be due to batch effects, reviewer differences, or model 

overfitting.  However, introduction of as few as 250 calls from the independent test set in 

training is a viable option to recover high performance (Figure 4.8B). We recommend manually 

reviewing a small subset of variants called via statistical variant callers (e.g. 200-1000) to 

evaluate model performance on new datasets. This will elucidate if the existing model has 

decreased performance due to potential batch effects. If necessary, model performance can be 

restored by including a small subset of manually reviewed variants into the training data and 

retraining the model.  

 These results together show that a machine learning model can be effectively used to 

automate variant refinement. Automation of variant refinement allows for standardization and 

systematization of identifying putative somatic variants. This decreases the human variability 

associated with any manual process and increases the reproducibility of variant 

calling.  Additionally, automation of variant refinement eliminates a labor bottleneck, and its 

associated costs, allowing any number of somatic variant calls to be evaluated in a negligible 

amount of time. Finally, since the model offers probabilistic output, an economic framework can 

be used to set thresholds for confirmatory follow up testing allowing investigators to optimize 

experimental design to improve accuracy within budgetary constraints 135.  

 To illustrate the extent of this advance, compared to a standard cancer genomics analysis 

workflow, for a hypothetical whole genome breast cancer study with 100 tumor/normal paired 

cases, there would be approximately 2,300,000 variants identified via somatic mutation callers. 

Following a similar filtering strategy to a recent study in our group, these variants could then be 

filtered to a set of approximately 25,000 variants needing manual variant refinement after 

applying standard false positive filters129. This equates to about 360 person hours of manual 
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variant refinement, if a typical reviewer processes 70 variants per hour. A machine learning 

based automated approach would essentially eliminate this manual labor burden. To ensure that 

the model’s training data is optimized  for the hypothetical breast cancer data and corrected for 

any associated batch effects (Figure 4.8B), 1000 randomly selected variants could be manually 

reviewed, resulting in ~14 person hours of manual review. In this hypothetical example the 

manual review burden would be reduced from 360 hours to ~14, a major improvement 25 times 

more efficient. 

 It is apparent that automated models perform as well or better than manual review for 

somatic variant refinement. Employing the model, relative to manual review, allowed for a 5.0% 

increase in variants reliably detected and 6.1% increase in identification of known clinically 

relevant variants. Using the automated approach can thus recover therapeutic opportunities, 

elucidate potentially resistant therapeutics, predict prognosis and stratify relapse risk. For 

example, Figure 4.11 showed a missed TP53 mutation in a patient with acute myeloid leukemia. 

Based on evidence outlined in CIViC, this TP53 mutation suggests poor prognosis, which could 

be important information when making treatment decisions for patients with AML. Given that 

variant interpretation is one of the main barriers preventing genomic analysis for clinical 

workflows76, the ability to reduce manual effort while improving the accuracy in detecting 

clinically relevant variant calls could facilitate integration of genomics data into clinics.  

This model does have some limitations. Since manual variant refinement calls are far from the 

gold standard of somatic variant identification, the training data likely contains a substantial 

amount of noise due to inter-reviewer variation, as shown in our analysis. In an ideal scenario, 

highly accurate and orthogonal validation sequencing would be performed to determine somatic 

variant status. Unfortunately, validation sequencing has a large monetary and tissue material 
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expense, limiting our ability to use this type of data in the training set. Lastly, while the training 

data was produced using a varied array of capture strategies, libraries, and Illumina sequencing 

instruments, the model will likely require evaluation and some amount of retraining for non-

Illumina sequencing instruments and divergent somatic variant analysis pipelines. It is also 

possible that the model has learned various other institutional batch-effects from our sequencing 

and analysis workflows. However, our results suggest that retraining with a small amount of 

supplemental calls from an independent dataset may be sufficient to overcome these effects. 

 Finally, while this study demonstrates impressive performance on somatic variant 

classification there is room for improvement with the use of additional genomic and sequencing 

features such as proximal sequence complexity (e.g., presence of repeat regions), functional 

prediction (e.g., conservation based variant impact scores), and other indicators associated with 

false positives. Additionally, this problem is an ideal candidate for implementing active 

learning136, that could continuously update and improve the model on low performing cases. The 

assembly of a large gold standard somatic variant dataset that has validation sequencing results 

and pan cancer representation could yield a substantial improvement in somatic variant 

refinement performance over state-of-the-art filtering and manual review approaches. 
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Chapter 5: Conclusions and Future 
Directions 

The research presented herein will result in a significant improvement in quality and 

reproducibility to somatic variant identification. Openly licensed, open access curated somatic 

variant knowledgebases, like DoCM described in Chapter 2, aim to enable automated utilization 

of the cancer genomics literature in computational workflows. The knowledge-driven variant 

discovery strategy, described in Chapter 3, permits sensitive detection of known, clinically 

relevant and functionally important cancer variants, which has broad utility both in research and 

clinical sequencing analyses. Finally, by automating the post-processing of somatic variant calls 

through machine learning (Chapter 4), the analysis time needed in MPS-based cancer studies will 

be reduced dramatically, while enabling more reproducible and data-driven variant identification. 

These improvements also lift the technical limitation on the number of somatic calls that can be 

evaluated, in contrast to the time constraints imposed by manual analysis. 

5.1 DoCM: a Database of Curated Variants in Cancer 
In Chapter 3, DoCM, a Database of Curated Mutations in Cancer (http://docm.info), is described. 

DoCM is an open source, openly licensed resource that enables the cancer research community 

to aggregate, store and track biologically important cancer variants. DoCM is currently 

comprised of 1,364 variants in 132 genes across 122 cancer subtypes, based on the curation of 

876 publications. Due to the massive growth in the cancer literature (see Figure 3.6) it is a 

laborious task to accurately catalogue the mutations whose importance in cancer has been 

defined. Crowdsourced, open resources can help address this enormous problem. 

 While DoCM is a substantial improvement on earlier resources in terms of its size and 

utility in computational pipelines, it is far from a comprehensive listing of all the important 

http://docm.info)/
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mutations discovered in cancer. In fact, many similar cancer variant resources that have been 

released following DoCM, like CIViC124, have minimal variant overlap, suggesting that there is a 

need for many more individuals to focus on the curation problem and to develop resources that 

aggregate curation results.  

5.2 Knowledge Based Variant Discovery of Functional 
Variants 
The use of DoCM to focus knowledge-based discovery of biologically or functionally important 

cancer mutations resulted in the recovery of at least one functionally important variant in 41% of 

TCGA cases examined (Chapter 3). These results demonstrated that 1,228 variants from four 

TCGA studies that were missed by the original sequencing analysis pipeline could be recovered 

through DoCM-guided discovery. Approaches such as this can rescue true variants that may be 

important to identify in clinical assays of cancer DNA that aim to identify pathogenic mutations 

with corresponding targeted therapies.  

 The MSRV approach, outlined in Chapter 4, could reliably recover missed somatic 

variants through validation sequencing-based confirmation. However, the process was limited by 

a high manual review burden and validation sequencing cost. Additionally, the heuristics used to 

identify putative variants and validate the findings leave room for skepticism regarding the 

consistency and bias of the approach. This study motivated the development of the machine 

learning classifier, described in Chapter 4, to address these limitations by substantially 

decreasing the manual review burden, and providing a measure of statistical confidence to 

inform subsequent decision-making.  
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5.3 Automation of Manual Review through a Machine 
Learning Classifier 
The results in Chapter 4 illustrate that a machine learning-based classifier can automate manual 

review with excellent performance. Specifically, the deep learning approach we developed 

classifies somatic calls with a ROC AUC of 0.98 in cross-validation performance, 0.89 on an 

independent sequencing dataset, and 0.95 on an independent dataset with orthogonal sequencing 

validation data. It is particularly promising that this method can accurately predict orthogonal 

validation sequencing results, since these often represent a necessary, time-consuming and 

expensive step in cancer variant discovery studies. With further assessment, confidence in 

somatic variant calls evaluated with this approach could obviate orthogonal validation. Even if 

validation sequencing remains a necessity, an economic framework can be used in conjunction 

with the probabilistic output of the classifier to help investigators to tune somatic variant 

discovery to be most efficient for their budgets135. Additionally, the machine learning classifier 

provides a standardized, consistent, and reproducible analysis strategy that will facilitate 

improved inter- and intra-pipeline comparison, facilitating quantifiable somatic variant 

identification performance for the entire variant identification pipeline between runs in the same 

lab and between individual labs. This could help reduce the inter-pipeline variability seen across 

many genomic datasets62.  

 While the machine learning classifier is extremely promising, there are several caveats 

and limitations that should be considered when using it. Since the classifier was trained on data 

from 20 different projects at the same institute (sequenced with similar laboratory procedures, 

sequencing instruments, and a standardized analytical pipeline) it remains to be demonstrated 

that the classifier will deliver consistent results on data produced under different circumstances. 

Additionally, while the training data set is large and represents various cancer types, it is far from 
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a comprehensive representation of all cancer types. Lastly, while the classifier’s performance 

compared to validation sequencing results was highly comparable, it should be noted that this 

sample had substantially more coverage than is typical in most studies in the peer-reviewed 

literature (300-fold WGS discovery sequencing and 1000-fold custom capture validation 

sequencing compared to typical studies that achieve targets of 60-fold and 200-fold coverage in 

WGS discover and custom capture validation sequencing, respectively).  

 There are several future analyses that can improve the classifier. Additional evaluation of 

model performance on sequencing data produced at various sequencing centers, at various 

coverage levels, and with a variety of cancer types and analysis pipelines should be performed to 

test the model’s robustness to global differences from single-center data. In the short term, the 

model could be improved by and would be well suited to an active learning implementation, 

where the machine learning algorithm sends low confidence calls to a human reviewer, and then 

is iteratively trained based on the results, to further improve model performance. Such a scheme 

could train the classifier to actively adapt to changes in sequencing protocols and analysis.  

 In the longer term, the success of this approach on the automated post-processing of 

somatic variant calls, coupled with the application of machine learning algorithms to call 

germline variants, could yield a machine learning algorithm well suited to somatic variant calling 

that might replace, rather than simply supplement, existing callers137. This development would 

require a large training dataset that has good representation from a variety of cancer types, 

sequencing pipelines, and analysis workflows, and with high quality validation sequencing 

results, to serve as training data. While collecting such a dataset would require investment of 

time and resources, it is likely based on our results that it would outperform existing options. 

Given the extensive number of cancer genomes already sequenced by TCGA and ICGC, the 
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production of a such a training dataset could be accomplished by performing extensive validation 

sequencing on previously identified somatic mutations if the initial sample DNAs were still 

available. 

5.4 Conclusion 
The research presented in this dissertation describes methods that substantially reduce the time 

and cost to identify, analyze, and prioritize somatic cancer mutations while simultaneously 

increasing somatic variant calling accuracy and the number of clinically relevant mutations 

identified. DoCM reduces interpretation time by providing an open resource to catalogue the 

results from publications that describe the clinical or functional impact of known somatic 

mutations in cancer. This reduces the literature review that is duplicated every time a somatic 

variant is identified and evaluated by different studies. The machine learning-based classifier is 

not limited by human time to review variants, as such orders of magnitude more somatic variant 

calls can be classified, while simultaneously reducing required manual review by an order of 

magnitude. This classifier also improves on prior methods by providing a concrete probability 

that represents the confidence of a variant call. Additionally, the DoCM MSRV approach 

recovers at least one clinically or biologically important somatic mutation in as many as 41% of 

samples evaluated (see subsection 3.3.5), while the manual review classifier improves the 

identification of clinically important variants because substantially more variants are classified. 

The results of this dissertation suggest that there is substantial room for development to improve 

detection of somatic cancer mutations as genomics is translated into clinical use. As shown in 

Figure 4.7, it is possible for machine learning methods to accurately predict which somatic 

variant calls will be validated by orthogonal validation sequencing. Given this result, it is 

plausible that future model development and evaluation could lead to the elimination of 
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confirmatory validation sequencing of somatic variants. The results of this dissertation increase 

the potential to apply cancer genomic data in clinical practice by widening major bottlenecks in 

analysis of somatic variants, while simultaneously increasing the accuracy and the number of 

clinically important variants identified.    
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Preface 
 

Purpose 
The purpose of this guide is to introduce the manual review process to standardize the process. It 
describes how to download and use the Integrative Genomic Viewer (IGV), how to download 
and use the IGV Navigator, and how to call variants.  

What is Manual Review 
When tumor DNA is sequenced and aligned to the reference genome, the next step to analyze its 
somatic profile involves calling single nucleotide variants (SNVs) and short insertions and 
deletions (indels) that are present in the tumor. This is done by comparing its genome to a 
matched normal DNA sequence (usually blood for solid tumors and skin or buccal swab for 
liquid tumors) to identify differences specific to the tumor. SNVs and indels are detected by 
‘variant callers,’ or software tools that scan the tumor and normal genomes to identify somatic 
variants. These are then filtered through pipelines and annotated to generate a confident list of 
SNVs and indels for the analyst to review. 
There are limitations in variant calling due to the challenges and inaccuracies that occur during 
sample preparation, sequencing, and alignment, as well as fundamental genomic differences 
across individuals. To identify these errors, the analyst pursues a process of manual review. This 
process involves manually looking at each individual SNV and indel called and filtered in our 
pipeline and labeling it confidently as a real somatic variant (true positive) or a false positive for 
reasons related to sequencing and alignment errors. Given that there is some ambiguity in the 
process there is also the ability to call variants as a possible somatic variant.   
Why Is Manual Review Important? 
Variants called during manual review are used to finalize the somatic call set. Correctly calling 
true somatic variants is important for downstream analysis of the tumor. Somatic variants can be 
used to understand tumor dynamics, change treatment protocol, or compare to other tumor types. 
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Introduction 
 

 

What is Integrative Genomics Viewer 
The Integrative Genomics Viewer (IGV) is a high-performance visualization tool for analysis of 
large genomics datasets. It supports array-based as well as massively parellel sequence data with 
genomic annotations. It is used to conduct manual review of variants identified by somatic 
variant callers. The IGV has been supported by funding from the National Cancer Institute, the 
National Institutes of Health, the Informatics Technology for Cancer Research of the NCI, and 
the Starr Cancer Consortium. To cite IGV in publications please use the following citations: 
 
James T. Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander, 
Gad Getz, Jill P. Mesirov. Integrative Genomics Viewer. Nature Biotechnology 29, 24–26 
(2011). [PUBMED] 
 
Helga Thorvaldsdóttir, James T. Robinson, Jill P. Mesirov.  Integrative Genomics Viewer (IGV): 
high-performance genomics data visualization and exploration. Briefings in Bioinformatics 14, 
178-192 (2013). [PUBMED] 
 
How to Download IGV 
The IGV Desktop Application can be accessed at http://software.broadinstitute.org/software/igv/ 
 
The IGV Downloads Page can be accessed at 
http://software.broadinstitute.org/software/igv/download 
 
How to Use IGV 
The IGV User Guide can be accessed at 
http://software.broadinstitute.org/software/igv/UserGuide 
 
Helpful IGV Definitions: 
Track = IGV displays data in horizontal rows called tracks. Typically, each track represents one 
sample or experiment. 
Read Strand = Tracks are composed of read strands. Each read represents one molecule that was 
sequences and analyzed. Reads are mapped to the reference genome and differences in the read 
versus the reference genome are shown. 
 
  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346182/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603213/
http://software.broadinstitute.org/software/igv/
http://software.broadinstitute.org/software/igv/download
http://software.broadinstitute.org/software/igv/UserGuide
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What is IGV Navigator 
IGV Navigator (IGV Nav) is a tool developed at the Griffith Lab to assist in analyzing variants 
during manual review. Its input is a text file with variant coordinates and its output provides an 
annotation of these variant coordinates. This annotation includes the call (i.e. somatic, germline, 
ambiguous, or fail), tags to provide additional information if a variant is called ambiguous or fail, 
and a notes section for free text.  
 
How to Download IGV Nav 
IGV Nav can be downloaded from the Griffith Lab GitHub Repo 
(https://github.com/griffithlab/igvnav). Directions for download can be viewed 
 
When using IGVNav for Mac, the program can be downloaded (IGVNav.zip), unzip and added 
to Applications/ folder. 
 

How to Use IGV Nav 
Input file 
The input file for IGVNav is a five column bed file and accepts both 0- and 1-based genomic 
coordinates. The five columns correspond to chromosome, start coordinate, stop coordinate, 
reference allele, and called variant allele for each SNV and indel. The application requires the 
input file to contain a header line. This line will be replaced with a heading by the application 
upon opening.  
 
**Warning: If you do not provide a header, it will silently overwrite your first variant.** 
 
Navigation by IGVNav 
IGV MUST be open before opening IGVnav. It operates by commanding IGV to move to the 
variant’s corresponding genomic position in the IGV session.  
 
  

https://github.com/griffithlab/igvnav
https://github.com/griffithlab/igvnav/raw/master/dist/IGVNav.zip
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IGVNav Interface 
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Step-by-Step: Setting up and IGV_2.3.79  Session 
 
Step 1: Open an IGV Session 
 
Step 2: Load Tracks (BAM files) 

If you have a file accessible via URL: File > Load from URL... > input URL 
If you have a locally accessible file: File > Load from File… > input file 

 
Step 3: Load Additional Tracks 
 If you have a tumor only session, we recommend loading Common SNPs: 
 File > Load from Server… > Annotations > All Snps 1.4.2 
 
Step 4: Color Tracks by Read Strand 
 Right click on each sample track loaded > Color Alignments by > read strands 
 
Step 5: View Reads as Pairs 
 Right click on each sample track loaded > Make sure “view is pairs” is checked 
 
Step 6: Open IGV Nav Session 
 
Step 7: Load Variant File 

Open file associated with IGV session. Variant file must be a tab separated file with the 
following columns: chr, start, stop, ref, var, call, tags, notes 
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Types of Analysis 
 

 
Tumor Sample Only 
If only tumor (DNA) is available, the normal track will not be loaded within the IGV session. 
True somatic variants must be determined by evaluating only the tumor DNA. 
 
Note: It may be helpful to load a population SNP track within your IGV session to reduce the 
number of SNPs common in the human population (e.g. 1000 Genomes, ExAC). Somatic 
mutations are generally associated with lower frequencies in the human population. 
 
 
Tumor Sample + Normal Sample 
When tumor DNA and normal DNA are available they will both be loaded within the IGV 
session. This increases the ability to label true somatic variants during manual review due to the 
comparison with the normal track(s). 
 
Note: Liquid tumor types might have tumor contamination in the normal tracks. Refer to Tumor 
Normal (TN) variant for information on how to call these variants. 
 
 
Tumor Sample + Normal Sample + Other (RNAseq, Relapse, Metastasis) 
When tumor DNA, normal DNA and other DNA or RNA are available, they will all be loaded 
within the IGV session. Any support from other tracks increases the likelihood that the variant 
called is a somatic variant. Support from RNA sequencing data can be especially convincing and 
should be used to confirm somatic calls in expressed genes.  
 
Note: Multiple tracks can be loaded into the same IGV session, however, increasing the total 
number of tracks will increase the time required for the IGV session to load. Downsizing the 
number of visualized reads, or taking a sampling of reads, can assist in decreasing loading time. 
This can be done using the IGV preferences pane. Warning: This should be considered when 
evaluating low variant allele frequency variants as it may cause visual artifacts such as variant 
support in reads in a single direction when in reality the variant is supported by reads in both 
directions. 
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Examples of Calls 
 

 

Somatic Calls 
The variant is a real somatic variant. No reads supporting the variant (green, “A”) are visible in 
the normal sample. 
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Germline Calls 
The variant is also present in the matched normal sample, indicating that the variant is germline. 
The variant was not somatic or specific to the tumor.  
 

 
Helpful Hints: 
* Typically this variant is present with a Variant Allele Frequency (VAF) near 50% or 100%, indicating that 

the germline polymorphism is either heterozygous (i.e. located on one allele) or homozygous (i.e. located 
on both alleles) in both the tumor and the normal.  

 
* Bulk tumors are “contaminated” with normal cells. For this reason, 100% VAF in a non-purified tumor 

sample at a site with good depth should be suspicious and likely a homozygous germline polymorphism. 
 
* If using GRCH38 you can view Common SNPs in the human genome, click: 
 

“File” > ”Load from Server” > ”Annotations” > “Common Snps 1.4.2” 
 

This will provide a “Common Snps 1.4.2” track that can be used to elucidate germline SNPs. If a variant in 
the tumor is also present in the Common SNPs track then it is most likely germline. 

 
* If using GRCH37 you can view dbsnps 1.4.7 in the human genome, click: 
  “File” > ”Load from Server” > ”Annotations” > “dbsnps 1.4.2” 
 

This will provide a “dbsnps 1.4.2” track that can be used to elucidate germline SNPs. If a variant in the 
tumor is also present in the Common SNPs track then it is most likely germline. 
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Failed Calls 
The variant does not look real. Refer to the ‘Tags’ section to see reasons for labeling a variant as 
a false positive. 
 

 
 
Helpful Hints: 
Using Tags and Notes can help you in why variants were given failed calls. 
 
Make sure you set up your IGV sessions to be able to easily pick up certain types of variants like 
“Directional” or “Short Inserts Only”. This requires coloring by read strand and viewing as pairs. 
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Ambiguous Calls 
The variant could be a real somatic variant, but the reviewer is not confident due to features of 
the variant called and corresponding reads. Refer to ‘Tags’ to see reasons to define ambiguity. In 
this case, the variant has support from one normal read and 3 short insert read pairs (denoted by 
the white line in the middle of the read that shows that there are two overlapping reads from the 
same read pair at this position). The DNA fragment was too small for sequencing from each end 
to provide non-overlapping information about the sequence and commonly observed in DNA 
derived from archived (FFPE) material. The variant count for this position will be 7 (1 normal 
read and 6 short insert reads); however these reads were derived from a maximum of 4 
independent DNA fragments. In this way short inserts can inflate variant counts and throw off 
variant callers. 
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Examples of Tags 
 

 
Adjacent Indel (AI) 
An adjacent indel (insertion or deletion) is an artifact that is induced by a nearby true somatic 
variant. Typically, there is an insertion or a deletion near the artifact that induces a failure to 
align the reads properly to the reference genome. 
 

 
 
Helpful Hints: 
To adequately catch this artifact, it is necessary to zoom out on the IGV session to ensure that 
you visualize the adjacent insertion or deletion. 
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Ambiguous Other (AO) 
Ambiguous other is used to define a variant surrounded by inconclusive genomic features that 
can’t be explained by the other tags available. For example, genomic regions with increased A/T 
or G/C content that are not contained within tandem or dinucleotide repeats. This could also be 
described as a low complexity region. If the Ambiguous Other tag is used, it is highly 
recommended to include a short description in the Notes section. 
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Directional (D) 
A directional artifact is when the variant being evaluated can only be found on reads that are 
sequenced in either the forward or the reverse direction. Typically, this is caused by strand bias 
during sequencing. To properly visualize the directional artifacts, you must make sure the IGV 
tracks are colored by read strand. 
 

 
 
Helpful Hints: 
To adequately catch this artifact, it is necessary to color the alignments by readstrand: 
Right click on the track you want to color > click “Color alignments by” > click “read strand” 
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Dinucleotide Repeats (DN) 
The dinucleotide repeat artifact refers to when the reference sequence contains a region 
alternating between two nucleotides (e.g. ATATAT…). The variant being evaluated may be a 
SNV or indel directly adjacent or within this region and called due to misalignment or ends of 
reads. Repeat regions are areas where some sequencers, particularly those dependent on the 
polymerase enzyme, are prone to making mistakes. However, it is important to note that these 
are areas of normal human variation and real de novo mutations due to errors produced by 
polymerase during DNA replication. Other factors such as the size of the repeat, appearance in 
the normal and indels of varying length should be considered during evaluation. 
 

 
Helpful Hints: 
Typically, these variants are small deletions or small insertions and they are usually visualized in 
the both the tumor tracks and the normal tracks. 
Although the variant being evaluated may be a 2bp deletion, deletions of different sizes or even 
insertions are often observed with artifacts. 
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Ends (E) 
The variant called is only present close to the end (within 10 base pairs) of the variant-supporting 
reads. There are no or few reads supporting the variant that contain the variant with high 
concordance with the surrounding reference sequence.  
 

 
 
Helpful Hints: 
To adequately catch this artifact, it is necessary to zoom out on the IGV session to ensure that 
you visualize the ends of the reads. 
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High Discrepancy Region (HDR) 
When a variant is present in reads that also have many mismatches, and the mismatches across 
the whole track or in multiple tracks are the same, we use the High Discrepancy Region tag. 
HDR occurs when there are homologs across the genome and mis-mapping of the reads to 
homologs causes an apparent variant when they merely represent differences between the 
homologs and alignment artifacts. 
 

 
 
Helpful Hints: 
This is distinguished from Multiple Mismatches (MM) by the similarities of the mismatches 
across multiple tracks. In this example, all tracks contain the exact same mismatches at the same 
loci in the genome. 
If there are multiple variants in a row that only 10-20 bases apart in the same gene then you 
should zoom out and make sure that you are not within an HDR. 
Be sure that this is not due to adjacent SNPs. Clusters of common SNPs can happen and be real. 
It is unlikely that a truly somatic variant would be observed on both alleles of a heterozygous 
SNP; therefore, reads supporting a variant should also support only 1 allele of the heterozygous 
SNP (be in linkage with one allele). This is another instance when having a track identifying 
common polymorphisms can be helpful. 
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Low Count Normal (LCN) 
There is insufficient coverage in the normal sample to effectively compare the tumor sample. 
This can be assessed by clicking on the loci in the coverage track to reveal the total number of 
reads. Typically, we require at least 20X coverage in both tumor and normal to be sure that a 
manual review call is a true somatic variant. 
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Low Count Tumor (LCT) 
Coverage in the tumor is lower than the average. This threshold is experiment-specific. Low 
coverage at the site containing the variant will inflate the frequency associated with the variant 
called.  
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Low Mapping (LM) 
The mapping quality of a read, when the reads are “colored by strand,” is indicated by the 
opacity of the read. Lighter reads have lower mapping quality, while darker reads have higher 
mapping quality. This value can also be obtained by clicking on a read for its information. By 
default, reads with a mapping quality of 0 are transparent, indicating they map to multiple 
regions in the genome and cannot be used to accurately call a somatic variant at this locus. Reads 
are colored if they have a mapping quality of >0. This threshold can be changed in View > 
Preferences > Alignments > Mapping Quality Threshold. 
 

 
 
Helpful Hints: 
Regions with numerous reads with a mapping quality of 0 are often associated with genes with 
other homologs in the genome and therefore HDRs (see this call type above) and result in low 
mapping quality reads in both the normal and tumor. 
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Low Variant Frequency (LVF) 
The Low Variant Frequency tag is used when there are some reads of support for the variant, but 
the variant allele frequency (VAF) is relatively low. To quickly assess the VAF, you can click on 
the coverage track to pull up the total read counts, the number of reads for each base and the 
support for different directions. Usually, the LVF must be used in conjunction with other tags to 
fail the variant. 
 

 
 
Helpful Hints: 
The coverage track will be colored according to base when a variant is present at a 15% VAF, by 
default. This cutoff can be changed by altering this threshold in View > Preferences > 
Alignments > Coverage allele-fraction threshold. This can be particularly helpful with high depth 
samples. 
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Multiple Mismatches (MM) 
The multiple mismatches tag is used when the reads that contain the variant have other 
mismatched base pairs, indicating a less trustworthy read. This is like the HDR tag; however, it 
can include mismatches that are not exactly the same across the reads. 
 

 
 
Helpful Hints: 
The mismatch base color becomes more transparent as the base quality gets lower, so if the 
adjacent mismatch is dark in color, then you have reduced confidence in that read being properly 
sequenced and/or aligned to the reference genome. 
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Mononucleotide (MN) 
The mononucleotide repeat artifact refers to when the reference sequence contains a region of a 
single nucleotide (e.g. AAAAAAA…). The variant being evaluated may be a SNV or indel 
directly adjacent or within this region and called due to misalignment or ends of reads. Repeat 
regions are areas where some sequencers, particularly those dependent on the polymerase 
enzyme, are prone to making mistakes. However, it is important to note that these are areas of 
normal human variation and real de novo mutations due to errors produced by polymerase during 
DNA replication. Like the Dinucleotide (DN) tag, other factors such as the size of the repeat, 
appearance in the normal and indels of varying length should be considered during evaluation. 
 

 
 
Helpful Hints: 
Typically, these variants are small deletions or small insertions and they are usually visualized in 
the both the tumor tracks and the normal tracks. 
Although the variant being evaluated may be a 1bp deletion, deletions of different sizes or even 
insertions are often observed with artifacts. 
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Multiple Variants (MV) 
The Multiple Variants artifact is used If the variant called has reads supporting multiple different 
variants at the same loci. In the example shown, there were calls for all four different nucleotides 
at the same loci, making it an unreliable call. 
 

 
 
Helpful Hints: 
Make sure you scroll all the way to the bottom of the track to visualize all the reads. It is not 
enough just to rely on the coverage coloring as there might be multiple variants that have a VAF 
too small to be represented in the coverage bar. 
Clicking the coverage track will give you the relative abundance of each base at that site. 
For very deep data, multiple variants due to random error will start to accumulate. The relative 
abundance of each base should be considered in cases with deep coverage. 
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No Coverage in Normal (NCN) 
There is no coverage in the normal sample to effectively compare the tumor sample. This can 
occur when you do not have a normal track for comparison or you do not have any reads in the 
normal track that help assess if the variant is true. Typically, we require at least 20X coverage to 
be sure that a call is truly somatic. 
 

 
  



157 
 

Short Inserts (SI) and Short Inserts Only (SIO) 
Short inserts refer to instances when the DNA fragment is small enough that sequencing from 
each end of the molecule results in overlapping reads. Variants supported by reads produced 
from these short fragments result in the appearance of 2 reads supporting this variant when in 
reality they represent a single molecule of DNA, inflating the VAF of the variant. Support for the 
called variant is present in both reads of a read pair and other reads (SI) or support for the called 
variant is ONLY present in paired reads with a short insert size (SIO). That is, the variant 
appears in the overlapping region of the two read fragments, indicated by the line through the 
middle of the reads. These are prevalent in data derived from archival material (FFPE) or other 
source material with short DNA fragments (cell-free DNA). Artifacts are generally present at 
lower frequencies, and are present in two or three read pairss, or (four to six readfragments in 
total). 
 

 
 
Helpful Hints: 
To visualize short insert variants you must view the tracks as pairs. Short inserts will be 
condensed and a grey line indicates the areas where these reads overlap. 
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Same StartEnd (SSE) 
The Same Sitart/End artifact occurs when the variant is only contained by reads that start and 
stop at the same loci. This is typically attributed to a variant called in multiple reads created from 
the same molecule during the amplification process in the genome sequencing protocol, but 
erroneously not removed during read de-duplication. 
 

 
 
Helpful Hints: 
Make sure you sort by the variant and zoom out to show the entire length of the reads. This will 
allow you to visualize if the read ends line up. 
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Tumor in Normal (TN) 
Tumor in normal can occur if the variant has reads of support in the normal tracks. This is a 
common occurrence in blood tumors (leukemia and lymphoma) as well as tumors that are highly 
metastatic. Although this might not be a reason for failing the variant call, it can be used in cases 
of ambiguity to denote reasons for potential failure. Variants created by sequencing or alignment 
artifacts will often occur in both the tumor and the normal sample. 
 

 
Helpful Hints: 
This does not occur in all hematopoietic tumors but is likely when tumor cells are circulating in 
the blood stream such as acute myeloid leukemias with high blast counts. 
Evaluating other normal samples from your cohort can help differentiate sequencing and pipeline 
artifacts from normal contamination. 
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Tandem Repeat (TR) 
The tandem repeat artifact refers to when the reference sequence contains a region alternating 
between three nucleotides (e.g. CAGCAGCAG…). The variant being evaluated may be a SNV 
or indel directly adjacent or within this region and called due to misalignment or ends of reads. 
Repeat regions are areas where some sequencers, particularly those dependent on the polymerase 
enzyme, are prone to making mistakes. However, it is important to note that these are areas of 
normal human variation and real de novo mutations due to errors produced by polymerase during 
DNA replication. Like the Mononucleotide (MN) and Dinucleotide (DN) tags, other factors such 
as the size of the repeat, appearance in the normal and indels of varying length should be 
considered during evaluation.  
 

 
 
Helpful Hints: 
Typically, these variants are small deletions or small insertions and they are usually visualized in 
the both the tumor tracks and the normal tracks. 
Although the variant being evaluated may be a 3bp deletion, deletions of different sizes or even 
insertions are often observed with artifacts. 
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Appendix 2: Features Used in Manual 
Review Classifier 

Feature Description 
disease_AML Disease label = AML 
disease_AML Disease label = AML 
disease_GST Disease label = GIST 

disease_MPNST Disease label = Malignant Peripheral Nerve Sheath Tumors 
disease_SCLC Disease label = Breast Cancer 
disease_breast Disease label = Colorectal Cancer 

disease_colorectal Disease label = Glioblastoma 
disease_glioblastoma Disease label = Lymphoma 

disease_lymphoma Disease label = AML 
disease_melanoma Disease label = Melanoma 

normal_VAF Variant allele frequence of normal reads 
normal_depth Depth of normal reads 

normal_other_bases_count Count of non ref/var reads in normal 
normal_ref_avg_basequality Average basequality of reference reads in normal 

normal_ref_avg_clipped_length Average clipped length of reference reads in normal 
normal_ref_avg_distance_to_effective_3p_end Average distance to 3' end of reference reads in normal 

normal_ref_avg_distance_to_q2_start_in_q2_read
s 

Average distance to a run where Illumina's Read Segment 
Quality Control Indicator=2. False positives more commonly 
appear near these regions. 

normal_ref_avg_mapping_quality Average mapping quality for reference reads in normal 
normal_ref_avg_num_mismaches_as_fraction Average number of mismatches on these reads per base 

normal_ref_avg_pos_as_fraction Average position on the read as a fraction. This value is 
normalized to the center of the read  

normal_ref_avg_se_mapping_quality Mean single ended mapping quality 
normal_ref_avg_sum_mismatch_qualities Average sum of the base qualities of mismatches in the reads 

normal_ref_count Counts of reference basepairs in normal 
normal_ref_num_minus_strand Average minus strand reference reads in normal 

normal_ref_num_plus_strand Average plus strands reference reads in normal 
normal_ref_num_q2_containing_reads Number of reads containing a run where Illumina's Read 

Segment Quality Control Indicator=2. False positives more 
commonly appear near these regions. 

normal_var_avg_basequality Average basequality of variant reads in normal 
normal_var_avg_clipped_length Average clipped length of var reads in normal 

normal_var_avg_distance_to_effective_3p_end Average distance to 3' end of var reads in normal 
normal_var_avg_distance_to_q2_start_in_q2_read

s 
Average distance of position (as fraction of unclipped read 
length) to the start of the q2 run 

normal_var_avg_mapping_quality Average mapping quality for var reads in normal 
normal_var_avg_num_mismaches_as_fraction Average number of mismatches on these reads per base 
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normal_var_avg_pos_as_fraction Average position on the read as a fraction. This value is 
normalized to the center of the read  

normal_var_avg_se_mapping_quality Mean single ended mapping quality 
normal_var_avg_sum_mismatch_qualities Average sum of the base qualities of mismatches in the reads 

normal_var_count Average count for var reads in normal 
normal_var_num_minus_strand Average minus strand var reads in normal 

normal_var_num_plus_strand Average plus strand var reads in normal 
normal_var_num_q2_containing_reads Number of reads containing a run where Illumina's Read 

Segment Quality Control Indicator=2. False positives more 
commonly appear near these regions. 

reviewer_1 Call from reviewer 1 
reviewer_2 Call from reviewer 2 
reviewer_3 Call from reviewer 3 
reviewer_4 Call from reviewer 4 
tumor_VAF Variant allele frequence of tumor reads 

tumor_depth Depth of tumor reads 
tumor_other_bases_count Average count of non ref/var bases in tumor 

tumor_ref_avg_basequality Average basequality of reference reads in tumor 
tumor_ref_avg_clipped_length Average clipped length of ref reads in tumor 

tumor_ref_avg_distance_to_effective_3p_end Average distance to effective 3' end in ref tumor 
tumor_ref_avg_distance_to_q2_start_in_q2_reads Average distance to a run where Illumina's Read Segment 

Quality Control Indicator=2. False positives more commonly 
appear near these regions. 

tumor_ref_avg_mapping_quality Average mapping quality of reference reads in tumor 
tumor_ref_avg_num_mismaches_as_fraction Average number of mismatches on these reads per base 

tumor_ref_avg_pos_as_fraction Average position on the read as a fraction. This value is 
normalized to the center of the read  

tumor_ref_avg_se_mapping_quality Mean single ended mapping quality 
tumor_ref_avg_sum_mismatch_qualities Average sum of the base qualities of mismatches in the reads 

tumor_ref_count Counts of reference basepairs for tumor sample 
tumor_ref_num_minus_strand Number of negative read strands in tumor ref calls 

tumor_ref_num_plus_strand Number of positive read strands in tumor ref calls 
tumor_ref_num_q2_containing_reads Number of reads containing a run where Illumina's Read 

Segment Quality Control Indicator=2. False positives more 
commonly appear near these regions. 

tumor_var_avg_basequality Average basequality of variant reads in tumor 
tumor_var_avg_clipped_length Average clipped length of var reads in tumor 

tumor_var_avg_distance_to_effective_3p_end Average distance to 3' end of var reads in tumor 
tumor_var_avg_distance_to_q2_start_in_q2_reads Average distance to a run where Illumina's Read Segment 

Quality Control Indicator=2. False positives more commonly 
appear near these regions. 

tumor_var_avg_mapping_quality Average mapping quality of a tumor variant reads 
tumor_var_avg_num_mismaches_as_fraction Average number of mismatches on these reads per base 

tumor_var_avg_pos_as_fraction Average position on the read as a fraction. This value is 
normalized to the center of the read  
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tumor_var_avg_se_mapping_quality Mean single ended mapping quality 
tumor_var_avg_sum_mismatch_qualities Average sum of the base qualities of mismatches in the reads 

tumor_var_count Counts of variant basepairs for tumor sample 
tumor_var_num_minus_strand Number of negative read strands in tumor var calls 

tumor_var_num_plus_strand Number of positive read strands in tumor var calls 
tumor_var_num_q2_containing_reads Number of reads containing a run where Illumina's Read 

Segment Quality Control Indicator=2. False positives more 
commonly appear near these regions. 

disease_GST Disease label = GIST 
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Appendix 3: High overlap between false 
negatives recovered by the machine learning 

classifiers and CIViC annotations. 
For each table, the ‘Confidence’ is the well-scaled probability of the call being labeled as 
somatic, the ‘MR Call’ is the call made by the human manual reviewer, the ‘model Call’ is the 
call made by the deep learning model, and ‘CIViC Score’ represents the quality of evidence 
within CIViC based on number of evidence statements and trust rating. A. This table shows false 
negative calls that had overlap with CIViC annotations. B. This table shows false positive calls 
that had overlap with CIViC annotations. 
A 

False Negative Overlap with CIViC 

Chr Start Stop Ref Var Gene Disease Confidence 
MR 
Call 

Modell 
Call 

Evidence 
Items 

CIViC 
Score 

1 115258747 115258747 C G NRAS AML 
0.8906972

41 f s 17 174 

2 209113112 209113112 C T IDH1 AML 
0.8356539

61 f s 11 16 

1 115258747 115258747 C T NRAS AML 
0.9317687

75 a s 17 174 

19 33793237 33793238 - CCGC CEBPA AML 
0.4667634

96 a s 8 110 

17 7578196 7578196 A T TP53 AML 
0.4988112

15 f s 2 28 

17 74732959 74732959 G T SRSF2 AML 
0.5825120

21 a s 1 20 

12 49424359 49424359 C A KMT2D breast 
0.4992055

3 a s 1 12 

12 49432313 49432313 C T KMT2D breast 
0.8855612

28 a s 1 12 

13 32972788 32972788 C T BRCA2 breast 
0.6114878

06 a s 18 228 

21 36228727 36228727 G A RUNX1 breast 
0.8724330

66 a s 6 88 

12 49431112 49431112 G A KMT2D breast 
0.7002339

36 a s 1 12 

12 49437569 49437569 T C KMT2D breast 
0.5714657

31 a s 1 12 

12 49440556 49440556 C T KMT2D breast 
0.5239250

06 a s 1 12 

13 49037971 49037971 G A RB1 breast 
0.9911405

44 a s 3 20 

17 37872148 37872148 A G ERBB2 breast 
0.6592773

2 a s 2 25 

17 41258453 41258453 A G BRCA1 breast 
0.7609889

51 a s 11 148 

12 49445051 49445051 G A KMT2D breast 
0.4834785

46 a s 1 12 
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12 49426772 49426777 
GCT
GCT - KMT2D breast 

0.6494603
75 a s 1 12 

12 49431959 49431959 C T KMT2D breast 
0.7337821

72 a s 1 12 

17 29685594 29685594 G A NF1 breast 
0.5976935

63 a s 8 56 

17 74732942 74732942 T C SRSF2 AML 
0.5126011

37 a s 1 20 

4 106190898 106190898 C A TET2 AML 
0.9470288

16 a s 6 96 

4 55598158 55598158 C A KIT AML 
0.9186456

2 a s 3 24 

9 9425502 9425502 G T PTPRD SCLC 
0.6759339

57 a s 1 6 

19 1220655 1220655 G - STK11 SCLC 
0.5013615

49 a s 6 44 

9 139418369 139418369 C G 
NOTCH
1 SCLC 

0.9243088
96 a s 1 4 

3 178936091 178936091 G A PIK3CA breast 
0.9370706

68 a s 37 195 

3 178936103 178936103 G A PIK3CA breast 
0.9481272

7 a s 19 146 

7 124538437 124538437 A - POT1 breast 
0.7084913

25 f s 1 12 

22 42523636 42523636 C A CYP2D6 breast 
0.5104254

48 a s 1 16 

12 49431045 49431045 G A KMT2D breast 
0.8837848

31 a s 1 12 

22 42524327 42524327 A G CYP2D6 breast 
0.3917511

11 a s 1 16 

22 42523636 42523636 C A CYP2D6 breast 
0.6050271

39 a s 1 16 

22 38379767 38379767 C G SOX10 breast 
0.7890682

22 a s 1 8 

2 25457243 25457243 G A 
DNMT3
A AML 

0.8630380
63 a s 28 411 

4 55561907 55561907 C G KIT AML 
0.7486454

84 f s 3 24 

4 55564663 55564663 T G KIT AML 
0.8832876

68 a s 3 24 

4 55564702 55564702 C T KIT AML 
0.9042010

9 a s 3 24 

2 209113113 209113113 G A IDH1 AML 
0.6730701

92 a s 17 68 

22 42522550 42522550 G A CYP2D6 
glioblas
toma 

0.6440299
75 a s 1 16 
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B 
False Positive Overlap with CIViC 

Chr Start Stop Ref Var Gene Disease 
Confide
nce MR Call 

Classifier 
Call 

Evidence 
Items 

CIViC 
Score 

13 
2860
9758 

286097
58 C G FLT3 AML 

0.00896
0945 s f 4 43 

2 

2091
1311

3 
209113

113 G A IDH1 AML 
0.25896

2572 s f 17 68 

4 
5558
9770 

555897
71 - 

AGGTG
GG KIT AML 

0.38641
3515 s f 3 24 

9 
5073

770 
507377

0 G T JAK2 AML 
0.27082

1482 s a 5 70 

19 
3379
2395 

337923
96 - 

CCACG
TTGCG
CTGCT
TGG CEBPA AML 

0.30972
5046 s a 7 104 

21 
3620
6887 

362068
87 T A RUNX1 AML 

0.13754
4215 s a 6 88 

17 
7577

602 
757760

2 A G TP53 AML 
0.10930

5017 s a 2 28 

2 
2545
7243 

254572
43 G T DNMT3A AML 

0.40397
0242 s a 28 411 

17 
2966
5755 

296657
56 - A NF1 AML 

0.00078
4582 s f 8 56 

9 
9822
0365 

982203
65 C A PTCH1 AML 

0.09396
6253 s a 1 16 

17 
7578

190 
757819

0 T C TP53 AML 
0.25381

3058 s a 2 28 

4 

1061
5607

2 
106156

072 C T TET2 AML 
0.30908

7753 s a 6 96 

17 
7473
3070 

747330
70 G A SRSF2 AML 

0.13906
7724 s a 1 20 

12 
4943
3619 

494336
19 C T KMT2D breast 

0.46864
7331 s a 1 12 

17 
2965
4591 

296545
91 C T NF1 breast 

0.14899
5921 s a 8 56 

17 
4122
3066 

412230
66 G A BRCA1 breast 

0.24190
3991 s a 11 148 

17 
4124
5274 

412452
74 C A BRCA1 breast 

0.27337
6912 s a 11 148 

21 
3617
1722 

361717
22 G A RUNX1 breast 

0.27454
862 s a 6 88 

5 
6752
2556 

675225
56 G A PIK3R1 breast 

0.48558
706 s a 1 4 

12 
4943
2165 

494321
65 C T KMT2D breast 

0.41210
8928 s a 1 12 

21 
3616
4787 

361647
87 C T RUNX1 breast 

0.43298
0925 s a 6 88 

12 
4942
1834 

494218
34 G A KMT2D breast 

0.40430
221 s a 1 12 

21 
3616
4642 

361646
42 G A RUNX1 breast 

0.47896
9276 s a 6 88 
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21 
3625
2919 

362529
20 - 

TAGCA
TTTCTC
AGCTC RUNX1 AML 

0.30429
3782 s f 6 88 

17 
7473
2936 

747329
59 

GGC
GGC
TGT
GGT
GTG
AGT
CCG
GGG - SRSF2 AML 

0.13832
365 s f 1 20 

3 

1789
2798

0 
178927

981 - GTC PIK3CA breast 
0.37080

7111 s f 19 146 

17 
3761
9027 

376190
27 G A CDK12 breast 

0.03759
4032 s a 1 8 

17 
7577

538 
757753

8 C T TP53 breast 
0.48575

6129 s a 5 60 

19 
3379
2250 

337922
55 

GCA
GTT - CEBPA AML 

0.08289
7209 s f 7 104 

21 
3616
4687 

361646
88 - TC RUNX1 AML 

0.33057
0877 s f 6 88 

15 
9063
1838 

906318
38 C T IDH2 AML 

0.01297
0433 s f 3 28 

17 
7473
2936 

747329
59 

GGC
GGC
TGT
GGT
GTG
AGT
CCG
GGG - SRSF2 AML 

0.10793
8401 s f 1 20 

17 
7577

581 
757758

1 A T TP53 AML 
0.19551

4232 s a 2 28 

19 
3379
3247 

337932
57 

GCG
TGC
GGG
GG - CEBPA AML 

0.10719
8857 s f 8 110 

12 
4942
2933 

494229
33 C T KMT2D breast 

0.14578
785 s a 1 12 

4 

1532
4418

5 
153244

185 G A FBXW7 breast 
0.13251

6399 s a 2 10 

4 

1532
4938

4 
153249

384 C T FBXW7 breast 
0.18640

0592 s a 4 26 

1 
1118
4571 

111845
71 G T MTOR breast 

0.13387
543 s a 1 6 

1 
1118
4573 

111845
73 G A MTOR breast 

0.11833
4189 s a 2 10 

12 
5647
8851 

564788
51 C T ERBB3 breast 

0.32006
4127 s a 1 12 

14 

1052
4655

1 
105246

551 C T AKT1 breast 
0.32713

6993 s a 5 35 

12 
4944
4545 

494445
45 G A KMT2D breast 

0.31553
2327 s a 1 12 

17 
2953
3260 

295332
60 C T NF1 breast 

0.08959
8835 s a 8 56 

17 
3787
9588 

378795
88 A G ERBB2 breast 

0.05985
9622 s a 2 25 
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4 
5559
4177 

555941
77 C T KIT breast 

0.31102
1984 s a 3 24 

17 
4126
2680 

412626
80 G A BRCA1 breast 

0.13068
6581 s a 11 148 

2 

2125
3788

9 
212537

889 C T ERBB4 breast 
0.02291

0668 s a 1 8 

5 
6756
9746 

675697
46 G A PIK3R1 breast 

0.14323
5296 s a 1 4 

5 
6757
6437 

675764
37 C T PIK3R1 breast 

0.32190
4689 s a 1 4 

12 
4941
8629 

494186
29 C T KMT2D breast 

0.21499
0601 s a 1 12 

12 
4943
3883 

494338
83 G A KMT2D breast 

0.06100
0999 s a 1 12 

6 
4190
3845 

419038
45 C G CCND3 AML 

0.22497
4856 s a 1 6 

13 
4894
1711 

489417
11 A T RB1 SCLC 

0.42579
8684 s a 3 20 
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