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ABSTRACT 
The high-throughput sequencing technologies have been developed and applied to 
the human genome studies for nearly 20 years. These technologies have provided 
numerous research applications and have significantly expanded our knowledge 
about the human genome. In this thesis, computational methods that utilize sequence 
data to study human genomic variants and transcripts were evaluated and developed. 

Indel represents insertion and deletion, which are two types of common genomic 
variants that are widespread in the human genome. Detecting indels from human 
genomes is the crucial step for diagnosing indel related genomic disorders and may 
potentially identify novel indel makers for studying certain diseases. Compared with 
previous techniques, the high-throughput sequencing technologies, especially the next-
generation sequencing (NGS) technology, enable to detect indels accurately and 
efficiently in wide ranges of genome. In the first part of the thesis, tools with indel 
calling abilities are evaluated with an assortment of indels and different NGS settings. 
The results show that the selection of tools and NGS settings impact on indel detection 
significantly, which provide suggestions for tool selection and future developments. 

In bioinformatics analysis, an indel’s position can be marked inconsistently on 
the reference genome, which may result in an indel having different but equivalent 
representations and cause troubles for downstream. This problem is related to the 
complex sequence context of the indels, for example, short tandem repeats (STRs), 
where the same short stretch of nucleotides is amplified. In the second part of the 
thesis, a novel computational tool VarSCAT was described, which has various 
functions for annotating the sequence context of variants, including ambiguous 
positions, STRs, and other sequence context features. Analysis of several high-
confidence human variant sets with VarSCAT reveals that a large number of 
genomic variants, especially indels, have sequence features associated with STRs. 

In the human genome, not all genes and their transcripts are translated into 
proteins. Long non-coding ribonucleic acid (lncRNA) is a typical example. Sequence 
recognition built with machine learning models have improved significantly in recent 
years. In the last part of the thesis, several machine learning-based lncRNA prediction 
tools were evaluated on their predictions for coding potentiality of transcripts. The 
results suggest that tools based on deep learning identify lncRNAs best. 

KEYWORDS: sequence data, human genome, indel, variant, sequence context, 
lncRNA, computational tool, method development, bionformatics, computational 
biology 
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TIIVISTELMÄ 
Korkean suorituskyvyn sekvensointiteknologioita on kehitetty ja sovellettu ihmisen 
genomitutkimuksiin lähes 20 vuoden ajan. Nämä teknologiat ovat mahdollistaneet 
ihmisen genomin laaja-alaisen tutkimisen ja lisänneet merkittävästi tietoamme siitä. 
Tässä väitöstyössä arvioitiin ja kehitettiin sekvenssiaineistoa hyödyntäviä 
laskennallisia menetelmiä ihmisen genomivarianttien sekä transkriptien tutkimiseen. 

Indeli on yhteisnimitys lisäys- eli insertio-varianteille ja häviämä- eli deleetio-
varianteille, joita esiintyy koko genomin alueella. Indelien tunnistaminen on 
ratkaisevaa geneettisten poikkeavuuksien diagnosoinnissa ja eri sairauksiin liittyvien 
uusien indeli-markkereiden löytämisessä. Aiempiin teknologioihin verrattuna 
korkean suorituskyvyn sekvensointiteknologiat, erityisesti seuraavan sukupolven 
sekvensointi (NGS) mahdollistavat indelien havaitsemisen tarkemmin ja 
tehokkaammin laajemmilta genomialueilta. Väitöstyön ensimmäisessä osassa 
indelien kutsumiseen tarkoitettuja laskentatyökaluja arvioitiin käyttäen laajaa 
valikoimaa indeleitä ja erilaisia NGS-asetuksia. Tulokset osoittivat, että työkalujen 
valinta ja NGS-asetukset vaikuttivat indelien tunnistukseen merkittävästi ja siten ne 
voivat ohjata työkalujen valinnassa ja kehitystyössä. 

Bioinformatiivisessa analyysissä saman indelin sijainti voidaan merkitä eri kohtiin 
referenssigenomia, joka voi aiheuttaa ongelmia loppupään analyysiin, kuten indeli-
kutsujen arviointiin. Tämä ongelma liittyy sekvenssikontekstiin, koska variantit voivat 
sijoittua lyhyille perättäisille tandem-toistojaksoille (STR), jossa sama lyhyt 
nukleotidijakso on monistunut. Väitöstyön toisessa osassa kehitettiin laskentatyökalu 
VarSCAT, jossa on eri toimintoja, mm. monitulkintaisten sijaintitietojen, vierek-
käisten alueiden ja STR-alueiden tarkasteluun. Luotettaviksi arvioitujen ihmisen 
varianttiaineistojen analyysi VarSCAT-työkalulla paljasti, että monien geneettisten 
varianttien ja erityisesti indelien ominaisuudet liittyvät STR-alueisiin. 

Kaikkia ihmisen geenejä ja niiden geenituotteita, kuten esimerkiksi ei-koodaavia 
RNA:ta (lncRNA) ei käännetä proteiiniksi. Koneoppimismenetelmissä ja sekvenssi-
tunnistuksessa on tapahtunut huomattavaa parannusta viime vuosina. Väitöstyön 
viimeisessä osassa arvioitiin useiden koneoppimiseen perustuvien lncRNA-
ennustustyökalujen ennusteita. Tulokset viittaavat siihen, että syväoppimiseen 
perustuvat työkalut tunnistavat lncRNA:t parhaiten. 

AVAINSANAT: sekvenssiaineisto, ihmisen genomi, indeli, variantti, sekvenssi-
konteksti, lncRNA, laskentatyökalu, menetelmäkehitys, bioinformatiikka, lasken-
nallinen biologia 
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1 Introduction 

The human genome, which is all of the deoxyribonucleic acid (DNA), is a set of 
sequences containing genetic information. The normal human genome contains 22 
autosome pairs plus one sex chromosome pair in the cell nucleus as the nuclear 
genome, as well as a small amount of DNA in the mitochondria, the mitochondrial 
genome [1]. Genomics is the study of the whole content of a person’s genome, which 
includes several genomic features that may influence biological functions and 
developmental processes. In this thesis, genomic variants and long non-coding 
ribonucleic acids (lncRNAs) are the topics that are studied.  

Genomic variants, which are  the DNA sequence variations among individuals, 
can be inherited from a parent as germline variants, or they occur during one’s 
lifetime as somatic variants [2,3]. Some variants have high frequencies in the human 
population, with small or even no effects on health, whereas some variants are less 
common in populations and may lead to the development of certain diseases [4,5]. 
Different types of genomic variants, including nucleotide substitution, nucleotide 
gain and loss, and some structural re-arrangements, can be recognised based on the 
differences between human reference genome assembly and individual human 
genomes, or between paired samples such as cancer cell genomes and normal cell 
genomes [6]. Insertion and deletion variants, which are often known as indels, are 
the second most common variant type following single nucleotide polymorphism 
(SNP) [7]. Genomic variants can affect biological processes by influencing protein 
functions in protein-coding genes, or they are located in non-coding regions and play 
a role in regulatory functions to influence transcriptional activity of protein coding 
genes [8,9].  

Protein-coding genes account for around 1.4% of the human genome [10]. Some 
non-coding part of genome may be transcribed into non-coding ribonucleic acids 
(RNAs) from non-coding genes at some point during development [11]. As 
representative types of non-coding RNAs, lncRNAs are transcripts with sizes of 
more than 200 nucleotides but may lack abilities to be translated into proteins [12]. 
Currently, more than 18,000 lncRNA genes located in the human autosomes and sex 
chromosomes are annotated in the encyclopedia of genes and gene variants 
(GENCODE) database (release 43) [13]. Some of lncRNAs have shown their key 
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roles in the regulation of cell processes and their functions as biomarkers in clinical 
diagnosis [14,15]. Recognising and identifying lncRNAs are important for 
understanding the complexity of the human genome and its biological processes.  

Compared to Sanger sequencing and DNA microarray, the next-generation 
sequencing (NGS) technologies can sequence human genomes at a low cost and less 
time [16–18]. The experimental process of DNA sequencing involves determining 
the order of DNA sequences, while that of RNA-sequencing (RNA-seq) involves 
examining the quantity and sequences of RNA [19,20]. The applications of NGS in 
human genomic studies have enabled the ability to detect rare genomic variants and 
some low-expressed lncRNAs that were difficult to detect previously [21,22]. With 
the widespread application of NGS, a vast amount of human genomic data has been 
produced. Along with the use of advanced algorithms and computational tools, our 
knowledge of genomic variants and lncRNAs of the human genome has been 
improved [23,24].  

 Although many novel tools and algorithms have shown improved abilities for 
identifying genomic variants and lncRNAs, many challenges remain. One major 
hurdle is identifying indels in a wide range of sizes. Indels can be short variants as a 
few base pairs (bps) genome changes or be large as subtypes of structural variants 
(SVs), which are large-scale changes in the genome with a typical size range > 50 
bp. Different tools and algorithms may use different features from sequencing data; 
thus, the optimal calling ranges of such tools might be different. To this end, in 
Publication Ⅰ, a set of widely used variant calling tools were evaluated with the aim 
of finding their optimal indel calling ranges.  

The evaluation results of Publication Ⅰ showed that the majority of false positive 
(FP) indel calls made by variant calling tools were in simple repeats, including short 
tandem repeats (STRs). The sequence patterns of STRs may cause indels ambiguous 
breakpoints, further leading to equivalent indels and causing trouble for downstream 
analysis. In addition, the mutation rates of genomic variants, especially indels, may 
depend on sequence contexts [25,26]. The general proportions of breakpoint 
ambiguous indels and indels in STRs at the human individual level are unclear and 
remain a scientific question that needs to be answered. To better understand the 
genome sequence context of variants, a computational tool, VarSCAT, was 
implemented in Publication Ⅱ. The tool provides a variety of functions to 
understand breakpoint ambiguity and tandem repeats in the sequence context of 
variants. The analysis of high-confidence human variant sets with VarSCAT showed 
that the sequence contexts had a strong relationship with genomic variants, 
especially indels. 

The evaluation conducted in Publication Ⅰ showed that the deep learning 
methods were the top performers in indel calling. Recently, deep learning methods 
have been widely applied in lncRNA prediction; the feature extraction and prediction 
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abilities of deep learning methods have shown great potential for identifying 
lncRNAs. The strengths of deep learning should be identified by benchmarking with 
tools developed based on other methods and on datasets with different properties. 
These comparison results can provide suggestions for tool selection based on 
different types of data and encourage the development of high-performing 
algorithms. In Publication Ⅲ, a comparison of the most recent deep learning tools 
with other tools that use other machine learning methods for predicting lncRNAs 
was conducted.  

In conclusion, this work evaluated popular and advanced methods for detecting 
genomic indels and lncRNAs, as well as developed a novel method that helps to 
demonstrate the sequence context of variants.  
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2 Aims of the thesis 

The overall aim of this thesis is to investigate computational tools for sequence data 
analysis. NGS variant calling tools for indel calling, methods for annotating the 
sequence contexts of genomic variants, and tools for lncRNA prediction are the 
topics of focus. With the development of bioinformatics algorithms, especially with 
the application of machine learning algorithms that are used in the bioinformatics 
field, the abilities of tools have improved significantly in recent years. To provide 
suggestions for tool selection, a comprehensive and unbiased evaluation of existing 
tools should consider various research contexts and purposes. The results of this 
evaluation may also reveal weaknesses in the current development of algorithms and 
provide suggestions for future development. To better understand the relationships 
of variants and their sequence context in the human genome, the sequence context 
of variants such as STRs and low complexity regions needs to be parsed, and tools 
must be developed to serve this purpose.     

 
The specific aims of this thesis to address the above needs are as follows: 

1. Investigate and evaluate existing variant calling tools for detecting 
variably sized indels with different types of NGS data (Publication Ⅰ). 

2. Design and implement new methods for a better understanding of the 
sequence contexts of genomic variants (Publication Ⅱ). 

3. Assess the performance of deep learning-based and other machine 
learning-based tools for lncRNA prediction (Publication Ⅲ).  
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3 The human genome and 
sequencing technologies 

3.1 Human genomic variants and lncRNAs 
The genome of a human individual contains all the genetic information for 
developmental regulation and biological processes. The human genome comprising 
sequences of DNA base pairs, contains regions with various distinct functions such 
as genes which encode for proteins and vast intergenic regions. The genes are 
comprised of exons and introns. The former is transcribed into mature RNA, whereas 
the latter is trimmed off during transcription processes. Ribonucleic acids can be 
divided into several groups: messenger RNAs (mRNAs), transfer RNAs, ribosomal 
RNAs and other non-coding RNAs. Messenger RNAs can be divided as 5’ and 3’ 
untranslated regions and several open reading frames (ORFs), only one of which can 
be further translated into proteins. The other RNAs may not be translated, but they 
have functions in structural support or functional regulations. In this thesis, two types 
of human genomic variants, namely, insertions and deletions (indels), the sequence 
contexts of genomic variants, and lncRNAs are the topics discussed.  

3.1.1 The human genome 
The two copies of haploid human genome consists of approximately 3 billion bps of 
DNA, the shape of which is a double-stranded helix structure of nucleotide chains. The 
monomeric units that consist of chains of nucleic acid polymers are called nucleotides. 
A nucleotide, which is the basic building block of nucleic acids, is composed of three 
chemical sub-units: a five-carbon sugar molecule, a nitrogenous base and one 
phosphate group. The order of the four types of nitrogenous bases, namely, adenine 
(A), cytosine (C), guanine (G), and thymine (T), defines the sequences of a genome. 
For DNA, the forward strand and the reverse strand are specifically paired so that an 
A always pairs with a T, and a C always pairs with a G [27]. The majority of human 
genome DNA is in the cell nucleus as a nuclear genome, which is divided into 23 linear 
molecule pairs as chromosomes, with the longest composed of around 250,000,000 
nucleotides and the shortest composed of around 50,000,000 nucleotides. For a normal 
nuclear genome, the chromosomes consist of 22 autosome pairs and one sex 
chromosome pair as XX for females or XY for males. A small amount of DNA in a 
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circular structure is in the mitochondria as a mitochondrial genome. In the human 
body, most cells are diploid, meaning that a cell contains two copies of each autosome 
and two sex chromosomes of XX or XY. By contrast, sex cells are haploid, meaning 
that a cell has only one copy of each autosome and one sex chromosome. Currently, 
the human genome is estimated to have approximately 60,000 genes, with protein-
coding genes, non-coding genes, and pseudogenes each accounting for one-third 
[13,28]. Genes are sequences of nucleotides in DNA; many encode the synthesis of 
RNAs and proteins. The human genome contains the biological information that 
governs biological functions and development processes [1].  

Repetitive DNA, which is a DNA pattern that occurs in multiple copies, accounts 
for over half of the human genome. A large number of repetitive DNAs are located 
in regulatory or intergenic regions, and a substantial proportion of repetitive DNAs 
can be transcribed and translated into RNAs and proteins [29]. Based on previous 
research, almost all human genes (99%) contain at least one repetitive sequence in 
their 5000 bp flanking regions, 69% human genes contain at least one repetitive 
sequence in their 5’ UTR or 3’ UTR [30]. Among human coding genes, 12.5% of 
them carry short mononucleotide repeats [31].  

Repetitive DNA can be divided into two classes: interspersed repeats and tandem 
repeats. Short interspersed nuclear elements, which are typically 100–300 bp in 
length, and long interspersed nuclear elements, which are typically > 300 bp in 
length, are the two main representative types of interspersed repeats that comprise 
more than 30% of the human genome [32,33]. The most well-studied interspersed 
repeat in the human genome is the class of Alu repeats, which are the main type of 
short interspersed nuclear element and account for approximately 11% of the 
genome. Alu elements are originally characterised by the action of the Alu restriction 
endonuclease and are associated with human diseases, gene expression, cell 
regulation and human population genetics [34,35]. Although interspersed repeats 
have been historically considered genomic junk, comparative genomics studies 
suggest that many classes of interspersed repeats can help in the understanding of 
the evolutionary history of the human genome [36].  

Tandem repeats are sequence motifs that lie adjacent to one another and are called 
microsatellites, minisatellites, or macrosatellites based on the sizes of the motifs. 
Microsatellites, also known as STRs, consist of repeat motifs with 1–6 bp, occupying 
approximately 3% of the human genome [32,37]. In the past 10 years, the definition of 
the size of an STR motif have been 1–5 bp or 1–10 bp, but recently, the acceptable 
definition has been 1–6 bp [37,38]. Some studies illustrated that to have different mutation 
rates from the background genome, microsatellites should have lengths of minimum 10 
bp [39–41], some cancer research discovered that many of the functionally relevant 
microsatellites can be 7-10 bp [42–44]. Minisatellites, the sizes of which are larger than 
those of microsatellites, have suggested repeats with motif sizes > 6 bp, while some 
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studies define them to have motif sizes > 10 bp. However, the upper size limit for 
minisatellites is not clear; it is usually a few hundred to a thousand base pairs [37,45,46]. 
Some studies have also called minisatellites as variable number tandem repeats, defined 
as tandem repeats with motif sizes > 6 bp [47–50]. Macrosatellites are the largest tandem 
repeats in the human genome, with repeat motifs of several thousand base pairs in size, 
which cover significant portions of the genome and are enriched in CpGs [45]. Tandem 
repeats, especially STRs, are the fastest-evolving DNA sequences in the human genome 
because of their relatively higher mutation rates (10-6 – 10-3 events per locus per gamete 
per generation) compared with single nucleotides (10-9 – 10-8) [51–53]. The high 
abundance and mutation rates in the human genome make tandem repeats useful 
biomarkers in many research fields, such as forensic applications and human population 
studies [54,55]. Because of the high diverse sequence structure of the human genome, 
tandem repeats are not always required to be perfect. The structure of STRs, based on the 
similarities and gaps between each repeat unit, can be classified as perfect repeats, 
imperfect repeats, interrupted repeats, and compound repeats. Perfect repeats require 
every repeat unit to be the same as the repeat motif, and no gap is allowed between repeat 
units. Imperfect repeats allow some variations among repeat units but under a certain 
threshold. The interrupted repeats are often included in the category of imperfect repeats, 
which allow not only variations but also gaps among the repeat units. Compound repeats 
are complex repeats that contain several repeats with different motifs located in proximity, 
but some studies have excluded compound repeats from their biological research [56,57].  

The central dogma of molecular biology, which was first published in 1958 and 
restated in 1970 by Francis Crick, is an explanation of the genetic information flow of 
a biological system [58]. Nowadays, the central dogma is often explained as follows: 
DNA can be copied to DNA as DNA replication, DNA can be copied to mRNA as 
transcription, and proteins can be synthesised with mRNA as a template as translation. 
Meanwhile, RNA can also be copied from RNA as RNA replication, and DNA can be 
synthesised with RNA templates as reverse transcription. A single-stranded nucleotide 
structure molecule, RNA, is the transcript product of DNA. Ribonucleic acid contains 
four types of nitrogenous bases: A, C, G, uracil (U). Human genomes contain both 
protein-coding genes that can be transcribed into mRNA and then translated into 
proteins and non-coding regions that may have regulatory or structuring functions. The 
proportion of coding regions only takes approximately 1% of the whole human 
genome, and a vast part of the genome remains as a non-coding region [59].  

3.1.2 Human genomic variants 
Human genomic variants are the DNA sequence differences among human 
individuals or between groups of samples such as normal and tumour tissues. These 
variants can be grouped into different categories based on different aspects.  
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Based on the forms of DNA sequences changes, genomic variants can be classified 
as substitutions, deletions, insertions, duplications, inversions, translocations, or 
complex variants [6,60,61]. A substitution is either a single nucleotide is substituted as 
a single nucleotide variant (SNV), or several nucleotides are substituted as a multi-
nucleotides variant (MNV). An insertion indicates at least one nucleotide is added and 
a deletion indicates at least one nucleotide is removed. Insertions and deletions are 
often discussed together as indels. A duplication indicates that at least one nucleotide 
is duplicated. It can be duplicated adjacently as a tandem duplication or duplicated 
several bases away as an interspersed duplication. An inversion indicates that the 
orientation of a part of a DNA sequence is inverted. A translocation indicates that a 
part of a DNA sequence is rearranged to other location (Figure 1). If the form of a 
variant is too complicated and cannot be described as one of the above basic variant 
types, it can be categorised as a complex variant. 

 
Figure 1.  Different types of genomic variants. The first line of each variant type in A to H 

represents the reference sequence, and the last line represents the sample genome 
sequence. Dash lines indicate the changes between the reference and sample 
sequences. The slash-coloured blocks indicate the changeed part of the genome. 
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Besides, genomic variants can be classified based on their sizes. An indel usually 
indicates an insertion or deletion with size smaller than 50 bp, but it also can be a 
large insertion or deletion with size larger than 50 bp [7,62–64]. Genome changes, 
including indels, duplication, inversion, and other types of variants with sizes larger 
than 50 bp, also be called as SVs [65]. Copy number variations usually indicate 
intermediate-scale genome changes. The size ranges of copy number variations 
differ across publications. The common used definition is that a copy number 
variation should have at least 1 kilobase [66–72]. However, some studies may define 
them as genome changes larger than 50 bp [73–75] and consider them a sub-type of 
SVs.   

In terms of origins of genomic variant, they can be classified as germline variants 
and somatic variants. Germline variant are mutations occuring in gametes, and these 
are transmitted to the offspring and cause every cell of the offspring to contain these 
mutations. Somatic variants are mutations occur in other cells of the body that are 
only confined to only one cell and its progeny cells. 

The functional effects of variants on genome can be also used for variant 
classification. As for genomic variants in coding regions, a silent variant is a 
substitution which the change of a single nucleotide in a protein-coding region of a 
gene causes difference in the transcribed mRNA but does not affect the final translated 
protein sequence. A missense variant is a substitution that causes the final translated 
protein has different sequence between the original one. A nonsense variant is a 
substitution that results in a premature stop codon and causes a shorter, unfinished 
protein sequence. A frameshift variant is an indel that changes the reading frame of an 
mRNA. Genomic variants that located outside of coding regions can be called as non-
coding variants.  

In addition, in terms of the allele frequency, a SNP indicates a variant with an 
allele frequency > 1% in the population [76]. A common variant can be defined as a 
variant has an allele frequency > 5% in the population and a rare variant has an allele 
frequencies < 1% in the population [77]. 

3.1.3 Insertions and deletions in the human genome 
Indel represents the genome variant types of insertion (gain nucleotides) and deletion 
(lose nucleotides). Studies [78,79] have showed that indels are the second most 
common genomic variant type in human genomes after SNPs, which account for 
approximately 15%–20% of all variants; among these, single-base indels represent 
one-third. The majority indels of a human individual are small sizes (10 bp or 
smaller), and the larger they are, the rarer they appear in a human genome 
(Publication Ⅰ) [80,81]. Insertions and deletions are almost equally distributed in a 
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human genome, with the number of deletions slightly more than the number of 
insertions [79].  

In the human genome, several spontaneous molecular mechanisms can lead to 
an indel. The most common molecular mechanism is DNA strand slippage, which 
explains three-fourths of all the indels of a human individual [82] (Figure 2). In vitro 
research has shown that all studied DNA polymerases can generate indels via strand 
slippage [83]. During the DNA synthesis process, DNA strand slippage may occur 
on either the primer or template strand as primer or template slippage, respectively, 
and generate a misaligned intermediate that contains one or more unpaired 
nucleotides. These misaligned intermediates can spontaneously realign or undergo 
other processes, including proofreading and mismatch repair, to fix these unpaired 
nucleotides and generate an accurate synthesis. However, if these unpaired 
nucleotides escape proofreading and mismatch repair, further synthesis will occur 
on these incorrect DNA sequences and result in insertions or deletions from primer 
or template slippage, respectively. The frequency of DNA strand slippage, also 
referred to as the indel error rate, varies widely among polymerases and typically 
occurs more frequently in repeat sequences such as homopolymeric sequences.  

Previous research has shown that the indel error rate increases with a longer 
length of repeat sequences and decreases with a larger motif size of repeat sequences 
[84]. As the repeat length increases, the strand misalignment is located further away 
from the primer terminus where the DNA polymerase facilitates the extension of the 
DNA replication complex; thus, the proofreading efficiency of polymerases usually 
diminishes, and indel error rates increase [85]. Because the proofreading function 
efficiency decreases with an increase in repeat sequence length, DNA mismatch 
repair, which is a system consisting of several mismatch repair proteins, is an 
important post-replication function to correct indel errors in DNA replications. 
Previous research has shown that inactivated DNA mismatch repair could increase 
spontaneous indel error rates by 10,000-fold in repeat DNA sequences [86,87]. The 
loss of DNA mismatch repair in humans leads to microsatellite instability, a 
phenotype that is often observed and used as a biomarker for the diagnosis and 
prognosis of colorectal cancer [88]. Microsatellite instability refers to the high indel 
error rates in abundant microsatellites of human genomes, indicating a high damage 
level of DNA mismatch repair system and, thus, a high rate of somatic mutation in 
the development of cancer [89,90]. 

Besides DNA polymerase slippage, indels or SVs may also arise through the 
cellular repair of DNA structural changes such as double-stranded break, which may 
be caused by ionizing irradiation, metabolic by-products, or recurrent re-
arrangements [91–93]. Homologous recombination and non-homologous 
recombination are the two general mechanisms which causes changes in the structure 
of DNA sequences [94]. Homologous recombination requires extensive DNA  
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Figure 2. Indel formations by DNA strand slippage. Once DNA strand slippage occurs, a 

misaligned intermediate with unpaired nucleotides is generated. The misaligned 
intermediates may undergo proofreading or mismatch repair depending on synthesis 
processes and fix the misalignment. If this mislalignment escapes all the possible repair 
processes, it will result in a deletion or insertion for template and primer slippage, 
respectively. (Figure altered from [96]) 

sequence identity and a strand exchange protein (Rad51 in eukaryotes) to repair two-
ended and broken replication forks [95]. If the damaged DNA sequence is repaired 
with homologous sequence in the same chromosomal position of the sister chromatid 
or the homologous chromosome, there will be no change in DNA structure. But if 
the repair process utilizes homologous sequences in different chromosomal 
position as non-allelic homologous recombination, duplication and deletion can be 
formed [97,98]. Single-strand annealing is another mechanism of break repair that 
acts at directly repeated sequences such as Alu and results in small deletions [99].  

There are also mechanisms that repair broken DNA sequence by using very 
limited or no homologous sequences. Non-homologous end joining is one 
mechanism which is active in all cell cycle phases except mitosis and can re-join 
double-stranded break ends either accurately, or with small indels [100]. 
Microhomology-mediated end joining is another mechanism which requires 5–25 bp 
homologies sequence at the ends of double-stranded break and can leads to deletions 
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that are larger than non-homologous end joining indels but still relatively small (< 
30 bp) [101].  

In addition, one sub-class of retrotransposons, the non-long terminal repeat 
retrotransposons (includes the long interspersed nuclear element-1), is currently 
active in human genomes and can generate DNA insertions through RNA 
intermediates mechanism. A large number of insertions generated by 
retrotransposition events have been indicated as disease-causing variants in the 
human genome [102].  

Many indels have no effects on the function of the human genome and are located 
in intergenic regions or the non-coding components of genes. However, a large 
proportion of indels in the human genome is located within the known genes, 
promoters, or exons of these gene, whose gene functions are considered to be 
affected significantly [79]. In coding regions, if an indel causes nucleotide changes 
in numbers that are not multiples of three, the indel is called as a frameshift indel 
and could disrupt the normal reading frame and then result in the incorrect reading 
of the entire gene sequence. The frameshift indel has a significant impact on the 
protein because it will generate a completely different amino acid sequence or create 
a premature stop codon that prevents the protein sequence from growing. For 
example, a single nucleotide duplication occurring at the TNNC1 gene will cause 
hypertrophic cardiomyopathy and sudden death [103]. If the nucleotide change of an 
insertion or deletion is three or a multiple of three, then one or more codons will be 
removed or added. If the codon changes are located at important protein regions, 
such as the active site of an enzyme or an essential secondary structure of a protein, 
the indel may also have a significant influence. For example, cystic fibrosis, one of 
the most common human genetic diseases, is caused by a 3 bp deletion in the CFTR 
gene and leads to the removal of a single amino acid of the encoded protein. This 
single amino acid removal will cause an abnormal fold of protein and result in the 
degradation of protein, thus leading to the disease [104]. For indels located in 
regulatory regions, they might lead to mutated genes being expressed in the wrong 
tissues or overexpressed in the cell cycle, leading to uncontrolled cell division and 
hence to cancer [105]. For example, a 20 kb deletion located in the upstream 
regulatory region of the IRGM gene shows evidence for affecting gene expression, 
which modulates biological processes and causes Crohn’s disease [106]. In addition, 
large indels may alter the copy numbers of a gene in the genome and affect gene 
dosage. For example, the copy number changes in an active cytochrome P450 
CYP2D gene will cause the ultrarapid metabolism of debrisoquine; the copy number 
of the AMY1 gene is positively correlated with the starch content of the diets of 
several populations around the world [107,108].  

As described in the previous section 3.1.2, the size definitions for indels are not 
very clear. Because of the technical limitations, for example, the short reads from 
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NGS cannot cover large genome variants; some studies, such as method evaluations, 
novel algorithm developments, or benchmarking dataset validations, had to focus on 
indels with short size ranges, typically 1-50 bp [63,109,110]. Other studies may use 
specific methods to focus on large genome variants and treat indel as a sub-type of 
SVs or copy number variation [111,112]. Thus, current studies may classify indels 
into two artificial categories based on their sizes. Publication Ⅰ used both simulated 
and real data that contained indels with a wide size range to evaluate tool 
performance.   

3.1.4 Influence of the sequence context of genomic variants 
The previous section 3.1.3 has shown that indels are enriched in STRs. This indicates 
that the sequence context of genomic variants has an important impact on the 
functions of human genomes. As an important sequence context feature of genomic 
variants, especially indels, STR is also an essential component of the human genome. 
For example, proofreading of polymerase for indel mismatches in non-repeats or 
STRs are as efficiently as that for base-base mismatches. However, proofreading of 
polymerase is less efficiently in long repeat sequences than non-repeats or STRs 
[86,113]. Similarly, the rate of non-allelic homologous recombination positively 
correlates with repeat length, GC content, and DNA sequence identity, while it is 
inversely correlated with the distance between different repeats [114,115]. Indels 
that are located in STRs and that change STR copy numbers are known to be 
important for biological human health functions and are the reasons for some human 
genetic disorders. For example, Huntington’s disease is caused by an expansion in 
the HTT gene, which contains a CAG trinucleotide repeat and encodes an extended 
polyglutamine tract in the huntingtin protein [116,117]. A copy number increase of 
a CGG trinucleotide repeat in the 5' untranslated region of the FMR1 gene can cause 
fragile X syndrome by silencing the gene [118].  

As described in the previous section, microsatellite instability can be seen as a 
reflection of the impaired DNA repair system and is used as a biomarker in cancer 
diagnosis and treatment [119–123]. Another study showed that frame-shifting indels 
in STRs can be tolerated by transcriptional and translational processes due the highly 
similar nucleotide pattern in their sequence contexts [124]. Moreover, the sequence 
contexts, such as specific nucleotide features or patterns, can also influence the 
mutation rate of genomic variants. For example, several studies have demonstrated 
that (C+G)-rich trinucleotides have higher mutation rates than other types of 
trinucleotides [125,126]. Study [127] has shown that the mutability of a variant is 
jointly affected by nearby nucleotide patterns and the genomic features of the 
surrounding sequence contexts, such as GC content and histone modifications. The 
results of [128] established a mutability model and illustrated that the mutation rates 
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of sequences varied significantly between different trinucleotides in human 
genomes. 

Aside from STRs, variants located in nearby sequence contexts that are close to 
one another may also have a joint impact. One study has illustrated that the existence 
of nearby indels can increase the single nucleotide mutation rate, and another study 
has demonstrated that common indels had a strong linkage with nearby SNPs and 
can be generally well tagged according to it, which makes it possible to assess indels 
into human haplotype reference panels and use them as markers for genome-wide 
association studies [82,129]. Another study has identified 1135 genetic hotspot 
clusters with high variant density, which were highly associated with tumour 
suppressor genes and oncogenes [130]. Moreover, indels rarely occur as novel DNA 
patterns because of the mechanism of indel mutations, such as DNA polymerase 
slippage. Indels usually occur as patterns of multiple repeat motifs in a sequence 
context [82]. Indels with novel DNA sequences can be unique mutation events at 
certain genome positions across human evolutionary history and different 
populations [4]. Some studies have demonstrated that indels with novel DNA 
sequences might occur at the same position in the genome. These multi-allelic indels 
are informative about human evolution and migration. Other studies have shown that 
within a short distance to the indel hotspots, some secondary indels can occur, 
resulting in a multi-indel locus. These loci can be used as useful markers to improve 
discrimination for forensic purposes. [4,131,132].  

The sequence context of variants not only has biological effects on human health 
but may also result in technical issues, such as bioinformatics analysis. [133] 
demonstrated that the repeated sequence around indels causes positional and 
breakpoint ambiguity in identifying the accurate positions of indels. Positional 
ambiguity is caused by high similar nucleotide blocks, where a portion of a read can 
align to more than one certain region in the reference sequence (Figure 3A). This 
issue makes it difficult to know the exact size of an indel but might be solved by 
applying sequencing methods with sufficient long reads. The breakpoint ambiguity 
caused by the microhomologies surrounding the indel breakpoint makes it difficult 
to identify the exact breakpoint position of the indel (Figure 3B). The study revealed 
that 40% of deletions with sizes larger than 32 bp could not be identified with certain 
sizes or positions by pairwise alignments of sequencing with a 100 bp read length. 
In addition, the STRs around an indel may cause the indel to have different 
representations and lead to biologically equivalent but redundant indels in the 
database. [134] illustrated that the sequence context of an indel, such as STR, may 
create an equivalent indel region, where an indel can have multiple biological 
equivalent representations in a continuous genome region. The equivalent indel 
region of an indel can make sequencing read to align to a region instead of a single 
site. Thus, it lowers the read depth at the indel site and makes the indel filtered in  
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Figure 3. (A) Positional ambiguity. The top coloured line indicates the reference, the second small 

coloured line indicates the sequencing read, and the two bottom coloured lines indicate 
the samples. The shadow-coloured grams indicate the mapping possibility of the read. 
There are two orange blocks in the reference sequence, which makes the 5’ of the 
sequencing read mapped to two locations. This positional ambiguity will result in two 
different sizes deletions, L1 and L2, in the sample sequence with the same read. 
(Altered from [133]). (B) Breakpoint ambiguity. Compared with the reference sequence, 
three nucleotides were deleted in the sample sequence. Because the nucletide pattern 
‘CG’ existed in two locations, this deletion can be represented as two equivalent 
deletions in difference positions in the reference sequence coordinates.   

downstream computational analysis due to the low read depth. The authors 
emphasised the unambiguous annotation of an indel and suggested that databases, 
such as dbSNP [135], should annotate an indel with the equivalent indel region 
depending on its sequence context, which is a supplement to the single coordinate. 
[136] demonstrated that STR and breakpoint ambiguity were main factors that 
causing the low recall of insertions with short-read based variant calling tools. [137] 
investigated the breakpoint ambiguity of indels and developed a universal 
positioning system for annotating indels. With their annotation system, the authors 
found that 15% of indels in the dbSNP database and 29% of indels in the COSMIC 
database were redundant [138]. [139] developed a computational algorithm to 
recognise indels that had breakpoint ambiguity and may need to be normalised into 
unambiguous and concise representations. With the algorithm, they found that 
14.9% of indels in the dbSNP database needed to be normalised. In addition, the 
variant nomenclature recommended by the Human Genome Variation Society 
(HGVS) has the 3’ rule for variant representation, which means that variants should 
be represented at the most 3’ possible aligned position of the reference sequence. 
However, in high-throughput genomic sequencing data analysis, variants are usually 
represented at the most 5’ possible aligned position. For a breakpoint ambiguous 
variant, especially a breakpoint ambiguous indel, the 5’ aligned position and 3’ 
aligned might be different and further cause troubles for the conversion of variant 
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nomenclature [61]. In my Publication Ⅰ, the results showed that nearly half of FP 
indel calls with different indel calling algorithms were located in simple repeats, 
indicating that the low complexity and highly diverse sequence context might be 
related to the FP results. Because of the complexity and biological significance of 
the sequence context of genomic variants, in Publication II, a novel computational 
tool named VarSCAT was developed with the aim of comprehensively annotating 
the sequence context of genomic variants, such as breakpoint ambiguity, flanking 
sequences, conversion of HGVS nomenclature, and tandem repeats in a high-
throughput way.  

3.1.5 LncRNAs in the human genome 
Transcription is the process of passing genetic information from DNAs to RNAs. 
For the most part, the transcription process is carried out by RNA polymerase II, 
which transcribes DNAs to mRNAs, and then mRNAs can be translated into proteins 
[140]. The C-value paradox during the 1950s troubled scientists; that is, less complex 
animals, such as salamander, can have a genome that is 15 times larger than that of 
more complex animals, such as humans [141,142]. Later, the paradox can be 
explained that not all DNA can be translated into proteins, most of their DNA is non-
coding and thus, the genome size cannot reflect gene number. During the 1970s, it 
was estimated that the human genome was unlikely to have more than 30,000 genes 
[143,144]. Non-coding DNA was first treated as junk DNA, which accounts for 
50%–70% of the human genome as transposons, pseudogenes and simple repeats 
[145]. During the 1950s, the discovery of transfer RNAs that were transcribed by 
RNA polymerase III and ribosomal RNAs that were transcribed by RNA polymerase 
I provided evidence that a significant number of non-coding DNAs can be 
transcribed into non-coding RNAs, which had important biological functions 
[146,147]. In the 1980s, more evidence showed that non-coding RNAs, including 
small nuclear RNAs and telomerase RNAs, were involved in complex biological 
processes, such as protein expression and genome regulation [148,149]. With the 
help of sequencing technology, it has been estimated that around 70%–90% of the 
human genome is transcribed at some point during development [150–153]. The 
GENCODE project aimed to deliver a definitive annotation of functional elements 
in human and mouse genomes via manual curation, computational analysis, and 
targeted experimental approaches. Current statistics from GENCODE showed that 
only one-third of the total genes (19,393 out of 62,703) in the human genome are 
protein-coding genes (GENCODE Release 43) [13].  

Different types of non-coding RNAs differ greatly from one another in 
biogenesis and molecular functions. Basically, they can be classified as 
infrastructural and regulatory non-coding RNAs. Infrastructural non-coding RNAs 
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include transfer RNAs, ribosomal RNAs, small nuclear RNAs, and small nucleolar 
RNAs. These infrastructural non-coding RNAs, which are mainly involved in 
protein synthesis, have regulation functions for recognising and interacting with 
sequence-specific RNA substrates in the translation and splicing process [154]. 
Others may play essential roles in chromosome maintenance; for example, a small 
nucleolar RNA box H-ACA is a component of telomerase, which has a function for 
extending telomeres [155].  

Regulatory non-coding RNAs mainly base pair with other DNAs, RNAs, or 
proteins to form complexes, and they have functions in regulating biological 
processes. For example, the RNA-induced silencing complex uses a single strand of 
RNAs as a guide strand to recognise and cleave mRNAs. The process is known as 
RNA interference, which reduces the levels of transcripts available to be translated 
by ribosomes [156]. Conventionally, regulatory non-coding RNAs are classified into 
small non-coding or lncRNAs based on their sizes. The sizes of lncRNAs are 
considered to be more than 200 nucleotides, and non-coding RNAs smaller than this 
are termed small non-coding RNAs [157–159]. Some studies have attempted to 
distinguish lncRNAs based on their biological functions instead of arbitrary 
thresholds in size. Therefore, some lncRNAs may not necessarily exceed 200 
nucleotides. For example, human transcripts hsa-mir-423 and FLJ13453 are marked 
as lncRNAs in the RNAcentral database, with sizes of 94 and 111 nucleotides, 
respectively [160]. In addition, some lncRNAs may have functions as infrastructural 
non-coding RNAs, and some of these RNAs, such as small nuclear RNAs, may have 
functions in regulating biological processes, which makes the classification of non-
coding RNAs not absolute [161,162].  

Current lncRNA classifications are usually based on their genomic context 
with respect to protein-coding genes. The classification proposed by the 
GENCODE database is one of the most frequently used. According to GENCODE, 
lncRNAs can be roughly grouped into five categories: 1) antisense RNAs, which 
are located on the opposite strand of a protein-coding gene and overlap with any 
exon; 2) long intergenic non-coding RNAs, which are located in the intergenic 
sequence space and do not overlap any protein-coding genes; 3) sense overlapping 
transcripts, which are located on the same strand of a protein-coding gene and 
contain its introns; 4) sense intronic transcripts, which are located in the introns of 
a coding gene and do not overlap with any exons; and 5) processed transcripts, 
which do not contain an ORF and cannot be classified into any of the above 
categories [163]. The ORF consists of a set of consecutive non-overlapping codons 
that can be translated into a protein. Some studies may also list pseudogenes and 
divergent transcripts as other categories. A pseudogene has homology to a protein-
coding gene but has a disrupted coding sequence [164]. Divergent lncRNAs are 
transcribed in the opposite direction to nearby protein-coding genes from 
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bidirectional promoters [165]. In addition, lncRNAs can be grouped as linear 
RNAs and circular RNAs based on their structures. The above classification of 
lncRNAs based on genomic context is mainly for linear RNAs [166]. Circular 
RNAs are formed by the back splicing of pre-mRNAs, in which an upstream 
acceptor is merged with a downstream donor. Circular RNAs may overlap with 
introns, exons or flanking regions of protein-coding genes and have been shown to 
have major gene regulation roles in complex diseases such as lung cancer [167]. 
Moreover, lncRNAs can be grouped based on functions either in the nucleus or in 
the cytoplasm for regulating transcriptional or post-transcriptional events, 
respectively [168,169].  

Many lncRNA genes are located far away from protein-coding genes or are 
expressed from enhancers [170,171]. Long non-coding RNAs are mainly transcribed 
by RNA polymerase II, and they undergo post-transcriptional processing events, 
including 5’ -capping, splicing, polyadenylation and chemical base modification 
[172]. LncRNAs are similar to protein-coding mRNAs but lack translated ORFs and 
have poorer primary sequence conservation. Usually, they have shorter ORFs with 
fewer but longer exons than protein-coding mRNAs. However, some lncRNAs may 
have long ORFs, whereas some mRNAs may have short ORFs that code for short 
peptides [173,174]. Because many lncRNAs have lower expression levels than 
mRNAs, they have been thought for a long time to be only transcriptional noise. 
Transcriptome-wide studies have shown that lncRNAs have specific expression 
profiles among different cell types, tissues, developmental stages or disease states 
[163,175]. Many tissues that express lncRNAs can be found, and the brain and 
central nervous system have the highest diversity of lncRNA expression [176].The 
expression profiles of lncRNAs often show correlation with mRNA expression 
profiles, indicating that certain lncRNAs may be co-regulated in expression networks 
[177].  

The molecular mechanism of lncRNAs can be grouped into four main 
categories: signals, decoys, guides and scaffolds [178]. As signals, lncRNAs can 
affect the signalling pathways of gene regulation at specific times to respond to 
diverse stimuli or at specific places for different developmental stages. The use of 
lncRNAs as mediating molecules to fulfil regulatory functions can be quickly 
performed and can avoid translation processes for protein expression. For example, 
lncRNA Xist plays an essential role in X inactivation, which is a process in 
mammalian female cells involving the inactivates of one paternal X chromosome 
to equalise the gene expression between males and females. During female 
development, Xist RNA is expressed from the inactive X chromosome and coats 
this X chromosome to repress the expression of most genes. Tsix RNA, which is 
an overlapping antisense lncRNA of Xist, represses Xist expression in cis and plays 
a role in the active X chromosome [179]. As a decoy, the lncRNA binds to a gene 
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regulator and prevents the effector molecule from binding to it, which negatively 
regulates the effector function in the neighbouring gene expression. For example, 
the human DHFR gene has a major promoter for initiating mRNAs and a minor 
upstream promoter for initiating lncRNAs. The transcribed lncRNAs can form a 
stable lncRNA-DNA complex with the major promoter sequences and directly 
interact with the general transcription factor IIB to inhibit the assembly of the 
preinitiation complex, thus repressing the gene expression [180]. As guides, 
lncRNAs interact with protein and change the gene expression either in cis (on 
nearby genes) or in trans (genes with distances). For example, an lncRNA RepA 
originating from the 5’ end of Xist interacts with polycomb repressive complex 2 
in cis, which plays an important role in the creation of a heterochromatic state of 
inactive X chromosome [181,182]. Another example is LincRNA-p21, which has 
an effect in trans on chromatin structure and gene expression across chromosomes 
[183]. As scaffolds, lncRNAs provide central platforms to support the molecular 
components that are assembled. For example, telomerase RNA possesses 
structures that contribute to the catalytic activity of the telomerase reverse 
transcriptase protein for extending telomeres [184].  

3.2 Development of sequencing technologies 
To reveal the sequence of the human genome, efforts have been made more than 50 
years ago, which also reflect the developmental history of sequencing technology. 
Sequencing is a laboratory process that determines the exact order of nucleotides in 
a small region, such as a gene, or even a large region, such as a whole genome. DNA 
sequencing is the process of determining the order of nucleotides of DNA sequences, 
whereas RNA sequencing can examine the quantity and sequence order of RNA 
sequences.  

3.2.1 The early efforts of sequencing the human genome 
In the history of DNA sequencing technology developments, there have been 
several milestone techniques. The first one is first-generation sequencing with the 
representative method of chain-termination, which was developed by Frederick 
Sanger, and the chemical cleavage procedure, which was developed by Maxam 
and Gilbert [185,186]. Both methods produce DNA fragments of different sizes 
in four reactions, then order and visualise the DNA fragments based on their sizes 
by using gel electrophoresis [187]. The order of the DNA fragments indicates the 
order of the four nucleotides, which is the sequence order of the sample DNA 
(Figure 4).  
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Figure 4.  An example of Sanger sequencing. The DNA fragments on each panel are terminated 

with a certain type of nucleotide, and shorter fragments travel longer on the gel because 
of their lighter molecular weight. The order of DNA fragments indicates the order of their 
terminated nucleotides, which further indicates the DNA sequence.  

With the experimental concepts and techniques of first-generation sequencing, 
shotgun sequencing was established for de novo assembly genomes. In shotgun 
sequencing, the sample genome is broken randomly into numerous small DNA 
fragments and are sequenced individually using the Sanger sequencing method 
[188]. The sequence of the bases of a small DNA fragment is called a read. 
Computational analysis is applied to assembles sequencing reads s into a continuous 
sequence as the genome [189].  

The Human Genome Project, which was a publicly funded international 
scientific research project led by the US National Institutes of Health with the goal 
of determining the sequence of the human genome was initiated in 1990. In the 
Human Genome Project, the hierarchical shotgun sequencing was applied to 
sequence the genomes of human donors [190]. Private funded companies led by 
Craig Venter and Celera Genomics also joined the competition for sequencing the 
human genome. Celera used the whole genome shotgun sequencing method, in 
which the entire genome is sheared randomly into small fragments for sequencing 
and then reassembled using a computer programme [191]. With the efforts of both 
public and private funded projects, the sequence of the human genome was first 
released as a draft in 2001 and then as a finished euchromatic sequence in 2004 
[32,191,192].  
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3.2.2 Next-generation sequencing 
Massively parallel deep DNA sequencing, also known as NGS, became commercially 
available during the Human Genome Project [193]. Compared with capillary 
electrophoresis-based sequencing methods, multiplexing NGS is the key change. In 
NGS processes, a complex library of DNA templates is prepared by randomly 
fragmenting the sample genome. With or without polymerase chain reaction (PCR) as 
the amplification option, these short DNA templates are ligated with adapters and 
immobilised onto a 2D surface [194,195]. In vitro amplification generates adequate 
copies of DNA templates to be sequenced. Detectors such as imaging techniques 
together with, for example, fluorescently labelled nucleotides, determine the types of 
bases by detecting biochemistry signals from DNA template sequencing [196]. 

In vitro amplification facilitates millions of DNA template sequencing in parallel 
by ensuring thousands of identical copies of a DNA template as a cluster located in 
a pre-known area on the flow cell; the signals from millions of individual reactions 
of each cluster can be distinguished from background noise [197]. Since the first 
NGS platform became commercial in 2005, intense competition in this field has 
started, resulting in the rapidly development of sequencing instruments and 
platforms [198]. During this time, several platforms, such as 454, SOLiD, Ion 
Torrent, and Illumina, have been developed, matured, marketed, and applied to 
various scientific projects [198–202]. Since 2012, the pace of improvement has 
slowed down, and Illumina has become the dominant commercial platform in the 
sequencing market, offering various scalable sequencing options with a fair financial 
cost [203]. Illumina platforms apply a sequencing-by-synthesis strategy, which uses 
terminator molecules to prevent elongation of DNA fragments. After DNA templates 
are amplified on the solid surface to form clusters, a mixture that contains DNA 
polymerases, primers for initiating polymerase binding, and all four base-specific 
fluorophore-labelled elongation blocking nucleotides are added. During each cycle, 
this mixture is added to the solid surface to incorporate with DNA fragments, so 
identical DNA fragment clusters can only be elongated by one type of nucleotide for 
each cycle and emit base-specific fluorescence. After incorporation, unincorporated 
nucleotides are removed, and the solid surface is imaged by an image-capturing 
device to identify which nucleotide is incorporated in each cluster by recognising the 
fluorescence emission spectrum. After the removal of the fluorophore and blocking 
group on the DNA fragments, a new cycle can begin again to identify the types of 
bases on the next positions of the DNA fragments [200].  

Based on the covered regions of the genome, NGS experiments can be classified 
as whole-genome sequencing (WGS), which captures whole regions of the genome; 
whole-exome sequencing (WES), which captures the whole regions of the exome; 
and targeted gene panel sequencing, which uses a gene panel to capture certain 
clinically relevant or other interested genomic regions. The cost of WGS per sample 
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is higher than that of WES and the cost of WGS per base is cheaper than that of WES 
[18]. Because of cost, in practice, the sequencing coverage of WGS (typically 30–
50×) is usually lower than that of WES (typically 100–300×), and the sequencing 
coverage of WES is usually lower than that of targeted gene panel sequencing 
(typically over 1,000×). Moreover, WGS helps to detect larger genomic variations, 
less sensitive to GC content and has to a more uniform coverage than WES [204]. 
Targeted gene panel sequencing is commonly used for clinical diagnosis, which 
includes the majority of known disease-causing genes and facilitates rapid 
identification with simpler deployment and lower costs [205]. Although the targeted 
gene panel NGS can test multiple genes simultaneously and replace Sanger 
sequencing in laboratory testing processes, Sanger sequencing is still needed to 
analyse regions where NGS has difficulties obtaining sufficient sequencing coverage 
and good-quality data. Sanger sequencing is also used as the gold standard to confirm 
variants from NGS analysis before they are clinically reported. With the maturity of 
NGS development, some studies have shown that Sanger sequencing confirmation 
is not necessary in clinical practice. However, the data from NGS must meet a high 
quality threshold and specific regions should be carefully considered [206,207].  

Many NGS sequencing library preparation kits, especially Illumina, have the 
option of generating paired-end reads. In paired-end sequencing, each read has a pair 
read, which offers more information about the genome structure for downstream 
bioinformatics data analysis algorithms (Figure 5). Paired-end sequencing can produce 
twice the number of reads in library preparation compared with single-end sequencing, 
and sequence alignment with read pairs enables more accurate alignments. Paired-end 
DNA sequencing has a good ability to detect common DNA rearrangements, such as 
SVs, and RNA paired-end sequencing can benefit gene fusion detection in cancer and 
novel splice isoforms discoveries [20,208]. Despite the benefit of using paired-end 
sequencing, single-end sequencing, which involves simply sequencing DNA from 
only one end, has its own application in studies of small RNA-seq or chromatin 
immunoprecipitation sequencing with a fast and economical option. Today, paired-
end sequencing is the most popular approach in human genome studies. 

 
Figure 5.  A demonstration of paired-end sequencing. The fragment is the sequencing molecule 

that is hybridised with the oligonucleotide on the surface of the flowcell. It contains the 
adapters with all the sequencing sections and the DNA inserted from the sample. Reads 
1 and 2 are sequenced from different directions, and the distance between two reads is 
the inner distance. 
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Although different NGS platforms have their own advantages, disadvantages and 
technical foci, error rates are among the most important factors that help researchers 
choose a suitable sequencing platform for their experimental designs. The error rate 
comparison among different NGS platforms has been a research focus since the 
sequencing technique was developed. Although the NGS platform has been 
developed and improved through the years, many studies have been conducted to 
survey error rates, and generally, the error rates of Illumina platforms are around 
0.1%–0.5% [209–214]. One large database analysis [214], which was published in 
2021, examined 1,943 different datasets from seven Illumina sequencing platforms. 
The results showed that the more expensive platforms, such as Hiseq, had lower error 
rates at around 0.1%, and error rates were associated with sequence context where 
bases towards the same type. Some studies have also demonstrated that particular 
library preparation methods or computational analysis procedures can dramatically 
suppress sequencing error rates [213,215].  

3.2.3 Third-generation sequencing 
In the human genome, many complex elements, such as large indels and tandem 
repeats, play important roles and are relevant to evolution and diseases [216,217]. 
The sizes of these complex elements are so large that the short reads of NGS, 
typically up to hundreds of base pairs, cannot fully cover them. In addition, the 
amplification steps in NGS may introduce sequencing errors or sequence-dependent 
biases, thus limiting the accuracy of sequencing. To solve these problems, efforts 
have been made to develop other sequencing approaches than NGS, such as 
producing single continuous reads to cover a large genome region. Nowadays, long-
read sequencing platforms, also known as third-generation sequencing, can produce 
long reads without amplified DNA fragments and have become increasingly 
important in the field. Currently, there are two widely used long-read sequencing 
platforms: the single-molecule, real-time sequencing platform developed by PacBio 
and the platform developed by Oxford Nanopore Technologies.  

The PacBio sequencing platform uses a specialised flow cell containing 
thousands of individual wells with a zero-mode waveguide at the bottom of each 
well to conduct sequencing. The DNA template fragment is ligated to hairpin 
adapters at each end, forming a circular structure with single-stranded DNA at each 
end and a double-stranded DNA template in the middle. Primers, fluorophore-
labelled nucleotides, and a modified DNA polymerase are added to each zero-mode 
waveguide. The DNA polymerase is fixed at the bottom of the zero-mode 
waveguide, and the DNA strand grows through it in a constant location. The 
fluorophore-labelled nucleotides are incorporated into each single-molecule DNA 
template as an elongation process, and the emitted colour signals are captured by a 
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laser and a camera system to visualise sequencing. There are two sequencing modes 
for the PacBio platform. One is the circular consensus sequencing mode, which 
produces highly accurate long reads by sequencing templates multiple times. 
Another is the continuous long read sequencing mode, which can generate the 
longest possible reads; over 10 kb is typical and some even approaching 100 kb 
[218,219].  

The Oxford Nanopore Technologies sequencing platform detects the DNA 
composition of a single-stranded DNA fragment about 8–10 kb in length without a 
secondary signal, such as a fluorescence spectrum or pH change. In the electric field-
driven sequencing process, the leader sequence with the adapter directs the DNA 
fragment to the nanometre-scale protein pore with the current passing through. As 
the DNA fragment is translocated through the pore, a shift in voltage through can be 
observed and interpreted as a particular k-mer sequence. The platform has thousands 
of possible signals for each k-mer. When the next base passes through the pore, a 
new voltage shift for the k-mer is identified. The hairpin structure of the DNA 
fragment and adapters allows the forward and reverse strands to be sequenced in 
order to create a consensus sequence [220,221].  

The sequencing error rate for the long-read sequencing platform is relatively high 
(85%–90% accuracy for PacBio platforms and 96%–99% for Oxford Nanopore 
Technologies platforms) compared with NGS platforms when this thesis was 
written, which may limit downstream analysis, such as genome assembly and variant 
calling. However, efforts have been made to improve sequencing quality; for 
example, the circular consensus sequence approach, which is branded by PacBio as 
HiFi sequencing, can produce reads with an accuracy of > 99.9% [222,223]. These 
initiatives have made the application of long-read sequencing widely used in 
scientific research in recent years [224].  

3.2.4 RNA sequencing 
The early sequencing of RNA was not an easy task. The first whole nucleic acid 
sequence, which consists of alanine transfer RNA containing 76 nucleotides, was 
produced by Robert Holley and colleagues in 1965. In their sequencing method, an 
RNA molecule was first cut by RNase enzymes at specific sites that were already 
known and available, and then the fragments of RNA were separated by 
chromatography and electrophoresis. The nucleotides of each fragment were 
determined using sequential exonuclease digestion, and the sequence of the RNA 
molecule was deduced by overlapping each fragment [225]. However, the single-
stranded structure of RNA is very unstable and easily degraded in cells, which limits 
the accurate sequencing of larger transcripts. With the discovery of reverse 
transcriptase, single-stranded RNA molecules can be converted into double-stranded 
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DNAs, which are complementary DNAs [226]. Facilitated by the DNA sequencing 
system and the PCR method, the reverse synthesised DNA made it possible to 
sequence RNAs by sequencing their complementary DNAs and contributing the 
birth of RNA-seq technology.  

Compared with DNA sequencing, RNA-seq has additional steps. A typical 
RNA-seq experiment consists of isolating RNA from a cell or tissue population, 
converting it to complementary DNA, constructing the sequencing library, 
conducting PCR amplification and sequencing it on an NGS platform [227]. RNA-
seq on NGS platforms allows for the analysis of complex samples, which makes 
RNA-seq cost-effective. RNA-seq libraries can pool multiple indexed samples in a 
single sequencing lane by introducing unique 6 bp barcodes to each RNA-seq library, 
which helps identify from which sample the read originated [228]. The expression 
level of RNA differs in cells. The optimal sequencing depth, which is the number of 
how many times that a given nucleotide in the genome has been sequenced, is a key 
factor in the experiment for the precise detection and quantification of transcripts. 
The suggested sequencing depth for the human genome varies from as few as five 
million reads per sample for quantifying highly expressed genes, to generally 20–30 
million reads per sample for studying differentially expressed genes, and even up to 
100 million reads for quantifying precisely low expressed genes and transcripts 
[227,229,230]. To detect the full sequence diversity of complex sample libraries 
even including low expressed transcripts, some studies have suggested that the 
number of reads of NGS resources should be up to 500 million [231].  

Currently, the Illumina sequencing platform is the dominant RNA-seq platform 
in the sequencing marketing. However, NGS platforms have limitations. Short-read 
sequencing encounters difficulties in sequencing very long transcripts or highly 
diverse isoform sequences, and PCR amplification of NGS may introduce biased 
RNA expression levels, requiring additional specific steps to control it. These 
limitations boost the application of long-read technologies for RNA-seq, which 
enable the sequencing of whole individual RNA molecules by converting RNAs into 
complementary DNAs and then sequencing them or directly sequencing RNAs. The 
third-generation, long reads of sequencing platforms developed by PacBio and 
Oxford Nanopore Technologies can identify longer and more complete transcripts 
with isoform diversity, reduce the ambiguity in the mapping of short sequencing 
reads and simplify de novo transcriptome analysis [232–234]. Although long-read 
RNA sequencing techniques have some clear advantages over short-read RNA 
sequencing, they also have distinct limitations. Compared with the throughput of 
short-read sequencing, that of long-read sequencing is lower. This may limit the use 
of long-read sequencing in differential gene expression studies because of reduced 
sensitivity, but it may not be necessary for RNA isoform discovery and 
characterisation [235]. In addition, long RNA molecules may not always be present 
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as full-length transcripts because of degradation or shearing during sample 
preparation, which limits the usage of long-read sequencing in full-length 
transcriptome analysis and requires careful control to produce high-quality samples 
[230]. Significant efforts and developments have been made to improve long-read 
RNA sequencing techniques as the current-generation sequencing methods, which 
have great potentiality for future RNA-seq analysis [222,223].
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4 Data analysis of genomic variants 
and lncRNAs 

4.1 Format and quality control of sequencing data 
After the sequencing data are collected, which consist of many sequencing reads 
from the sequencing platform, a typical bioinformatics analysis will be executed. As 
with any other data analysis, the first step in sequencing data analysis is quality 
control. The quality of the sequencing data is very important and can have a 
significant impact on various downstream analyses, such as sequence alignments, 
variant calling, and gene expression studies. In NGS sequencing data, sequence 
artefacts, such as base calling errors, small indels generated during the amplification 
process, reads with poor quality and primer contamination are common issues. 
Commercial vendors provide quality control pipelines for their sequencing platforms 
to filter the output, but quality issues that are affected by other factors regardless of 
the sequencing platform may still exist in the sequencing data. Thus, additional tools 
and steps are needed for quality control before any downstream analysis is 
conducted, such as the FastQC package developed by the Babraham Institute 
bioinformatics group or NGS Quality Control Toolkit  [236,237].  

4.1.1 Format of sequencing data 
The sequencing reads produced by the sequencing platform usually come in FASTQ 
format, which is designed for sharing the sequence of reads with associated per-base 
quality scores [238]. For each sequencing read in FASTQ format, there are four lines. 
The first line starts with ‘@’, which is the identifier of the read with a free format, 
usually containing information such as sequencing instrument name, run ID, and 
read length and so on.  The second line is the sequence line, which contains the raw 
sequence letters for the order of nucleotides. Usually, the letters, ‘A’, ‘T’, ‘G’, ‘C’ 
or “U” are used to represent different types of nucleotides, and the letter ‘N’ is used 
in the large reference genome to represent a sequence gap or unannotated regions. 
The third line usually begins with a ‘+’ character and is optionally followed by the 
same sequence identifier as in the first line. Usually, the third line just contains ‘+’ 
to reduce the file size. The fourth line is the quality line, which contains the 
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corresponding quality scores per base for the sequence line. During the sequencing 
process, the light signals recorded by the image-capturing device of a sequencing 
platform are converted into corresponding nucleotide bases. The certainty or 
estimated probability of the error of each base call is measured using statistical 
models based on base information, such as signal intensities from the recorded image 
and sequencing cycle. The quality score of each base is introduced by the PHRED 
quality score, which is defined in terms of the estimated probability of error and 
encoded with a sub-set of ASCII printable characters [238,239]. This step, known as 
base calling, is usually automatically performed by the sequencing platform itself. 

4.1.2 Quality control of sequencing data 
The per-base quality score is the most important parameter to check for raw 
sequencing read quality. A plot that draws boxplots of base quality scores versus 
sequencing cycles is a common way to visualise base quality. For Illumina NGS 
platforms, the base quality usually starts out high but drops gradually as the 
sequencing cycle increases. The reason is that a proportion of reads in the cluster 
does not grow at the same rate as the others; this will slowly lead to a 
desynchronisation as the errors accumulate and cause the base quality scores to drop 
towards the end of the reads. For paired-end read sequencing, it is common for the 
first end of the read to have higher overall quality scores than the second end, which 
can be explained by the long fragment length of the sequencing library [240,241]. 
Despite the low base quality scores towards the end of reads, the overall low or 
largely varying base quality scores of the reads usually indicate the low quality of 
DNA samples or library preparation. As this low-quality score may indicate 
inaccurate sequencing, which may lead to erroneous conclusions from downstream 
analysis, the common way of dealing with low-quality bases at the end of the read is 
to trim them off.  

The per-base sequence content, which describes the nucleotide distribution, is 
another useful quality control parameter for WGS or WES but not for amplicon-
based or RNA-seq samples. In the sequencing run of good-quality data, the 
distribution of the four nucleotides should remain relatively stable. Poor-quality 
sequencing data usually have large fluctuating nucleotide distributions. The per-
sequence GC content sequenced can also be used as a quality control parameter. An 
abnormal GC content percentage, which shows a large deviation from the theoretical 
distribution, can indicate the contamination of sequencing samples [240]. 
Furthermore, the technical sequences within the reads, which may indicate adapters 
and PCR primer contamination, must be to be trimmed before proceeding with any 
downstream analysis, such as sequence assembly or alignment. Some 
overrepresented sequences may indicate that the sequence library is contaminated, 
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or technical duplicates arise from the PCR artefacts, but it could also have biological 
meaning, especially when analysing small RNA libraries [236]. Users are suggested 
to have prior knowledge when judging the quality parameters of sequencing data.  

Tools such as Trim Galore! [242] and Trimmomatic [243] provide users with 
functions and different options for trimming low-quality bases from sequencing 
reads. Furthermore, these tools could detect and trim off potential technically biased 
sub-sequences, such as adapter or primer sequences. However, sometimes poor-
quality data cannot be improved just by trimming. In addition, the read length is 
usually shorter after trimming, which will lower the sequencing coverage and cause 
troubles for downstream analysis. In practice, the sequencing data should be 
examined again by quality control after trimming through quality control to confirm 
whether the quality of data meets expectations.  

4.2 Building human genomes with sequencing data 
The first human genome sequence was published as a draft in 2001 [32]. The built 
human genome sequence can be used as a reference and the reads generated by 
sequencing platforms can be aligned with it using different alignment algorithms. 
With alignment methods, the efficiency of building individual’s genome is 
significantly improved, and variations in sequenced samples can be detected by 
comparing the differences between aligned reads and the reference sequence [244]. 
But before the first human genome was published, there was no reference that could 
be used. The de novo assembly method, which is a reference-free method, can 
assemble reads into short contigs and scaffolds and then merge them into 
chromosomes and build the sample genome. Studies of species that lack reference 
sequences can use this strategy to access the genome. Furthermore, human genome 
studies performed with third-generation, long-read sequencing techniques used de 
novo assembly to build human genome sequences. With long read sequencing data, 
which can resolve most of the long repeat regions of the human genome, the 
complete sequence of a human genome was published in early 2022 [245].  

4.2.1 Current assemblies of the human reference genome 
The human reference genome assembly is a critical resource for biological and 
clinical research; for example, genomic variants can be represented by the 
corresponding positions, and transcripts can be mapped to the genome assembly with 
clinical annotations. The first draft sequence of the euchromatic portion of the human 
genome was published in 2001 by the International Human Genome Sequencing 
Consortium [32,191]. Since then, with the collaboration of international research, 
the draft has been converted into the first finished human genome assembly with 
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high accuracy and nearly complete coverage, which was published in 2004 [192]. 
The first finished human genome assembly, also known as Build 35, still contains 
341 gaps, regions represented by uncommon alleles, and sequence errors, such as 
valid deletion alleles or incorrect multi-copy genes [246,247]. Furthermore, this 
build was designed as simple linear genome sequences, which are insufficient for 
representing human genome regions with high complexity and structural diversities 
[248,249].  

With the aim of providing a high-quality human reference assembly for 
biological and clinical research communities, the Genome Reference Consortium 
(GRC), which is an international consortium with expertise in genome mapping, 
sequencing, and informatics, was formed to address this issue. In June 2009, the 
GRC published a major release of the human reference assembly GRCh37. GRCh37 
was generating using a hierarchical-based assembly method. The GRC assembly was 
constructed from sequenced bacterial artificial chromosomes that were ordered and 
oriented along the human genome. Unlike previous releases, GRCh37 contains three 
regions with nine alternate locus sequences, which are alternate representations of 
loci found in a largely haploid assembly to represent highly variable genome regions. 
The study of GRC demonstrated that the inclusion of alternate representations for 
genomic loci can improve alignment quality and variation calling with NGS data. In 
addition, GRC also introduced the concept for “minor assembly” which updates the 
genome as patches. A genome patch updates the assembly information, which 
corrects errors in the assembly or adds additional alternate loci without disrupting 
the chromosome coordinate system [250]. GRCh37 has 13 patch releases until June 
of 2013, which is GRCh37.p13. In addition, GRCh37 stands for Genome Reference 
Consortium human build 37 but is commonly nicknamed hg19, which stands for 
human genome build 37 in the context of the UCSC Genome Browser. 

Despite GRCh37 having many advantages and serving as a gold-standard human 
reference assembly, there are still some assembly issues that GRC places special 
emphasis on, including tiling path errors and sequence gaps associated with complex 
genome structures, base pair-level sequence errors, paralogous sequences with 
population variation and genomic features such as centromeres and telomeres. With 
the development of both bioinformatics and experimental resources and techniques, 
a major release of human reference assembly GRCh38 was published in December 
2013, which was more complete and provided better gene and variant representations 
than GRCh37 did. The current patch release is GRCh38.p14, which contains 178 
regions with 261 alternate loci. Compared with GRCh37, GRCh38 contains more 
genes and protein-coding mRNAs, less partially represented coding sequences and 
transcripts split over assembly gaps. Moreover, GRCh38 replaces the 3 Mbp 
centromeric gaps on all GRCh37 releases, which shows improvement in sequencing 
read mapping and variant calling [251]. Evaluation studies showed that the 
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improvement of GRCh38 resulted in a more reliable genomic analysis, such as read 
alignment against the reference, variant calling in clinical-related regions and 
population variation with alternative loci [252,253]. 

Although the human reference assembly from the GRC has been widely used in 
scientific research, its limitations cannot be ignored. The human reference assembly 
from the GRC has an underrepresentation of repetitive sequences that are left 
unfinished or incorrectly assembled [254]. Moreover, some regions of GRCh38, 
such as centromeric alpha satellite arrays, are incorrect, and the entire GRCh38 also 
shows a genome-wide deletion bias, which may indicate incomplete assembly 
[81,255]. Therefore, to continually improve the quality of the human reference 
assembly, efforts have been made with third-generation, long-read sequencing and 
whole genome assembly methods. Given the low individual read accuracy of long-
read sequencing platforms during that time, the genome of a complete hydatidiform 
mole (CHM), which is the homozygous genome arising from the loss of the maternal 
complement and the duplication of the paternal complement post fertilization, was 
used to sequence the human haploid genome because it lacks heterozygous variants. 
The advantage of these homozygous genomes, such as CHM1 and CHM13, in 
resolving complex regions shows great potential for future updates of the human 
reference assembly. Improvement have been made for closing or extending the 
remaining interstitial gaps, correcting misassembles and better representing 
repetitive elements and segmental duplications in the current human reference 
genome assembly [81,256,257]. An evaluation study showed that these new haploid 
assemblies may be more reliable in variant calling than GRCh38 is, but they contain 
fewer gene representations and have lesser human diploid complexity [252].  

In addition, at the time of writing this thesis, the completed sequence of a human 
genome was published in March 2022 [245]. Third-generation, long-read sequencing 
methods, namely, PacBio HiFi and Oxford Nanopore ultra-long-read sequencing, 
were used to sequence the uniformly homozygous CHM13hTERT cell line. The 
results, which were called T2T-CHM13 (T2T stands for telomere-to-telomere), 
generated by whole-genome, graph-based assembly methods, showed the hidden 8% 
of the human genome, including centromeric regions and the entire short arms of 
five chromosomes. Compared with GRCh38, T2T-CHM13 reduced the number of 
contigs from 949 to 24 and increased the number of genes by 5.7%. Although T2T-
CHM13 lacks the Y chromosome, it shows great potential for future human genome 
studies. 

4.2.2 De novo assembly of a genome sequence 
Before the first human genome assembly was published, there was no reference 
sequence with which sequencing reads could align. In addition, reconstructing a 
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genome from sequencing reads is an integral step in the genome project of any 
species [258,259]. Therefore, de novo assembly, which does not require a reference 
genome, is performed to assemble a genome with sequencing reads.  

There are several methods for de novo assembly [260]. For example, tools such 
as Celera Assembler [261], Arachne [262], PCAP [263], Canu [264] and AMOS 
[265] use overlap graph-based methods to construct genomes from sequencing reads. 
These methods first find overlaps among all reads and then use these reads to form 
layouts on a graph before finally constructing the consensus sequences. Other tools, 
such as SOPAdenovo2 [266], ABySS [267], ALLPATHS [268], EPGA2 [269], Flye 
[270] and WENGAN [271], use the de Bruijn graph to construct genomes [272]. In 
the de Bruijn graph, each node is represented as a k-mer, which is k consecutive 
bases in one read. A directed edge between two nodes will be formed if there is an 
overlap with k–1 bases between the two reads. As for assembly methods, a set of 
short overlapping sequences denoted by k-mer will be formed to replace each read. 
The value of k should be set accordingly because it is an important value for 
constructing a genome. A larger value of k can remove some short repetitive regions 
and the number of nodes, but it can increase the number of gap regions. A small 
value of k reduces some gap regions but increases short repetitive regions and the 
number of nodes. Contigs are formed by merging k-mers that appear adjacently in 
reads [269,270]. The benefit of less storage than pairwise overlaps and the graph-
based representation of the repeat structure of the genome make the de Bruijn graph 
widely used in sequence assembly tools [260]. String graph-based methods, which 
share some similarities with overlap graph-based and de Bruijn graph-based 
methods, are also widely used in de novo assembly. Compared with overlap graph-
based and de Bruijn graph-based methods, string graph-based methods remove 
duplicated reads and formulate assembly with the full-length of a sequence read 
instead of k-mers. Tools such as SGA [273] and FALCON [274] were developed 
based on this.  

Because of the reference-free analysis procedure of de novo assembly, it 
provides opportunities to study complexities of the human genome that lack 
annotations from the current build of the human genome reference. Research has 
been conducted using third-generation, long-read sequencing techniques with de 
novo assembly methods to study the complexities of human genomes, such as 
segmental duplications [275], interstitial gaps [81], variant diversity [276] and the 
completed human genome [245]. 

4.2.3 Read alignment against a reference genome sequence 
Next-generation sequencing can produce a massive number of reads from the 
sequenced samples, representing a powerful technology for studying the human 
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genome. Aligning sequencing reads to a reference genome, which is downstream to 
quality control, is the first crucial step in NGS data analysis or pipelines, including 
variant calling, isoform quantitation and differential gene expression [277–279]. The 
alignment process can determine the likely point of origin of each sequencing read 
with respect to the reference genome [280].  

Although these algorithms are complex, depending on the strategies employed 
behind them, alignment algorithms or aligners can be largely grouped into two 
categories: hash table-based algorithms and Burrows–Wheeler Transform-based 
algorithms [281–283]. For the hash table-based algorithm, it essentially follows a 
seed-and-extend paradigm, in which BLAST is the representative method [284]. 
First, it keeps the position of each k-mer sequence of the read in a hash table and 
scan the genome sequences of k-mer exact matches by looking up the hash table, 
which is the step of seed detection. The algorithm then extends and joins the seeds 
with a dynamic programming algorithm, such as Smith-Waterman alignment [285]. 
Tools such as SOAP [286], SeqMap [287], MAQ [288], RAMP [289], PerM [290] 
and ZOOM [291] are further developed, and the spaced seed method is applied, 
allowing internal mismatches to improve the sensitivity of alignment. SHRiMP 
[292] and RazerS [293] use the q-gram filter, which allows gaps within the seed to 
implement multiple alignments. Because some reads in repetitive regions may have 
too many seeds that should be checked, hash table-based algorithms may give 
relatively poor results [282].  

To enable rapid read searching and address alignment to repetitive regions of the 
reference genome, some better data structures, such as suffix tree, enhanced suffix 
array [294], and Ferragina-Manzini index [295], are applied. To reduce the memory 
occupation of these data structures, Burrows–Wheeler Transform [296], which is a 
text compression algorithm, is applied as a solution. Tools such as MUMmer [297] 
and OASIS [298] are based on a suffix tree, Vmatch [294] and Segemehl [299] are 
based on an enhanced suffix array, and Bowtie [300], BWA [301] and SOAP2 [302] 
are based on the Ferragina-Manzini index. 

In the history of NGS development, the growing read length is one of the most 
significant features. Initially, the sequencing reads from Illumina platforms were 
only 25 bp. When the technique developed reads with more than 100 bp, gapped 
alignment methods benefited genomic studies, such as variant calling, especially 
indel calling. With gapped alignment, a read containing an indel could be mapped to 
the correct position instead of being mapped as a mismatch. In addition, paired-end 
sequencing techniques provided paired-end information for alignment tools to 
estimate the sizes of some repetitive regions and SVs. An evaluation study showed 
that alignment tools using the base quality scores of reads to calculate the error 
probability of each base had better alignment accuracy [134,281]. In addition, there 
are other methods in the category of re-alignment or local re-assembly that perform 
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reads alignment only for a locus of the genome. The general alignment tools map a 
read to a location independently without considering the correction between other 
reads; however, reads from the same locus are highly correlated. These methods use 
corrected reads in the same locus to refine the alignment and attempt to have a better 
representation of the sequenced genome, especially for the regions containing indels.  

4.2.4 Data format of the read alignment 
During the development of NGS data analysis, the data format for the short-read 
alignment produced by NGS against a reference genome complied with a standard. 
In a conference call on October 21, 2008, the data processing sub-group of the 1000 
Genomes Project, which was an international collaboration project to produce an 
extensive catalogue of human genetic variation, decided to unify a variety of short-
read alignment formats into a Sequence Alignment/Map (SAM) format [303]. The 
SAM format is a text-based format which the file contains the information of 
sequencing reads towards the reference sequence; it has a binary representation, the 
BAM format, which was designed to improve computational performance. The SAM 
and BAM formats are still being updated, and the most recent specification is version 
1.6, which was published on August 22, 2022 [304].  

The SAM format consists of one header section and one alignment section, and 
all lines are delimited by TAB. The header section starts with the character ‘@’, 
which contains information on the sequencing experiments. The alignment section 
has 11 mandatory fields and a variable number of optional fields, including read 
group information and the sequencing platform. Among these fields, the most 
important one is the CIGAR string, especially for variant calling. The CIGAR has 
nine operations to describe the pairwise alignment compared with the reference, such 
as match, deletion, insertion and clipping [303,304].  

In the NGS data analysis, the sequencing reads in FASTQ format can first be 
aligned against the reference sequence using alignment tools. The alignment process 
generates sequencing data into a SAM file. Then, the SAM file can be converted into 
a BAM file and further sorted and indexed, with the purposes of fast random retrieval 
of alignments and efficient usage of computational resources. SAMtools is a 
commonly used library and software package for parsing and manipulating alignment 
data in SAM/BAM format [303]. To implement the stable and robust application 
programming interfaces of the functions of SAMtools, the HTSlib, which is a 
dedicated programming library in C/C++ language, was published for processing 
common data formats used in high-throughput sequencing, such as FASTQ, SAM and 
BAM. The HTSlib also has the ability to bind with other bioinformatics tools encoded 
with various programming languages, such as Python and R, facilitating the analysis 
of sequencing data and boosting the development of sequence analysis tools [305].  
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Nowadays, SAM/BAM and the corresponding analysis tools/libraries are used 
not only for NGS data but also in third-generation, long-read sequencing data 
analysis as the primary format of alignment; they facilitate the analysis of noisy read 
alignments of millions of bases in length [306]. Read alignment formats, such as 
Compressed Reference-oriented Alignment Maps, has also been developed and is 
accepted by the research field.  

4.3 Indel calling with NGS data 
After the read alignment processes, the read alignment file, such as a sorted and 
indexed BAM file, can then be analysed using variant calling tools to detect and 
genotype genomic variants, such as SNPs, indels and SVs. Usually, the raw output 
variants from variant calling tools will be filtered based on information, such as read 
depth, strand biases and quality scores, to reduce the number of FP variant calls. To 
make sense of variant calls, tools for automated variant annotation have been 
developed. These tools can integrate genome information available in other 
resources, such as genome annotation tracks of the UCSC Genome Browser [307], 
to annotate variants about genes that they are located at or allele frequencies in 
certain populations. Some precomputed scores, such as the Sorting Intolerant From 
Tolerant score [308], can also be used for variants to predict their likely functional 
consequences and amino acid exchanges. With all these pieces of information, the 
results from a variant calling process can make sense for downstream analysis to 
study the biological and clinical significance of variants [309]. Notably, the 
processes and underlying algorithms of germline and somatic indel calling are 
significantly different. This thesis mainly focuses on germline variant calling.  

4.3.1 Indel calling algorithms with NGS data 
The widely used NGS technology, with its reduced sequencing costs, helps produce 
vast amounts of human genome sequencing data, which also boosts the development 
of algorithms for variant calling. Compared with the DNA microarray, NGS can help 
identify larger sizes of genomic variations, such as indels and SVs. Because of the 
short length of sequencing reads produced from NGS platforms, the detection of 
small (typically < 50 bp) and large (typically ≥ 50 bp) indels relies on different 
calling algorithms. In general, indel calling algorithms can be classified into seven 
major groups: gapped alignment-based methods, local re-assembly-based methods, 
de novo assembly-based methods, read depth-based methods, paired-end reads-
based methods, split read-based methods and machine learning-based methods [310–
314] (Table 1).  
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Table 1.  List of several variant calling tools that can be used for germline indel calling. The indel 
calling tools may be developed based on gapped alignment (GA), local re-assembly 
(LR), de novo assembly (DA), read depth (RD), paired-end reads (PR), split reads (SR) 
and/or a machine learning model (ML). A tool may use only one algorithm or integrated 
algorithms as its indel calling strategy. Variant calling tools may have calling abilities not 
only limited to insertion (INS) and deletion (DEL) but also to SNV, duplication (DUP), 
inversion (INV), translocation (TRA) and complex indels (COM).  

Tool Algorithm Input  Variant type Latest 
update* 

BreakDancer [315] PR BAM INS, DEL, INV, TRA 2013-03 
Clair3 [316] GA, ML BAM SNV, INS, DEL 2022-08 
ClipCrop [317] SR SAM INS, DEL, DUP, INV 2011-12 
CNVpytor [318] RD BAM DEL, DUP 2022-04 
Cortex [319] DA FASTQ COM 2012-08 
DeepVariant [320] GA, ML BAM SNV, INS, DEL 2022-10 
DELLY [321] PR, SR BAM INS, DEL, DUP, INV 2022-09 
Dindel [322] GA BAM INS, DEL 2015-03 
FermiKit [323] DA FASTQ SNV, INS, DEL 2015-07 
Freebayes [324] GA BAM SNV, INS, DEL, COM 2022-01 
GASVPro [325] PR, RD BAM DEL, INV 2013-10 
GATK [326] GA, LR, RD BAM SNV, INS, DEL 2022-10 
Gridss [327] LR, PE, SR BAM INS, DEL, DUP, INV 2022-02 
HYDRA [328] PR BAM INS, DEL, DUP, INV 2010-08 
IndelMINER [329] PR, SR BAM INS, DEL 2015-07 
INDELseek [330] GA BAM COM 2017-02 
LUMPY [331] PR, SR, RD BAM DEL, DUP, INV, TRA 2020-09 
Manta [332] LR, PR, SR BAM INS, DEL, DUP, INV 2019-06 
MetaSV [333] LR,PR,SR,RD BAM INS, DEL, DUP, INV 2017-01 
Octopus [334] GA, LR BAM SNV, INS, DEL 2021-05 
PEMer [335] PR BAM INS, DEL, INV, COM 2019-02 
PennCNV [336] RD BAM DEL, DUP 2019-01 
Platypus [337] GA, LR BAM SNV, INS, DEL 2015-04 
Pindel [338] SR BAM INS, DEL, DUP, INV 2017-05 
Scalpel [339] GA, LR BAM INS, DEL 2018-01 
ScanIndel [340] GA, DA, SR FASTQ, BAM INS, DEL 2017-10 
SoftSV [341] PR, SR BAM DEL, DUP, INV 2015-09 
Strelka2 [110] GA, LR, ML BAM SNV, INS, DEL 2018-11 
SvABA [342] LR, PR, AR BAM INS, DEL, DUP, INV 2019-03 
SVDetect [343] PR SAM, BAM INS, DEL, DUP, INV, TRA 2013-01 
Ulysses [344] PR BAM INS, DEL, DUP, INV, TRA 2014-09 
VarDict [345] GA,LR,PR,SR BAM SNV, INS, DEL, DUP, INV 2020-09 
VarScan [346] GA pileup SNV, INS, DEL 2019-07 
Wham [347] LR, PR, SR,  BAM INS, DEL, DUP, INV, TRA 2016-02 

* The last updates of tools were recorded before 28/10/2022. 
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Gapped alignment-based methods 

Gapped alignment-based methods are generally optimised to detect small indels. 
During the initial read alignment steps with gapped aligners, the mapping 
information of reads is generated. This information, which contains the mapping 
status of each read, is used by indel calling algorithms to make indel calls. 
Probabilistic models, such as heuristic models or Bayesian models, are applied to 
filter sequence alignment errors from true indels [322,346]. The differences between 
the probabilistic models used by tools can cause discrepant indel calling results 
[348]. Gapped alignment-based methods usually require indels to be covered within 
a read and be identified during the initial sequencing read alignment steps, which 
limits the calling of large sizes of indels, especially for novel insertions [349]. A read 
that covers a large indel may only have a few bases supporting the breakpoint; thus, 
this read either fails to map against the reference sequence, or only a part of the read 
is mapped well, but the rest of it is trimmed or soft-clipped by the aligner [310]. 
Representative gapped alignment-based variant calling tools are Dindel [322], 
FreeBayes [324], GATK UnifiedGenotyper [350],  and VarScan [346].  

Local re-assembly methods 

As described in Section 4.2.3, local re-assembly-based methods refine the alignment 
of reads in the same locus to provide a better representation of the sequenced 
genome. In variant calling, these methods first identify active regions that show 
evidence of having indels. For these regions, variant calling tools discard the existing 
mapping information and re-assemble reads to generate possible haplotypes using 
de Bruijn graphs. The reads in these regions are then re-aligned to the possible 
haplotypes, and the likelihood of the haplotypes is calculated. Posterior probabilities 
of having indels are then calculated, and indels are called when the posterior 
probability exceeds a certain threshold. These algorithms help call indels in regions 
that are traditionally difficult to call, such as different types of variants that are close 
to one another. GATK HaplotypeCaller [326], Platypus [337], Scalpel [351], and are 
representative variant calling tools for these methods.  

De novo assembly-based methods 

Unlike local re-assembly methods, which only re-assemble reads in active regions, 
de novo assembly-based methods perform whole genome assembly for variant 
calling. These methods first assemble reads into contigs and then compare the 
contigs to the reference sequence to call indels. Large indels, especially large novel 
insertions, can be detected efficiently with these methods. However, the high 
computational cost of de novo assembly and assembly errors are the main drawbacks 
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of these methods. FermiKit [323] is a typical variant calling tools based on these 
methods.  

Read depth-based methods 

Read depth-based methods are mainly used for detecting large genomic variants, 
such as copy number variations. These methods use the density of reads in variant 
regions of the reference sequence to estimate copy number changes. Although the 
copy numbers of variants can be accurately predicted, the breakpoint resolution from 
these methods is not as accurate as that from other methods, and PCR-induced biases 
may cause problems in variant detection [311]. A representative read depth-based 
variant calling tool is CNVpytor [318]. 

Paired-end read-based methods 

Paired-end read-based methods can detect large indels from discordantly mapped 
paired-end reads. The significant deviations of the expected and actual distances 
between paired-end reads may indicate indels. For example, paired-end reads that 
are mapped further apart may indicate an insertion, while those that are mapped 
closer may indicate a deletion. However, the resolutions of the indels depend on 
the mean and standard deviation of the library’s insert size. The exact indel 
sequences may not be known, and the detection of small indels is not sensitive 
because of difficulties in distinguishing indel-caused distance deviations between 
paired-end reads and normal background deviations. Representative paired-end 
read-based variant calling tools are BreakDancer [352], HYDRA [328] and PEMer 
[335]. 

Split read-based methods 

Split read-based methods are capable of detecting medium-size indels, which are 
difficult to detect using gapped alignment-based methods. These methods use 
discordant paired-end reads in which one end maps perfectly to the reference 
sequence, but the other end split by an indel cannot be mapped or can only be soft-
clipped mapped. The mapped end is used as an anchor point to determine the 
direction of the other end where an indel is assumed to be present. These unmapped 
or soft-clipped ends can be clustered together and searched on the reference sequence 
for the best alignments with the split read. With these partial alignments, an exact 
breakpoint can be determined, and an indel can be reconstructed. The difficulty of 
mapping split reads to the reference sequence requires higher sequencing coverage 
to obtain sufficient supporting reads for an indel [311]. The lack of probabilistic 
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models makes split read-based methods may have high FP rates, and post-filtration 
of indel calls may be needed [310]. Representative split read-based variant calling 
tools are ClipCrop [317] and Pindel [338].  

Machine learning-based methods 

Machine learning-based methods construct empirical variant filtration models from 
training data to reduce the FP results in indel calling. The training data usually come 
from gold standard variant datasets, such as Platinum Genomes and the Genome in 
a Bottle Consortium (GIAB) [63]. Strelka2 applies pre-trained random forest models 
on Platinum Genomes sample NA12878, taking such as genotype information, 
mapping quality, strand bias, read depth and other features as input to produce the 
probability of an erroneous variant call [110]. In addition, deep learning methods 
convert the mapping condition of reads within a genome region into an image and 
then call indels with a deep learning model. For example, DeepVariant is a small 
variant calling tool built using convolutional neural networks, trained with data from 
NGS or PacBio sequencing data. DeepVariant converts the sequencing data at each 
putative variant locus into an image-like tensor which containing six channels as 
inputs, including read base, base quality, mapping quality, strand of alignment, read 
supports variant, and base differs from reference [320]. For large indels and SV 
detection, machine learning-based methods have also been developed. DeepSV 
trained the model with datasets in the 1000 Genomes Project to call large deletions 
by converting read alignment features including read depth, split read and discordant 
pairs into images [353]. Cue converts read alignments into image-like data with 
channels containing information about read depth, read pairs, and other and builds a 
convolutional neural network by training with simulated data to call large deletions, 
duplications and inversions [354].  

The underlying algorithms of different methods have both strengths and 
weaknesses; many tools integrate several algorithms to make precise and sensitive 
indel calls. For example, DELLY [321] and Manta [332] use both information from 
paired-end reads and split reads to define the exact positions and sizes of SVs. 
ScanIndel is a hybrid tool that can call a wide size range of indels via gapped 
alignment, split reads and de novo assembly [340]. Moreover, most methods 
(except de novo assembly-based ones) take BAM files as input, which means that 
the gapped alignments of reads are the initial information for tools to detect indels. 
For tools that use paired-end sequencing data as input, the information provided 
by discordant paired-end reads with split reads can always be used to define the 
interval of indel regions [355]. A combination of different methods can help a wide 
range of indels. 
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4.3.2 Format of variants in genomics study 
Standardised data formats can significantly improve the interoperability of tools for 
various data analysis purposes. The output format of most variant calling tools is the 
variant call format (VCF), which is a standardised format for storing the most 
prevalent types of sequence variations, including SNPs, indels and SVs, together 
with rich annotations. The VCF file is a textual encoding format file that has the 
ability to encompass millions of variants with genotype information and annotations 
from thousands of samples; it can also adopt complementary indexing, which allows 
fast data access [356]. The VCF and its binary encodings are still being updated, and 
the most recent version is VCFv4.4, which was published on January 27, 2023 [357].   

A VCF file consists of a header section and a data section. The header section 
consists of meta-information lines and a header line. The meta-information lines 
contain information about the file format, date, descriptions and formats of variants’ 
information, filters and individual genotypes, as well as alignment information about 
assembly, contigs, samples and pedigree. Meta-information lines are recommended 
to include all the entries that are used in the body of the VCF file with the 
‘key=value’ pairs format. The header line has eight fixed mandatory columns, 
namely, ‘CHROM’, ‘POS’, ‘ID’, ‘REF’, ‘ALT’, ‘QUAL’, ‘FILTER’ and ‘INFO’, 
which stand for chromosome, position, identifier, reference base(s), alternative 
base(s), quality, filter status and additional information of a variant, respectively. If 
a VCF file contains genotype data, additional columns will be appended. The 
additional columns about genotype information are 1) a ‘FORMAT’ column, which 
describes the order and formats of genotype data, followed by 2) arbitrary, 
unduplicated numbers of sample IDs. For the data section, all data lines are tab 
delimited and filled with the corresponding information according to each column 
and format. If a missing value is present, it will be specified with a dot in all cases. 
The ‘ID’ column of a VCF file from the variant calling tool is usually empty and 
marked with ‘.’, but some variant calling tools may provide identifiers for each called 
variant. If variant records are annotated with databases, such as dbSNP, the ‘ID’ 
column may contain variant identifiers associated with the database [135]. If 
genotype information is present, a ‘FORMAT’ field is given to specify the data types 
and order, followed by one data block per sample with corresponding values to the 
types specified in the ‘FORMAT’ field. The first key must always be the genotype 
‘GT’, if it is present. Genotypes are encoded as allele values separated by either ‘/’ 
or ‘|’, which indicates unphased and phased genotypes, respectively. An allele value 
of ‘0’ in genotype values indicates the reference allele, an allele value of ‘1’ indicates 
the first allele listed in the ‘ALT’ column, an allele value of ‘2’ indicates the second 
allele list in the ‘ALT’ column and so on. For diploid calls, such as the human 
genome, the genotype value could be ‘1/0’, ‘0|1’, ‘1/2’, ‘2|3’ and so on. Haploid 
calls, such as those on the Y chromosome of humans, are indicated by having only 
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one allele value. If a variant call determines the genotype for a sample, a dot must 
be specified for each missing allele in the ‘GT’ field. 

Because different variant calling algorithms use their own technical concepts and 
variables, the information provided by different tools on the ‘FILTER’, ‘INFO’ and 
‘FORMAT’ columns might be different, which makes the VCF format not identical 
between tools. Given the complexity of the human genome, an indel may also have 
several different representations depending on the sequence contexts, such as STRs. 
Moreover, some variant calling tools may merge adjacent variants, including indels, 
as a single variant, depending on the procedures of tools. Thus, it is difficult to reach 
a conclusion as to whether indels are the same by simply comparing their positions. 
These issues can cause the comparison of different variant calling results to be 
problematic, especially for benchmarking variant calls.  

Benchmarking tools or workflows, such as SMaSH [358], vgraph [359], RTG 
Tools [360], vcflib [361], hap.py benchmarking toolkit [109] and a benchmarking 
workflow created by Stanford University [362], were developed to address this issue. 
These benchmarking tools or workflows can recognise positions, alleles, and the 
genotypes of variants from query sets and compare them to truth sets in a unified 
manner. Various statistics, such as precisions, recalls, F1 scores, number of called 
variants, receiver operating characteristic curves and other useful results, can be 
drawn using these tools or workflows. Improvements have been made on unified 
variant representations, accurate computational performance metrics, 
implementations of comparison frameworks and integrations with high-confidence 
human variant sets. With these benchmarking tools, variant calling tools and 
pipelines can be evaluated easily and fairly for different research purposes.  

Besides the need for a standard format in computational data analysis, a 
consistent and unambiguous description of sequence variants is critical in clinical 
diagnostics for sharing the variants detected. In 2000, the HGVS proposed a 
sequence variant nomenclature system, which has been widely adopted by clinical 
laboratories and continuously extended to accommodate the needs of genomic 
research [61]. Human Genome Variation Society nomenclature can describe a 
variant in the DNA, RNA and protein levels according to an accepted reference 
sequence, mutated positions and nucleotides or amino acid changes. For DNA-level 
descriptions, there are eight basic variant types: (1) substitution, (2) deletion, (3) 
duplication, (4) insertion, (5) inversion, (6) deletion-insertion, (7) repeated 
sequences and (8) complex. The format of HGVS nomenclature at the DNA level 
starts with the prefix ‘g’ and is followed by a position and corresponding variant 
type.  

There are several differences between VCF and the HGVS nomenclature format. 
One difference is that VCF is a file format that can hold a vast number of variants in 
a single file, whereas HGVS nomenclature is a string format applied to a single 
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variant. In addition, VCF shifts variants to the 5’ aligned (also known as left-aligned) 
position with respect to the genome, whereas HGVS shifts variants to the 3’ aligned 
t (also known as right-aligned) position with respect to a reference sequence, a gene, 
a transcript, or a protein. This difference may cause the same variant to have 
completely different locations and alleles in these two formats. Another difference 
is that HGVS nomenclature requires that a variant must have a variant type, but VCF 
calls for small variants do not state variant types. Although VCF calls for SVs can 
state variant types, usually, calls for SVs do not contain exact reference and 
alternative alleles. In addition, in HGVS nomenclature, nucleotide-gain variations 
may be classified as insertions, duplications or TRs, and nucleotide-lost variations 
may be classified as deletions or TRs. In VCF, especially for small variants, variants 
with a number of nucleotide changes cannot be classified as different variant types 
and switched into HGVS nomenclature straightforwardly. For VCF calls for SVs, 
the variant types determined by the variant calling tool may disagree with the 
standards from HGVS nomenclature. Furthermore, VCF calls from most variant 
calling tools prefer to represent variants individually without considering the 
presence of nearby variants at a close distance. However, HGVS nomenclature 
provides options to present a range of variants occurring at a close distance, which 
cannot be described as one of the basic variant types. All these differences between 
the two formats require additional effort to calculate the conversions when dealing 
with human clinical data [363]. The widespread use of NGS in clinical fields requires 
the transformation of genomic variants from VCF in computational data analysis to 
HGVS nomenclature in clinical research. Methods have been developed to meet 
these needs. Mutalyzer is an HGVS variant nomenclature checker that has functions 
for constructing, validating, and transforming sequence variant descriptions 
according to HGVS guidelines. The web interface design of Mutalyser makes it easy 
to use for either describing an individual variant or processing variant descriptions 
in batch data [364,365]. The Ensembl Variant Effect Predictor is a module of the 
Ensembl genome browser that provides functions for mapping sequence variant 
descriptions in the VCF to HGVS format. The web interface and command line tool, 
together with the up-to-date resources of human genomics and other various variant-
related functions in the Ensembl genome browser, make the Ensembl Variant Effect 
Predictor a versatile tool for studying human genomics [366]. SnpEff is a command 
line-based tool that has functions to take variants in VCF files as input and output 
variants with HGVS nomenclature. SnpEff not only annotates genomic variants with 
various information but can also predict their functional effects [367]. ANNOVAR 
is a command line-based tool that uses update-to-date information to functionally 
annotate genetic variants. ANNOVAR has the ability to integrate genome annotation 
resources from popular databases, such as the Ensembl Genome Browser, and to 
provide functions that will enable users to annotate variants with their own interests 
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such as HGVS annotations [368]. VariantValidator is a web-based tool that can 
validate HGVS sequence variation descriptions and automate the conversing 
descriptions of variants in VCF into HGVS nomenclature. It also has functions for 
mapping variants between transcripts and genome sequences [369]. The hgvs Python 
package can validate the HGVS nomenclature of genomic variants in the context of 
the reference sequence [370]. The difficulties in format conversion and validation of 
the variant description between VCF and HGVS nomenclature are not merely simple 
format changes; they involve distinguishing ambiguous sequence contexts around 
variants, which make conversion results of tools incorrectly [363]. In addition, tools 
based on the web interface require additional manual steps for data transfer, which 
limits the development of the data analysis pipeline. The computational tool 
described in Publication Ⅲ provides a format conversion function of the variant 
description between VCF and HGVS nomenclature at the DNA level.  

4.3.3 Evaluation of tools for indel calling with human 
genomes 

Despite the development of indel calling algorithms and tools and impressive 
improvements in indel calling, a fair, comprehensive, and in-depth evaluation of 
these tools is lacking. Tools with different underlying algorithms may not perform 
well in all aspects. Because of the various topics and objective targets of real-world 
human genomics research, it is important to determine the strengths and weaknesses 
of tools on indel calling with different underlying algorithms, which can help 
researchers select the suitable tools to fit their research purposes. Meanwhile, 
revealing the current limitations of indel calling in computational fields can help 
suggest current needs and boost future indel calling developments.  

During the past 10 years, many evaluation studies have been conducted on 
germline indel calling with human NGS data. Because of the lack of a gold standard 
truth set and benchmarking tools, early evaluation studies used simulated variants or 
a handful of clinically validated real variants. Concordance results among tools were 
often applied when a truth variant set was lacking. For example, Neuman et al. 
evaluated four variant calling tools with simulated human WGS data and real non-
human WGS data. Small indels were inserted into human chromosome 16 of 
GRCh39/hg19 with certain frequencies. The effects of indel frequency, read length, 
indel size and sequencing coverage were evaluated [371]. O’Rawe et al. assessed 
variant calling, including small indel calling of three tools, with WGS and WES data. 
The concordance of tools was used for evaluation without knowing the actual truth 
indels, and cross-platform validation was conducted to evaluate unique-to-pipeline 
indels [348]. Liu et al. performed an evaluation of variant calling, including small 
indel calling of four tools with real WES data and simulated WGS data. Exome-
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based array, Sanger sequencing and external scripts were applied for the validation 
of variants. Comparisons with validated indels and the concordance among tools 
were assessed [372]. Fang et al. evaluated two variant calling tools with different 
coverages of real WGS and WES data. Simulated sequencing data with 1–100 bp 
indels were also used. Cross-platform validation was applied to evaluate real 
sequencing data. The indel calling performance metrics of tools, concordance among 
tools and data types with different coverages, and the influences of sequence contexts 
were discussed in their results [373]. Ghoneim et al. evaluated three tools on indel 
calling, with 639× coverages targeting the gene panel, 74× WES and 24× WGS NGS 
data of 48 human samples. The concordance of indel calls from the tools with 
different data types was used to evaluate tool performance. An identical indel call 
was defined as an indel called by at least two tools within a position deviation ± 10 
bp. The indel calling ranges of each tool with different data types were briefly 
assessed by comparing the maximum, mean and median of the called indel sizes 
[374]. Kim et al. evaluated four variant calling tools with WES data, and the results 
of the detection of 840 small indels were validated using Sanger sequencing. The 
distribution of called indel sizes, the performance metrics of the indel calling results 
and the concordance between the selected tools were assessed [375]. Sandmann et 
al. evaluated eight variant calling tools with the high-coverage, targeted gene panel 
sequencing data of 165 human samples and two simulated samples. The targeted 
gene panel contained 19 genes known to be recurrently mutated in patients with 
myelodysplastic syndrome and small-size mutations with low allele frequencies. The 
number of called mutations, comparison with the truth set, the influence of different 
sequencing coverages and background noises and running time were used for the 
evaluation. Without having matched sample data, platform cross-validation, expert-
based review and annotation information, such as allele frequencies, read depths and 
presence in databases, were used to categorise variants as polymorphisms, true 
mutations and artefacts [376].  

Later, with the development of several high-confidence human variant sets, these 
variant sets can now serve as truth sets for the evaluation of indel calling. For 
example, Hasan et al. evaluated seven tools using 78 human low-coverage WGS 
datasets of chromosome 11 from the 1000 Genomes Project. The indel truth set of 
the sequencing data was fetched by selecting the shared samples from another 
independent indel study. In their evaluation, most of the indels in the truth set and 
the tools’ call sets are ≤10 bp. The running time, the number of indels called, the 
comparison of different indel sizes with the truth set and the similarity among the 
tools were evaluated. They treated an indel call as true positive (TP) if the position 
deviation between the truth indel and the called indel by the tool is ± 5 bp [377]. 
Laurie et al. conducted variant calling evaluations, including small indels with three 
variant calling tools and two aligners. Data on WGS and WES of the human 
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individual NA12878 were used in their studies, and the corresponding truth set was 
obtained from GIAB. The performance metrics of variant calling, the concordance 
among tools, and the comparison between sequencing data types and computational 
costs were examined [378]. Li et al. assessed five variant calling tools on small indel 
calling with two simulated WGS datasets, one real WGS dataset from GIAB and 
family-based, real WES sequencing datasets. The running time and the number and 
performance metrics of the called indels were evaluated with known truth indels. 
They simply defined TPs, false negatives (FNs) and FP indels based on the presence 
of indels in the tools’ call sets and the truth sets. The concordance rates among tools 
and family-based Mendelian error rates were used for evaluation with the family-
based datasets without the known truth indels [379]. Hwang et al. evaluated variant 
calling abilities, including small indels of seven short-read aligners and 10 variant 
calling tools with WGS data. Two WGS datasets with different sequencing 
coverages and read lengths were used, and the corresponding truth sets were obtained 
from GIAB. The concordance between variant calling pipelines and the influences 
of sequence contexts were evaluated [380]. Chen et al. examined seven variant 
calling tools with the same WGS datasets and TP criteria as Hasan et al. [377]. The 
improvement made in this evaluation study was that they assessed insertion and 
deletion calling separately. They also applied a pooled sample-based method for 
more accurate evaluations by comparing the multiple samples pooled indel call set 
of tools with the pooled truth set. The concordance and combination of variant 
calling methods were likewise evaluated. They studied the somatic indel calling of 
four tools by using three types of cancer sequencing data. Annotation of indels from 
external databases and resources was used to assess the performance metrics of indel 
calling [381]. 

To evaluate indel calling in a unified manner and avoid potential ambiguous 
indel representation, benchmarking tools were developed. Facilitated by high-
confidence human variant sets, tool evaluation for indel calling can be performed in 
standardised ways. For example, Cornish et al. studied combinations of five variant 
calling tools and four short-read aligners with WES datasets from the GIAB 
Consortium. The consortium generated the variant truth sets by integrating multiple 
variant calling pipelines and containing both SNPs and small indels in the confidence 
regions of the human genome [382]. A careful design pipeline was applied to 
generate the variant call sets from each tool, which contained additional steps, such 
as realignment of reads, recalibration of read quality scores, and filtration of variant 
calls. The indel comparison between the truth set and the tools’ call sets was made 
using an external benchmarking tool, vcflib. The performance metrics of the tools’ 
indel calling with raw and filtered results were assessed, together with the 
concordance of the tools [383]. Hwang et al. evaluated 13 variant calling pipelines, 
which were combinations of three read aligners and four variant calling tools. 
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Twelve WGS or WES datasets from different sequencing platforms with coverage 
of 50–300× were used for evaluation. The indel truth set was selected by GIAB. The 
comparison results of the tools with the truth set and the concordance of the selected 
variant calling tools were used for evaluation. To deal with different indel 
representations between tools, additional steps were applied to regularise indels, and 
vcflib was used to compare the indel truth set and the tools’ call sets [384]. Supernat 
et al. evaluated three variant calling tools with three different sequencing coverages 
of human WGS data. The truth set was the human individual NA12878 from GIAB, 
which contains SNPs and small indels. Comparisons between the truth sets and the 
variant call sets of selected variant calling tools were performed using an external 
variant benchmarking tool, RTG Tools, on whole-genome-wide and coding regions 
[385]. Chen et al. evaluated three variant calling tools with nine WES and WGS 
datasets from five different sequencing platforms. The truth set of small variants was 
obtained from the GIAB Consortium, and the tools’ call sets were compared with it 
using the external variant benchmarking tool hap.py. The performance, concordance 
and operating efficiency of 27 combinations of sequencing platforms and variant 
calling tools were evaluated [386]. Zhao et al. assessed three variant calling tools 
using real WGS data from GIAB, a synthetic diploid and simulated WGS data with 
common technical sequencing parameters. The tools’ performance on small indels 
was assessed by comparing the tools’ call sets with truth sets via hap.py. The 
performance metrics of variant calling, running time and concordance of tools were 
evaluated using different genome contexts [387]. Barbitoff et al. examined the 
pipelines of variant calling with four short-read aligners and nine variant calling 
tools. Fourteen WGS and WES datasets from GIAB and an additional three WGS 
and three WES datasets from the African ancestry of the 1000 Genomes Project with 
various sequencing coverages were selected for evaluation. The performance of the 
tools on small indel calling was studied using hap.py. The factors that may influence 
the accuracy of variant calling and concordance among tools and datasets were 
analysed and discussed [388]. 

With the development of variant calling algorithms, tools with SV calling 
abilities have been developed, and evaluation studies for these tools have been 
conducted. For example, Kosugi et al. evaluated 69 SV calling tools with various 
read lengths, sequencing coverages and insert sizes of simulated and real WGS 
datasets. The simulated dataset contained 8,310 different types of SVs, ranging from 
50 bp to 1 Mb, and the real dataset contained around 5,000 SVs merged from 
different resources for the corresponding human samples. The performance metrics 
of tools on the different properties of read data and SVs, measurements of running 
time and memory consumption, and the identification of pair algorithms were 
evaluated. They defined a certain type of SV as TP based on the overlapped region 
between the called SV and the true SV with certain technical thresholds [389]. 
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Cameron et al. assessed 10 SV calling tools using three real WGS sequencing 
datasets and multiple simulated WGS datasets with various technical sequencing 
parameters. The simulated datasets used in their study covered a wide size range of 
different types of SVs with various sequence contexts, and the truth sets were 
obtained from other independent indel studies. The SVs from the calling tools were 
converted into breakpoint coordinates with event sizes and compared with the true 
SVs. The TP results were SVs that passed certain thresholds of overlapping with the 
true SVs. Structural variant detection metrics, the impact of the sequence context, 
SV sizes and quality scores, concordance and running times were evaluated [111]. 
Pei et al. evaluated 11 variant calling tools with next-generation and third-generation 
sequencing data on both germline and somatic variant calling. Real WGS data from 
different platforms with various coverages and synthetic tumour sample NGS data 
were selected for evaluation. The performance metrics of small indel calling of tools 
on different datasets were assessed via RTG Tools. Sequence context, including GC 
content and segmental duplication, as well as the computational costs of tools, was 
evaluated [390].  

The basic conclusion of these evaluation studies was the ranking of the 
selected variant calling tools with different technical sequencing parameters and 
research targets. Additional insights were also obtained from previous evaluation 
studies. For the development of indel calling algorithms and tools, the following 
lessons can be learned. First, gapped alignment-based tools cannot efficiently 
call indels larger than the read length; split read-based and paired-end read-based 
tools are preferred for large indel calling. Second, tools with local re-assembly 
algorithms have good abilities for calling indels until medium sizes. Third, 
machine learning-based and deep learning-based tools have the best small indel 
calling abilities so far. Fourth, using a combination of different calling tools may 
result in better indel calling results than using a single tool. However, a 
combination may not always lead to good results; a careful experimental design 
is preferred. Fifth, the selection of specific tools suitable for different types and 
size ranges of indels is preferred to obtain the desired results. Different 
algorithms are suitable for different types of indels. The detection of tandem 
repeat mutations especially requires specific tools. The tools for general indel 
calling may not be suitable for calling tandem repeat mutations. Sixth, better 
usage instructions for tools are needed. Because of the lack of detailed 
instructions, the majority of evaluation studies have tested variant calling tools 
using default parameters. Optimising the parameters of tools may improve indel 
calling results, but it also consumes time and requires expert knowledge. Best 
practices or instructions for using tools based on common data types and research 
purposes are desired from tool developers.   
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For selecting proper sequencing and data analysis procedures, previous research 
has demonstrated that 1) increasing sequencing coverage can improve the 
performance of indel calling, but beyond a certain range (30×), there may only be 
marginal improvements. Insertion calling may require higher sequencing coverage 
than deletion calling. 2) Pre-processes, such as sequencing error checks, and post-
processes, such as the filtration of low-quality variant calls, can help improve the 
performance of indel calling. 3) Based on research purposes, the careful selection of 
sequencing platforms, variant calling tools and analysis parameters is required for 
reliable indel calling. The influence of variant calling tools is greater than that of 
sequencing read aligners.   

Regarding truth indel sets for tool evaluations, the following lessons can be 
learned. First, better indel truth sets are needed. Although improvements in small 
indel truth sets and their benefits for tool evaluation have been achieved in the last 
five years, truth sets containing various sizes of indels, especially large indels, are 
still needed for better development. Second, to conduct a good evaluation, simulated 
data and read data should both be considered. Simulation can create desired data on 
which indels can be generated based on specific evaluation purposes, and the labels 
of indels are clearly known. Most tools performed well with simulated data, making 
them suitable for testing the theoretical limitations of indel calling algorithms. 
However, simulations cannot fully replicate the identical sequence complexities of 
the human genome. Thus, real sequencing data must be used in evaluations, and the 
performance of tools should be assessed based on that. Awareness of the potential 
incompletion of the indel truth set should be made. Third, sequence contexts, such 
as tandem repaet and GC content, may affect indel calling. High-confidence variant 
sets are routinely used in evaluation studies. However, these variant sets exclude 
genome regions where the sequencing coverage is low, and genotyping variants is 
difficult. Indels are enriched in these regions, and based on previous evaluations, the 
sequence context may affect indel calling. Thus, the sequence contexts of variants 
cannot be ignored.  

In Publication Ⅰ, an evaluation of eight variant calling tools covering multiple 
algorithms was conducted with NGS data. Previous studies were not investigated is 
the suitable indel size range for different variant calling tools for indel detection. In 
Publication Ⅰ, the size range of the evaluated indel was remarkably larger than that 
in previous evaluation studies. A semi-simulated dataset was created, and two real 
sequencing datasets were applied to evaluate tool performance on different size 
ranges of insertions and deletions separately. Sequence contexts, such as STR and 
computational costs, were also measured. 
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4.4 Sequence context annotations of genomic 
variants 

In Section 3.1.4, the influence of the sequence context of genomic variants was 
discussed. To determine the sequence context of genomic variants, annotation 
methods should be used. Some sequence context features, such as nearby variants or 
breakpoint ambiguities, can be understood by visualising the local sequences of 
variants, and some other features, such as STRs, can be annotated using information 
from third-party resources. Manual visualisation is not an easy task when selecting 
variants based on sequence context. Using graphical software, such as the Integrative 
Genomics Viewer [391], to view hundreds of variants with sequencing contexts is 
time consuming, and additional manual decisions are needed to determine sequence 
features. Several tools have been developed, the functions of which can be used to 
visualise the sequence contexts of genomic variants. Informative sequence context 
features can be shown in text without heavy graphical interfaces. Sequence context 
annotations can also be made by integrating external resources from public databases 
or analysis results from other tools. An analysis pipeline may be needed to annotate 
variants with this information. Comprehensive sequence annotations require 
merging diverse results from multiple tools within a good bioinformatics pipeline, 
but not all tools can be easily integrated together and building such a pipeline also 
require additional efforts.   

4.4.1 Methods for viewing the sequence contexts of variants 
To visualise the sequence context of genomic variants, the direct method uses a 
graphical viewer to output the sequences on screen. The Integrative Genomics 
Viewer is a high-performance, easy-to-use, interactive tool for the visualisation of 
genomic data. It can combine different common format genomic data, such as 
FASTA, BAM and VCF, to make an integrated visualisation. The sequence of the 
reference genome, the reads that are aligned and piled up against the reference, and 
the variants indicated by alignments can all be screened together for visualisation 
[391]. The SAMtools text alignment viewer can display alignments in a curses-
based interactive viewer. The alignments of reads that are against the reference 
sequence can be visualised via a command line interface instead of a graphical 
interface [303].   

Aside from these tools, public databases, such as the UCSC Genome Browser 
and the Ensembl Genome Browser, also have options that allow users to display 
custom data, such as variants in VCF format, and view them as tracks, together with 
other useful genomic information provided by the databases in graphical browsers 
[307,392]. Aside from graphical viewers, the sequence context can be visualised in 
text format. SeqTailor is a web server that can extract FASTA-format DNA or 
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protein sequences by considering the genomic variants in VCF files with user-
defined genomic regions. The tool can also annotate the nearest splice sites to the 
given genomic variants if the splice sites reside within the extracted DNA sequences. 
The functions of SeqTailor can be used to retrieve information about the sequence 
contexts of variant sites [393]. UPS-indel is a universal positioning system used to 
mark the potential breakpoint ambiguities of indels. Both the web service and the 
source codes for the command line interface are available. This tool takes VCF files 
with the reference sequence as input and then outputs variants with an additional so-
called UPS coordinate column in VCF format. The UPS coordinate is the equivalent 
genome region for an indel, which the tool uses to determine redundant indels and 
produce filtered VCF files after removing redundant indels [137]. The Variant Tools 
is software that provides a whole set of functions for the manipulation, annotation, 
selection, simulation, and analysis of variants in the context of NGS analysis. Several 
functions of Variant Tools can be used to extract flanking bases of reference and 
alternative alleles of genomic variants with a given range and output them on screen 
or in a text file. These functions are very useful in outputting the sequence context 
of variants and selecting variants based on contexts, such as variants in CpG islands 
[394].  

Various pieces of the sequence context information of variants can be assessed 
through these methods. Issues such as ambiguous breakpoints of indels, equivalent 
indels, mutated sequence and flanking bases of variants can all be assessed. To obtain 
a comprehensive understanding of genomic variants, several tools are needed to 
acquire different pieces of information about the sequence context.   

4.4.2 Methods for annotating variants in tandem repeats 
As described in Section 3.1.4, the STRs around variants are the main feature of the 
sequence context of genomic variants. To annotate variants in STRs, information 
from public databases, tools which can analyse the STRs of genome sequences and 
tools that can directly annotate STRs around variants can be used.  

Information on the STR can be fetched from public databases. For example, the 
‘Simple Repeats’ and ‘RepeatMasker’ tracks from the UCSC Genome Browser 
contain different class repeats marked with coordinates of the human genome. The 
‘Simple Repeats’ track was generated by the Tandem Repeats Finder (TRF), which 
is a programme for analysing DNA sequences with TRs. The TRF identifies TRs by 
percent mismatch and the frequency of indels between adjacent potential repeat units 
and uses statistically based recognition criteria. The ‘Simple Repeats’ track of the 
UCSC Genome Browser displays STRs and their associated information, including 
genome coordinates, sequence motifs, copy numbers, percentage of mismatch and 
indels, nucleotide frequencies and corresponding scores [395]. The ‘RepeatMasker’ 
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track was generated using the RepeatMasker programme, which screens DNA 
sequences for interspersed repeats and low complexity and outputs a detailed 
annotation of the repeats present in the input DNA sequences. The results from 
RepeatMasker contain match scores, genome coordinates of repeats and classes of 
repeats [396]. Depending on the research purposes, STR information can be fetched 
by directly downloading the STR tracks from databases or using the corresponding 
tools to re-analyse the query sequences. The STR information from databases is 
usually generated using widely recognised parameters. However, these parameters 
may limit research to certain circumstances and may not be suitable for research with 
specific purposes. To fit special experimental needs, re-analysing the query sequence 
using tools with more flexible parameter settings is desired.   

Aside from tools that are involved in public databases, other tools can annotate 
STRs with genome sequences. For example, SciRoKo is a user-friendly software 
tool for the identification of perfect STRs in genomic sequences developed based on 
seed extension [397]. Krait is a tool with a user-friendly graphic interface for the 
genome-wide investigation of STRs [398]. PERF is a tool for identifying perfect 
STRs in DNA sequences; it uses an exhaustive algorithm to search matched sub-
strings of repeat sequences [399]. TRAL is a Python library that integrates multiple 
tandem repeat annotation tools and applies circular profile hidden Markov models to 
detect repeats [400]. These STR detection tools usually build repeat patterns with 
different modelling approaches and then find these patterns in the query sequence. 
After potential repeats are detected, different statistical criteria are applied to select 
candidate repeats and filter redundant repeats. The STRs of the query sequence, 
together with repeat statistics and classes of repeats, are formatted and reported 
[401].  

Information on STR from these tracks or tools can be fetched and converted 
into BED format files, which are tab-delimited text format files used to store 
genomic regions as coordinates and associated annotations [402]. These BED 
files can then be used by annotation tools, such as ANNOVAR, to annotate 
genomic variants. Given a list of variants in VCF format of the custom format, 
ANNOVAR can perform the annotation of variants based on genes, regions, and 
specific filters with various resources from public databases. In addition, 
ANNOVAR has functions for users to annotate variants with their own 
annotation resources, which provides opportunities to use information that is not 
available in ANNOVAR integrated resources [368]. To make annotations of the 
sequence context of genomic variants, building a pipeline to integrate multiple 
tools is necessary.  

Despite annotation with external resources, genome variants can also be 
annotated with STRs directly from variant calling tools. For example, the variant 
calling tool GATK can annotate variants with STR composition and counts per 
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allele. The variant calling output of GATK in VCF format can be refined using the 
GATK “TandemRepeat” function, which can add additional STR information as 
flags into the original VCF output [326].  

4.5 LncRNA prediction methods 
As described in section 3.1.5, lncRNAs have been considered transcriptional noise 
for a long time and are now revealed to have essential functions in numerous 
biological processes. To further understand the molecular mechanisms and 
biological functions of non-coding RNAs, accurately distinguishing them from 
protein-coding mRNAs is essential. The most common definition of lncRNAs is that 
they are non-coding RNA transcripts that are larger than 200 nucleotides [157–159]. 
Because of their similar sizes and features to non-coding mRNAs, predicting the 
coding potentiality of RNA transcripts and distinguishing lncRNA from non-coding 
mRNAs efficiently have remained challenging tasks. The most general approach to 
predicting the protein-coding potentiality of novel transcripts is analysing the 
features of ORFs. Searching sequence homologies between novel transcripts and 
known transcripts with sequence alignment-based methods is another strategy for 
predicting protein-coding potentiality. However, the nucleotide sequences of 
lncRNAs are poorly conserved, and sequence homologies may not be found between 
lncRNAs [403]. In addition, in vivo experiments for identifying lncRNAs, such as 
ribosome profiling, are useful and reliable, but such experiments are usually time 
consuming and expensive [404].  

To better classify protein-coding and non-coding RNAs, various computational 
tools have been developed, and they use the advantage of NGS to efficiently identify 
lncRNAs. Many of these tools have been developed using machine learning or deep 
learning methods with various genomic features of RNAs. In addition, several 
lncRNA datasets have been built in the last 10 years, which also provide extended 
genomic information for computational method development. With all these efforts, 
significant improvements have been achieved in lncRNA prediction.   

4.5.1 Features and models in computational lncRNA 
prediction 

To distinguish lncRNAs from protein-coding mRNAs, many features have been used 
by existing lncRNA prediction methods. These features can be derived from the 
RNA sequences in gene transfer format or general feature format. K-mers features, 
transcript features and structure features are commonly used. 
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K-mer features 

K-mers are specific sub-sequences of k consecutive nucleotides with different values 
of k. K-mer, together with its frequency profile, compositions, transitions and 
distributions, is a commonly used feature in lncRNA prediction [405–407]. The GC 
content is the percentage of nitrogenous bases G or C in a DNA or RNA molecule. 
A low level of GC content might indicate the non-coding potential of a transcript 
[408]. The GC content and their corresponding variances calculated for three reading 
frames and different codon positions have been used to describe non-coding 
potentiality [409].  

Codons are sets of nucleotide triplets that translate a genetic code into a sequence 
of amino acids. Traditionally, codons are represented in an RNA codon table, but 
they can also be represented in a DNA codon table. A stop codon (UAA, UAG or 
UGA) can cause the termination of the translation process; thus, stop codon-based 
features can be used to recognise lncRNAs. The count or frequency of stop codons 
in a transcript and the corresponding three reading frames can be used as features 
[405].  

The Fickett TESTCODE score is another popular feature calculated by 
combining the nucleotide position frequencies and base compositions of a transcript 
[410]. In lncRNA prediction, this score might be computed differently in different 
tools [406,409,411,412]. Hexamer-based features are also used in lncRNA 
prediction. For example, the hexamer score measures biased hexamer usage between 
coding and non-coding sequences, and it has been shown to have the most 
discriminative potential for identifying lncRNAs [413].  

Transcript sequence features 

An ORF is a reading frame located between a start codon (AUG) and a stop codon 
(UAA, UAG or UGA), and it has the potential to be translated into proteins. 
Many ORF-related features are widely used in computational lncRNA prediction 
because of the high correlation between ORFs and protein coding abilities. 
Moreover, because many lncRNAs have shorter ORFs than protein-coding 
mRNAs, the size of the longest or the first ORF is an important indicator in 
lncRNA prediction. However, some lncRNAs with short ORFs and longer but 
fewer exons can also be translated and produce short peptides, which have certain 
key biological functions in human development [414,415]. Instead, the size of 
the ORF is usually used indirectly. Open reading frame coverage is the ratio of 
the size of the longest ORF to the size of the whole transcript. Open reading 
frame integrity is defined as a Boolean value feature, which means that the ORF 
starts with a start codon and ends with a stop codon [406]. The entropy density 
profile, which describes the composition and k-mer of the sequence, and the ORF 
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frame score, which is the size variance of the ORF among three reading frames, 
are also used in the tool development of computational lncRNA prediction 
[405,416,417]. 

Similarly, coding sequence-related features are useful in identifying lncRNAs 
[174]. A coding sequence is the nucleotide sequence of a gene that can be translated 
into a protein. The length and percentage of coding sequence towards the transcript 
length can be used as features to distinguish lncRNAs [418]. In contrast to the coding 
sequence, untranslated regions cannot be translated and located on both sides of a 
transcript, which are referred to as the 5’ and 3’ untranslated regions. The length, 
coverage and ratio of the 5’ and 3’ untranslated regions to the transcript length are 
features used by lncRNA prediction tools [417]. In addition, the exon count and the 
average exon length of a transcript are exon-based features that can be used to 
distinguish lncRNAs [418].  

Structure features 

Structure-related features regarding the formation and stability of lncRNAs and 
their hypothetical peptides are also used in the prediction of non-coding potential. 
The peptides encoded by coding mRNAs and theoretically encoded by lncRNAs 
are supposed to differ in chemical properties. The isoelectric point, which indicates 
whether a peptide molecule carries any electrical charge and indicates the 
molecular weight of the peptide, is a widely used and important feature [409]. In 
addition, the grand average of hydropathicity, the stability of the predicted peptide, 
the minimum free energy and the number of paired and unpaired bases of RNA 
secondary structures are also considered features for lncRNA prediction [406,419–
421].  

4.5.2 Models in computational lncRNA prediction 
To use these features to distinguish lncRNAs and protein-coding mRNAs, 
different machine learning models have been applied (Table 2). Machine learning 
models are trained to classify the categories of the input samples as classification 
tasks or to predict the output continuous values with input values as regression 
tasks. In lncRNA prediction, tools may directly predict whether a transcript is 
non-coding or coding by labelling it or giving a score to indicate its coding 
probability.  
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Table 2. List of several lncRNA prediction tools. LncRNA prediction tools can be built with deep 
learning models, including convolutional neural networks (CNNs), deep neural 
networks (DNNs), deep belief networks (DBNs) and recurrent neural networks 
(RNNs). Other machine learning models, including logistic regression (LR), random 
forest (RF) and support vector machine (SVM), can also be used. The input format of 
lncRNA prediction tools can be transcripts in BED, FASTA or gene transfer format 
(GTF). 

Tool Model Features Input format Last updates* 

COME [422] RF k-mer, sequence GTF 2016-05 

CNCI [408] SVM sequence GTF 2015-05 

CPAT [411] LR Fickett, k-mer, ORF BED, FASTA 2021-05 

CPC2 [409] SVM Fickett, ORF, structure FASTA 2020-01 

CPPred [406] SVM ORF, k-mer, structure FASTA 2019-02 

FEElnc [423] RF ORF; k-mer GTF 2022-07 

IRSOM [424] DNN ORF, k-mer, sequence FASTA 2022-04 

iSeeRNA [425] SVM ORF, k-mer, sequence BED, GTF 2014-04 

lncADeep [417] DBN Fickett, ORF, k-mer FASTA 2017-11 

LncFinder [420] SVM ORF, k-mer, structure FASTA 2021-12 

Lncident [426] SVM ORF, k-mer FASTA 2016-10 

LncRNAnet [419] CNN ORF FASTA 2018-08 

lncRScan-SVM [418] SVM ORF, k-mer, sequence GTF, FASTA 2015-08 

lncScore [427] LR ORF, sequence BED, FASTA 2016-09 

Longdist [428] SVM ORF FASTA 2017-09 

mRNN [429] RNN k-mer FASTA 2018-04 

PLEK [430] SVM k-mer FASTA 2016-01 

RNAsamba [431] RNN ORF, k-mer, sequence FASTA 2021-04 

* The last updates of tools were recorded before 28/10/2022. 

Logistic regression 

The logistic regression model predicts the probability of an event using log odds 
[432]. The log odds of the event can be calculated with a linear combination of one 
or more independent features. The goal of logistic regression model is learning the 
coefficients and intercept, which maximises the probability of predicting correct 
labels.  
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Support vector machine 

The support vector machine model predicts the probability of an event by distinctly 
classifying data points with the hyperplane in an N-dimensional space, which 
corresponds to N features of the data [433]. The goal of the support vector machine 
model is to find the best hyperplane that has the maximum margin. To find the best 
hyperplane, the support vector machine maps features from the original space to a 
higher dimensional space via a certain kernel function, which makes the samples 
linearly separable. The choice of kernel function is the key to support vector 
machine.  

Random forest 

Random forest is a type of ensemble learning model that builds and combines a 
multitude of decision trees to perform classification or regression tasks [434,435]. 
The idea of a random forest is that, given a training set, it selects random samples in 
a training set with replacement and then trains multiple decision trees for these 
samples. The classification task returns the predicted label, which is the class 
selected by most trees. The regression task returns the predicted value, which is the 
mean or average prediction of the individual trees. 

Deep learning models 

Deep learning models have been used in lncRNA studies, including deep neural 
networks, deep belief networks, convolutional neural networks, and recurrent 
neural networks [436]. Typically, a neural network consists of several connected 
layers: the input layer, the hidden layer(s) and the output layer [437]. A layer 
consists of several neurons. The input layer takes input data and presents them to 
the hidden layers through weighted sums or kernels. To propagate values from one 
layer to the next, non-linear activation functions, such as sigmoid, ReLU or tanh, 
are used. Finally, the output layer generates the final output as categorical values 
for classification or as numerical values for regression. The error back propagation 
algorithm, which was developed based on gradient descent, is the main training 
algorithm for the deep learning model [438]. To set up reasonable gradient descent 
learning rates for the changing weights of hidden layers, several popular 
optimisers, such as root mean squared propagation and the adaptive gradient 
algorithm, can be used for self-changing learning rates based on the training 
processes. The calculation for a neuron, which is the basic element of the deep 
learning model, is shown in Figure 6. 

 𝑍𝑍 =  ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 ,    𝑖𝑖 = 1,2, …𝑚𝑚𝑚𝑚
𝑖𝑖=1  (1) 
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 𝑦𝑦 = 𝑓𝑓 (𝑍𝑍 + 𝑏𝑏)  (2) 

where each 𝑥𝑥 represents an input value, each 𝑤𝑤 represents a weight, 𝑍𝑍 represents the 
linear sum of all the weighted input values, 𝑏𝑏 represents the bias value of the neuron, 
𝑓𝑓 represents the activation function, and 𝑦𝑦 represents the output value of the neuron, 
which is also one of the input values for the next layer. 

 
Figure 6.  Example of a neuron in a deep learning model. 

A simple deep neural network has multiple hidden layers that are fully connected 
with one another and that learn the representations of input data [439] (Figure 7). A 
deep belief networks consists of multiple layers, and each layer consists of a 
restricted Boltzmann machine, which is used to represent more abstract features. In 
a deep belief networks, training processes are performed in each layer at a time, and 
the output values of each layer are the input to the following layer [440]. A 
convolutional neural network is a hierarchical model with multiple layers that are 
trained with one-, two-, or three-dimensional convolutional kernels. Different layers, 
such as convolutional layers, pooling layers, and a fully connected layer, are usually 
involved. The convolutional layers of a convolutional neural network are used to 
extract the spatial features from the input data, and the pooling layer is used to reduce 
dimensions and reserve the most significant features of the data after convolution 
steps [439]. A recurrent neural network consists of an input layer, multiple recurrent 
hidden layers that have one or more feedback loops and an output layer. The 
recurrent connections of the model make data connected over a period of time and 
activated from time steps [441].  



Ning Wang 

 66 

 
Figure 7.  Example of a fully connected deep neural network that contains three hidden layers. A 

neuron in one hidden layer is fully connected with all the neurons in adjacent layers but 
is not connected with neurons in the same layer. The output layer may return numeric 
values or categorical classifications. 

4.5.3 Current evaluations for lncRNA prediction tools 
During the last 10 years, many efforts have been made to evaluate the performance 
of lncRNA prediction tools. Han et al. evaluated eight lncRNA prediction tools using 
human and mouse transcripts from several public resources and databases. The 
overall performance and application scope of each tool were assessed [442]. Zhang 
et al. comprehensively reviewed computational methods for non-coding RNA 
prediction and grouped methods into four main categories based on their algorithms: 
homology-, de novo-, transcriptional sequencing- and RNA family-based methods 
[443]. Antonov et al. assessed the performance of nine lncRNA prediction tools 
using human and mouse transcripts from GENCODE. Tools were trained, if 
necessary, and tested with balanced lncRNAs and protein-coding mRNA datasets, 
which further grouped the mRNAs into the long and short coding sequence sets. This 
study concluded that most of the lncRNA prediction tools had similar and good 
performance, and distinguishing mRNAs with short coding sequences from 
lncRNAs remained a challenge [444]. Negri et al. evaluated eight lncRNA prediction 
tools that were trained on plants or human transcripts. The transcript data of plants 
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and humans were fetched from public datasets or databases, such as FANTOM or 
Ensembl, and the tools were tested with plant or human data based on their 
categories. Overall performance, such as sensitivity, specificity, accuracy, and F1-
score, was assessed. This study concluded that tools developed and trained with plant 
data and tools that used human data showed differences, which may indicate 
variations between lncRNAs in plants and humans [445]. Duan et al. evaluated the 
performance of 14 lncRNA prediction tools with different datasets, including high- 
and low-quality data from 33 species. Computational efficiency and the robustness 
of each selected tool were assessed. In their study, no tool was superior to others 
under all test conditions, but joint prediction could behave better than the use of a 
single tool [446]. Amin et al. comprehensively reviewed the computational 
prediction methods for different non-coding RNA types, including lncRNAs, 
circular RNAs and small non-coding RNAs. In their study, three deep learning-based 
lncRNA prediction tools were evaluated with human and mouse transcripts from the 
GENCODE database [447]. Xu et al. systematically reviewed current bioinformatics 
approaches for lncRNA prediction. A comprehensive review was conducted for 
computational lncRNA prediction methods, lncRNA databases and features for 
predicting lncRNAs. In addition, the authors briefly evaluated nine lncRNA 
prediction methods and built a Python package by integrating them, with the aim of 
providing a simple way for lncRNA prediction [24]. Zheng et al. assessed 17 tools 
on several public datasets and databases. The general performance and the 
performance on different size ranges of the transcripts of the selected lncRNA 
prediction tools were assessed. The significance of the transcript features used for 
coding potentiality prediction was also evaluated. The conclusion of this study was 
that deep learning-based tools performed better than the other algorithms did. The 
tools did not perform well with too short or too long transcripts. Certain transcript 
features, including ORF size and coverage, 3-mer, 6-mer and hexamer scores, and 
Fickett scores, contributed significantly to lncRNA prediction [413].  

As deep learning methods become more popular in the bioinformatics field, the 
performance of deep learning-based tools should be assessed. In addition, because 
of real-world transcriptome data analysis, the proportion of lncRNAs and protein-
coding mRNAs may vary. In Publication Ⅲ of this thesis, 15 lncRNA prediction 
tools were evaluated with human transcripts from the GENCODE and Lncipedia 
databases. Different sizes of transcript sets were created with balanced and 
imbalanced numbers of lncRNAs and protein-coding mRNAs.  
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5 Materials and methods 

5.1 Dataset 

The semi-simulated WGS dataset 

To test the theoretical limitations of each candidate variant calling tool for indel 
calling, a semi-simulated WGS dataset was created in the study of Publication Ⅰ. 
The semi-simulated WGS dataset represents that indels are adopted from a real 
human, while the corresponding sequencing data were generated artificially. As 
described in section 3.1.3, indels are not totally randomly distributed in the human 
genome. To challenge variant calling tools with realistic indels from the human 
genome, indels from the HuRef genome, also known as J. Craig Venter’s genome, 
were selected. The HuRef genome is the genome sequence of an individual human, 
which was sequenced using Sanger-based whole-genome shotgun paired-end 
sequencing and assembled using Celera Assembler. The variants of the HuRef 
genome were identified through a comparison within the maternal and paternal 
HuRef chromosomes and a comparison between the HuRef genome and 
GRCh36/hg18. The variants were then filtered by quality value and read location. 
Polymerase chain reaction-based experimental and computational verifications of 
the selected variants were conducted to assess the accuracy of variant calling. In 
total, more than 4.1 million variants, including 851,575 indels with a size range of 
1–82,711 bp, were identified [80]. To simplify and reduce computational cost, only 
indels with a size range of 1– 5,000 bp from chromosomes 1 and 2 were selected 
in the study of Publication Ⅰ. Chromosomes 1 and 2 of hg19 were reconstructed 
as the simulated genome by inserting the selected HuRef indels into their 
corresponding positions after liftover from hg18 to hg19. Two haplotypes were 
constructed by randomly selecting HuRef indels from different size ranges and 
inserting them into one of the haplotypes as heterozygous variants or into both 
haplotypes as homozygous variants. In total, 43,066 insertions and 45,223 
deletions were included in the evaluation study. The simulated paired-end 
sequencing data were created using the NGS simulation tool ART [448] with three 
different coverages of 5×, 30× and 60× with a read length of 100 bp. An additional 
30× coverage sequencing data with a read length of 250 bp was also created. The 
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reads of the two haplotypes were produced equally to represent the natural diploid 
genome as the human genome.  

The Genome in a Bottle Consortium 

The GIAB Consortium is a public–private–academic consortium hosted by the 
National Institute of Standards and Technology of the US. The GIAB authorities 
characterises human genomes with the aim of benchmarking, analytical validation, and 
technology development. The GIAB has currently characterised seven reference 
samples using sequencing data from multiple technologies and an integration 
computational pipeline to form high-confidence SNPs and small indel genotype calls 
[382]. To represent real-world sequencing data, WES data from Oslo University 
Hospital [449] and the corresponding variant set of human individual NA24385 from 
GIAB v3.3.2 were chosen in Publication Ⅰ to evaluate variant calling tools for small 
indel calling. In total, 5,436 small indels located in both exome and high-confidence 
variant calling regions were involved. Since the development of GIAB v4.2.1, a new 
benchmarking dataset was produced, and it included challenging genomic regions. 
Genome in a Bottle Consortium v4.2.1 used both NGS and third-generation, long read 
sequencing technologies to sequence human samples. A carefully designed and 
integrated bioinformatics pipeline that included conventional and deep learning-based 
approaches was used to call high-confidence variants. Genome in a Bottle Consortium 
v4.2.1 covered 92% of the autosomal GRCh38 assembly and contained variants in 
clinically relevant genes not covered previously [450]. The high-confidence small 
variant from a son/father/mother trio of Ashkenazi Jewish and another of Han Chinese 
ancestry (HG002-HG007) with an average of 3,978,097 variants per individual were 
selected in Publication Ⅱ to assess the sequence context of variants using VarSCAT.  

The CHM1 cell line WGS dataset 

The CHM1 cell line is a human haploid hydatidiform mole that lacks allelic 
variation. Hydatidiform moles are the result of a type of abnormal pregnancy in 
which an abnormal egg is impregnated by an ordinary sperm. The abnormal egg has 
no nuclear DNA, and the sperm doubles its own DNA, which results in two identical 
copies of each chromosome in every cell dividing from the mole. The CHM1 cell 
line is generated from one of these hydatidiform moles and has become an industry 
standard. Mark Chaisson et al. used single-molecule, real-time sequencing 
technology at a 54× WGS coverage with the CHM1 cell line to identify SVs and 
gaps in the CHM1 genome [81]. Using custom SV calling algorithms, a total of 
26,079 large indels ≥ 50 bp within the euchromatic portion of the CHM1 genome 
were identified against GRCh37. Meanwhile, they also generated 41× Illumina WGS 
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data of the CHM1 cell line for their comparison analysis. The Illumina WGS data 
and 18,467 indels between 50 and 10,000 bp of the CHM1 cell line from Mark 
Chaisson et al. were used in the study in Publication Ⅰ. 

Platinum Genomes 

The Platinum Genomes contains a set of high-confidence small variant calls for human 
individuals NA12877 and NA12878, generated using the WGS of 17 individuals in a 
three-generation pedigree and a range of publicly available bioinformatics tools. The 
high-confidence variant sets were produced using haplotype transmission information 
based on the inheritance constraints in the pedigree and the concordance of variant calls 
across different bioinformatics pipelines. The Platinum Genomes contains 4.7 million 
SNVs and 0.7 million small indels, which are consistent with the inheritance of the 
parents’ and 11 children’s pedigrees. In total, the Platinum Genomes was reported to 
cover around 97% of the total genes and the reference sequence of GRCh37/hg19 [63]. 
In 2017, the Platinum Genomes released an updated version of high-confidence small 
variant calls based on the human assembly GRCh38/ hg38. This high-confidence small 
variant set of NA12877 and NA12878 was used in Publication Ⅱ to assess the sequence 
context of variants using VarSCAT.  

The 1000 Genomes Project 

The 1000 Genomes Project is a comprehensive catalogue of common human genetic 
variations. The goal of this project was to find common genetic variants with 
frequencies of at least 1% in the populations studied. The project was initiated in 
2007, and it was planned to have four stages: a pilot phase and three phases of the 
main project. The phase 3 analysis was completed in 2015, and it contained 2,504 
individuals from 26 populations (during the time of thesis writing, the phase 4 
analysis was due for publication [451,452]). In Publication Ⅱ, a variant set from 
2,548 human individuals spanning 26 populations from a phase 3 extension were 
selected to assess the impact of TRs on genomic variants with the computational tool 
VarSCAT. The sample integrated variant set was produced de novo on GRCh38 by 
WGS and a multi-caller integrated bioinformatics pipeline. Each individual in this 
variant set contains on average 4,144,924 biallelic SNVs and small indels [453,454].  

The ClinVar database 

The ClinVar database is a public archive held by the National Center for 
Biotechnology Information, with the aim of reporting the relationships and supporting 
evidence of human variation and observed health status. ClinVar requires submissions 
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of variants found in patient samples with clinical significance and supporting data. The 
variants in ClinVar are mapped to reference sequences and reported according to the 
HGVS standard [455]. In total, 117,409 indels from ClinVar (date: 2022/01/09) which 
located on autosomes, sex chromosomes and the mitochondrial chromosome were 
selected in Publication Ⅱ to assess the breakpoint ambiguity of indels. The summary 
of datasets used in Publication Ⅰ and Ⅱ is shown below (Table 3). 

Table 3. Datasets used in Publication I and Publication II. 

Data set NGS data Types of variants Study of 
publication  

Additional information 

HuRef semi-
simulated dataset 

WGS Indels  
(1-5000 bp) 

I Indels in chromosome 1 
and 2 

GIAB NA24385 
(v.3.3.2) 

WES Small indels  
(1-50 bp) 

I High-confidence 
variants 

CHM1 WGS Large indels  
(50-10,000 bp) 

I Called by long read 
sequencing  

GIAB HG002-
HG007 (v.4.2.1) 

Not used Individual SNV 
small indels 

II High-confidence 
variants 

Platinum Genomes Not used Individual SNV 
small indels 

II High-confidence 
variants 

1000 Genomes 
Project 

Not used Individual SNV 
small indels 

II biallelic variants 

ClinVar 
(date:2022/01/09) 

Not used Indels with clinical 
significance 

II Indels in database 

The GENCODE Project: Encyclopedia of genes and gene variants 

The database of the GENCODE project contains the definitive annotation of 
functional elements in the human and mouse genomes. By using manual curation, 
computational analysis and targeted experimental approaches, the annotation of all 
evidence-based gene features, including protein-coding genes, non-coding genes, 
pseudogenes and alternative splice variants in the human and mouse genomes, has 
been conducted, enhanced, and extended with high accuracy. The current 
GENCODE release (release 43) records 62,703 total genes, of which 19,928 are 
lncRNA genes and 19,393 are protein-coding genes. As for transcripts, 252,913 total 
transcripts are recorded in the current GENCODE, of which 58,023 are lncRNA loci 
transcripts and 84,411 are protein-coding mRNAs. The transcripts in GENCODE 
have three different confidence levels indicating the levels at which the transcripts 
have been validated. Level 1 is the validated level of transcripts verified 
experimentally using real-time PCR and sequencing through the GENCODE 
experimental pipeline. Level 2 is the Havana annotation level, which means that the 
transcripts are manually annotated. Level 3 is an automatically annotated level, 
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which means that the annotations of transcripts from different sources may not be 
consistent [13]. The transcripts from GENCODE are formatted in tab-separated 
standard gene transfer format or general feature format. The protein-coding mRNAs 
above level 2 from GENCODE were used in Publication Ⅲ.  

The LNCipedia database 

The LNCipedia database is a comprehensive compendium of human lncRNAs. The 
version 5.2 contains 127,802 transcripts and 56,946 genes that come from integrated 
sources, including Ensembl, GENCODE, Refseq and other lncRNA-related studies. 
The aim of LNCipedia is to merge transcripts from different data sources into a 
highly consistent database. Transcripts from different sources are added to the 
database using custom import scripts and then filtered based on mapping abilities, 
the sizes of the transcripts and the overlapping of exons between coding sequences. 
Different lncRNA transcripts are then clustered based on their locations relative to 
genes and are named accordingly. The transcripts from LNCipedia can be 
downloaded in various formats, such as BED format, gene transfer format, general 
feature format and FASTA format, or accessed by application programming 
interface in JSON format [456]. The lncRNAs from the LNCipedia databases were 
used in Publication Ⅲ. 

5.2 Methods 

5.2.1 Methods for evaluating variant calling tools for indel 
calling 

5.2.1.1 Variant calling tools and sequencing data selections 

Eight variant calling tools, namely, DeepVariant [320], DELLY[321], FermiKit 
[323], GATK HaplotypeCaller (GATK HC) [326], Pindel [338], Platypus [337], 
Strelka2 [110], and VarScan [346], were selected to represent a variety of indel 
calling algorithms. Tools were basically evaluated with default parameters and 
settings with the assumption that users do not have advanced computational 
knowledge. One parameter of Pindel (minimum support reads to call an indel) was 
tuned because the default parameter generated too many FP indel calls[338,457]. 

The sequencing data, including four semi-simulated WGS datasets, the GIAB 
WES dataset and the CHM1 WGS dataset, were processed using quality control, 
necessary trimming, alignment, sorting, and indexing. All the sequencing data were 
processed against the human genome assembly hg19, and the processed alignment 
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files were used as input for the selected variant calling tools. FermiKit, which 
required paired-end sequencing FASTQ files as the input, directly took the 
sequencing data to call variants. Because DELLY is special design for large indel 
calling, the small indel calling evaluation with GIAB WES dataset was not applied 
for DELLY; Based on indel calling evaluation results from the semi-simulated 
dataset, only DELLY, FermiKit, GATK HC, Platypus, and Pindel has abilities to call 
large indel calling evaluation, because of that, they were selected and evaluated with 
the CHM1 WGS dataset. All the selected variant calling tools were applied with the 
semi-simulated WGS dataset to evaluate their theoretical indel calling limits. The 
‘Simple Repeats’ track from the UCSC Genome Browser was used to annotate the 
FP indel calls of all the selected tools with semi-simulated WGS data. 

5.2.1.2 Evaluation criteria 

Although all the variant calling results from the selected tools were in VCF format, 
the detailed formats of indel calls were still not consistent among all the tools. Tools 
such as FermiKit, GATK HC, Platypus, Strelka2, and VarScan also output SNVs, 
which are not the topic of this evaluation study. The truth set of the semi-simulated 
WGS dataset and the CHM1 WGS dataset was not in VCF format, so evaluation 
tools were difficult to apply. To compare the results with the truth set, the indel calls 
of each tool from the semi-simulated WGS data and the CHM1 WGS data were 
extracted with tool-specific custom scripts. Positions, sizes, variant types and 
genotypes were the information to collect.  

The semi-simulated WGS dataset contained a wide size range of indels. An 
assumption was made that the position and size deviations between the tool-detected 
indels and the true indels may be more critical for small indels than for large ones. For 
example, under the widely used position deviation of ± 5 bp, a true deletion of 1 bp 
may be matched with a tool-detected deletion of 1 bp but located 5 bp away. This 
deviation is too large and may cause a match of two different indels. Besides, the size 
deviation was considered to tolerate size differences between the tool-detected indels 
and the true indels. Therefore, instead of allowing a fixed position for indels, size-
related positions and size deviations were used. In this evaluation study, a TP indel 
was defined if 1) the position deviation of the tool-detected indel was between ±10% 
of the true indel size with an upper limit of 50 bp, 2) the size deviation of the tool-
detected indel was < 25% the true indel size, and 3) the genotypes between a tool-
detected indel and the corresponding true indel should be consistent. These evaluation 
criteria allowed us to assess indel calling in a flexible manner, which led to small indel 
calling results being evaluated more strictly than large indel calling results.  

As for the CHM1 WGS dataset, a TP indel was defined as a tool-detected indel 
that should have at least 20% overlap with a true indel. This criterion was typically 
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used in other studies which used the same CHM1 WGS dataset as the truth set for 
evaluation purposes [133,347]. Because the truth set of GIAB WES data was in VCF 
format, hap.py was used as the evaluation tool to assess the performance of each tool.  

5.2.2 VarSCAT: Variant Sequence Context Annotation Tool 
To assess the sequence contexts of genomic variants, the computational tool VarSCAT 
was developed (https://github.com/elolab/VarSCAT). VarSCAT has three modules: 
the variant normalisation module, the ambiguous variant annotation module and the 
tandem repeat annotation module. The input of VarSCAT requires a VCF file and the 
corresponding reference sequence in FASTA format; optionally, a BED format file 
can also be inputted, which provides the regions of interest. With a single command 
line to state the annotation options and parameters, the annotation results of the variants 
are written into a text file. The workflow of VarSCAT is shown in Figure 8. 

 
Figure 8.  The workflow of VarSCAT. The ambiguous variant annotation module and the tandem 

repeat annotation module can be run together or individually.  

The variant normalisation module 

The aim of the variant normalisation module is to convert potential ambiguous 
variant as parsimonious and 5’ aligned. A variant is parsimonious if and only if the 
variant is represented in as few nucleotides as possible without reducing the length 
of any allele to 0. A variant is 5’ aligned if and only if the variant is no longer possible 
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to shift its position to 5’ direction while keeping the length of all its alleles constant 
[139]. These potential ambiguous variants may have non-unique positions, 
references, and alternate sequences, which can cause inaccurate annotations for 
downstream analysis. Variants processed by the variant normalisation module will 
be represented as few nucleotides as possible, and 5’ aligned. Any multi-allelic 
variants will be split into bi-allelic variants in this module.  

The ambiguous variant annotation module 

The ambiguous variant annotation module has functions to annotate variants, 
especially indels with breakpoint ambiguity-related issues. Information about 
variants, including 5’ and 3’ aligned positions, 3’ edge positions (the rightmost 
mutated base on the coordinates of the reference sequence), the flanking bases of 
variants, HGVS nomenclature and distances to adjacent variants, can be annotated 
by this module. If a genome region is given, VarSCAT has a function to output the 
original reference sequence, the mutated sequence containing the variant and the 
complementary sequence of the mutated sequence in FASTA format.  

The tandem repeat annotation module 

The tandem repeat annotation module de novo searches the sequence context around 
variants based on the definition of TRs and determines the TRs with user-defined or 
default parameters. Tandem repeats around variants with different proportion of 
mismatches or gaps can be annotated, such as perfect and interrupted TRs. The 
algorithm of the tandem repeat annotation module first de novo searches all possible 
TR regions, which are at least 1 bp overlapped with variant sites (Figure 9). A variant 
site is the affected region of the variant on the coordinates of the reference sequence. 
For an SNV, an MNV, a deletion or a complex indel, the variant site is the changed 
bases of the reference sequence. For insertion, the variant site is the two adjacent 
bases of the inserted sequence.  

 
Figure 9.  A demonstration of how VarSCAT determines a TR. The sequence is chr19:246910-

246000 the human assembly GRCh37/hg19. The VarSCAT determined TR is a motif 
“CCCTAA” repeated for 12 time. The red letter indicates a variant site. The rectangle 
blocks indicate each repeat unit of 12 repeats of “CCCTAA”. Mismatches and gaps 
between repeat units are allowed in this TR. 
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The algorithm basically first chooses a candidate motif of a potential TR, which 
is a certain size of nucleotide sequence at least 1 bp overlapped with the variant site. 
Then, the algorithm global aligns this candidate motif with a potential repeat unit. 
The potential repeat unit is a nucleotide sequence with same length as the candidate 
motif, which located 5’ or 3’ direction within a user-defined or default distance to 
where the candidate motif is located. During this alignment, number of mismatches 
and the distance to the candidate motif are recorded. Within the certain distance, the 
alignment score of all the potential repeat units in terms of the candidate motif will 
be calculated based on a user-defined match score (MS), mismatch score (MIS) and 
gap score (GS) or default values. The potential repeat unit with the best alignment 
score will be selected, and its position was used to continue searching the next 
potential repeat unit towards its 5’ or 3’ direction. Meanwhile, the copy number of 
the candidate motif of the potential TR is plus by one. The searching is terminated 
when the alignment score of all the potential repeat units cannot pass the user-defined 
or default threshold. When the searching of potential repeat units terminated, and the 
candidate motif has both copy number and accumulated alignment score exceed 
user-defined or default thresholds, the whole searching region will be treated as a 
candidate TR. After all the candidate TRs are detected, a post-quality control process 
and a redundant removal process are applied based on a repeat score to make the 
tandem repeat annotation precise and clean. The alignment score reflects how well 
the repeat region against the corresponding motif. The repeat score considers the 
similar aspect as the alignment score but take the length of repeat region and the 
copy number of the motif into account. For a same repeat region with different 
motifs, the shorter motif is preferred, which can be used to filter out redundant motif 
representations (for example, for a repeat region “AAAAAAAAAA”, motif “A” has 
higher repeat score than “AA”, thus, motif “AA” will be filtered out and “A will be 
remained”). 

For a variant located in a TR, the output of this module contains information 
about the repeat motif, copy number, size of motif, start and end positions of the TR, 
the alignment score, the repeat score, GC content and match, mismatch, and gap 
percentages.  

 𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴 = 𝑀𝑀𝑆𝑆 × 𝑚𝑚𝑚𝑚𝐴𝐴𝑆𝑆ℎ 𝑏𝑏𝑚𝑚𝑏𝑏𝐴𝐴𝑏𝑏 + 𝑀𝑀𝑀𝑀𝑆𝑆 × 𝑚𝑚𝑖𝑖𝑏𝑏𝑚𝑚𝑚𝑚𝐴𝐴𝑆𝑆ℎ 𝑏𝑏𝑚𝑚𝑏𝑏𝐴𝐴𝑏𝑏 + 𝐺𝐺𝑆𝑆 × 𝐴𝐴𝑚𝑚𝑔𝑔 𝑏𝑏𝑚𝑚𝑏𝑏𝐴𝐴𝑏𝑏  (3) 

 𝑅𝑅𝐴𝐴𝑔𝑔𝐴𝐴𝑚𝑚𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴 =   𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ 𝑆𝑆𝑜𝑜 𝐴𝐴ℎ𝐴𝐴 𝑇𝑇𝑇𝑇 𝑆𝑆𝐴𝐴𝐴𝐴𝑖𝑖𝑆𝑆𝐴𝐴

× 𝑆𝑆𝑆𝑆𝑔𝑔𝑦𝑦 𝐴𝐴𝑛𝑛𝑚𝑚𝑏𝑏𝐴𝐴𝑆𝑆   (4) 

Benchmarking and biological analysis of VarSCAT 

VarSCAT was benchmarked with GATK TandemRepeat [277], Krait [398], Tandem 
Repeat Finder (TRF) [395], and RepeatMarker [396] on the variant STR annotation 
of GIAB HG005 chromosome 1. The tandem repeat annotations of TRF and 
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RepeatMasker were downloaded from the UCSC Genome Browser, which were the 
tracks of ‘Simple Repeats’ and ‘RepeatMasker’, respectively. Krait (v1.3.3) was an 
STR sequence annotation tool. GATK TandemRepeat (v4.1.9.0) can directly 
annotate variants in STRs from a VCF file.  

Indels from the ClinVar database, variants from the GIAB HG002-HG007, the 
Platinum Genomes NA12877 and NA12878, and the 1000 Genomes Projects were 
used to assess the proportions of breakpoint ambiguous indels and indels in STRs. 
Because different studies used various definitions of STRs [57,458], the 
benchmarking of VarSCAT was limited to perfect STRs with motif sizes of 1–6 bp, 
which was commonly used in TR-related studies [42,459,460]. One semi-random 
human indel set was also created. The positions of the semi-random indels were 
randomly selected, and the inserted sequences of the insertions were randomly 
generated using the DNA nucleotide alphabet. The indel size distribution and the 
total number of indels set were identical to the Platinum Genomes NA12878. 

5.2.3 Methods for evaluating lncRNA prediction tools 
Eight lncRNA prediction tools, namely, CPAT [411], CPC2 [409], IRSOM [424], 
LncADeep [417], LncFinder [420], longdist [428], mRNN [429] and RNAsamba 
[431], were selected to represent a variety of algorithms for coding potential 
prediction. The selected tools were run with default parameters or recommended 
parameters by the authors of the tools. None of the prediction models of the selected 
tools were re-trained in this evaluation study.  

The protein-coding mRNAs from GENCODE (release 21) and lncRNAs from 
LNCipedia (version 5.2) were selected. The protein-coding mRNAs exist in both 
GRCh37/hg19 and GRCh38/hg38, and the overlapping lncRNAs in both 
GENCODE and LNCipedia were used in this evaluation study.  

The test set was created with different sizes and proportions of lncRNAs by 
randomly selecting from LNCipedia and the protein-coding mRNAs from 
GENCODE. Four different sizes of datasets, namely, small (S), medium (M), large 
(L) and extra-large (XL), were created with a ratio of 4:6 for lncRNAs and protein-
coding mRNAs, and another two datasets were created with more lncRNAs than 
protein-coding mRNAs (Lnc bias) and more protein-coding mRNAs than  lncRNAs  
(PC bias), with ratios of 8:2 and 2:8, respectively.  

5.2.4 Statistical metrics 
Statistical metrics were applied to the evaluations of the variant calling tools and 
lncRNA prediction tools. For the assessment of the variant calling tools on indel 
calling, precision, recall, false discovery rate and F1 score were used as the statistical 
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metrics. For the biological analysis with VarSCAT, a Venn diagram and bar plots 
for the proportion analysis were used. Because of the imbalanced sample types in 
lncRNA prediction tool evaluation, sensitivity, specificity, precision, and balanced 
accuracy were used. All these statistical metrics were calculated from the numbers 
of true positive (TP), true negative (TN), false positive (FP) and false negative (FN) 
labels. Of note, in the evaluation of indel calling, TN is not assessed because 
reference calls are not recorded in VCF format. 

 𝑆𝑆𝐴𝐴𝐴𝐴𝑏𝑏𝑖𝑖𝐴𝐴𝑖𝑖𝑆𝑆𝑖𝑖𝐴𝐴𝑦𝑦, 𝐴𝐴𝑆𝑆𝑛𝑛𝐴𝐴 𝑔𝑔𝑆𝑆𝑏𝑏𝑖𝑖𝐴𝐴𝑖𝑖𝑆𝑆𝐴𝐴 𝑆𝑆𝑚𝑚𝐴𝐴𝐴𝐴, 𝑆𝑆𝐴𝐴𝑆𝑆𝑚𝑚𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
     (5) 

  𝑆𝑆𝑔𝑔𝐴𝐴𝑆𝑆𝑖𝑖𝑓𝑓𝑖𝑖𝑆𝑆𝑖𝑖𝐴𝐴𝑦𝑦, 𝐴𝐴𝑆𝑆𝑛𝑛𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝐴𝐴𝑖𝑖𝑆𝑆𝐴𝐴 𝑆𝑆𝑚𝑚𝐴𝐴𝐴𝐴 = 𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇
    (6) 

 𝑇𝑇𝑆𝑆𝑏𝑏𝑖𝑖𝐴𝐴𝑖𝑖𝑆𝑆𝐴𝐴 𝑔𝑔𝑆𝑆𝐴𝐴𝑝𝑝𝑖𝑖𝑆𝑆𝐴𝐴𝑖𝑖𝑆𝑆𝐴𝐴 𝑆𝑆𝑚𝑚𝐴𝐴𝑛𝑛𝐴𝐴,𝑔𝑔𝑆𝑆𝐴𝐴𝑆𝑆𝑖𝑖𝑏𝑏𝑖𝑖𝑆𝑆𝐴𝐴 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

  (7) 

  𝐹𝐹𝐴𝐴𝐴𝐴𝑚𝑚𝐴𝐴𝑖𝑖𝑆𝑆𝐴𝐴 𝑔𝑔𝑆𝑆𝐴𝐴𝑝𝑝𝑖𝑖𝑆𝑆𝐴𝐴𝑖𝑖𝑆𝑆𝐴𝐴 𝑆𝑆𝑚𝑚𝐴𝐴𝑛𝑛𝐴𝐴 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

   (8) 

 𝐹𝐹𝐹𝐹𝑅𝑅 = 𝐹𝐹𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

   (9) 

 𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴 = 2 × 𝑇𝑇𝑆𝑆𝐴𝐴𝑆𝑆𝑖𝑖𝑃𝑃𝑖𝑖𝑆𝑆𝐴𝐴 ×𝑇𝑇𝐴𝐴𝑆𝑆𝑅𝑅𝐴𝐴𝐴𝐴
𝑇𝑇𝑆𝑆𝐴𝐴𝑆𝑆𝑖𝑖𝑃𝑃𝑖𝑖𝑆𝑆𝐴𝐴+𝑇𝑇𝐴𝐴𝑆𝑆𝑅𝑅𝐴𝐴𝐴𝐴

   (10) 

 𝐵𝐵𝑚𝑚𝐴𝐴𝑚𝑚𝐴𝐴𝑆𝑆𝐴𝐴𝑝𝑝 𝑚𝑚𝑆𝑆𝑆𝑆𝑛𝑛𝑆𝑆𝑚𝑚𝑆𝑆𝑦𝑦 = 𝑆𝑆𝐴𝐴𝐴𝐴𝑃𝑃𝑖𝑖𝐴𝐴𝑖𝑖𝑆𝑆𝑖𝑖𝐴𝐴𝑆𝑆+𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑖𝑖𝑜𝑜𝑖𝑖𝑆𝑆𝑖𝑖𝐴𝐴𝑆𝑆
2

  (11) 
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6 Results 

6.1 Evaluation of indel calling tools 
For tool evaluation on the semi-simulated WGS dataset, the performance of tools was 
assessed using different sizes of insertions and deletions (Figures 10 and 11). The 
results showed that indel calling on small indels is better than that on large indels, 
deletion calling is better than insertion calling, and the precision in tool performance 
varies less than the recalls between different sequencing settings. The trend is clear 
that with an increase in indel size, tool performance decreases. Although some tools 
were designed to call only small or large indels, the trend can also be observed with 
indels ≤ 50 bp. Large insertion calling does not perform well with all the selected tools.  

 
Figure 10.  Precision curves of variant calling tools (A–H) on indel calling with four semi-simulated WGS 

datasets. The performance of tools is evaluated with insertions and deletions separately, in 
which intervals with negative values are deletions and positive values are insertions.  
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Figure 11.  Recall curves of variant calling tools (A–H) on indel calling with four semi-simulated 

WGS datasets. The performance of tools is evaluated with insertions and deletions 
separately, in which intervals with negative values are deletions and positive values are 
insertions.  

In terms of sequencing settings, higher sequencing coverage and longer read 
lengths can improve the performance of indel calling. However, this improvement 
became less obvious when the sequencing coverage was above 30×, which was 
consistent with previous suggestions and the recommendation of Illumina on WGS. 
Sequencing data with coverage of 5× may be not suitable for indel calling. 

The tools without local re-assembly algorithms or good probabilistic models in 
this study were DELLY, Pindel, and VarScan, which did not perform well with indel 
genotyping, especially heterozygous indels (Table 4). The de novo assembly-based 
tool FermiKit was very good with large insertion calling, but it may not even work 
with low-coverage sequencing data.  

Evaluation with real sequencing data showed that the machine learning-based 
tools DeepVariant and Strelka2 performed best with small indel calling (Table 5). 
Although machine learning-based tools showed good performance, DeepVariant and 
Strelka2 were still designed to be limited with small indel calling. The large indel 
calling evaluation with real sequencing data showed that all the selected tools had 
poor performance (Table 5). Part of the reason might be that the CHM1 dataset was 
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reported to have some inconsistency between single-molecule, real-time sequencing 
and NGS sequencing [133,347].  

Table 4. Homozygous (HOM) and heterozygous (HET) indel calling precision of tools on different 
semi-simulated WGS data. Results with recall < 0.01 are not considered. 

Data 100bp, 5X 100bp, 30X 100bp, 60X 250bp, 30X 
         Type 

Tool HOM HET HOM HET HOM HET HOM HET 

DeepVariant 0.955 0.637 0.984 0.909 0.989 0.930 0.984 0.897 
DELLY 0.829 0.176 0.966 0.423 0.971 0.463 0.953 0.450 

FermiKit 0 0 0.966 0.932 0.992 0.936 0.978 0.959 
GATK HC 0.972 0.977 0.994 0.967 0.993 0.968 0.990 0.966 

Pindel 0.930 0.364 0.985 0.476 0.976 0.478 0.962 0.891 
Platypsu 0.964 0.915 0.990 0.885 0.991 0.858 0.990 0.871 
Strelka2 0.977 0.912 0.993 0.937 0.993 0.931 0.991 0.921 
VarScan 0.979 0.125 0.992 0.384 0.991 0.400 0.992 0.604 

Table 5. Evaluation results of variant calling tools on indel calling with real sequencing data. 
Metrics with a missing value ‘--’ mean that the tool is not evaluated with the data. 

Data WES NA24385 WGS CHM1 cell line 
Metrics 

Tool Precision Recall F1 score FDR Sensitivity 

DeepVariant 0.963 0.920 0.941 -- -- 
DELLY -- -- -- 0.738 0.061 

FermiKit 0.909 0.530 0.718 0.232 0.032 
GATK HC 0.896 0.910 0.903 0.281 0.048 

Pindel 0.890 0.679 0.771 0.783 0.097 
Platypsu 0.977 0.726 0.833 0.860 0.002 
Strelka2 0.918 0.917 0.917 -- -- 
VarScan 0.839 0.710 0.770 -- -- 

 
Further investigation showed that more than half of the FP indel calls were 

located in the simple repeats of the human genome regardless of variant calling tools 
(Figure 12 A). The proportions of all indel calls in simple repeats are lower than that 
of FP indels calls in simple repeats (Figure 12), except for DELLY, which mainly 
called large indels. The results showed that FP indel calls were enriched in simple 
repeats, which may indicate that simple repeat is the main reason for FP calls. 
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Figure 12.  Proportion of (A) tools’ FP indel calls and (B) tools’ all indel calls in simple repeats and 

not in simple repeats.  

In general, machine learning methods performed best in small indel calling. 
Machine learning methods integrated with local re-assembly algorithms were better 
than tools that used only local re-assembly algorithms without machine learning 
methods. Local re-assembly-based tools were good for detecting the correct 
genotypes of indels. However, because of the limited read length, these methods 
cannot detect large indels. De novo assembly-based tools were good with large 
insertion calling, but the genotyping of indels was not good. Split read-based and 
paired-end read-based methods were good for large indel calling, whereas gapped 
alignment-based tools were good for small indel calling.  
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6.2 The sequence contexts analysis with VarSCAT 

6.2.1 The benchmarking of VarSCAT for STR annotations 
The most critical question in human genome STR studies is the definition of STR. 
Different definitions, such as in terms of STR interruption and composition, may 
lead to significantly different results. In this study, the biological analysis was 
limited to perfect STRs with motif sizes of 1–6 bp and a minimum size of 10 bp. The 
minimum copy number was 10 for mononucleotide STRs, 5 for dinucleotide STRs 
and 4 for tri- to hexanucleotide STRs, as described in section 5.2.2.  

Benchmarking results showed that the STR annotations for genomic variants had 
remarkable discordance between the different methods (Figure 13). Well-recognised 
STR resources, such as TRF and RepeatMasker, had strict STR criteria, which were 
limited only to large STRs. Short tandem repeat sequence annotation, such as Krait, 
may consider an STR in a wide region. Sub-STRs that are part of a large STR may not 
be recorded. Furthermore, although a comprehensive STR resource was acquired, the 
tool for variant annotation also plays an important role. In this study, ANNOVAR was 
selected as the annotation tool. This method only considers variants at their primary 
positions, which are the positions reported in VCF files. Variants, especially indels, 
are mutated regions instead of single positions. Thus, this method may miss some STR 
annotations for variants if only parts of the variants overlap with STRs.   

 
Figure 13. Benchmarking results of different STR annotation methods for variants on GIAB HG005 

chromosome 1. The results are shown as a Venn diagram to demonstrate the shared 
STR annotations for variants among the different methods. 
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6.2.2 Sequence context of the variant in the genome scale 
Using the comprehensive sequence context annotation tool VarSCAT, several high-
confidence human individual germline variant sets, including 2,548 samples from 
the 1000 Genome Project, two human individuals from the Platinum Genomes and 
six human individuals from the GIAB, as well as the ClinVar database, which 
contains clinically related variants, were analysed. The population analysis with the 
1000 Genomes Project showed that for each individual, around 7% of the total 
germline small variants and 35% of the total germline small indels were located in 
STRs (Figure 14). African populations had a lower proportion of variants in STRs, 
but the total number of variants was higher than that in other populations.  

 
Figure 14.  (A) Proportions of germline small variants in STRs among five human superpopulations. 

The number near each box is the average number of germline small variants in the 
STRs of the superpopulation. (B) Proportions of germline small indels in STRs among 
five human superpopulations. The number near each box is the average number of 
germline small indels in the STRs of the superpopulation.  

For breakpoint ambiguity analysis, the results showed that around 90% of the 
germline indels of a human individual had breakpoint ambiguities, with insertions 
and deletions being nearly equally distributed (Figure 15A). Indels in ClinVar had a 
low proportion of breakpoint ambiguity. The reason might be that indels in ClinVar 
databases are clinically related, and the sizes of indels were longer than those of the 
majority of human germline indels, which increased the sequence complexity of the 
indel sequence pattern. The results of the simulated human indel set showed that 
random inserted indels had significantly lower proportions of ambiguous indels than 
real human indel sets, which indicated that the formation of human germline indels 
was heavily dependent on the sequence contexts. With eight high-confidence human 
germline variant sets from the Platinum Genomes and the GIAB, the results showed 
that around 85% of the germline variants located in STRs were indels (Figure 15B).  
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As far as my investigation in the literature review shows, this was the first time 
that the proportions of germline variants in STRs and ambiguous indels were 
measured at the human individual level.   

 
Figure 15.  (A) Proportions of ambiguous breakpoint indels among eight high-confidence human 

germline variant sets, the ClinVar database and one semi-random indel set. The 
proportions of insertions and deletions are shown separately. The number on the top of 
each bar is the total number of breakpoint ambiguous indels for the indel set. (B) 
Proportions of variants in the STRs among eight high-confidence human germline 
variant sets. The number and percentage at the top of each bar are the total number 
and proportion of variants in the STRs of the variant set. 
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6.3 Evaluation of lncRNA prediction tools 
The evaluation with different sizes of mixed transcript sets showed that deep 
learning-based tools, which are LncADeep, mRNN, and RNAsamba in this study, 
are the three lncRNA prediction tools that had the best TP rates, negative predictive 
values, and accuracy with all the datasets (Table 6). Although other evaluated 
metrics of deep learning-based tools are not always ranked at the top three, the values 
of these metrics are all comparable with those of other tools.  

For the two biased datasets, it is unsurprising that compared with those of the 
non-biased datasets, the positive predictive values of all the tools are worse with the 
lncRNA biased dataset but better with the protein-coding mRNA biased set, and the 
negative predictive values of all the tools are worse with the protein-coding mRNA 
biased set but better with the lncRNA biased dataset. The reason might be that the 
tools were trained with protein-coding mRNA biased data, and the protein-coding 
mRNAs from the training data of the tools may include in the test set in this study. 

In general, with all the test datasets, the TN rates of tools are higher than the TP 
rates, and the positive predictive values of tools are higher than the negative 
predictive values. These results indicate that tools may identify actual protein-coding 
mRNAs as non-coding transcripts, but they rarely identify actual lncRNAs as coding 
transcripts. In other words, the transcripts predicted by tools with coding labels were 
more reliable than the transcripts with non-coding labels. Compared with other 
methods, deep learning-based tools had remarkably more reliable predictions with 
transcripts with non-coding labels. Among these tested tools, LncADeep is the best 
tool, and longdist seems to be the worst one. The prediction results of longdist have 
many transcripts wrongly labelled as non-coding but are actually protein-coding 
mRNAs. Excluding deep learning-based tools, CPAT has the best performance. 
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Table 6.  Evaluation results of lncRNA prediction tools with different sizes of transcript test sets. 
The evaluation metrics are true positive rate (TPR), true negative rate (TNR), positive 
predictive value (PPV), negative predictive value (NPV), and balanced accuracy (ACC). 
The transcript test sets include four different sizes: small (S), medium (M), large (L) and 
extra-large (XL). The two other transcript test sets are the biased lncRNA (Lnc bias) and 
biased protein-coding mRNA (PC bias) sets. All metrics consider protein-coding mRNA 
positives and lncRNAs negatives. Deep learning-based tools are shown in bold. 

Data S, total transcripts: 46,563 M, total transcripts: 92,922 
Metrics 

Tool TPR TNR PPV NPV ACC TPR TNR PPV NPV ACC 

CPAT 0.723 0.986 0.987 0.711 0.854 0.724 0.986 0.987 0.712 0.855 
CPC2 0.487 0.996 0.996 0.574 0.742 0.484 0.998 0.997 0.572 0.741 

IRSOM 0.558 0.932 0.932 0.596 0.750 0.557 0.944 0.933 0.595 0.749 
LncADeep 0.867 0.930 0.947 0.830 0.899 0.864 0.930 0.947 0.826 0.897 
LncFinder 0.667 0.985 0.984 0.671 0.825 0.667 0.985 0.985 0.672 0.826 
longdist 0.214 0.975 0.925 0.464 0.594 0.211 0.975 0.924 0.462 0.593 
mRNN 0.849 0.921 0.940 0.809 0.885 0.848 0.923 0.941 0.807 0.885 

RNAsamba 0.827 0.925 0.941 0.787 0.876 0.824 0.930 0.944 0.786 0.877 

Data L, total transcripts: 139,379 XL, total transcripts: 185,190 
Metrics 

Tool TPR TNR PPV NPV ACC TPR TNR PPV NPV ACC 

CPAT 0.725 0.986 0.987 0.713 0.856 0.726 0.986 0.986 0.713 0.856 
CPC2 0.486 0.998 0.997 0.573 0.742 0.488 0.998 0.997 0.574 0.743 

IRSOM 0.557 0.942 0.933 0.595 0.750 0.558 0.944 0.933 0.596 0.750 
LncADeep 0.865 0.931 0.948 0.826 0.898 0.864 0.930 0.947 0.826 0.897 
LncFinder 0.669 0.985 0.985 0.673 0.827 0.670 0.985 0.985 0.674 0.828 
longdist 0.211 0.974 0.922 0.462 0.593 0.211 0.974 0.922 0.462 0.593 
mRNN 0.850 0.923 0.941 0.810 0.886 0.850 0.922 0.940 0.809 0.886 

RNAsamba 0.827 0.929 0.944 0.788 0.878 0.828 0.928 0.943 0.789 0.878 

Data Lnc bias, total transcripts: 122,265 PC bias, total transcripts: 128,502 
Metrics 

Tool TPR TNR PPV NPV ACC TPR TNR PPV NPV ACC 

CPAT 0.723 0.985 0.935 0.924 0.854 0.726 0.986 0.997 0.385 0.856 
CPC2 0.487 0.998 0.985 0.870 0.742 0.488 0.997 0.999 0.253 0.743 

IRSOM 0.558 0.943 0.738 0.880 0.750 0.558 0.941 0.982 0.271 0.750 
LncADeep 0.866 0.930 0.782 0.960 0.898 0.865 0.932 0.986 0.546 0.898 
LncFinder 0.667 0.985 0.929 0.910 0.825 0.670 0.985 0.996 0.342 0.827 
longdist 0.214 0.974 0.706 0.811 0.594 0.211 0.975 0.980 0.178 0.593 
mRNN 0.849 0.922 0.760 0.955 0.886 0.850 0.921 0.984 0.517 0.886 

RNAsamba 0.827 0.929 0.771 0.949 0.878 0.828 0.925 0.984 0.484 0.876 
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7 Discussion 

7.1 Evaluation of variant calling tools on indel 
calling 

The development of high-throughput sequencing technologies has greatly facilitated 
the studies of the human genome. A large number of algorithms and tools have been 
developed to analyse sequencing data. However, many tools were developed with 
similar algorithms and have functions with the same purpose, which may cause 
trouble for users to decide which tool can best fit their research. Users may select a 
tool based on the number of citation, journal impact, or author reputation, but these 
metrics may not be reliable predictors of software accuracy [461]. Tools published 
early are more likely to appear in high impact journals and have high number of 
citation due to their novelty, but without maintenance and further development, they 
may be outperformed by subsequent tools. To assess tools’ performance, one good 
way is benchmarking tools and evaluate their performance with different aspects.  

Indels are widely exist in the human genome and some of them have shown 
strong associations with human health (section 3.1.3). To assess which algorithms 
and tools are suitable to call particular sizes of indels, in Publication Ⅰ, eight variant 
calling tools representing a variety of indel calling algorithms were evaluated 
comprehensively on different size ranges of indels with both simulated and real NGS 
data. Previous indel calling tools or algorithms evaluations were mostly focus on 
either small indel calling [374,376,377], or large genome changes such as SVs 
[111,389], but not indels with different size ranges. Insertions and deletions have 
their specific difficulties in variant calling process, but only limited previous 
evaluation research considered them as two types of variants [381]. My research in 
Publication Ⅰ evaluated variant calling tools with insertions and deletions separately 
and benchmarked their indel calling performance with different size ranges of indels. 
My work made up for the deficiencies of previous studies and provide a more 
comprehensive indel calling evaluation of variant calling tools. 

To facilitate a fair, comprehensive, and in-depth evaluation of tools for indel 
calling, several essential aspects need to be considered and designed carefully. First, 
because the concept of indel includes insertion and deletion, which cover a wide 
range of genome changes, an evaluation of tools for indel calling should consider the 
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different characteristic features of both insertions and deletions with a wide size 
range. Second, because the short read length in NGS cannot fully resolve all sizes of 
indels, the algorithms of calling small (typically < 50 bp) and large (typically ≥ 50 
bp) indels use remarkably different information fetched from sequencing data, which 
may lead to variations in the best indel calling ranges. A good evaluation of tools for 
indel calling should include representative tools with various algorithms that cover 
the current computational indel calling field. Third, the different technical 
parameters of sequencing, such as sequencing coverage and read length, should also 
be considered to challenge tools. Fourth, an indel may have several different 
representations based on the complexity of sequence context. A good evaluation 
should clearly define reasonable criteria for labelling indels. Fifth, the selection of 
benchmarking datasets is important to conduct a fair evaluation. A good 
benchmarking dataset should 1) contain a wide range of indels that are precisely 
marked and can represent the nature of the human genome, 2) contain data with 
different technical parameters of sequencing, 3) avoid potential evaluation biases 
(the candidate tools of evaluation study are not solely or heavily involved in the 
generation process of the benchmarking dataset), and 4) choose the dataset in which 
the sequencing data and the corresponding indel truth set are generated by the same 
study and are both publicly available. 

The results of Publication Ⅰ suggested that no single tool or algorithm is suitable 
for all circumstances of indel calling. In general, the results agreed with those of 
previous indel calling evaluation studies that higher sequencing coverage and a 
longer read length are preferred. The performance of tools on large indels with 
CHM1 WGS data was worse than the performance with semi-simulated sequencing 
data. The reason might be that the semi-simulated data, including both large indels 
and corresponding sequencing reads, was too ideal for tools. The inconsistent 
evaluation results from real and simulate dataset can indicate that why tool 
evaluation cannot solely rely on simulated data. Regarding the purpose of assessing 
the indel calling performance of tools with different indel size ranges, the results 
showed that for calling large indels, specific algorithms are preferred, which agreed 
with previous studies [111,389]. Because of the short read length in NGS, a large 
indel may not be fully resolved by sequencing reads. The high-quality mapped 
sequencing reads have limited mapping information for a large indel, thus, specific 
algorithms are needed.  

With the current existed indel calling tools, one method to improve the accuracy 
of indel calling is creating ensembled variant calling tool. An indel that detected by 
multiple calling tools may not be an FP. Furthermore, by integrating indel calling 
tools with different underlying algorithms, an ensembled variant calling tool may 
have potential abilities to call a wide size range of indels. To make this idea even 
better, an ensembled variant calling tool may even have abilities to call various types 
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of variants, including SNV, MNV, indels, inversions, translocations, tandem repeats, 
CNVs, and so on. This among of work may lead the idea of “ensemble” into genomic 
variant calling platforms or pipelines, and these platforms or pipelines may have 
huge potential market in research organizations or hospitals [462].   

New sequencing methods are always developed, but this does not mean that old 
methods will be phased out. Sanger sequencing, as first-generation sequencing, still 
plays an important role in the validation of clinical diagnosis [463]. Next-generation 
sequencing has been developed for almost two decades, but its ability to capture 
variants with very low allele frequencies makes it the crucial first step in clinical 
diagnosis at the molecular level. Thus, research on NGS and the corresponding 
computational methods is still needed to improve their performance.  

One question that has not been answered well is the performance of variant 
calling tools with somatic SVs. Efforts have been made to evaluate tools, but a high-
quality, well-recognised somatic SV benchmarking tumour-normal sequencing 
dataset remains missing. Without a standard benchmarking dataset, the potential data 
or experimental design biases in evaluation studies are difficult to assess, thus 
making the evaluation results less persuasive. Once this kind of benchmarking 
dataset is available, the evaluation of tools for somatic SVs can help with clinical 
diagnosis.  

Furthermore, machine learning shows great performance in small indel calling, 
which makes it a good potential to call large genome changes like SVs. Calling SVs, 
including large indels with NGS, requires a careful and clever designed algorithm; 
simply applying machine learning methods only for variant filtration may not 
guarantee good results. These machine learning-based SV calling tools, such as 
DeepSV [353] and Cue [354], should be evaluated comprehensively using recently 
published high-quality SV benchmarking datasets, such as that in [464], to help 
understand how machine learning methods should be applied in large genomic 
variant discovery. Furthermore, in this study, indels were grouped into small and 
large indels based on their sizes. However, large indels are only two sub-types of 
SVs. Other types of SVs, including inversions, translocations, or other large complex 
genomic variants, were not evaluated in Publication Ⅰ. These types of SVs may 
require specific algorithms to detect, as normal indel calling may not have the ability 
to call them.  

In addition, insertions in TRs may be classified as insertions, duplications, or 
repeat expansions. For a small insertion in a TR, sequencing reads may fully resolve 
it, so the complexities of repeat expansion may not cause trouble for detection. For 
a large repeat expansion, sequencing reads cannot fully resolve it, and the exact size 
of this variant cannot be determined using normal indel calling algorithms. Although 
some tools, such as Pindel and DELLY, have designed functions to call duplications, 
they are still limited by two copy repeat expansions. As the use of specific algorithms 
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is encouraged to call repeat expansions, repeat expansion is not a variant type in this 
evaluation work [111]. However, because of the complex structures of repeat 
expansions, distinguishing them from insertions in the HuRef genome is not an easy 
task. Thus, in the truth set of the semi-simulated dataset, repeat expansions may 
accidently be included. In the future, a comprehensive evaluation of specific repeat 
expansion calling tools should be conducted. 

7.2 Sequence contexts of genomic variants 
In this study, a computational tool, VarSCAT, was developed to assess the sequence 
contexts of genomic variants, focusing on issues related with breakpoint ambiguity 
and STRs. Breakpoint ambiguity occurs with indels, which causes an indel to have 
multiple representations as different positions and alleles [133,134]. In addition, 
HGVS nomenclature requires an indel to be represented at the 3’ aligned position, 
while typical variant calling results show an indel at the 5’ aligned position [61]. 
These positions and allele differences can cause confusion, such as redundant indels, 
when dealing with high-throughput data or variants from databases [137,139]. 
Furthermore, instead of representing an indel at a single position, showing the 
equivalent affected region can help to better understand how the indel can be 
represented differently [134]. With these purposes, I developed an ambiguous 
variant annotation module for VarSCAT which can output the information about 
breakpoint ambiguity, together with, flanking bases, HGVS nomenclature, and 
distance to adjacent variants.  

The breakpoint ambiguity of an indel occurs because of a similar sequence 
pattern around the indel breakpoint. These similar sequence patterns are related to 
TRs. Tandem repeat lacks a general agreed, clear definition. The current definitions 
or thresholds for TRs always depend on artificial values. For example, the UCSC 
Genome Browser Simple Repeats track, which is made by the computational 
programme TRF, sets a minimum of 25 bp to be defined as a TR [307,395]. Under 
this threshold, a mononucleotide STR should have at least 25 copies, while for some 
large motif size repeats, the minimum copy number can be 1.8, even less than a 
duplication. Although the common definition of tandem repeat is not strict, the 
definition of STR is clear, which is a sequence motif with sizes of 1–6 bp repeated 
multiple times [38]. Based on this definition, the STR annotation from the Simple 
Repeat track of UCSC Genome Browser seems too strict. Some computational meta-
analyses or molecular experiments concluded  that an STR should be around at least 
10 bp to show different mutation rate than the background genome  [39–41]. Besides, 
in some cancer related studies, indels in mononucleotide STRs of length smaller than 
10 bp are considered to indicate the status of microsatellite instability [42–44]. Thus, 
if one uses the Simple Repeats track of the UCSC Genome Browser to annotate 
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variants in STRs, the proportion of variants in STRs may be underestimated; 
nonetheless, this track also contains redundant STRs. However, algorithms of many 
specific STR calling tools, including pathogenic repeat expansion calling methods, 
limit their calling regions within large size STRs. They call repeat expansions in pre-
defined STRs, which usually generated by a trusted resource, such as the UCSC 
Genome Browser or TRF [459,465]. By consider this research problem, the tandem 
repeat annotation module of VarSCAT was developed. 

The biological analysis of human germline variant sets using VarSCAT 
demonstrated the proportion of breakpoint ambiguous indels and variants in STRs at 
the human individual germline variant level. Although high-confidence human 
variants in STRs  such as centromeres have not yet been fully assessed [450], these 
results still provide a current estimate of the number of variants in STRs. As high-
confidence human germline variant sets were used in this study, another issue that 
cannot be ignored is that these high-confidence variant sets may filter out variants in 
STRs to retain the “high confidence” of their variant sets [63,450,466]. Variants in 
STRs are difficult to call and genotype; some commercial NGS-based variant 
discovery applications, such as Illumina BaseSpace, may filter them out or suggest 
specific STR applications. Thus, the proportions of variants in STRs estimated by 
VarSCAT may be underestimated. The current version of VarSCAT is still an 
annotation tool that relies heavily on input variants. For future development, 
VarSCAT may be upgraded to take sequencing files as input and call variants in 
STRs with the designed criteria or try to distinguish FP variant calls from tool’s 
variant calling result.  

The results from Publication Ⅱ shows that the occurrences of indels were not 
very random, small germline indels were strongly correlated with the sequence 
context. The majority of small germline indels in human genome had breakpoint 
ambiguity and many of them located in STRs (Figure 15). These results also 
suggested that tool evaluation cannot be conducted solely with simulated data, which 
variants or sequencing data are created artificially. Theoretically, simulated data has 
better labelled indels than real data because all indels are created artificially. Even 
though the truth indel set of real data has been developed carefully, incorrect labels 
of different causes cannot be totally avoided, which may result in inaccurate 
evaluation results. However, the complexity of the real human genome influences 
sequencing analysis from sample preparation to sequencing processes and then to 
computational analysis. Indeed, using simulated data can reduce the cost and 
complexity of experiments, but not all biological complexities can be easily 
simulated, such as sequencing errors in homopolymers. If indels are randomly 
inserted into the reference sequence, indel calling will be an easy task for tools. 
Besides, the technical differences between real datasets and simulated datasets might 
become unnecessary challenges, and these may confuse machine learning-based 
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methods. The strengths and weaknesses of the tools may not be reflected well or may 
even be reflected incorrectly with simulated data. Therefore, high-quality, standard 
real data with benchmarking purposes are always needed.  

7.3 Evaluation of lncRNA prediction tools 
In this part of the study, which is also described in Publication Ⅲ, eight lncRNA 
prediction tools with different underlying algorithms were evaluated. Compared with 
previous research [413,442–447], this research highlighted deep learning-based tools 
and tools’ performance with lncRNA or protein biased dataset. 

The results of Publication Ⅲ illustrated that deep learning-based tools were the 
top performers in lncRNA prediction. The ability of deep learning-based algorithms 
to recognise unknown sequence features, which might be uninterpretable for other 
algorithms, significantly contributed to their performance. In this study, transcript 
sets of different sizes were used. The performance of tools was stable, with different 
sizes of the transcript sets containing a balanced number of lncRNAs and protein-
coding mRNAs, but they fluctuated with imbalanced lncRNAs and protein-coding 
mRNA sets. The reason might be that the tools were trained with data containing a 
balanced number of lncRNAs and protein-coding mRNAs. In the real-world 
transcript set, the number of lncRNAs and protein-coding mRNAs may not be equal. 
Thus, further model development should take the biased nature of the transcript set 
into account. In addition, high-quality, standard, real-world transcript sets with labels 
for lncRNA and protein-coding mRNA are needed.  

The development of the lncRNA prediction tool may be divided into two steps: 
feature selection and model selection. The performance of the tool can be improved 
by choosing more informative features and reducing redundant or less important 
features. Robust feature selection algorithms for lncRNA prediction may become the 
direction for future method development. This and previous studies have answered 
the question of which model is better [445–447], also demonstrated the importance 
of features [413], efforts can still made for interpreting the roles of these features in 
lncRNA functions. Deep learning-based tools can fetch unknown features and result 
in good performance, but the lack of interpretation remains a problem. With a more 
interpretable model, knowledge regarding which features distinguish lncRNAs from 
protein-coding mRNAs can be obtained, and this may benefit pathological research.  

LncRNA is a type of non-coding RNA that also contains several sub-types [161]. 
In the future, tools can be developed to predict transcripts by taking all sizes and 
structures of transcripts into account, such as small non-coding RNAs and circular 
RNAs. In addition, recognising the sub-types of lncRNAs can also be a direction for 
future development. Structural information and the interactions between lncRNAs 
and proteins, or even DNAs [444], can be used to better recognise lncRNA sub-types 
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and potential functions. For some lncRNAs that can be translated into small peptides 
[174,467], algorithms are needed for better distinguishing these bi-functional 
transcripts. These efforts not only require computational practice but also knowledge 
from molecular experiments. Efforts are needed to study the functions of transcripts 
with definite coding abilities and non-coding functions.  

High-quality training datasets are required for non-model organism in lncRNA 
prediction. If these training datasets are not available, researchers may have to apply 
tools trained by other well-studied species to predict lncRNAs in their species of 
interest [445]. Aside from differences in lncRNAs in different species, cell types, the 
quality of sequencing data, and the proportions of lncRNAs should also be 
considered. Although some lncRNA prediction tools do have options to re-train their 
models, more work is needed to establish a generic criteria for building standard 
lncRNA sets.  
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8 Conclusion 

In this thesis work, a computational analysis of human genomic features, which were 
the indels, the sequence contexts of genomic variants, and lncRNAs, was conducted. 
All of these features play important roles in the regulation and development of 
human biological processes. In the past 20 years, with the development of 
sequencing technology, vast amounts of human genomic data have been produced, 
and the understanding of the human genome has been significantly improved.  

To further analyse these sequencing data and acquire novel knowledge from 
them, algorithms and tools were developed to meet research needs. For human DNA 
sequencing with the purpose of identifying genomic variants, variant calling tools 
with a variety of underlying algorithms were applied to detect different types of 
variants. With these known variants and annotations of the human genome sequence, 
the correlations between variants and certain phenotypes or diseases can be studied. 
In addition, the sequence contexts of genomic variants were analysed to determine 
the roles they play in biological processes. For human RNA sequencing, with the 
maturity of upstream sequencing techniques and downstream computational models, 
novel lncRNAs that were previously not fully known because of their low expression 
levels in human cells can be identified. 

In the bioinformatics field, novel algorithms and tools have been published 
frequently, but their performance may not be benchmarked well. This issue can cause 
confusion in tool selection, especially for users who work with certain biological or 
clinical purposes and lack computational knowledge. Although the computational 
analysis of human genomic data has been developed for more than 15 years and 
routinely applied to clinical diagnosis, some questions remain unanswered, limiting 
the clinical uses of human genomic data. Thanks to efforts to generate open-source 
data, several high-confidence, standard datasets have been produced in the last five 
years with the purposes of benchmarking and evaluating computational methods. 
Together with growing data in public databases, computational tools can be 
compared and evaluated more accurately and in detail than in the past. 

In this thesis, the evaluation of variant calling tools for indel calling on different 
indel size ranges and data types was conducted. No tool can perfectly fit all 
circumstances, but the choice of tools significantly impacts indel calling results. 
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Certain algorithms are suitable for certain size ranges and types of indels. Machine 
learning tools showed great abilities for calling small indels. Tools designed with 
specific indel calling algorithms are needed for calling large indels. In general, 
sequencing data with higher coverage and longer read lengths are preferred to call 
indels. The results of this study were presented in Publication Ⅰ.  

The results of Publication Ⅰ showed that more than half of FP indel calls were 
in simple repeats. The similar sequence context around an indel can be explained as 
the reason for FP calls. The sequence contexts of genomic variants can not only cause 
technical trouble in data analysis but may also have biological significance. To 
comprehensively study the sequence contexts of genomic variants, a computational 
tool, VarSCAT, was developed, which was described in Publication Ⅱ. By applying 
VarSCAT to a variety of human high-confidence variant sets, the proportion of 
breakpoint ambiguous indels and the proportion of variants in STRs were described 
at the human individual level. The results demonstrated that the majority of human 
germline small indels had breakpoint ambiguities, and they were the largest types of 
human germline small variants in STRs. The results also illustrated that current 
variant annotation methods or strategies may underestimate the proportion of 
variants in STRs.  

In Publication Ⅲ, deep learning-based lncRNA prediction tools were compared 
with tools based on other machine learning models. The results demonstrated that 
deep learning-based tools were the top performers in lncRNA prediction. The 
performance of tools does not vary with the size of the transcript dataset but with the 
proportions of lncRNAs and protein-coding mRNAs. 

In conclusion, this thesis conducted computational analysis with human genomic 
DNA and RNA data, focusing especially on indels, the sequence contexts of genomic 
variants and lncRNA prediction. The strengths and weaknesses of current 
computational methods have been identified, and future method developments have 
been discussed. A novel tool has been developed to fill the current research gap, 
which might have been underestimated previously.  

Bioinformatics is a rapidly evolving field, and technologies are updated every 
day. However, old technologies will not be eliminated; they will continue to mature 
into reliable downstream analysis methods and to serve industries, such as 
healthcare, particularly clinical diagnosis. The emergence of new technologies will 
advance our understanding of the human genome and provide novel solutions for 
human health-related issues. As a tool for studying and analysing human-related 
data, bioinformatics will be used more widely in the future than it is today.  
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