6 research outputs found

    머신 러닝 기반의 낸드 플래시 칩 eFuse 구성 생성 자동화 방법론

    Get PDF
    학위논문(석사)--서울대학교 대학원 :공과대학 컴퓨터공학부,2019. 8. 유승주.Post fabrication process is becoming more and more important as memory technology becomes complex, in the bid to satisfy target performance and yield across diverse business domains, such as servers, PCs, automotive, mobiles, and embedded devices, etc. Electronic fuse adjustment (eFuse optimization and trimming) is a traditional method used in the post fabrication processing of memory chips. Engineers adjust eFuse to compensate for wafer inter-chip variations or guarantee the operating characteristics, such as reliability, latency, power consumption, and I/O bandwidth. These require highly skilled expert engineers and yet take significant time. This paper proposes a novel machine learning-based method of automatic eFuse configuration to meet the target NAND flash operating characteristics. The proposed techniques can maximally reduce the expert engineers workload. The techniques consist of two steps: initial eFuse generation and eFuse optimization. In the first step, we apply the variational autoencoder (VAE) method to generate an initial eFuse configuration that will probably satisfy the target characteristics. In the second step, we apply the genetic algorithm (GA), which attempts to improve the initial eFuse configuration and finally achieve the target operating characteristics. We evaluate the proposed techniques with Samsung 64-Stacked vertical NAND (VNAND) in mass production. The automatic eFuse configuration takes only two days to complete the implementation.메모리 공정 기술이 발전하고 비즈니스 시장이 다양해 짐에 따라 웨이퍼 수율을 높이고 비즈니스 특성 목표를 만족하기 위한 후 공정 과정이 매우 중요해 지고 있다. 전기적 퓨즈 조절 방식(이-퓨즈 최적화 및 트림)은 메모리 칩 후 공정 과정에서 사용되는 전통적인 방식이다. 엔지니어는 이-퓨즈 조절을 통해 웨이퍼 상의 칩들 간의 초기 특성의 변화를 보상하거나, 신뢰성, 레이턴시, 파워 소모, 그리고 I/O 대역폭 등의 칩 목표 특성을 보장한다. 이-퓨즈 조절 업무는 다수의 숙련된 엔지니어가 필요하고 또한 상당히 많은 시간을 소모한다. 본 논문에서는 낸드 플래시 칩의 동작 특성 목표를 얻기 위한 기계 학습 기반의 이-퓨즈 자동 생성 기술을 제안하고, 해당 기술은 엔지니어의 작업시간을 획기적으로 단축시킬 수 있다. 논문의 기술은 두 단계로 구성 된다. 첫 번째 단계에서는 variational autoencoder (VAE) 기술을 적용하여 목표하는 동작 특성을 만족시키는 초기 이-퓨즈 구성을 생성한다. 두 번째 단계에서는 유전 알고리즘을 적용하여 초기 생성된 이-퓨즈 구성에 대하여 목표하는 성능 특성과의 정합성을 추가로 개선하여 최종적으로 목표하는 성능 특성을 얻는다. 논문의 평가는 실제 양산중인 삼성 64단 브이낸드 제품을 이용하여 진행하였다. 논문의 이-퓨즈 자동화 생성 기술은 2일 이내의 구현 시간만이 소요된다.Contents I. Introduction..........................................................................1 II. Background..........................................................................4 2.1. NAND Flash Block Architecture..................................................4 2.2. NAND Cell Vth Distribution........................................................5 2.3. eFuse Operation of NAND Flash Chip.......................................6 III. Basic Idea and Background...............................................7 3.1. Basic Idea.......................................................................................7 3.2. Background: Variational Autoencoder........................................10 IV. Initial eFuse Generation: VAE-Based Dual Network....14 V. eFuse Optimization: Genetic Algorithm..........................17 VI. Experimental Results.........................................................21 6.1. Experimental Setup......................................................................21 6.2. Initial eFuse Generation Results................................................23 6.3. eFuse Optimization Results........................................................26 6.4. Discussion.....................................................................................29 VII. Related Work..................................................................31 VIII. Conclusion.......................................................................33Maste

    Self-healing concepts involving fine-grained redundancy for electronic systems

    Get PDF
    The start of the digital revolution came through the metal-oxide-semiconductor field-effect transistor (MOSFET) in 1959 followed by massive integration onto a silicon die by means of constant down scaling of individual components. Digital systems for certain applications require fault-tolerance against faults caused by temporary or permanent influence. The most widely used technique is triple module redundancy (TMR) in conjunction with a majority voter, which is regarded as a passive fault mitigation strategy. Design by functional resilience has been applied to circuit structures for increased fault-tolerance and towards self-diagnostic triggered self-healing. The focus of this thesis is therefore to develop new design strategies for fault detection and mitigation within transistor, gate and cell design levels. The research described in this thesis makes three contributions. The first contribution is based on adding fine-grained transistor level redundancy to logic gates in order to accomplish stuck-at fault-tolerance. The objective is to realise maximum fault-masking for a logic gate with minimal added redundant transistors. In the case of non-maskable stuck-at faults, the gate structure generates an intrinsic indication signal that is suitable for autonomous self-healing functions. As a result, logic circuitry utilising this design is now able to differentiate between gate faults and faults occurring in inter-gate connections. This distinction between fault-types can then be used for triggering selective self-healing responses. The second contribution is a logic matrix element which applies the three core redundancy concepts of spatial- temporal- and data-redundancy. This logic structure is composed of quad-modular redundant structures and is capable of selective fault-masking and localisation depending of fault-type at the cell level, which is referred to as a spatiotemporal quadded logic cell (QLC) structure. This QLC structure has the capability of cellular self-healing. Through the combination of fault-tolerant and masking logic features the QLC is designed with a fault-behaviour that is equal to existing quadded logic designs using only 33.3% of the equivalent transistor resources. The inherent self-diagnosing feature of QLC is capable of identifying individual faulty cells and can trigger self-healing features. The final contribution is focused on the conversion of finite state machines (FSM) into memory to achieve better state transition timing, minimal memory utilisation and fault protection compared to common FSM designs. A novel implementation based on content-addressable type memory (CAM) is used to achieve this. The FSM is further enhanced by creating the design out of logic gates of the first contribution by achieving stuck-at fault resilience. Applying cross-data parity checking, the FSM becomes equipped with single bit fault detection and correction

    Program update of Zynq-based devices

    Get PDF
    Mezi mnohé požadavky kladené na moderní vestavěné systémy patří potřeba uchovávat více verzí jejich systémového obrazu (firmware, software nebo hardwareová konfigurace) a také možnost volby, který z těchto obrazů systém načte během procesu bootování, v závislosti na funkci, kterou daný obraz poskytuje. Tato diplomová práce popisuje vývoj aplikace pro zařízení s obvody Zynq firmy Xilinx, jejíž funkcí je provést aktualizaci systému. Aplikace zahrnuje jednoduchý vestavěný HTTP server sloužící ke vzdálenému přenosu souborů. Klientovi umožňuje nahrát soubor s obrazem skrze aplikaci spustitelnou z příkazové řádky, nebo prostřednictvím webové stránky, která byla navržena k tomuto účelu.Among many which are placed on modern embedded systems is also the need of storing multiple system boot image versions and the ability to select from them upon boot time, depending on a function which they provide. This thesis describes the development of a system update application for Xilinx Zynq-7000 devices. The application includes a simple embedded HTTP server for a remote file transfer. A client is allowed to upload the boot image file with the system update from either command line application or using the web page developed for this purpose.

    Cost effective technology applied to domotics and smart home energy management systems

    Get PDF
    Premio extraordinario de Trabajo Fin de Máster curso 2019/2020. Máster en Energías Renovables DistribuidasIn this document is presented the state of art for domotics cost effective technologies available on market nowadays, and how to apply them in Smart Home Energy Management Systems (SHEMS) allowing peaks shaving, renewable management and home appliance controls, always in cost effective context in order to be massively applied. Additionally, beyond of SHEMS context, it will be also analysed how to apply this technology in order to increase homes energy efficiency and monitoring of home appliances. Energy management is one of the milestones for distributed renewable energy spread; since renewable energy sources are not time-schedulable, are required control systems capable of the management for exchanging energy between conventional sources (power grid), renewable sources and energy storage sources. With the proposed approach, there is a first block dedicated to show an overview of Smart Home Energy Management Systems (SMHEMS) classical architecture and functional modules of SHEMS; next step is to analyse principles which has allowed some devices to become a cost-effective technology. Once the technology has been analysed, it will be reviewed some specific resources (hardware and software) available on marked for allowing low cost SHEMS. Knowing the “tools” available; it will be shown how to adapt classical SHEMS to cost effective technology. Such way, this document will show some specific applications of SHEMS. Firstly, in a general point of view, comparing the proposed low-cost technology with one of the main existing commercial proposals; and secondly, developing the solution for a specific real case.En este documento se aborda el estado actual de la domótica de bajo coste disponible en el mercado actualmente y cómo aplicarlo en los sistemas inteligentes de gestión energética en la vivienda (SHEMS) permitiendo el recorte de las puntas de demanda, gestión de energías renovables y control de electrodomésticos, siempre en el contexto del bajo coste, con el objetivo de lograr la máxima difusión de los SHEMS. Adicionalmente, más allá del contexto de la tecnología SHEMS, se analizará cómo aplicar esta tecnología para aumentar la eficiencia energética de los hogares y para la supervisión de los electrodomésticos. La gestión energética es uno de los factores principales para lograr la difusión de las energías renovables distribuidas; debido a que las fuentes de energía renovable no pueden ser planificadas, se requieren sistemas de control capaces de gestionar el intercambio de energía entre las fuentes convencionales (red eléctrica de distribución), energías renovables y dispositivos de almacenamiento energético. Bajo esta perspectiva, este documento presenta un primer bloque en el que se exponen las bases de la arquitectura y módulos funcionales de los sistemas inteligentes de gestión energética en la vivienda (SHEMS); el siguiente paso será analizar los principios que han permitido a ciertos dispositivos convertirse en dispositivos de bajo coste. Una vez analizada la tecnología, nos centraremos en los recursos (hardware y software) existentes que permitirán la realización de un SHEMS a bajo coste. Conocidas las “herramientas” a nuestra disposición, se mostrará como adaptar un esquema SHEMS clásico a la tecnología de bajo coste. Primeramente, comparando de modo genérico la tecnología de bajo coste con una de las principales propuestas comerciales de SHEMS, para seguidamente desarrollar la solución de bajo coste a un caso específico real

    Secure and safe virtualization-based framework for embedded systems development

    Get PDF
    Tese de Doutoramento - Programa Doutoral em Engenharia Electrónica e de Computadores (PDEEC)The Internet of Things (IoT) is here. Billions of smart, connected devices are proliferating at rapid pace in our key infrastructures, generating, processing and exchanging vast amounts of security-critical and privacy-sensitive data. This strong connectivity of IoT environments demands for a holistic, end-to-end security approach, addressing security and privacy risks across different abstraction levels: device, communications, cloud, and lifecycle managment. Security at the device level is being misconstrued as the addition of features in a late stage of the system development. Several software-based approaches such as microkernels, and virtualization have been used, but it is proven, per se, they fail in providing the desired security level. As a step towards the correct operation of these devices, it is imperative to extend them with new security-oriented technologies which guarantee security from the outset. This thesis aims to conceive and design a novel security and safety architecture for virtualized systems by 1) evaluating which technologies are key enablers for scalable and secure virtualization, 2) designing and implementing a fully-featured virtualization environment providing hardware isolation 3) investigating which "hard entities" can extend virtualization to guarantee the security requirements dictated by confidentiality, integrity, and availability, and 4) simplifying system configurability and integration through a design ecosystem supported by a domain-specific language. The developed artefacts demonstrate: 1) why ARM TrustZone is nowadays a reference technology for security, 2) how TrustZone can be adequately exploited for virtualization in different use-cases, 3) why the secure boot process, trusted execution environment and other hardware trust anchors are essential to establish and guarantee a complete root and chain of trust, and 4) how a domain-specific language enables easy design, integration and customization of a secure virtualized system assisted by the above mentioned building blocks.Vivemos na era da Internet das Coisas (IoT). Biliões de dispositivos inteligentes começam a proliferar nas nossas infraestruturas chave, levando ao processamento de avolumadas quantidades de dados privados e sensíveis. Esta forte conectividade inerente ao conceito IoT necessita de uma abordagem holística, em que os riscos de privacidade e segurança são abordados nas diferentes camadas de abstração: dispositivo, comunicações, nuvem e ciclo de vida. A segurança ao nível dos dispositivos tem sido erradamente assegurada pela inclusão de funcionalidades numa fase tardia do desenvolvimento. Têm sido utilizadas diversas abordagens de software, incluindo a virtualização, mas está provado que estas não conseguem garantir o nível de segurança desejado. De forma a garantir a correta operação dos dispositivos, é fundamental complementar os mesmos com novas tecnologias que promovem a segurança desde os primeiros estágios de desenvolvimento. Esta tese propõe, assim, o desenvolvimento de uma solução arquitetural inovadora para sistemas virtualizados seguros, contemplando 1) a avaliação de tecnologias chave que promovam tal realização, 2) a implementação de uma solução de virtualização garantindo isolamento por hardware, 3) a identificação de componentes que integrados permitirão complementar a virtualização para garantir os requisitos de segurança, e 4) a simplificação do processo de configuração e integração da solução através de um ecossistema suportado por uma linguagem de domínio específico. Os artefactos desenvolvidos demonstram: 1) o porquê da tecnologia ARM TrustZone ser uma tecnologia de referência para a segurança, 2) a efetividade desta tecnologia quando utilizada em diferentes domínios, 3) o porquê do processo seguro de inicialização, juntamente com um ambiente de execução seguro e outros componentes de hardware, serem essenciais para estabelecer uma cadeia de confiança, e 4) a viabilidade em utilizar uma linguagem de um domínio específico para configurar e integrar um ambiente virtualizado suportado pelos artefactos supramencionados
    corecore