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Abstract

The start of the digital revolution came through the metal-oxide-semiconductor field-effect
transistor (MOSFET) in 1959 followed by massive integration onto a silicon die by means of
constant down scaling of individual components. Digital systems for certain applications require
fault-tolerance against faults caused by temporary or permanent influence. The most widely used
technique is triple module redundancy (TMR) in conjunction with a majority voter, which is
regarded as a passive fault mitigation strategy. Design by functional resilience has been applied to
circuit structures for increased fault-tolerance and towards self-diagnostic triggered self-healing.
The focus of this thesis is therefore to develop new design strategies for fault detection and
mitigation within transistor, gate and cell design levels.

The research described in this thesis makes three contributions. The first contribution is based on
adding fine-grained transistor level redundancy to logic gates in order to accomplish stuck-at fault-
tolerance. The objective is to realise maximum fault-masking for a logic gate with minimal added
redundant transistors. In the case of non-maskable stuck-at faults, the gate structure generates an
intrinsic indication signal that is suitable for autonomous self-healing functions. As a result, logic
circuitry utilising this design is now able to differentiate between gate faults and faults occurring in
inter-gate connections. This distinction between fault-types can then be used for triggering
selective self-healing responses.

The second contribution is a logic matrix element which applies the three core redundancy
concepts of spatial- temporal- and data-redundancy. This logic structure is composed of quad-
modular redundant structures and is capable of selective fault-masking and localisation depending
of fault-type at the cell level, which is referred to as a spatiotemporal quadded logic cell (QLC)
structure. This QLC structure has the capability of cellular self-healing. Through the combination
of fault-tolerant and masking logic features the QLC is designed with a fault-behaviour that is
equal to existing quadded logic designs using only 33.3% of the equivalent transistor resources.
The inherent self-diagnosing feature of QLC is capable of identifying individual faulty cells and
can trigger self-healing features.

The final contribution is focused on the conversion of finite state machines (FSM) into memory to
achieve better state transition timing, minimal memory utilisation and fault protection compared to
common FSM designs. A novel implementation based on content-addressable type memory (CAM)
is used to achieve this. The FSM is further enhanced by creating the design out of logic gates of the
first contribution by achieving stuck-at fault resilience. Applying cross-data parity checking, the

FSM becomes equipped with single bit fault detection and correction.
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Self-healing concepts involving fine-grained redundancy for electronic systems

Declaration

No part of the work described in this thesis has been submitted in support of an
application for another degree or qualification to this or any other university or

institute of learning.

Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be
published without the author’s prior written consent and information derived from it

should be acknowledged.

[iii]



Self-healing concepts involving fine-grained redundancy for electronic systems

Acknowledgments

I would like to thank those who made this thesis possible and truly believed in me for the last few
years during the course of my PhD. First | would like to say thank you to my doctoral supervisor
Professor Alan Purvis. He gave me a great opportunity for conducting my research with freedom
and flexibility. I would like to thank my doctoral co-supervisor Doctor Richard McWilliam for his
good advice, experiences and friendship. This has been invaluable on both levels academic and

personally.

I would like to thank my parents Peter (who could not see the end of this, but whose memory has
accompanied me and has given me inspirations) and Lieselotte Schiefer for supporting my vision
and being there for me, even in times we do not see eye to eye. My sister Katrin and my uncle Fritz
Grofmann for their help and support they have given me for fulfilling my ambition. A special
thanks towards Dr Friedrich and Ruth Schiefer for helping me in getting a great start into my
professional life. Thank you to Bernhard and Else Gaul for leading by example for changing their

life to fulfil a life dream despite of the risks it involved.

| would like to thank my friends for their understanding and support through the time of working
on my research. The following persons | would like to specially thank: Heiko Jausel for being a
friend over the years and his encouragement, even in hard times; Dr Albrecht Carver for showing
me that you can conguer the hardest obstacles, personal or professional; Jirgen Béhm for being the

same great person, unchanged as | have known you since school.

[iv]



Self-healing concepts involving fine-grained redundancy for electronic systems

Dedicated to my wife Iris and my Son Max
for their love and understanding they have

given me throughout this time and beyond.

“Growing old is mandatory. Growing up is optional.” — Carroll Bryant



Self-healing concepts involving fine-grained redundancy for electronic systems

List of Abbreviations:

ucC - micro-controller
ABS - anti-lock break systems (ABS)
ADC - analogue-to-digital converter

ALU - arithmetic logic unit

ASIC - application specific integrated circuit
BB - building block

BISR - built-in self-repair

BIST - built-in self-test

CAD - computer aided design

CAM - content-addressable memory

ccfuse - current sensing and conversion fuse
CCu - central control unit

CISC - complex instruction set computing
CLB - configurable logic blocks

CLS - control logic section

CME - coronal mass ejection

CMOS - complementary metal-oxide-semiconductor
COTS - component of the shelf

CPU - central processing unit

CSP - combined single process
DAC - digital-to-analogue converter
ECC - error correction codes

ECU - electronic control unit

FF - flip-flop

FLB - functional logic block
FPGA - field programmable gate array

FR - fault rate

FSM - finite state machine
IC - input condition
JK-FF - JK-flip-flop

LET - linear energy transfer

LETty - LET threshold
LUT - look-up table
MBU - multibit upset

MCU - multiple-cell upset
[vi]



Self-healing concepts involving fine-grained redundancy for electronic systems

MEMS - micro-electro-mechanical systems
MML - memory-mapped logic

PAL - programmable array logic

PCB - printed circuit board

PLA - programmable logic array

PLD - programmable logic device
PROM - programmable read-only memory
QLC - quadded logic cluster

RAM - random access memory

RISC - reduced instruction set computing
ROM - read-only memory

RTR - run-time reconfiguration

SAFR - stuck-at fault resilient

SAH - stuck-at high

SAL - stuck-at low

SBU - single bit upset

SCO - separated combinatorial outputs
SEB - Single event burnout

SEE - single event effect

SEFI - Single event interrupt

SEL - Single event latch up

SET - Single event transient

SEU - Single event upsets

SMD - surface mount devices

SoC - System-on-Chip

SOl - silicon on insulator

SRAM - static random access memory
SRO - separated registered outputs
TMR - triple module redundant

TRS - temporal-redundant systems

VHDL - Verilog hardware description language

[vii]



Self-healing concepts involving fine-grained redundancy for electronic systems

Table of Contents:

Chapter 1: Introduction and Overview

L It OTUC I ON 1
1.2, Problem definition. 2
1.3, O OO IS 4
1.4. Framework of this research work 5

Chapter 2: Design of electronic systems

2. 0. Introduction 7
2.2. Basic structure of an electronic SYStem . 8
2.3. Central logic chip variation for electronic systems 9
2.3. 1. MICrOCONION T 10
2.3.2. Application specific integrated circuit 11
2.3.3. Field programmable gate array 12
2.3.4. Mapping logic into MemoOryY 15
2.3.5. Comparison of the different logic units 16
2.4, Development of FPGAS 19
2.4.0. SRAM-Dased FPG AS 20
2.4.2. Antifuse-based FPG AS 22
2.4. 3. Flash-based FP G AS 24
2.5, Summary of Chapter 26

Chapter 3: Radiation effects on electronic system components

S L INtrOAUCION 2
3.2. The sun as source of the radiation effects in electronic systems ... ... 27
3.3. History and impact of single event upset effects on electronicsystem 29
3.4. Definition of single event effect 20
340, Types Of SEES
3.4.2. Linear energy transfer function .33
3.4.3.SEU inrelationto sea-level .33
3.5. SEE impacts on SRAM-based FPGAS 34
3.5.1. SEE impact on configuration data storedinSRAMs_____ .34
3.5.2. SEE impact on user data stored in SRAM o35
3.5.3. SEE impacton the user logiC_ .36
3.6. Simulation of SEE faults in an electronicsystem .. . .36
3.6.1. Simulation-based fault-injection________ .38



Self-healing concepts involving fine-grained redundancy for electronic systems

3.6.1.1. VHDL-based fault-injection___________ .38

3.6.1.2. Fault-injection with means of run-time configuration manipulation_ 38

3.6.1.3. Fault-injection into logic equation_______ .39

3.6.2. Physical-based fault-injection 41
3.6.2.1. Hardware fault-injection_ 41

3.6.2.2. Software fault-injection 43

3.7 Summary of the Cap e 44

Chapter 4: Review of type of faults and their behaviour on a system

4 INtrodUCHION 45
4.2. Impact of chip feature-scaling development on fault-behaviour 45
4.3. Definition of fault and error in an electronic system . 50
4.4. Faults and errors in an electronic system .51
4.5. Types of faults in an electronic system ... 52
45.1. Transient faults in an electronic system .52
4.5.2. Permanent faults in an electronic system .5
4.5.3. Intermittent faults in an electronicsystem . .55
4.6. Detection of fault or error occurrence in an electronicsystem 55
4.6.1. Majority voter at the boundary of a functional block 56
4.6.2. Comparator at the boundary of a functional block . .. 62
4.7, Summary of the chapter b4

Chapter 5: Concepts for increasing dependability of logic systems

5. L INtrOdUCION 85
5.2. Fault-tolerant per system design ... B5
5.3. Fault-tolerant approaches based on fault eliminationormasking.__________ 65
5.3.1. Redundancy concepts ina system .85
5.3.1.1. Spatial redundancy system structure_____________ .67

5.3.1.2. Temporal redundancy system structure_________ .69

5.3.1.3. Information redundancy data structures .11

5.3.1.4. Fine-grained redundancy on logic gate level 72

5.3.2. Reconfiguration concepts in a system_____ T4
5.3.2.1. Datascrubbing. 15

5.3.2.2. Reconfiguration with pre-defineddata.__________ . . .._.....715

5.3.2.3. Tile approach with rotating reconfiguration___________ .76

5.4. Fault-tolerant approach based on fault-masking___ 1718
5.5. Fault-tolerant approach based on fault correction_______ .19

[ix]



Self-healing concepts involving fine-grained redundancy for electronic systems

5.6. Summary of the chapter

Chapter 6: Design of a fault-tolerant temporal-redundant matrix element

6.1. Introduction

6.2. A fault-tolerant temporal-redundant structure

6.3. Design of a fault-tolerant temporal-dependent reconfigurable round-robin element

6.4. Fault-handling capability of QLC compared against quadded logic structures
6.4.1. Fault-handling evaluation of quadded logic vs. QLC, both without voter

6.4.2. Fault-handling evaluation of quadded logic vs. QLC, both with voter

6.4.3. Overview of simulation results of the different systems

6.5. Summary of the chapter

Chapter 7: Design of a fault-tolerant logic gate

7.1. Introduction

7.2. A fault-tolerant logic gate

7.2.1. Comparing of logic gates responses under the influence of fault-injection

7.2.2. ldentifying the functionality of a fault-tolerant logic gate

7.2.3. Design of a fault-tolerant NAND logic gate

7.2.4. Validation of the optimised fault-tolerant NAND logic gate

7.2.5. Scalability of optimised fault-tolerant NAND logic gate

7.3. Alteration of other fundamental logic gates according to design specification

7.4. Converting standard logic circuits into fault-tolerant logic circuits

7.4.1. Comparing a 2-bit full adder design implementation

7.4.2. Comparing a C17 circuit design implementation

7.4.3. Comparing a three input majority voter circuit design implementation

7.5. Converting the logic unit of the QLC into using SAFR type logic gates only

7.6. Summary of the chapter

Chapter 8: Mapping FSM functionality into memory

8.1. Introduction

8.2. Principle of FSM architecture

8.3. Objective of mapping FSM logic functionality into memory

8.4. Mapping of a FSM logic functionality into memory

8.4.1. Mapping a JK-flip-flop into memory

8.4.2. Mapping of an FSM into memory LUT

8.4.3. Comparison between memory LUT and PLD

8.5. Comparison of different memory LUT concepts
(]



Self-healing concepts involving fine-grained redundancy for electronic systems

8.5.1. Creating a fault-tolerant CAM circuitconcept 165
8.5.2. Protecting data memory inside CAMs againstSEUs 167
8.6. Summary of the Chapter 169

Chapter 9: Design of self-healing logic structure

0. L INtrOdUCION 170
9.2. A self-healing fine grained logic structure 171
9.2.1. Concepts for fault self-detection with the SAFR-NAND gate . 1 173
9.2.2. Initiation of self-healing of a circuit designed out of SAFR-NAND gates . 177
9.2.3. Initiation of self-healing at SAFR-NAND gate with reconfiguration__ ! 185
9.3. Fault identification capabilities within the QLC logic structure 190

9.4. Circuit interconnection fault-localisation through memory-based BIST functionality 196

9.5. Summary of the chapter 203

Chapter 10: Conclusions and further work

10.1. conclusions . 205
10.2. Furtherwork . 209
References 211

[xi]



Self-healing concepts involving fine-grained redundancy for electronic systems

Appendix 1: Publications 221

Appendix 2: Example of FR calculation for SAH and SAL fault injection into a XOR logic gate

structure in accordance with Figure 5.9(a) 222

Appendix 3.1: MATLAB program for Chapter 4 for the FR generation data of the majority voter

under the influence of stuck-at fault injected at specified injection points 223

Appendix 3.2: MATLAB program for Chapter 5 for the FR generation data of the logic circuits
XOR-gate and quadded logic version of the XOR function under the influence of stuck-at fault
injected at specified injection POINtS. 224
Appendix 3.3: MATLAB program for Chapter 6 for the FR generation data of the comparison of
the fault-behaviour of the generic logic gate structure and the QLC structure under the influence of
stuck-at fault injected at specified injection points 226

Appendix 3.4: MATLAB program for Chapter 7 for the purpose of analysing the fault behaviour

Of the QL C StrUCIUNe 232
Appendix 4: Spice simulation circuit of SAFR-logicgates . .......238
Appendix 5: Fault results of the fault simulation in accordance of logic gate alteration for a
certain selection of eight transistor-style variation_ o ........240
Appendix 6: Breadboard of the SAFR-NAND gatedesign_____ . . . ........243
Appendix 7: PCB design of self-healing SAFR-NAND gate . _.....244
Appendix 8: Circuit board design of the SAFR-NAND gate . . . ......245
Appendix 9: 8051 set-up for the simulation of the soda machine FSM . 246
Appendix 10: Assembler code for the FSM soda machine . ...247

[xii]



Self-healing concepts involving fine-grained redundancy for electronic systems

List of Figures and Tables:

Figure 1.1: (left) Coronal mass ejection and (right) multiple solar flares [1] 3

Figure 2.1: Basic block diagram of an ECU with the central block of an ECU containing control
logic section, memory, input/output section and logic unit 8

Figure 2.2: SRAM-based FPGA with two connection blocks (CB), one switch block (SB), one
logic block (LB) forming a single tile [2] 13

Figure 2.3: (a) PLA and (b) PAL architectures of the internal section structure [3, 4] 13

Figure 2.4: JK-flip-flop state transition table transformation into memory; (a) state transition table;

(b) state transition table including coded replacement of states and can be seen as a trues table; (c)

memory data created out of data from (b) o 1s
Figure 2.5: Block diagram of a memory-mapped FSM_____ ... 16
Figure 2.6: SRAM or static RAM cell structure for programmingonebit[5] 20

Figure 2.7: Example of possible interconnection switching configuration; (a) orthogonal, (b) one

type of diagonal, (c) another type of diagonal interconnection [6] 21

Figure 2.8: (a) Block diagram of a SRAM based 4x4 CLB element structure with interconnection

elements building the FPGA structure; (b) block diagram of the inside of a configurable logic block

Figure 2.9: (a) SRAM vs. (b)Antifuse-based programmable switch of an FPGA [5] .23
Figure 2.10: Cell architecture for NOR (a) and NAND (b) gate design [7] ... . ... .. ...24
Figure 3.1: Solar wind and Earth ‘s magnetic field interaction [8] . ... 28
Figure 3.2: Van Allen radiation belts of the Earth magneticfield[9) .29
Figure 3.3: Soft-error rate per chip generation (logic and memory structure included) [10] ... 30
Figure 3.4: SEE-induced alteration of the interconnection within a switching matrix [5] ______.....35

Figure 3.5: SEE alteration of the stored logic function data to another logic functionality [5]____36

[xiii]



Self-healing concepts involving fine-grained redundancy for electronic systems

Figure 3.6: Overview of fault-injection methods [11] 37

Figure 3.7: Circuit layout of a standard NAND gate with identification of pull-up and pull-down

network 39

Figure 3.8: Some possible electronic faults in a transistor with regard to open connection or shorts

DEtWEEN tWO PINS (12 41
Figure 4.1: Overview of possible failure mechanisms of semiconductor devices [13-15] 47
Figure 4.2: Graph of the random dopant fluctuation due to feature size reduction [16] 48
Figure 4.3: Mean time of failure-type definition withinasystem [17]__ . . . .....50
Figure 4.4: Fault propagation within system [17] 52
Figure 4.5: Soft-error failure-in-time of a chip (logicand memory) [10] . . . ... ... 53
Figure 4.6: Majority voter block diagram foran NMR system [18) .56

Figure 4.7: Conventional triple module redundant (TMR) majority voter logic circuit created out

of single logic gates 57

Figure 4.8: Conventional TMR majority voter logic circuit with stuck-at simulation points (1 to

Figure 4.9: TMR majority voter with fault indicator circuit for the case that inputs are

homogenous. (a) for homogenous of all inputs, (b) for homogenous of two out of three 60

Figure 4.10: TMR majority voter with output fed-back comparator against inputs for identifying
faulty input path 61

Figure 4.11: Dual redundancy electronic system with AND-gate as a comparator at the output__ 62

Figure 4.12: Dual redundancy electronic system with AND gate comparator and XOR gate as fault

indicator 63

Figure 5.1: Timing sequence of the encoding/decoding approach of the permanent fault-masking

temporal redundancy structure [19] 10
Figure 5.2: TSTMR error correcting adder [19] 1D
Figure 5.3: Best evolved SAL resilient inverter gate [20,21) .13

[xiv]



Self-healing concepts involving fine-grained redundancy for electronic systems

Figure 5.4: The two possible replacement quadded transistor structures for a single transistor of a

common logic gate [22]; (a) with and (b) without cross bridge 74

Figure 5.5: Column-based precompiled individual functional blocks. The fault-free configuration

is displayed in (a) and an altered configuration after a fault is shown in (b) [23, 24] 76

Figure 5.6: (a) Logic cell with four logic units in accordance with [25]; (b) Internal logic structure

created out of the three logic gates 77

Figure 5.7: Clockwise reconfiguration of the internal circuit structure for maintaining the required
Boolean function [25] 78

Figure 5.8: XOR logic gate design in (a) standard logic gate structure and (b) quadded logic gate

structure 81

Figure 5.9: XOR gate design in (a) standard gate structure and (b) quadded gate structure both
with specific defined stuck-at fault-injection points 83

Figure 5.10: XOR logic gate design in standard gate structure with altered output logic gate
different from Figure 5.8(a) 86

Figure 6.1: (a) Matrix structure divided into tiles which can be localised reconfigured in the case

of a fault within a single tile [25]; (b) A reconfigurable logic block between fixed interconnection

Figure 6.2: Functional block diagram of the temporal-dependent reconfigurable round-robin

matrix element 96

Figure 6.3: General block diagram of the quadded logic cluster 97

Figure 6.4: Functional blocks of the QLC matrix element; (a) the shift-register which controls the
selection of logic units and the selection of the logic gate functionality; (b) internal structure of

logic unit with switches for selecting logic gate functionality 98

Figure 6.5: (a) Internal logic gate combination of the QLC per one clock cycle; (b) Logic function

corresponding to the required selection 98

Figure 6.6: (a) Block diagram of QLC with labelled logic units, (b) configuration of logic units in

[xv]



Self-healing concepts involving fine-grained redundancy for electronic systems

Figure 6.7: Detailed example of the mapping of a XOR logic function onto the QLC elements and

shift-register details for the full round-robin cycle 100

Figure 6.8: (a) Shows the logic gate configuration for logic function alteration and fault-injection
points at the inputs and outputs of each logic gate; (b) shows the same as (a) but for the quadded

logic structure 103

Figure 6.9: Fault-injection points at the logic structure of a logic unit excluding the switches and

interconnection between the logic gates 111

Figure 6.10: (a) four-input voter circuit; (b) truth table of the four-input majority voter 112

Figure 7.1: Analysing the behaviour of a NAND gate under the influence of stuck-at fault (a)
definition of the fault-injection points at input and output pins; (b) output results of the NAND gate

under the influence of stuck-at faults 122

Figure 7.2: Simulation results of Spice simulation of NAND gate with stuck-at fault-injection at
individual transistors; (a) definition of the fault-injection points at each transistor; (b) output results
of the NAND gate under the influence of stuck-at faults 124

Figure 7.3: SAL fault-tolerant inverter proposed in [20]; (2) circuit structure of SAL fault-tolerant

inverter with injection points; (b) output results of the INV gate under the influence of stuck-at

Figure 7.4: (a) Standard NAND gate structure; (b) NAND gate with replaced transistor with
building blocks (BB) 127

Figure 7.5: All variations of transistor redundancy structures done for incremental increase of
transistors performed up to quadded transistor structure 129
Figure 7.6: Single stuck-at fault resilient (SAFR) NAND gate design as a result of the single SAL

fault-injection simulation data is displayed in Table 7.3 131

Figure 7.7: NAND gate with increased redundancy by NAND+1 until NAND+12 133

Figure 7.8: (a) FR analysis for the standard NAND gate with increased added transistor
redundancy. (b) Total number of faults broken down into state three and fourth per increased added

transistor redundancy (The bar is split into top part logic state three and bottom part logic state



Self-healing concepts involving fine-grained redundancy for electronic systems

Figure 7.9: Increasing two input NAND gate with BB to a three input version 136

Figure 7.10: Three input optimised NAND gate resilient to SAL faults 137

Figure 7.11: (a) Standard NOR logic gate; (b) optimised NOR gate resilient to SAL faults 139

Figure 7.12: Logic gate circuit of a full 2-bit adder constructed only out of NAND logic gate

AOSIONS 140
Figure 7.13: C17 test circuit out of the ISCAS-85 benchmark circuit library [27] 141
Figure 7.14: Majority voter constructed out of NAND gate._ 143

Figure 7.15: (a) Logic unit design done out of standard logic gates; (b) Logic unit adapted to work
with SAFR-type logic gates 144

Figure 7.16: (a) Optimised logic unit towards minimal logic gate use and minimal coding bits; (b)

Coding table for the selection of required logic function of the minimal hardware requiring logic

Figure 8.3: Demonstration of the three different coding style within block diagrams (a) Coding
style combined single process (CSP); (b) Coding style state-separated combinatorial outputs
(SCO); (c) Coding style state-separated registered outputs (SRO) [29, 30] 152

Figure 8.4: Block diagram of the memory-based FSM structure [30] . . . 153
Figure 8.5: Shows the state information required for the JK-FF FSM (a) state diagram of a JK-FF;
(b) state table Of @ JK-FF 155
Figure 8.6: The state transition table of the JK-FF is transformed into a memory-usable table for a

memory-based FSM adaptation [31]; (a) state table; (b) state table with binary-coded state

replacement; (¢) memory LUT information 155
Figure 8.7: FSM state diagram of the soda machine [32] 157
Figure 8.8: Optimised FSM state diagram of the soda machine [30]____ 158

[xvii]



Self-healing concepts involving fine-grained redundancy for electronic systems

Figure 8.9: State diagram of the soda machine with definition of all input stimuli and output

functions per state transactions as required for the state diagram__________ 159
Figure 8.10: CAM based implementation of a content-related search system out of [33]_____ .. 164
Figure 8.11: Fault-tolerant CAM block diagram_ 166
Figure 8.12: Block diagram of the programmable inverter ] 166

Figure 8.13: Concept of identification of a single data-bit alteration within a stored data matrix of a
CAM circuit 168

Figure 9.1: Axolotl (ambystoma mexicanum) [34] 173

Figure 9.2: (a) Internal transistor structure of SAFR-NAND gate; (b) SAFR-NAND gate converted

from transistor into variable resistors structure 174

Figure 9.3: Current response of the SAFR-NAND gate with the presence of a single SAH fault at

T6 transistor (see Figure 9.2(a)) and required input stimulus 176

Figure 9.4: Block diagram of the SAFR-NAND gate simulating a SAH fault-injection and ccfuse
fault-clearing capability 179

Figure 9.5: (a) SAFR-NAND gate with SAH fault at T3 without self-healing capabilities; (b) the

same condition as in (a) including this time self-healing capabilities for fault correction 180

Figure 9.6: (a) Detailed time slot taken out of Figure 9.5b of the simulation of a single SAH fault
at T3 of an SAFR-NAND gate with self-healing capabilities for fault correction; (b) Higher time

frame resolution of the digital signals of the self-healing phase 182

Figure 9.7: Standard positive supply rail current-sensing circuit taken out of [35] 183

Figure 9.8: Output voltage graph of the supply rail current sensing in relationship to the digital
signals of the self-healing phase 184

Figure 9.9: Output voltage graph of the supply rail current-sensing circuit in relationship to the lddg
current of the SAFR-NAND logic gate 185

Figure 9.10: Block diagram of lddg current triggered self-healing of the system performance in the

case of the presences of a SAH fault by means of reconfiguration 187

[xviii]



Self-healing concepts involving fine-grained redundancy for electronic systems

Figure 9.11: Self-initiated switchover between two SAFR-NAND gates triggered through the lddq

current for maintaining functionality after SAH fault occurred 188

Figure 9.12: Timing diagram of the self-initiated switchover between two SAFR-NAND gates

triggered through the lddg current for maintaining functionality after SAH fault occurred 189

Figure 9.13: Output voltage graph of the supply rail current sensing in relationship to the digital
signals of the self- initiated switchover between two SAFR-NAND gates triggered through the lddg

current for maintaining functionality after SAH fault occurred 189

Figure 9.14: Output voltage graph of the supply rail current sensing circuit in relationship to the
lddg current of the SAFR-NAND logic gate similar to the Figure 9.13 190

Figure 9.15: TMR-based block diagram with majority-voted output signal fed-back into individual

output signal comparison 192

Figure 9.16: QLC with majority voter output fed-back into comparator for identification of faulty
individual output signal stored in fault-flag associated with clockcycle . .. 195
Figure 9.17: Functional diagram of a decreasing input using majority voter through the use of the
WO SWItChING UNItS (SUX) 195
Figure 9.18: Test circuit C17 of [27] with added stuck-at fault-injection points for interconnection

fault simulation 198

[xix]



Self-healing concepts involving fine-grained redundancy for electronic systems

Table 2.1: Evaluation of the different controller types against system requirements 19
Table 3.1: All four possible logic state for a NAND gate in accordance with [36] . 40
Table 4.1: Truth table of the TMR majority voter demonstrated in Figure 4.7 58

Table 4.2: Fault rate data of the stuck-at simulation at specified injection points indicated in Figure

e TR, 1|
Table 4.3: Transistor count comparison against TMR voter (see Figure 4.7) as overhead 62
Table 5.1: Critical and subcritical faults within different logic gate types [37] .80

Table 5.2: Breakdown of the different fault results of the fault-injection at the different injection

points of the standard XOR logic gate displayed in Figure 5.9(a) 84

Table 5.3: Breakdown of the different fault results of fault-injection at the different injection points

of quadded logic XOR logic gate in accordance with Figure 5.8(b) 85

Table 5.4: Breakdown of the different fault results of fault-injection at the different injection points

of quadded logic XOR logic gate transformed out of Figure 5.10 87

Table 6.1: Results of fault simulation in accordance of logic gate alteration applied onto Figure

6.6(a) reference logic gate circuit performing the fixed logic structure of Figure 6.5(a) 106

Table 6.2: Fault breakdown per fault-injection point for the reference logic gate structure; (a)
shows all the logic gate variations for the minimum FR; (b) shows all the logic gate variations for
the maximum FR; (c) shows the breakdown in regards to fault injection point of the first table of
Table 6.1 107

Table 6.3: Results of fault simulation in accordance with logic gate alteration applied onto Figure

5.9 quadded logic gate circuits without voter 109

Table 6.4: Results of fault simulation in accordance with logic gate alteration applied onto Figure

6.6 QLC in accordance with injection points indicated in Figure 6.9 without voter 111

Table 6.5: Results of fault simulation in accordance with logic gate alteration applied onto Figure

5.9 quadded logic gate circuits with voter 113

Table 6.6: Results of fault simulation in accordance with logic gate alteration applied onto Figure

6.6 QLC in accordance with injection points indicated in Figure 6.9 with voter 114

[xx]



Self-healing concepts involving fine-grained redundancy for electronic systems

Table 6.7: Overview of different results of quadded and QLC logic design including with (w) or

without (w/0) majority voter 115

Table 6.8: Comparison result of FR analysis for QLC vs. quadded logic under the influence of
SAH or low faults injected 119

Table 7.1: CMOS definition of input and output voltage levels representing high and low digital
conditions [38] 124

Table 7.2: Simulation results of the fault count (Fys,y) per NAND gate configuration under the

influence of a single SAH at each individual transistor of the gate set-up 130

Table 7.3: Simulation results of the fault count (Fys4;) per NAND gate configuration under the

influence of a single SAL at each individual transistor of the gate set-up 130

Table 7.4: Results of SAH fault-injection at each individual transistor of the two input NAND gate

and the corresponding 1C where the fourth logic state occurs 132

Table 7.5: Simulation results of Spice simulation of three input NAND gate with stuck-at fault-

injection at individual transistors (mem represents memory effect) 137

Table 7.6: Results of SAH fault-injection at each individual transistor of the two input NAND gate
and the corresponding IC where the fourth logic stateoccurs 137
Table 7.7: (a) FR analysis of the standard 2-bit full adder.(b) shows the FR of the same logic gate
structured using only SAFR-NAND gates for the full adder design 141

Table 7.8: (a) FR for the standard NAND gate implementation; (b) FR for the SAFR-NAND gate

implementation 142

Table 7.9: (a) FR for the standard NAND gate implementation; (b) FR for the SAFR-NAND gate

implementation 143

Table 7.10: Comparison between the standard and SAFR logic gate-created logic circuits 147

Table 8.1: These tables are showing the transfer of state transition table information into memory
LUT data : (a) state transition table; (b) state transition table with coded input and output stimulus

in accordance to Table 8.2(b & ¢); (c) state transition table like (b) with coded states according

[xxi]



Self-healing concepts involving fine-grained redundancy for electronic systems

Table 8.2: Coded information: (a) different states; (b) input coin information; (c) output

information 161

Table 8.3: Comparison of cycle time for both FSM implementations within the two application

platforms; (PLD programme logic device; MMLS memory-mapped logic solution) 163

Table 9.1: The simulation data flow of a fault within a logic unit and the approach of using round-
robin logic structure reconfiguration for the identification of the single faulty logic unit. In this case
the logic unit B with an SAH fault (see Figure 6.6(b)) 195

Table 9.2: IC related output results of the C17 circuit without the presences of a fault within its
circuit 198

Table 9.3: Output result coding of the C17 circuit 199

Table 9.4: Corresponding fault location with IC and resulting output values in accordance with
Table 9.2 for SAL fault-injection at C17 fault-injection points S1 to S17 199

Table 9.5: Corresponding fault location with IC and resulting output values in accordance with
Table 9.2.4 for SAH fault-injection at C17 fault-injection points S1 to S17 199

Table 9.6: Overlaid corresponding fault location with IC and resulting output values in accordance
with Table 9.2 for SAH and SAL faults injection at C17 fault-injection points S1 to S17 201

[xxii]



Chapter 1: Introduction and Overview

Chapter 1: Introduction and Overview

1.1. Introduction

In the late 1950s the first bipolar junction transistor was invented at the AT&T Bell laboratories in
the United States of America. This invention paved the way for the electronic revolution which
subsequently followed by application of this development something which could not have been
imagined at that time. In these applications the bulky electric tubes or electro mechanical relays,
which were previously used for building all necessary electronic systems, were replaced by a
bipolar junction transistor. This invention opened the way for smaller systems and the increased
system uptime over the old systems made it a universal part of modern lifestyle. The real push into
changing our lives pushed us into the digital age through the next big invention in 1959 of the
metal-oxide-semiconductor field-effect transistor (MOSFET). In this thesis the MOSFET transistor
is referred as the transistor. The electronic parameters of the bipolar junction transistor worked
within the analogue functionality and the transistor was geared towards digital functionality. The
newly developed chip industry designed integrated digital circuits on a planar silicon die surface in
massive numbers and with standardised logic functionality placed in standardised packages. Since
then the driving factor of the chip industry is to reduce the required silicon area per given logic
function and, therefore, for that, as a result every 18 months the number of transistors per fixed area
doubles. This was defined as a law in 1965 by Moore [39]. The continuous feature size reduction
pushes the individual component or transistor into the nano-structure regions allowing even more
integration of more individual logic functionality into a single chip. Because of the integration of
even more logic functionality into one chip, this made them less likely to experience faults in the
overall electronic system. These chips are not insusceptible against faults caused through a number
of reasons based on their nano-structure feature size. In this thesis the main focus of faults which
are going to be investigated is limited to radiation-induced effects causing temporary and
permanent faults within the logic circuit.

In the case of an error affecting the behaviour of the electronic system for counteracting the effects
caused by the fault, the system needs to be fault-tolerant or self-healing. Any user of this particular
system will experience this circumstance, that, using this electronic system, he wishes that the
system can “mysteriously” repair or fix itself. Nature has equipped specimens with the capability of
self-healing. Even humans are capable of self-healing of minor cuts through the skin. Due to the
requirement of electronic system users the area of fault-tolerant, self-repairing or self-healing
electronic systems was originated. Novel electronic system-level concepts were introduced and

designed to meet this user requirement for certain applications.
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The research work of this thesis is focused on creating a matrix logic structure which is capable of
self-maintaining required logic functionality through autonomous fault detection and evaluation

with minimum logic hardware overheads.

1.2. Problem definition

The motivation for this research work arose out of an increased requirement of equipping electronic
logic systems designed for and implemented on Field Programmable Gate Arrays (FPGAS)
platforms with self-maintaining capabilities to counteract the effects of radiation-induced faults in
terrestrial systems. Radiation-induced faults in certain electronic components have been a known
problem in space application using FPGAs-based systems as system platforms [40]. Continued
efforts of the chip manufacturer to increase the amount of configurable logic circuit per square mm
of their FPGA chips, are pushing the feature size into even smaller component structure
dimensions. Feature sizes of individual components are created out of less than 10 atoms [41]. By
reducing the feature sizes of individual components the sensitivity for radiation-induced faults
increased dramatically. The increased sensitivity to radiation-induced faults was not only
noticeable in space applications, but also in increased numbers of functional upset at terrestrial-
level systems [42-44]. The most sensitive areas for radiation-induced faults are the memory chips
due to their dense structure and way of storing data [45]. Due to the increase of radiation-induced
faults on terrestrial-level electronic systems, these systems are required to be designed with the
same fault-tolerance mechanics as space-based electronic systems. This counter action, arising
from the type of faults the systems experienced, included fault-masking or system reconfiguration
initiated by system-independent checker structures. Both approaches require a trustworthy checker
structure which in all circumstances must be able to detect faults and constructed to be per design
fault-tolerant. Due to the fact that these logic systems are artificial logic structures mostly created
out of the same components as the one which they are checking makes it harder to be fault-tolerant.
Also both structures are running on the same die likely to have the same individual transistor fault
characteristic. The functionality and task of a system-checker remains a philosophical question and
is not part of this research work. The research work of this thesis is focused on the realisation of
logic structure with built-in autonomous self-maintenance, minimal checker logic and limited
hardware overheads.

Radiation-induced faults on any integrated circuits are the result of activities on the sun, which is
the centre of our cosmos and not a planet like the Earth, more like a ball of gas which is less
cohesive [1]. Because of this the sun does not rotate like a solid planet, it is more like a process of
rotating gas mass generating coronal mass ejection (CME) or ejecting solar flares into space (see
Figure 1.1).

(2]



Chapter 1: Introduction and Overview

Figure 1.1: (left) Coronal mass ejection and (right) multiple solar flares [1]

CME consists of massive amounts of electrons and protons, which are ejected into space. Released
into space they are travelling long distances having an impact on anything they meet, noticeable in
integrated circuits as random information corruption is one possibility. The effect can have the
nature of a temporary or permanent hardware or data fault inside a digital logic circuit. Solar flares
contain a massive amount of photons of all wavelengths, but not all have an impact on everything
they meet [1]. The scaling of the complementary metal-oxide-semiconductor (CMOS) into the
region of feature sizes close to single numbers atoms structures is resulting out of the continuous
efforts of the chip industry over recent decades. The ongoing increase of components per certain
die area was predicted by Moore’s law which was hypothesized in 1965 [39]. Modern integrated
circuit structures are in the region of nanoscale dimensions making them even more susceptible to
radiation-induced effects [5, 44]. Faults caused by radiation inside electronic logic systems made
out of nanoscale components will then be relevant at ground level and no longer the only fault
conditions at high altitude applications [44]. The shrinking transistor structure has been the driving
force over recent decades for producing more logic functionality into a given chip. This trend of
increasing the logic functionality per given die area was driven by customer demand for better
calculation performance of applications. FPGAs offer more active logic components than other
chips and give the system designer more possibilities for creating their required System On a Chip
(SOC) design. Computer aided design (CAD) tools are available to help the designers
programming their required logic functionality into the FPGA chip. By having this flexibility and
the capability of constantly reconfigurable logic structure inside an FPGA this made it unnecessary
to produce an Application Specific Integrated Circuit (ASIC) with fixed combinational logic.
Research done on the effects of transient-induced faults caused by radiation showed that

combinational logic is much less susceptible than memory elements [46]. This shows that the logic

3]



Chapter 1: Introduction and Overview

functionality controlled within an FPGA by memory elements could be altered with potentially
critical effects on the overall system behaviour. These systems require a type of checker for
maintaining the integrity of the electronic system or logic structures which can mask faults inside

boundaries and fix the effects of any fault.

1.3. Objectives

System-fault identification in regards to temporal or permanent ones requires the means in some
cases for a more enhanced system than the supervised system. If the system-checker is required to
identify faults down to a gate, intra-gate-connection or interconnect level, these types of system-
checker require advanced test capabilities and broad system specific functional knowledge. Each of
these requirements can be accomplished with state of the art dedicated digital circuits structures
creating logic overhead. This logic circuit is required to have fast response timing for keeping the
impact on the overall system behaviour to a minimum or even completely unnoticeable. For some
type of systems a pre-defined response time is required to maintain system integrity. This fixed
response times; for instance in an automotive safety-critical system, is that the system is supervised
and governed by a required alteration of the watch-dog signal within a given time frame. Custom
chips are available to be configured through external components for monitoring the required
toggling of certain logic signals within a system specific time frame. This is an established method
within fault tolerant systems. With this research work the focus is set beyond this established fault
tolerant logic structures.

This thesis research has the following objectives:

- The design of a functional logic unit, which combines all of the three redundancy concepts
(spatial, temporal and data) to show their combined capability for fault masking and

correction.

- Through altering the logic gate transistor level design, the goal was to design a logic gate
with fault-masking and intrinsic fault-indication in case of the presence of a non-maskable
fault. By constructing logic circuits out of this type of logic gate, a distinction between gate

level and interconnect faults can be realised.

- Design a majority voter structure, which is insusceptible to stuck-at faults.

- Self-healing logic structures triggered by autonomous fault detection within given logic
cluster boundaries and eliminated by a self-initiated repair process utilising dedicated spare

logic units.
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- Altering the description of the behaviour of a finite state machine such that it can be
transferred into memory-only based hardware platform. This hardware platform offers the
advantage of including fault tolerant features, allowing it to be used as a system checker for

interconnection faults of a given logic structure.

1.4. Framework of this research work

This PhD thesis is organised as follows:

Chapter 2 introduces the basic concept of an electronic system and its different types of central
logic chips which are capable of governing its system behaviour. Comparisons between these
different types with regard to radiation tolerance are drawn. Detailed information of different types

of field programmable gate arrays (FPGAs) are illustrated and their development shown.

Chapter 3 focuses on the effects of radiation onto electronic systems. Radiation effects are defined
as single event effects (SEEs) and within this chapter a range of different types of SEEs are
explored. Also their impact on static random access memory (SRAM) based FPGAs. The diverse
simulation variety of fault-injection possibilities which can cause effects within electronic systems

is discussed in detail.

Chapter 4 introduces the impact of permanent and wear-out related faults within integrated circuits
in future chip generation with smaller structure dimensions. By means of even smaller individual
component sizes the likelihood of manufacturing fault-free chips will diminish and counter
responses with regard to novel fault-tolerant designs are required. Due to their nano-size feature
size of individual components chips are going to be more susceptible to radiation-induced faults of
a temporal or permanent nature. These radiation-induced faults require fault-masking techniques

for avoiding system errors.

Chapter 5 focuses on fault-tolerant systems which are designed for avoiding the propagation of
fault beyond system boundaries and its manifestation as a system error noticeable to the user of the
system. This can be done by the use of selected logic structures which are capable of masking
faults and providing correction at the same time. Applying these logic structures onto a given logic

design increases the hardware overhead.

Chapter 6 analyses the different fault-tolerant structures centred on hardware redundancy and

spatiotemporal redundant structures. A novel concept of spatiotemporal redundancy for achieving
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fault-tolerance and identification is demonstrated which is based on a time-triggered reconfigurable

matrix cell.

Chapter 7 introduces the difference between functional and fine-grained redundancy within an
electronic logic system. Functional redundancy works on N-sets of functional blocks in this regard
in information redundancy. Fine-grained redundancy is working on the gate level by using
transistor redundancy. Fault-masking in functional redundancy is being done by majority-voting.
Fine-grained redundancy offers the possibility of masking and correcting faults at individual gates.
Fault rate analysis of this fine-grained structure shows the fault-tolerance capabilities and by fault

occurrence optimisation distinguished fault-behaviour discovered.

Chapter 8 focuses on the approach of mapping finite state machines (FSM) into memory for the
benefit of elimination of programmable logic devices or combinational logic. Memory-based
systems offer the advantage of better fault detection and correction, due to error-correcting coding

of the data stored inside of these memory elements.

Chapter 9 deals with the concept of self-healing within electronic logic systems. The concept of
self-healing within any given logic system relies on the adding of spare or redundant logic
elements. These elements are used in the case of a fault detected by the system-checker of this
system. Electronic systems rely on trying to mimic self-healing on spare elements and a system-
checker identifying faulty behaviours. Nature realises self-healing without spare elements and
external intervention. Logic gates with altered internal structure are capable of intrinsically

indicating non-maskable faults and trigger reconfiguration without outer involvement.

Chapter 10 outlines the final conclusion of this research work and indicates possible ongoing

postgraduate research work from the work which has been performed to date.

The appendix includes the simulation programmes written for the different simulations and fault-

behaviour analysis.
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2.1. Introduction

In today’s world, electronic systems are part of our daily life and they change the way we do things
due to their way of offering us more sophisticated solutions. The electronic system application
versatility covers all parts of low to highly sophisticated systems. Safety-critical systems, which are
highly sophisticated systems like medical systems, are required to function without faults or
noticeable impact to the user, or in this case, for the patient. This trend of dependability and system
uptime requires novel concepts of system structures and trustworthy system components. Ongoing
trends within the chip industry for increasing the transistor count per silicon die area are only
possible with ever shrinking size dimensions of the individual chip components. This trend of
transistor count increase had been predicted and is reflected in Moore’s law from 1965 that every
18 months the transistor count doubles per equal area [39, 47]. Through the reduction in active
silicon material forming individual transistors the intrinsic variations of the doping atoms becomes
more abundant. Due to this doping variation this will be reflected in higher faults rates during
production and over the life-time [47]. This phenomenon makes the functionality of an entire chip
dependent on the performance of a single transistor and, in this way, the whole functionality of an
electronic system. The internal structure of an electronic system or electronic control unit (ECU) is
centred on a type of application-specific logic chip or micro controller. The type to be selected for
an ECU depends on the level of complexity of the application.

This central logic chip governs the behaviour of the ECU and it can also be described as a
processing engine. It accords with a Ford Motor Company document [48], which identified that
70% of the overall project costs are going to be allocated for the design process of the ECU. This
indicates the importance of the correct selection of the processing engine. The choice of correct
processing engine or microcontroller for a given project has a direct impact on design process,
verification, test and production. Costs for the total life cycle management are also included in this
amount of project costs [48]. Depending on the complexity and nature of the usage of the ECU, the

design and development is governed by the application specification and environmental conditions.
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2.2. Basic structure of an electronic system

Every electronic system is built out of functional units and the level of granularity is defining what
fine-grained or coarse-grained functional units are, in accordance to [49] defining the level of fine-
grained and coarse-grained functional units as follows. Fine-grained functional units are capable of
performing a single logic function on small numbers of bits whereas the coarse-grained functional
unit is much bigger than the fine-grained level and contains, for instance, an arithmetic and logic
unit (ALU) and, if required, memory. In this regard an electronic system is a coarse-grained
functional unit. The basic structure of a coarse-grained electronic system or ECU is demonstrated
in Figure 2.1 as a block diagram. Within the block diagram the central block containing the four
functional elements of control logic section, memory, input/output section and logic unit is
identified. The main block regarding logic complexity is the logic unit or processing engine. The
total transistor count of the control unit is less than that of the memory block of the same system.
The memory block contains the highest transistor density of all the blocks within the ECU. The
blocks controlling logic and input/output sections are both required for data transfer in between
different blocks.

Input Control logic
P
ADC section Memory
Output | _ Input/Output

' Y i i
DAC section Roslcuait

Figure 2.1: Basic block diagram of an ECU with the central block of an ECU containing

control logic section, memory, input/output section and logic unit

Through the nature of the digital system interacting with the system in the outside world every
electronic system requires an input and output block. Within the input block the analogue signals
are being converted into digital signals and in the output block digital signals are being converted
into analogue signals if required. It is also possible that purely digital based information is being
used. Research done in the area of radiation effects on analogue-to-digital converter (ADC) shows
that faults are possible and ADC conversion results are being altered by radiation [50, 51]. The
digital-to-analogue converter (DAC) research showed that radiation is capable of altering the
results due to bit flips [51]. Due to this radiation-hardened version for space application of the

ADC and DAC is available and in use. If the radiation effects have an impact on electronic systems
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at ground level on ADC or DAC is not part of this thesis and the information of each converter will
be seen as fault-free in this work if required. Nowadays the production of ADC and DAC chips is
moving away from being produced with precision-resistor networks in favour of CMOS-type
structures. With this alteration of the production method these chips can be produced without costly
resistor laser trimming or resistor paste printing. This will make this type of chips cheaper. By the
use of CMOS based structures designing converter chips they could now be susceptible to radiation
effects. Whether or not these chip types are prone to show effects due to radiation-induced faults at
ground level or space is ongoing research work and the effects will depend on the actual feature-
size structure of the components. Also such research work is not part of this thesis due to the level
of complexity for doing radiation injection into converter chips.

The central block of the block diagram structure of an ECU demonstrated in Figure 2.1 is a logic
unit of variable nature which controls the behaviour of the electronic system. The controlling of the
behaviour can be done by variable or fixed application description. The variable solution is based
on a uC, which is administered by an algorithm-based process description converted into uC direct
executable commands. Alteration of the system behaviour can be done through modifying the
process description and programming into the memory block of the uC. Another variable solution
can be done by logic synthesis into memory-only. By the use of memory-only the electronic system
can be designed without a uC or complex combinational logic circuit. The memory-mapped
solution of an application is a self-governing memory block controlled by a single addressing
register. Within this system structure the outputting of the required output functions depends on the
input stimulus. The fixed application description is based on combinational or sequential logic
executed by digital logic circuits. The logic circuits can be implemented on a custom-made chip
like an ASIC or on a chip capable of creating the desired logic function by programmable logic
structures like an FPGA. All of these diverse logic units are susceptible to radiation effects at
variable conditions if the unit is not made as a radiation-hardened version of the used chip design.

Radiation-hardening can also be performed with the help of logic functionality.

2.3. Central logic unit variation for electronic systems

The behaviour of the electronic systems is defined through the application requirements specified
in the system specification for any electronic system. These requirements form the basis of the
system action at required times including output release or the specific action on certain inputs.
This dependency of input-controlled behaviour changes and generates predefined output following
the input stimulus as a FSM. The description of an FSM regarding state processing is defined as if
at any given time only one active state in processing exists. Two types of FSMs can be specified
concerning the output response, a Moore and a Mealy FSM [52-54]. For a Moore FSM it is defined
that the values of the outputs are released only by the state itself and not triggered by the input. The
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Mealy FSM output release is described in conjunction of the state and input stimulus [55, 56]. This
implementation of a Moore or Mealy FSM can be done on different central logic units. All of the
different logic units are based on digital circuit theory [57] and it can be distinguished by working
in sequential or combinational logic, where sequential logic means that the logic circuit output not
only depends on the input stimulus, but also includes the history of the input stimulus and for this
case this type of circuit design requires memory. Sequential logic is also divided into synchronous
and asynchronous types. The output of the combinational logic only depends on the current input

stimulus.

2.3.1. Microcontroller

Any type of uC or central processing unit (CPU) is a programmable integrated circuit for a
multipurpose digital data application and is controlled by stored executable memory information.
The memory attached to a CPU supplies executable CPU-specific instructions and data for certain
instructions. A CPU contains the general blocks register, control logic section (CLS) and the
arithmetic logic unit (ALU). In some cases the ALU is described as logic unit. A basic block
diagram structure of a CPU is shown in Figure 2.1. The function of the CPU register is to be
temporary data storage. This data within the register can be variable information for current or later
use during execution and memory addresses for storing programme-specific execution sequences.
The CLS translates the executable instructions out of the memory into commands to control the
operation of the ALU, data handling, addressing of the memory and in-/output function.

The embedded functionality of the CPU is hardwired by logic gates in the CLS. This means that
every single executable instruction of the CPU is hardwired within the CLS. These logic circuits
control the behaviour of the CPU and the logic hardware size depends on the number of
instructions of the CPU. There are two types of CLS execution styles, which are utilised within
different CPU designs, the complex instruction set computing (CISC) and the reduced instruction
set computing (RISC). The difference between these two CLS types is in the logic circuit
complexity of the CLS. The logic functionality of CISC-type CPUs requires more logic circuits
within the CLS for creating instruction specific low-level operations sequences. CISC based CPUs
are designed in a way that a single instruction executes several low-level operations in a given
sequence to perform a specific function of one instruction. This can take usually several clock
cycles of the central CPU clock until execution has been finished. In contrast, RISC based CPU
executes a single function with one instruction in one clock cycle. This is due to the less complex
structure of each instruction of an RISC-CPU. The functional complexity to perform a certain task
is put into the program, which is stored in memory, then into complex decoding and controlling

logic hardware within the CPU.
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The ALU of a CPU performs arithmetic and logic operations. For performing these operations the
ALU reads and writes registers which are controlled through the CLS. The complexity and
transistor count has increased since the development of the very first produced CPU in silicon.
Following this trend of increased transistor count Moore’s law, published in 1965, predicted that
every 18 months the transistor count for a fixed die area doubles [39]. Due to the constant increase
of transistor density this is only being accomplished by individual feature size reduction. These
dimensional reductions of the individual transistors make the CPUs more susceptible to radiation-
induced faults. CPU chip producers had to alter the design of their products to make them resilient
against radiation-injected faults [43, 44]. The most vulnerable components within a CPU are any
memory elements, e.g. are registers, cache memory or memory-based pipelines. Radiation effects
can cause a bit flip or latch-up altering of the stored information and this can result in system lock-
ups or incorrect system responses [43]. CPU supplier in the past had problems with radiation-
induced faults and they had to alter their chip design. For instance the 5" generation SPARC64
from Fujitsu had its design altered in a way that 80% of the 200,000 latches had been converted to
have parity checking to protect the CPU against radiation faults at ground level [43, 58]. This
processor type had been fabricated in 130nm silicon on insulator (SOI) CMOS [58] and today’s
CPUs are fabricated in even smaller feature size.

Radiation hardened versions of CPUs are available for specific customers and applications. Since
certain logic circuits of CPUs are protected against radiation-induced fault effects on memory
circuits, the capabilities of built-in self-repairing is not part of any CPU. Today’s CPUs advance
into multi-processor application or multi-cores on a single chip, which enables the core to be

deactivated if, within one of these multi cores, a hardware-related fault condition occurs.

2.3.2. Application specific integrated circuit

Application specific integrated circuits (ASIC) are customised chips for a single purpose only. The
functionality of the logic function is tailored for the customer’s need and is fixed by means of a
design freeze. By using a custom chip for this particular application means that the use of industry-
standard integrated circuits for the customer has been excluded. This offers the advantage of cost
reduction at the size and complexity of the printed circuit board (PCB) and individual component
quantity. Another advantage of an ASIC is that it is optimised for a single purpose only and this
will reduce the ASIC chip parameter area, delay and power consumption against a FPGA by ~21
times, ~4 times and ~12 times respectively [2]. ASICs due to their optimised solution can be faster
than CPU-based solutions. Because an ASIC is a customised chip, a combination of digital,
analogue, and micro-electro-mechanical systems (MEMS) is possible. This possibility of
combining different subsystems within one chip offers solutions otherwise not achievable as a

component of the shelf (COTS). The main costs for utilising an ASIC as a solution within an
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electronic system are the design costs which are due to uniqueness of the chip and compared
against the production costs. Because of this the amortisation is only given in high volume
production. Radiation hardened versions of ASICs can be designed on customer request and
defined by their specification. Due to the fact that ASICs are produced on similar material and
production steps as COTS chips, this makes any type of memory element within the design
susceptible to radiation-induced faults. ASICs require the same techniques for radiation-hardening
by design like other COTS chip-based applications. If self-healing is required from the customer or
their application these capabilities within the ASIC logic circuit have to be conceived during the
design phase and the logic structure cannot be altered after manufacturing by configuration by
means of programming. The longest design phase for an ASIC is the full-custom design, because
every circuit is designed for the specific customer application and no industry standard blocks can
be used [3]. The shortest design phase is with a gate-array design. A gate-array design approach
uses pre-fabricated gate-array structures where the final metallisation mask for the interconnection
links between individual components is missing. The design of this ASIC only requires the

generation of the different final metallisation masks on top of the gate array structure.

2.3.3. Field programmable gate array

FPGAs are pre-fabricated silicon chips offering a sea of logic functionality, which can be by means
of electronic programming, transformed into any kind of digital circuit or system [3]. The internal
structure of today’s static memory-based FPGAs (commonly specified as SRAM-based FPGA [3])
is demonstrated in Figure 2.2. The structure of an FPGA is equally balanced between functional
blocks and interconnection blocks. Interconnection blocks establish the connection between
functional blocks for the application design and will be regarded as interconnection throughout this
thesis. The contrary connection definition is the intra-gate-connection, which establishes the
connection between individual logic gate transistors placed in close proximity. The configuration
of the FPGA functionality by programming is controlled by SRAM bits and divided into
configuration bits for the interconnection and selection of the logic functionality. The functional
block of RAM within an FPGA is part of the logic structure and the total chip area of memory cells
for a given FPGA can be 50% to 90% of the total chip dies area [2, 6]. Modern FPGAs are
transformed in complexity and logic functionality from the first programmable array logic (PAL)
or programmable logic array (PLA). Both PLA and PAL internal logic structures are demonstrated
in Figure 2.3. The PLA structure is presented in Figure 2.3a and the PAL structure in Figure 2.3b.
Both are using programmable input selection sections, which are then feeding into an AND plane.
For the PAL structure all the output signals of the AND section are being fed into an OR gate.
Whereas for the PLA the selection of the AND gate output signal at the AND section is being

realised by programming the connection or selection of the required input digital signal feeding
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into an OR gate [3, 5]. In comparison the structure of the SRAM-based FPGA is of a matrix-type
layout where at the cross points alternating functional blocks have been placed. Also today’s

FPGAs are equipped with freely associated input and output pins in accordance with the needs of
the circuit design and PCB design [3].
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Figure 2.2: SRAM-based FPGA with two connection blocks (CB), one switch block (SB),
one logic block (LB) forming a single tile [2]
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Figure 2.3: (a) PLA and (b) PAL architectures of the internal section structure [3, 4]

The different functional blocks are designed for a specific functionality which is flexible enough to
cover a wide range of logic alteration done by programming alteration, due to this wide range of

logic versatility within a functional block of a common FPGA. This logic versatility gives the

[13]



Chapter 2: Design of electronic systems

FPGA the flexibility needed to fabricate almost any specified digital logic circuit envisaged by its
user.

The functionality of the switching block, which is placed between a set of connecting blocks, is to
establish the application required routing of the interconnection between different connection
blocks [2, 3]. All the interconnection routing done on an FPGA chip is done by the switching block
and connecting block. Both are controlled by means of SRAM elements and are essential for
creating logic circuits on an FPGA chip. In the case of faults within the routing blocks, or
interconnection structure, an alteration of the logic outputs will reflect this. Distinction if the fault
has been caused by a logic block or any interconnection block is limited. A test pattern applied onto
the interconnecting block would reveal the existence of a faulty condition. The same external
testing of the functionality of a logic block has to be executed to identify faulty behaviour. External
testing is required for this chip structure to reveal and find faults within its structure. Would it not
be better to have an FPGA or other type of logic structures with intrinsically built-in fault detection
capability as nature offers for their efforts in regard to self-healing?

Similar routing circuitry like the switching-block structure for generating the interconnection is in
use for the flexible connection of the external input and output pins to matrix-style internal access
style structures within any given FPGA chip [3]. The connection block is located around the logic
block and makes the necessary connection between needed input/output pins and between logic
blocks. The rule of generating interconnections between logic blocks is set to link logic blocks
together which are located within close proximity to each other. Every logic block of an FPGA
contains a cluster of basic logic elements and memory look-up tables, which can be used to provide
customised logic functions [2]. Historically the first FPGAs designed were based on erasable
programmable read-only memory (EPROM) and electronically EPROM (EEPROM) [59]. Today
the most commonly used memory types in modern technology FPGAs are flash RAM, static RAM
and antifuse approaches [3]. All of these different memory concepts are used for having the
configuration data stored of the required logic functionality and interconnection setting with the
internal FPGA structure in mind.

Some of the modern day FPGAs are designed in a way that during operation of the chip, the
configuration of the logic functionality and interconnection setting can be altered without
interfering with the running operation and execution. This is called run-time reconfiguration (RTR)
[60-63]. With this type of FPGAs the application designer is in a position to modify the active logic
structure to perform a different application or alter the structure because a fault in a block requires
a logic structure reconfiguration during operation. This flexibility offers the possibility to
reconfigure a faulty FPGA logic structure during logic operation to continue working correctly and
the exterior does not notice a change. The actual reconfiguration of the configuration data
programmed into the FPGA requires an external device where alternative configuration settings are

stored or a remapping system.
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2.3.4. Mapping logic into memory

Any individual or subsidiary electronic systems behaviour follows the rules of an FSM and is
defined by its state diagram of this application. The state diagram can be transferred into a digital
input/output sequence, which is then transferable into a truth table. This truth table represents all
possible digital input stimuli with associated output responses. The information stored inside the
truth table can be transferred into a memory unit. An example for transferring a JK-flip-flop into
memory is demonstrated in Figure 2.4. The state transition table displayed in Figure 2.4(a) shows
all the different possible states of the JK-FF which can exist and the associated output data. The
coding and replacing of the state labels has been done in Figure 2.4(b) and can be seen as a truth
table. Within Figure 2.4(c) a data reduction and combination in matching memory structures,

produces the final memory data representing the memory-mapped JK-FF.
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Figure 2.4: JK-flip-flop state transition table transformation into memory; (a) state
transition table; (b) state transition table including coded replacement of states and

can be seen as a trues table; (¢c) memory data created out of data from (b)

With this step of transferring the system behaviour converted over into digital sequences, the
mapping into an appropriate memory unit can be done. The memory-mapped state transfer offers
the advantages of minimal control logic and an error-correctable memory block. The use of an
error-correctable memory block is because of the effects that radiation can have on memory of
causing bit flips and in this way state transition alteration. Error-correcting memory can detect this
type of data alteration and fix it. The block diagram of a memory-mapped controller can be seen in
Figure 2.5. By comparing this to a puC structure (see Figure 2.1) similarities can be identified. Both
comprise a memory block and a logic block and in these two parts both are comparable. But the
logic circuit amount is different for both solutions. The puC calculates the required transition out of

the input stimulus using executable code stored in memory. In contrast, the memory logic
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application adaptation contains all the necessary information within its uniqgue memory-addressing
structure, which is triggered by input stimulus. The memory for the memory-mapped solution can
be linear addressable memory [64, 65] or content-addressable memory [33]. Linear addressable
memory has the disadvantage that undefined input related addresses can upset the sequence of the

state transition or retaining the system in one state.
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Figure 2.5: Block diagram of a memory-mapped FSM

For accessing of the data stored in memory and in this way the simulation of the state transition
behaviour is done through unique addresses. The addressing of a specific memory location, as part
of the FSM state transition, is a combination of a unique state counter and input stimulus, which
forms the unique address-pointer. The data stored at this location contains the information for the
next state transition and output information. Fault-tolerance with regard to logic faults in the logic
unit can be handled by redundancy. Faults within the memory data require error-correction
hardware and in the case of non-fixable faults, rearrangement of the uniqgue memory information
structure. This cannot be done by the system itself and requires external offline rearranging if

possible.

2.3.5. Comparison of the different logic units

Four different central logic units usable for an electronic system are CPU, ASIC, FPGA and
memory-mapped logic, and they can be compared against each other. The main focus of the
comparison will be on the possibility of self-healing in the case of permanent hardware faults and
the capability to handle radiation-induced faults. The other key factors such as power consumption,
signal delay and chip size are not part of this comparison done in this research work forming the
foundation of this thesis. This is because fault-tolerance and self-healing capability are relevant for

electronic systems, which are exposed to radiation-induced system alterations.
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General comparison of the different controller types:

- CPU: COTS standard types in most cases do not possess memory cell protection such as
error correction codes (ECC) or designed-in radiation hardened circuit design. Highly
specialised CPUs for example like the 5™ generation SPARC64 from Fujitsu [6, 43] ,the
LEON processor [66] (which is an open source implementation of a SPARC V8 processor
adapted in an FPGA) or the IBM Power6 [67] are three examples of processors which are
custom-made chips and produced in low numbers and which contain fault-tolerant
solutions with regard to ECCs or redundancies. Fault-tolerance regarding permanent
hardware faults can only be accomplished by redundancy of the whole CPU or at fine-grain
redundancy at gate level. Modern multicore processors handle faults within one core in the
way that this core gets deactivated. This approach eliminates the need for redundancy at
any level within the chip.

- ASIC: the whole circuit design has to be done in radiation-hardened design and ECC has
been applied to memory elements of the processor. This type of ASIC is only produced in
low numbers because it will only be used in low volume applications like satellites. Any
subsequent necessary circuit changes are not possible after design freeze. For handling
permanent hardware faults, the ASIC needs to be equipped with redundant structures at
functional or gate level. The redundant structure is put in place during the design phase of
the chip and every fault possibility has to be envisaged at this state. If a fault occurs within
the switching circuit between redundant elements the approach for fault repair cannot be
done and the fault cannot be fixed.

- FPGA: can be described as a sea of logic. This sea of logic can be configured by means of
programming in accordance to the specification, which governs the logic structure
programmed inside the FPGA. During the entire design phase the intended logic structure
can be altered because a fixed and final hardware structure will not be produced. The
design is embedded inside a programming file, which can be also altered during the life-
time. This offers flexibility to the designer to alter the logic circuit layout to incorporate
radiation hardened logic circuit structures at the appropriate locations throughout the chip
design phase. Or even afterwards in uptime of the electronic system by reprogramming the
target FPGA chip on the fly. This is possible through run-time reconfiguration of the
FPGA configuration [60-63]. The Xilinx Virtex-6 contains ECC capabilities for the
configuration data programmed into the configuration memory [68]. With this feature of
the Virtex-6 alteration of radiation-induced faults can be detected and corrected.

- Memory-mapped logic: the whole logic performance regarding input dependant output and
system transition is mapped into memory. A comparatively small control logic circuit is

governing the input and output activation of the memory block by creating the unique
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address-pointer accessing the stored data. Due to the reduced logic count and low level
complexity of the control logic redundancy for fault-tolerance can be applied. Fault-
tolerance at the memory level as for instance memory addressing logic faults can be coped
with on a reduced scale by expanding the necessary memory and addressing register. The
fault-tolerance is limited due to the unique memory addressing in conjunction with the

input stimulus.

In Table 2.1 an evaluation of the different controller types against the system requirements for

creating a fault-tolerant system is shown. The different system requirements are:

- Application fixed: with this point the capability of alteration of the application created
within each controller is evaluated. The adaptation of alteration even after design freeze or
during the life-time is needed to maintain an up-to-date system with can meet customer
requirements.

- Reconfiguration: the capability of altering the logic circuit structure during operation. This
point shows how the system can be adapted in case of hardware faults.

- Hardware requirement: the evaluation of hardware structure present within the evaluated
controller type. The key is to have flexibility within a given logic structure offering the
required logic functionality without having too much unused hardware resources.

- Memory requirement: how much memory is required for storing the application specific
code data, configuration data for hardware arrangement and general data storage during
runtime.

- SEU tolerant: indicates if the controller type has SEU tolerant features present for fixing
radiation-induced bit alteration in memory.

- Logic interconnection complexity: is a general evaluation of the way the individual logic
functions are linked together. The key is short interconnection links between logic
functions without too much unused hardware overhead.

- 1/O flexibility: evaluates the flexibility of the input and output connection with regard to
designing a PCB with this controller type. The key is to give the PCB designer the

possibility of arranging the chip interconnection with the best routing arrangement.

By evaluation of the different points of Table 2.1 the best controller type for fault-tolerant systems
can be found. Each point of this table is evaluated for each controller type, including finding the
possible optimum fit for fulfilling the system requirement for each point and these points are
coloured green within the table. For finding the best match of controller type meeting the system

requirements the total number of fulfilments within the table are counted.
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Table 2.1: Evaluation of the different controller types against system requirements

Concluding by evaluation of Table 2.1 shows that for this comparison the FPGA can fulfil the
requirements of fault-tolerance. This is because it covers a broad spectrum of attributes for a fault-
tolerant system design by its general chip design and makes it a perfect platform for fault-tolerant
systems.

Table 2.1 also shows that memory-mapped logic (MML) is the second best solution for a fault-
tolerant system design. MML indicates in some points a better solution than an FPGA chip. The
two main points which make the MML controller second are COTS and SEU tolerance. The COTS
point is because of the hardware requirement of the address-pointer. The fulfilment of the built-in
SEU tolerance depends on the application specification. If ECC memory is used for an MML the

system has built-in SEU tolerance.

2.4. Development of FPGAs

The development of the FPGAs started in the middle of the 20™ century because of the demand for
generating logic designs within a chip with a faster turnaround [5]. The first programmable logic
was the logic mapping into memory with the help of read-only memory (ROM) and followed by
programmable read-only memory (PROM). Both types are one time programmable logic array
normally used for storing micro-controller executable instructions. The EPROM evolved out of this
as the next generation of programmable logic array. All of this adaptation used N number of
address inputs to implement a logic function stored in memory and through the number N it also
defines the required and addressable memory size. The size of the addressable memory was the
disadvantage of this application and the next developments were PAL and PLA with AND and OR

gate arranged in alternating specific logic gate sections or planes (see Figure 2.3). In some chip
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designs this logic structure also included D-type flip-flops. This gate arrangement offered the
flexibility to programme combinational and sequential logic structures [5].

Both chip designs PLA and PAL were limited by their internal structure only to allow fixed
connection between input pins and logic gates. The demand of flexibility within the internal
connection of a logic chip required an alternative and programmable interconnection arrangement.
By adding the typical crossbar design for the interconnection to the chip structure the flexibility
regarding connection was resolved. The added crossbar to the current logic chip significantly
expanded the size requirements for the die [3]. The introduction of the static memory-controlled
interconnection switches and logic configuration reduced the die size and increased the flexibility
of this type of logic chip. Xilinx was the first company introducing the FPGA design, which is still
used today. It was built around configurable logic blocks (CLB) [3] (demonstrated in Figure 2.2
and Figure 2.8). These type of devices used bit stream programming to configure logic or
interconnection structures, comparable to the devices with static memory [5]. The development of
the FPGA is centred on the capability of programming the appropriate configuration into the
memory controlled switches. Historically, the development included EPROM, EEPROM, flash,
static RAM and antifuse configuration structures [5]. In modern day FPGA designs only the
memory technology flash, static RAM and antifuse is applied [3]. Out of these three the static
RAM is amongst the most used technology there is. All the current types of FPGAs are fabricated

on CMOS technology and all developments of scaling can be utilised.

2.4.1. SRAM-based FPGASs

The SRAM programming technology is used by Xilinx, Lattice and Altera in their devices [5]. The
advantages of SRAM or static RAM technology lies in the capability of indefinite re-
programmability [3]. SRAM or static RAM cells are designed in the way demonstrated in Figure
2.6 and they are used in interconnection and implementing logic functionality throughout the entire
FPGA chip structure.
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Figure 2.6: SRAM or static RAM cell structure for programming one bit [5]
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With one SRAM cell the interconnection switch gets controlled to connect the required crossbar
lines together. So each crossbar within an FPGA contains for each possible connection capability
an SRAM cell. This means that a high number of SRAM cells are within one die location and
SRAMs are susceptible to radiation effects. An alteration of a single SRAM cell affects the switch
and in this way the interconnection of logic functions or logic gate intra-gate-connection. The gate
level is constituent out of the individual transistors and intra-gate-connection. Intra-gate-connection
in this regards is associated with connecting the individual transistors oriented in close proximity
together for the required logic functionality. The design of one interconnection switch is
demonstrated in Figure 2.2 (right-hand side bottom small figure) and an example of possible

connection creatable with this switching structure is demonstrated in Figure 2.7 [6].
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Figure 2.7: Example of possible interconnection switching configuration; (a) orthogonal,

(b) one type of diagonal, (c) another type of diagonal interconnection [6]

For implementing logic structures in an FPGA the use of look-up tables (LUT), multiplexer
(MUXs) and FFs are configured in the way for simulating the required logic function. These
elements can be found in each of the CLBs within an FPGA. A block diagram of an FPGA

capability of a switching element is described and the internal structure of a CLB illustrated.
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Figure 2.8: (a) Block diagram of a SRAM based 4x4 CLB element structure
with interconnection elements building the FPGA structure; (b) block
diagram of the inside of a configurable logic block (CLB) [6]

Due to the nature of the SRAM based memory the information stored is not permanent and has to
be reprogrammed every time at power up of the FPGA-based system. This makes it necessary to
have permanent storage alongside the FPGA or modern chip containing permanent storage on the
chip, like flash memory, inside the chip. This type of permanent storage makes SRAM based
FPGAs inefficient [3]. SRAM based FPGAs are fabricated in CMOS technology and this
technology is susceptible to radiation-induced faults. The ongoing reduction in transistor scaling

increases the sensitivity to terrestrial related radiation-induced faults.

2.4.2. Antifuse-based FPGASs

Antifuse-based programmable switches can be implemented in FPGAs. The advantage of this
technology lies in the positioning of the fuse underneath the gate electrode at each of the transistor
as a programmable controlled element of an FPGA. This technology does not require additional
circuity added to each programmable switch. Two methods of creating the fuse are possible. One is

based on using oxide nitride [3] and the other is a metal-to-metal-based [5] antifuse. The metal-to-
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metal-based approach can be done by positioning an insulation material like amorphous silicon or
silicon oxide inside two metal layers [5]. A comparison between the SRAM and antifuse-based
programmable switch regarding of chip structure is demonstrated in Figure 2.9. In Figure 2.9(a) the
normal transistor layer structure is shown and in Figure 2.9(b) the one with the antifuse layer
underneath the gate is illustrated. This technology could not be done with a standard CMOS
process due to the need of additional process steps and masks. The mechanism of programming or
altering the conductance of the fuse requires significant changes within the material of the fuse.
This makes the adaptation of scaling within new chip designs a challenging and costly undertaking
[5]. Because of this the newest CMOS advantages cannot be utilised in antifuse-based FPGAs. The
technology “kilopass” changed the way the required antifuse process steps became part of the
standard CMOS production if the 2T bitcell design is being used [69].

Omide Insulation

a) SRAM cell b) Anti-fuse based cell

Figure 2.9: (a) SRAM vs. (b) Antifuse-based programmable switch of an FPGA [5]

For programming the antifuse transistor a high voltage is needed for breaking down the antifuse
and forming a conductive connection. This approach requires large programming transistors on the
die for handling the high programming voltage. Also the antifuse programming requires a special
programming device and programming has to be done before the chip gets mounted on the PCB.
The chip production yield of antifuse-based FPGAs chips can be expected to be successfully
programmable with confidence in the order of 90% vyield [3]. This programming yield number
indicates that a manufacturing test cannot detect every possible defect in a given chip [5]. Due to
the only one-time programmable fuse the programmed design in the FPGA cannot be changed.
This makes this type of FPGA insusceptible too radiation-induced faults altering the information on
any programmable switch. Because of the non-volatile stored switching information, the device can
function directly after power-up and no external non-volatile memory is required for reading the

programming stream.
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2.4.3. Flash-based FPGAs

Flash-based programmable switches of an FPGA belong to the family of non-volatile memory and
on power-on the FPGA system is already configured. This is similar to the antifuse-based FPGA
devices. Due to the all-time constant programming state of the switches an external flash memory
is not required as for the SRAM-based FPGA. The main difference between antifuse-based and
flash-based FPGAs is in the number of re-programmability cycles. Antifuse-based programmable
switches are only programmable one time and the flash-based switches can be reprogrammed a
limited number of times. For instance the Actel ProAsic3 can be re-programmed 500 times [3]. In
comparison the SRAM based programmable switches can be programmed an infinite numbers of
times [5]. The functionality of the flash-based or EPROM based programmable switch is based on
a gate that floats above the transistor. Onto this floating gate a charge can be stored and as long it
stays above the threshold voltage level of the distinct high level this switching transistor will
remain in the programmed state [7]. A valid high level can be maintained on the floating gate for
up to 10 years [7]. Two types of flash-based memory structure can be distinguished, NOR and
NAND gate type structure and both are illustrated in Figure 2.10 [7].
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Figure 2.10: Cell architecture for NOR (a) and NAND (b) gate design [7]

Research done on the influence of radiation effects on the floating gate of a single flash-based
programmable switch showed that no effect can be noticed for the low level. Effects on the high
level can be noticed and a drop of the stored charge can lead to a drop below the threshold voltage
of the high level. This would lead to alteration of the configuration of the stored design within the
FPGA [7, 70]. In the case of the use of flash-based programmable FPGA systems the external flash
based memory is no longer required and in these systems is eliminated. A reprogramming of an

apparently faulty system by self-initiation is not possible. The system needs an external initiation
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bit stream for reprogramming. FPGA manufacture offers chips where a designated flash storage is
located next to the SRAM-based FPGA die within the same chip package. This combination allows
the storage of the bit stream information of the specific design to be read at power-up initiation and

the chip can function according to the required application [5].
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2.5. Summary of chapter

In this chapter the function of an electronic system was analysed in a way to identify the key
functional block of it. The key functional block of every electronic system is the central control
unit (CCU). This is due to the fact that the control of the application is governed by its logic
structure and represents a significant amount of hardware. This central hardware needs to be
insusceptible to faults. Faults of any type within this hardware affect the behaviour of this system
and the selection of the fault tolerant strategy is significant. System fault tolerance is achieved
through redundancy concepts, which are described in detail in chapter 4. Hardware level strategies
for increased fault tolerances in regards to configuring the logic design of an FPGA are
investigated with this chapter. The individual logic gates are not included within these different
approaches and instead require alternative solutions.

Different types of CCUs are being used throughout electronic systems worldwide and the four main
types of CCUs in use are defined within this chapter for further examination. The focus of this
examination was to reveal the best possible CCU platform for a fault-tolerant design of an
electronic system. Through Table 2.1 the evaluation identified the FPGA to be the optimum match
for these requirements. An FPGA offers the most requirement matches for a fault-tolerant system.
This is due to the fact that the sea of logic and the ability to be reconfigured during execution are
useful features of the FPGA for designing this type of electronic system. The second optimum
CCU was the memory-mapped logic and this is due to the fact that the origin of the FPGA was
memory-based logic adaptation. The origin of mapping logic into a flexible logic structure began
with the use of memory replacing discrete logic gate structures by using memory-based platforms
for the first attempt to design circuit logic behaviour in a quicker and more compact hardware
structure. Before the use of memory each logic circuit had been designed out of discrete logic

gates.
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Chapter 3: Radiation effects on electronic system components

3.1. Introduction

Introducing and utilising electronic systems in a wider spectrum of applications also exposes these
systems to a broader range of environmental conditions. One of these conditions is high energy
particles generated from the suns radiation-induced fault caused by one high energy neutron
particle can strike a single transistor of a logic gate within a chip. This particle strike of the
transistor can alter the logic state on this transistor. In this case a soft error has occurred in this
particular part of a chip and this could cause an upset of the behaviour of the electronic system.
This upset could manifest itself in system malfunction behaviour or the system can mask the fault
at a functional boundary. Fault-masking has to be within a defined logic block dependence on the
logic circuit design of the electronic system. In the past, this type of system upset was associated
with high altitude electronic systems such as satellites orbiting around the Earth or passing through
space. In this application, specific logic circuit design solutions were applied to cope with soft
errors within defined circuit system boundaries. The chip industry has continued to scale back the
individual components of a given die into even more minor dimensions and this has triggered a
negative effect on increased susceptibility against radiation-induced upsets within electronic
systems even at terrestrial levels. Now soft errors can be experienced at terrestrial level similar to
high altitude systems. This effect is especially noticeable in these high-density circuit chip
structures within static or dynamic memory [71]. FPGA contains large number of memory cells
used for configuration or data storage, which are used for logic function simulation or as memory
banks. All of these memory cells are at risk of being altered by radiation-induced faults. Soft errors
in combinational logic have not been of great concern so far with the current level of technology.
But the ongoing trend of size reduction of individual transistors will make the combinational logic
structure on a given chip susceptible to soft errors. In this regard, the whole chip and so the
trustworthiness of the electronic system decreases and advancements to the logic design has to be

put in place to regain it.
3.2. The sun as source of the radiation effects in electronic systems

The sun in our galaxy represents the centre planet. But in fact the sun is not a solid planet as the
Earth is or the other planets surrounding the sun. It is more a ball of hot gases with a nuclear fusion
reactor in its centre. In the core of the sun the temperature is 15 million degrees Celsius [72]
sufficient enough to maintain this fusion process running for billions of years. The energy
generated in the core of the sun needs 179000 years to get to the surface. The temperature drops

below 2 million degrees [5] and the final surface temperature is around 5505 degrees Celsius [73].
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This surface temperature is still sufficient for particles to escape the gravity force of the sun and
travel through the outer space. The released particles of the sun are protons, electrons, alpha ions
and heavy ions. Also the sun ejects millions of tonnes of material during a CME into outer space,
which creates solar winds. All these particles are bombarding the planets surrounding the sun and
satellites within space.

The magnetic field of the Earth is formed from the inner core of the Earth into outer space until it
encounters the effects of the solar winds. This magnetic field protects the Earth against the solar
winds generated from the sun. When the Earth’s magnetic field comes in contact with the solar
winds, the magnetic field is compressed by the effect of the high energy particles. The magnetic
field of the Earth, which is not facing the sun, is being elongated into space. Both of these effects
on the Earth’s magnetic field are being illustrated in Figure 3.1. The magnetic field of the Earth has
the shape of belts around the Earth inner core and these magnetic belts extend into outer space. The
American astrophysicist James Van Allen was the first to predict their existence in 1958. In Figure
3.2 both belts of the Earth’s magnetic field are shown. The outer belt of the magnetic field of the
Earth is capable of trapping high energy (0.1-10 MeV) electrons, the inner belt of the Earth’s
magnetic field traps high concentrations of low energy (range of hundreds of keV) electrons and

high energetic protons with energies exceeding 100 MeV [74].

Figure 3.1: Solar wind and Earth’s magnetic field interaction [8]
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Figure 3.2: Van Allen radiation belts of the Earth magnetic field [9]

3.3. History and impact of single event upset effects on electronic systems

A single event upset (SEU) happens when a high energy particle or electro-magnetic radiation
collides with a sensitive component of an electronic system and is capable of altering its data
condition. Historically the first effects of high energy particles altering electronic equipment
happened through the detonation of nuclear bombs above ground level around the world between
1954 and 1957. During these nuclear tests the first effects of unexplainable anomalies on electronic
monitoring equipment happened and could not be explained. The equipment indicated faulty
behaviour but no hardware fault could be identified and the term soft-error was associated with this
phenomenon. Soft-errors were also encountered during the first satellite space explorations. In
1978, the phenomenon of altered behaviour within electronic systems due to soft-errors in
integrated circuits were explained with the presence of alpha particles in the packaging material
emitted by traces of uranium and thorium impurities of these chips [44, 75]. This soft-error effect
caused by a chip housing contamination was first reported by Timothy C. May and M.H. Woods.
The material of the integrated circuits had been modified in a way that no more radiation was
eradiated and the phenomenon of soft-errors caused by contaminated packaging material was
dissolved. James Ziegler described in 1979 the mechanism that high energy particles from space
can cause a soft-error within an electronic system at sea level [44, 76].

The range of effects caused from soft-errors can be of transient and permanent manifestation in a
chip structure of an electronic system after a hit by a high energy particle. The impacts of SEUs on
a given chip normally are of a transient nature and randomly distributed over the chip die area.
Permanent impacts to the affected circuit structure are possible in some cases. SEUs can occur

within a memory cell or a logic latch [10] and according to [10, 77] the SRAM soft-error rate will
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increase by 8% per chip generation. Figure 3.3 shows the graph of the soft-error rate per chip
generation. The current design of FPGAs is primarily designed with programmable SRAM based
switches and LUTSs. Soft-errors are playing a significant role in the fault sensitivity of FPGAs. The
radiation-induced soft-error can cause a bit flip within a memory cell. The detection and fixing of
this type of memory fault can be done with the help of ECC. The FPGA chip manufacturer Altera
offers in some of their FPGA designs an automatic cyclical redundancy check for correcting
configuration bit alteration [78]. Soft-error introduced alteration of information on a flip-flop is

harder to detect and because of this is impossible to correct.
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Figure 3.3: Soft-error rate per chip generation (logic and memory structure included) [10]
3.4. Definition of single event effect

A single event effect (SEE) is caused by a single radiation event, like a high energy particle,
striking the silicon die of a chip. At the die location where the particle hits the silicon die a charge
is generated along the track of the high energy particle. This charge created within the silicon die
can affect the chip structure in close proximity and alter the stored conditions on transistors or only
a single transistor [16]. In this case a soft-error at this single transistor has occurred and this is
defined as single bit upset (SBU). If no permanent damage has occurred and in the case of new data
getting written to this individual transistor of a memory cell, the transistor is capable of storing the
new data. If no permanent alteration to this particular transistor happens it will continue working
correctly after the incident. In the case of a collision of a high energy particle with a high density
transistor structure, the created charge at the track can affect multiple transistors in close proximity.
This case represents a multibit-upset (MBU) within a high density transistor structure which can be
found in memory elements of systems. SBUs and MBUs can happen in an electronic system

located in space, like a satellite or within an electronic system at terrestrial level such as an ECU of
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a car. The radiation sources affecting the two electronic systems at these altered altitudes are
different. Radiation-induced SEEs in electronic systems in space can be due to three variation of
particle types: ionised particles (which are part of the natural galactic background), solar particles
and high energy protons trapped in the Earth’s Van Allen belts (see Figure 3.2). The terrestrial
SEEs are caused by neutrons and protons created through the collision of cosmic particles with an
atom in the Earth’s atmosphere.

The likelihood of a fault happening in a silicon chip structure due to an SEE depends on the chip
technology used and the radiation intensity. Different chip technologies have different
susceptibility to SEEs and this susceptibility also depends on the linear energy transfer (LET) of
each particular particle [16]. The susceptibility of the different chip technologies is specified by the
LET threshold (LETry). The total amount of radiation over time can cause long-term damage or
degradation effects to integrated circuits. This type of radiation-induced fault is relevant for space
application, where electronic systems are exposed for years to continuous striking by radiation
particles. An example of this is a satellite on a mission to Mars which takes many years to
complete. The constant injection of radiation particles into a chip of the system will show
degradation effects on the silicon based structural elements of the chip over time in space, which is
due to the nature of total radiation effects in relation to time and space. This aspect of long-term

radiation-induced fault-types is not part of this research work.

3.4.1. Types of SEEs

SEEs can be divided into two categories; transient and permanent causing faults within a given
electronic circuit. A transient or non-destructive SEE is a fault where the information is stored or
passed through a type of component in which it can be stored and the information is altered in a
way that it is changed until new information updates this altered information. A permanent or hard
SEE is a fault affecting an active component in a way that the SEE changes the information on an
active component in such a means that the new information cannot be altered by any stimulation
[16].

Transient SEEs within an electronic system are the following ones according to [76]:

- SEU or SBU affects the information stored on an active electronic component in a
temporal means and not as permanent information alteration. Any new information can be
stored on the affected component afterwards.

- Multiple-cell upset (MCU) means that at least two or more memory cells of latches are

affected by the event.
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- MBU indicates that at least two or more bits of a data word are altered by the radiation
event.

- Single event transient (SET) affects the signal level for a short time within a combinational
logic signal path. This can be an interconnection between two logic gates. If the SET gets
stored within a memory element like an FF at the right time an SEU has occurred within
this electronic system.

- Single event interrupt (SEFI) occurs if the system malfunctions due to a bit flip within the

system critical memory element.

Permanent SEEs within an electronic system are the following ones according to [79]:

- Single event latch-up (SEL) occurs by means of turning on the parasitic bipolar transistors
between n-well/p-well and substrate within a silicon die. In a CMQOS intrinsic bipolar
junction transistors are being created due to their manufacturing process, forming n-well/p-
well combinations inside the die. If these formations are forming a parasitic n-p-n-p
structure in this way a PNP and NPN transistor are structurally stacked next to each other.
Through this stacking a thyristor-like device between Vcc and GND rail has been created
and with a satisfactory voltage level affecting both transistors can be turned on and
maintain this condition until a power-cut. A high energy particle can trigger this thyristor-
like device and will create a short circuit between Vcc and GND inside the chip. This effect
occurs with significant current flow. The current flow usually results in the destruction of
the chip and only a power-down of the chip can resolve this condition. Latch-up resistant
design alterations for CMOS chips are in place to prevent SELs from happening.

- Single event burn-out (SEB) is caused through an increased current flow between Drain-
Source paths of a Power-MOSFET. This current flow will destroy the component. If the
power of the component gets discontinued or interrupted in time the component or chip can
be saved from burning out.

- Single event gate rupture (SEGR) happens through a higher gate current level than the one
specified for a Power-MOSFET. This current flow could cause the destruction of the gate-
dielectric of the Power-MOSFET and it can be cleared by means of a component power

interruption.
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3.4.2. Linear energy transfer function

If a SEE occurs within affected silicon chip is depending on the LET level caused by the particle,
which is affecting the silicon chip. The level of LET within a given material depends on the mass

and energy of the radiation particle and within the type of material it is travelling [16].

The level of the LET can be calculated as follows:

_ 1B i
LET = S [5, 16] (Equation 3.1)

In equation 3.1 the expression E is the energy of the radiation particle, dx the unit of the material
2
and p is the density of the material. The LET unit is defined in Mev%. The LET threshold

(LETyy) defines the minimum level of LET created within a certain material by a certain type of
radiation particle, which will create enough energy, that it has an effect on the components. The
cross section (o) defines the number of upsets within a given area based on the number of particles

the chip device gets exposed to.
3.4.3. SEU in relation to sea-level

When a radiation particle enters the Earth’s atmosphere it can collide with Earth’s atmospheric
atoms and will produce a cascade of secondary radiation particles. These secondary particles
produced by this collision are pions, muons and neutrons. The average timespan before decaying of
these pions and muons are in the region of nanoseconds and microseconds. Where the neutrons
average lifespan before decaying is in the region of 10 to 11 minutes and, in the case of a collision
with another atmospheric atom, another cascade of secondary radiation particles are created [17].

The flux of these secondary radiation particles fluctuates with the altitude and location to the Earth.
Due to the small thickness of the Earth’s atmosphere within the outer stratosphere, the flux of the
secondary radiation particles is small and increases to its maximum value at 13km altitude against
sea-level. This point is also known as the Pfotzer point. Thereafter the flux of the secondary
particles decreases until sea-level. A rough approximation of the flux level at a given altitude can

be calculated with the following equation:
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(119.685H—4—.585H2)
Flux increase over sea level = e 136

[17]  (Equation 3.2)

With equation (3.2) the flux level can be calculated and H defines the altitude over sea-level in
kilometres. The level of flux of secondary particles for Denver Colorado, USA elevation is 3.5
times higher than at sea-level. A typical airplane which flies at an altitude of 10km will expose the

electronic systems to a 228 times higher-level of flux than at sea-level [17].

3.5. SEE impacts on SRAM-based FPGAs

The key advantage of an FPGA is the possibility to configure the interconnection and logic
resources freely and as often as required for the application and even during operation alteration of
these FPGA resources is possible. This configuration of the FPGA happens by means of
programming bit sequences into configuration memory. The configuration memory within an
FPGA can be of an SRAM, antifuse or EEPROM memory function and their functionality has been
described in a previous chapter. Each of these different memory types reacts differently to
radiation-induced upsets. FPGAs-based on SRAM-type configuration memory are the most
commonly ones used as application platforms for today’s electronic systems. SRAM-based FPGAs
are amongst the most susceptible to radiation-induced upsets among the three memory types used
in FPGAs. In this dissertation the primary focus of FPGA-specific configuration type memories lies
on the SRAM-based configuration controlled FPGAs. This is because they are the most commonly
used FPGAs in today’s electronic systems due to the reconfiguration capability and the application
of choice for fault-tolerant systems.

The number of configuration memory cells of an FPGA represents the vast majority of the total
number of memory cells implemented on a given FPGA chip [80]. SEEs effects in an SRAM-based
FPGA can affect the data within the configuration memory or the data within the user memory of
the logic circuit (in these cases flip-flops, look-up tables or memory cells). These two types of
memory-related faults due to SEEs causing effects within an FPGA are the primary focus of this
dissertation. SEEs within the clocking logic can be possible and the effect can be that the entire
FPGA design is turned off [80]. The effects on the clocking logic will not be further investigated in
this research work because the logic and memory part of the FPGA is the primary focus of this

thesis.
3.5.1. SEE impact on configuration data stored in SRAMs

Radiation-induced faults on the configuration information stored in the SRAM of an FPGA can be
affected in a way that information is altered. This altered configuration information will affect the

intended routing and logic resources of the design programmed inside the FPGA. Due to the size of
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the configuration memory of an FPGA it is possible that the radiation-induced faults are within a
part of the configuration memory, which is not being used by the application. In this case the fault
has no effect on the logic structure running on this FPGA. The SEEs effect on the routing part
affects the interconnection between different logic blocks of the design created within an FPGA
and a bit flip within this sensible part of the FPGA has a severe impact on the interconnection
between logic functions. The fault in the interconnection configuration memory part of the FPGA
can manifest itself as disconnection of a logic interconnection, creating a new interconnection
between logic blocks or bridging two interconnections together [5, 80]. An example of an altered
interconnection within the switching matrix is demonstrated in Figure 3.4. In this case a different
sighal coming from another logic part is routed to the same logic unit instead of the intended logic

signal.

Switch Matrix

A bit flipping which changes the routing >

Figure 3.4: SEE-induced alteration of the interconnection within a switching matrix [5]

3.5.2. SEE impact on user data stored in SRAM

Today’s modern FPGAS contain two types of memory elements within the logic part of the user
application. The first memory type is a standard memory structure, which is based on SRAMs to
store data of the user application. The second memory type is a memory-based LUT in which
output values of logic function are transferred and stored in LUT memory and read upon request.
By the use of this step the logic functionality is transferred into SRAM-based LUT memory
eliminating the need of implementing every possible combinational logic functions within this
logic block. In the case of a bit flip within the LUT the intended logic function is altered to give a
result from an alternative and incorrect logic function. This fault condition is demonstrated in
Figure 3.5 where the output value of an AND gate stored in the LUT gets altered by means of an
SEE into a NAND gate output value.
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A bit flipping which changes the funcﬁunaily>

Figure 3.5: SEE alteration of the stored logic function data to another logic functionality [5]

3.5.3. SEE impact on the user logic

How the configurable logic within an FPGA gets used depends on the logic design requirements
and specification of the user. In general the logic can be used as combinational or sequential logic
design and both designs are likely to be affected by SEES, most likely by SEUs and SETs. The
effect of an SET manifest in combinational and sequential logic if the glitch is caused by the SET is
captured in a memory element. Sequential logic designs contain embedded flip-flops, which are
acting as a memory element in the logic circuit for storing past values. The manifestation of an
upset caused by an SEU or SET within a sequential logic circuit requires a type of in circuit
memory element in which it is getting stored but only if the enabling line of the memory element
gets activated to store the current data at the timing around the glitch. The storing of the altered
information in the memory element needs to be coinciding with the temporary glitch affecting the
logic circuit otherwise it will be without any effect on the system [75]. In this way the circuit
timing and the delay caused by the combinational logic are important features for the possible
manifestation of SEEs altered information having an effect within this system. Memory elements
within a combinational or sequential logic circuit can be altered by an SEU if it is hit by a high

energy particle directly.

3.6. Simulation of SEE faults in an electronic system

During its life-time it is quite possible that a given electronic system will be exposed to any number
of SEEs, which can be noticed or can happen unnoticed by this system. For the verification of the
fault-handling capability of an electronic system by putting it into space or waiting for naturally
caused upsets is not timing and budged wise. Within both natural test set-ups the fault-causing
conditions are unpredictable and the amount of possible upsets cannot be controlled or predicted.
By the use of natural radiation sources of any type the test coverage cannot be predicted. A possible

simulation of using a radiation source for directly bombarding a chip with naturally caused
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radiation is to use Californium-252 (Cf-252). By using Californium-252 a constant flux rate for a
given time is guaranteed [81]. The disadvantage of using Californium-252 is that the chip has to be
bare die without the housing for being subjected to the radiation from the source in close proximity
to the die.

Impacts of SEEs onto an electronic system need to be appropriately simulated for testing the fault-
tolerance of a given electronic system for a defined and controllable impact on this system.
Different test set-ups are possible for simulation of an SEE on electronic systems which is
illustrated in Figure 3.6. Most of the shown fault-injection methods in Figure 3.6 work on a coarse-
grained level by injecting a fault in a way that a logic function by itself gets altered or inputs are
being changed. The fault-injection method based on logic equation simulation can work on fine-
grained simulation in which the individual transistor of a gate gets simulated and a fault gets
applied onto an individual transistor. In this way the effects of radiation on single transistors are
possible and the fault effects on the whole system can be evaluated. Simulation of the whole logic
gate is also possible. But for this research work the fine-grained simulation of individual logic gate
transistors has been chosen because, by this method, the impact of redundant transistors in the case

of transistor faults can be better evaluated.
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Figure 3.6: Overview of fault-injection methods [11]

For the analysis of the fault-tolerant efficiency designed inside in an electronic system the ability to

repeat and reproduce the two factors is required for certification testing. By repetition the key focus
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is put onto the ability of repeating the experiments exactly or with a very high level of precision
over and over again. The main target of reproducing is the capability to regenerate the same results
over and over again. This can be achieved by exactly controlling the experiment and in this way the

radiation effects on the whole system.

3.6.1. Simulation-based fault-injection

The use of simulation tools during development and design of an electronic system offers the
possibility of injection of faults into the application model and the simulation of the application
within a computer reveals the response of the injected fault. The injection of faults into a simulated
application works in altering logical values during application simulation without having any target
hardware available. This injection approach works on system-model simulation or on emulating

hardware.

3.6.1.1. VHDL-based fault-injection

The fault-injection simulation on Verilog hardware description language (VHDL) can be done by
using two approaches for simulating fault-injection onto a target circuit. The first approach for the
fault-injection technique is to use the simulator command tools. By using the command tools it is
possible that during runtime of the simulation signals and variables of the model can be
manipulated. This technique does not alter the VHDL code of the application circuit. The second
fault-injection technique uses direct VHDL code manipulation in a way that it alters the model by

adding saboteurs or diversifies the individual model of a single component.

3.6.1.2. Fault-injection with means of run-time configuration manipulation

The fault-injection approach, which is done by run-time configuration, takes advantage of hardware
prototyping. This hardware prototyping is normally done on an FPGA-based hardware emulator.
This offers all the advantages of run-time reconfiguration needed for this fault-injection approach.
The use of an emulator for the synthesis of each fault-injected design description has to be
synthesised, placed and routed. The disadvantage of this type of approach is that the simulation
time increases with the size of the design and number of faults which have to be injected. By using
the approach of bit-stream modification after the synthesis, placement and routing of the design the
test time can be reduced. For performing a fault-injection simulation only some of the bits in the

bit-stream have to be altered.
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3.6.1.3. Fault-injection into logic equation

For the fault-injection approach into logic equation each of the individual logic gates of the logic
structure used for the electronic system are descripted with the help of individual logic equation.
Each of the logic gates are being split into pull-up and pull-down network as demonstrated in
Figure 3.7 for a NAND gate. In this case the pull-up network represents the functional side of the
gate, which creates a connection to the high-side or Vcc rail and the opposite for the pull-down

network. The operation of the standard NAND gate circuit illustrated in Figure 3.7 is described by

the logic expressions X1 + X2 for pull-up network and X1 - X2 for pull-down network. Out of
these two expressions the overall output signal is determined according to [36] out of four possible
logic states. Logic state one is the low output active, which in this case defines that the pull-down
network logic equation is the true one. The logic state two is the high output active, which means
that the pull-up network logic equation is the true one. Both these logic states are producing valid
output results and are the normal working states with regards to accurate output signal. The third
logic state is where pull-up and pull-down networks are off and the output is in an undefined state.
For this state both logic equation pull-up and pull-down are not true. In contrast the fourth state is
where pull-down and pull-up networks are turned on and create a short circuit between Vcc and
GND rails. All these definitions of the different logic gate states are defined within Table 3.1 [36].

X1 Omtp d a pull-up network
X2o |

T1

pull-down network

Figure 3.7: Circuit layout of a standard NAND gate with identification of

pull-up and pull-down network
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Stage 1 Stage 2 Stage 3 Stage 4
pull-up network FALSE TRUE FALSE TRUE
pull-down network TRUE FALSE FALSE TRUE

Table 3.1: All four possible logic state for a NAND gate in accordance with [36]

This fine-grained evaluation of the logic functionality makes it possible to simulate individual
transistor faults and their impact on the whole circuit. In Figure 3.8 some of the possible fault
conditions in which an individual transistor can be functional are demonstrated. The fault
conditions A, B and C of Figure 3.8 represent a disconnection of the transistor and conditions D, E
and F are showing shorts between two of the transistor pins. Each transistor of the logic gate can
now be put into different fault conditions and simulated with the help of the pull-up and pull-down
network logic equation. By using the logic equation approach the overall impact of a single fault
onto the whole logic system can be simulated and evaluated. In this thesis two types of fault
simulation of individual transistors are being used for fault simulation on fine-grained-level logic
gates simulation, stuck-at high (SAH) and stuck-at low (SAL) faults. This method has been chosen
to study the response of a logic gate by affecting single transistors of it with faults for a set duration
of time. By using this method, a logic gate output or behaviour can be put into different states than
the normally permitted ones. All of the other fault injection methods described within this chapter
affect the function of a logic system or specific input or output values. This can be by random
distribution or at selected locations for fixed or variable time duration. The fault model used for
this work is of stationary nature for a set time at selected locations in order to achieve comparable
results amongst different logic systems.

The faults caused by effects happening to the intra-gate-connection, which can have the same
effects as the one at the transistor level, will not be individually investigated. This is because these
intra-gate-connections are dependent on the actual chip design and this is beyond the scope of this
thesis. SAH represents the condition that the transistor is on all the time which will be represented
in the logic equation with a high or one level. The SAL condition represents the condition that the
transistor is off all the time and within the logic equation this case is simulated with a low or zero

value.
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Figure 3.8: Some possible electronic faults in a transistor with regard to

open connection or shorts between two pins [12]

3.6.2. Physical-based fault-injection

The physical simulation of fault-injection requires the final or a certain level of completion of the
application hardware and software. It is possible that different physical fault-injection set-ups are
possible for the simulation of fault-injection. One set-up can be done on the software level and the
other can be done on hardware and software together. For the second set-up the final hardware and
software design should be used. This is because variation of the target design can affect the
behaviour response after fault-injection. The fault-injection can be done on the hardware or on the
software of the second fault-injection set-up. If during the fault-injection test a problem regarding
fault-masking occurs, the appropriate non fault-tolerant component of the application has to be
exchanged or updated regardless of whether it is hardware or software. Reassessment of the altered

target has to be performed. Different physical hardware fault-injection methods are available.

3.6.2.1. Hardware fault-injection

For hardware fault-injection the appropriate application hardware needs to be used. Two hardware
test set-ups are possible, contact or contactless testing of the appropriate application hardware. The
first test method of contacting the application hardware has certain limitations and advantages. The
advantage of using contacting the hardware under test is that fault-injection can be repeated and
altered in any possible way. The limitation of contact-based fault-injection on a given hardware lies
in the access capability of the test coverage. Physical contact and fault-injection capability is
limited by pins used to make interconnection possible between components. Access to internal
circuit structures within a chip is not possible with this test method. The faults injectable into the

circuits can be of voltage or current nature [11] or simulation of stuck-at conditions [82]. Two

[41]



Chapter 3: Radiation effects on electronic systems components

contact-based fault-injection procedures on hardware level are feasible. The first method is based
on using test pins to contact the suitable test pads on the PCB, which should not be done due the
fact that probing on individual components, like surface mount devices (SMD), can damage the
component due to the spring force of the probe. Because of this the layout of the application PCB
needs to be considered with the suitable test pads in place. The second method uses a chip socket to
act as an access point for injection of a fault into the circuit. Today more and more components on
a PCB are of SMD nature; these components cannot be accessed through chip sockets.

Contactless testing of application hardware can be done with any type of radiation source capable
of causing an upset within the hardware under test. By using radiation sources a duplication of the
natural environmental, which exists in space, is performed and a contactless fault-injection into the
chip design or structure can be performed. Radiation sources are producing high energy particles,
which can be used for bombarding the chip structure to cause the same effects as in space but at a
much higher rate. Through this a simulation of a life-time exposed to radiation particles can be
performed within a short period of time. A heavy ion source used for SEU simulation is for
instance Californium-252 (Cf-252) [82-84], which offers a good source of constant radiation output
for bombarding the entire chip. For simulation of alpha particles Americium-241 (Am-241) [85]
can be used which is widely available due to the use within smoke detectors. The Americium-241
is produced as a film and can be cut to the size required for causing SEE in parts or the whole chip.
Another way of generating static proton and heavy ion radiation is with the help of cyclotron
facilities producing a range of high energy particles which can be used to bombard the chip [86,
87]. With the help of the cyclotron facility it is possible to bombard only a small area of the chip if
required or the entire chip. By only causing an SEE within an area of a chip, the unexposed chip
area can be used for verification purposes. By utilising radiation sources, random bombardment of
a chip can be performed similar to space-caused radiation effects. If every part of the entire logic
structure has been exposed to high energy particles cannot be assured because of the randomness of
the natural radiation distribution hitting the chip die. This method of using radiation sources is a
method, which can be used on every type of silicon-based chip and it is not limited to FPGA-type
chips only. Using natural radiation sources for simulation of SEU in high numbers means that the
target chip has to be de-lidded otherwise the metal lid used for chip housing interferes with the
radiation, which could affect the chip structure [81].

Another contactless way of injecting faults into an electronic system is by electromagnetic
interference. This technique is the common disturbance in automotive vehicles, trains, airplanes or
industrial plants due to high current flow in nearby electronic systems [82]. With the help of a burst
generator an electromagnetic field can be generated, which then can affect the whole PCB, the
whole system or only a single chip. Through this electromagnetic field, alteration within the data
stored in individual transistors takes place and the fault-tolerant features of the system have to cope

with them.
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3.6.2.2. Software fault-injection

Software based fault-injection into the application simulation or system is a low-cost and easy-to-
control method for testing the effects on a fault-tolerant system. Its approach is to change the
contents of memory or register information in accordance to specific fault models. With alteration
of information the emulation of hardware faults or injected software faults manifest within the
software and the performance of fault-masking algorithm can be evaluated [11, 82]. Software-
based fault-injection can be done at compile-time or at runtime. The method of fault-injection at
compile-time introduces errors into the source code of the target programme and generates a
modified application software [11]. This altered software gets downloaded into the target hardware
and executed to verify its fault-tolerant capability. The fault-injection method of introducing faults
at runtime works on the principle that at a trigger point alteration of memory or registering of

information has taken place.
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3.7 Summary of the chapter

This chapter is about the increased sensitivity against radiation effects on individual components of
a given logic chip. The increased sensitivity of individual chip components in the case of individual
transistors is increasing through ongoing downscaling of these components over past decades.
Radiation-induced effects are impacting high-altitude applications but the smaller feature sizes of
modern-day chips experience radiation upsets at terrestrial level now. In this work the focus of
radiation effects was put onto the FPGA due to the selection as the best CCU platform for an
electronic system. Due to the capability of freely configuring the logic structure interior of an
FPGA is controlled by switches in conjunction with SRAM elements. Radiation particles
bombarding a given FPGA chip die are able of altering the stored information written inside these
SRAM elements. This alteration of the stored information in the SRAM-based configuration
memory will, in a way, modify the intended logic design configured inside the FPGA for fulfilling
the application requirements. Simulation of different fault-injection methods modelling the effects
of radiation-induced faults within a given electronic systems were evaluated.

Different fault injection methods are used to simulate and evaluate the fault tolerant behaviour of a
system under test. These methods needed to be evaluated, in order to find a suitable method for the
work on making logic gates insusceptible against a specific type of faults. Fault injection into a
system can be performed by temporal randomly or stationary applied fault types at fixed or
randomly selected locations of the system. The selected method for this thesis for injection and
simulating faults at each of the individual transistors of a logic gate is a stationary influence with a
fixed digital level.

The simulation of breaking down logic gates into pull-up and pull-down networks including
evaluation of individual transistors of this structural configuration showed that the logic gate
responded within four feasible logic states. One of these logic gate states offers the condition
required to be used as a uniquely identifiable signal in case of a fault presented within the logic
gate. Detection and triggering on this signal could be used for the purpose of initiation of self-

healing features, which is going to be investigated in chapter 7.
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Chapter 4: Review of type of faults and their behaviour on an electronic

system

4.1. Introduction

Every man-made electronic system can suffer from an electronic fault at any time during operation.
Faults can be through undetected manufacturing hardware defects, which become faults or show
wear-out characteristics of individual components within the integrated circuit. Both these types of
permanent hardware faults are going to increase in future electronic systems, which are based on
integrated circuits. This is because feature sizes of these components are being scaled down, due to
process development of chip manufacturing moving down into the regions of nano-structures of
individual components. The requirement of producing fault-free chips in the future will only be
possible through capital investments of the chip manufacturers. Faults within a system with this
feature size of individual components can also be possible because of radiation-induced effects.
Radiation-induced effects which alter data within memory in most cases on a temporary basis
within a given chip will only increase in the future. Both types of faults, permanent and temporary,
can have different effects on the behaviour of the electronic system. Some take effect right away
and alter the electronic system behaviour in a way that is noticeable to the user or the outside
world. If the fault is able to propagate through the system passing to every functional boundary this
fault become an error of the system. The opposite is that faults can also be masked within the
system before they can effect or alter the required system responses. A system, which is capable of
masking fault autonomies, has a system structure that is designed in a way to handle faults by
masking them. The electronic system can also be equipped with self-healing circuit features, which
can handle and correct faults within the circuit structure before it passes a system boundary. Certain
techniques are proven concepts for fault-masking and they will be identified, described and

analysed within this chapter.
4.2. Impact of chip feature-scaling development on fault-behaviour

Until very recently the driving factors for the microcontroller industry have been cost, performance
and reduction of chip die size. Reducing the chip die size is the key figure for the overall chip
price. The less silicon is required for a given chip the less is the price of the given chip. The
reduction of transistor size was predicted by Moore in 1965 and he forecast that every 18 months
the transistor count on a fixed silicon die area doubles. Even today this law still remains valid but
by moving into the region of nano-structures the law will possibly no longer be valid in future. By

increasing the amount of transistors produced on a given die area, this trend will go hand in hand
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with new challenges for the chip industry. These challenges are going to change their objective.
The reliability and yield of their product will see the biggest impact. In real terms a 5% loss of a
typical 90-nm chip fab would be around $100 million per year due to permanent faults [88]. An
overview of possible failure mechanisms of semiconductor devices is illustrated in Figure 4.1 [13-
15]. The chip industry is working on counteraction like adding spare circuity on a chip, which can
be patched in for a faulty chip component. For doing this the entire chip has to be tested thoroughly
to detect any possible fault and trying to fix the fault with patching in spare components for
keeping their yield numbers up. This process is a time consuming task and requires sophisticated
test equipment. Another possible approach could be to equip chips with the capability to fix
themselves autonomously in the event of a permanent fault presence within the logic structure of
the chips. With this approach the reliability of chips will increase over their life-time due to

counteraction taken by the chip itself against wear-out effects.
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Figure 4.1: Overview of possible failure mechanisms of semiconductor devices [13-15]
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Parameter degradation of single transistors due to the reduced active silicon feature structure can
lead to permanent faults and will affect the system during its operation time. For these types of
faults a chip cannot be tested during its manufacturing process. It can only be modelled to calculate
the time frame in which the chip will work fault-free before wear-out effects take place. The
dimensions of one transistor will gear towards single digit atom count used for their feature size.
This will reduce the amount of dopant atoms present within its structure. By reducing the transistor
size, with every generation by two, the dopant atoms decrease accordingly and the predicted trend

is demonstrated in Figure 4.2 for the random dopant fluctuation.
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Figure 4.2: Graph of the random dopant fluctuation due to feature size reduction [16]

As demonstrated in Figure 4.2 the predictability of the reliability of the doping with a single
transistor will be unpredictable. This indicates that two transistors produced side by side on the
same die will have different electronic parameters. The performance of these two transistors with
regard to operational behaviour will be different. The oxide thickness of each individual transistor
will have a high level of impact on the overall performance of the entire chip. Due to the overall
reduced transistor size the oxide thickness gets thinner and this increases the leakage current of this
particular chip. In order to overcome this problem one possibility could be that the oxide thickness
can be increased to counteract the leakage current. By increasing the oxide thickness the switching
speed of the individual transistor is going to be reduced and in this way the logic performance of
the chip [16, 41]. Finding the right balance of all the different parameters of producing a chip is the
challenge for the chip industry. But a reduction of the oxide thickness increases the wear-out
behaviour of each transistor differently during life-time use of this chip [89]. This increase in wear-
out can lead to permanent faults, for instance that a transistor stays active at all times. That type of
fault would represent an SAH fault of this particular transistor. Right after the production of the
new chip it has a random number of imperfections within the oxide layer within different

transistors and this is distributed across the chip die. At first the wear-out of the oxide will alter the
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timing behaviour of the affected transistor and in this way the response time of this logic gate gets
slower. In this case these types of fault are identified as soft breakdowns and this will lead to a
permanent fault of the particular transistor. The definition of this type of fault condition is
identified as stuck-at transistor faults behaviour [90]. A different failure can happen with reduced
dimension size of the components of the chip die, this is the electro migration. Electro migration
happens due to the reduced isolation gap between tracks. A smaller gap between two tracks will
increase the electric field between them and this field can lead to electro migrational growth.
Electro migration happens due to metal ions migrating due to an electronic field over time and
could cause faults like short or open circuits [91]. These types of faults are considered as
permanent hardware faults. Electronic shorts can be against other signals, Vec or GND. Electro
migration is a typical fault within the application system during life-time use and not during the
production of the electronic system. This makes this type of fault within a given chip a concern for
the manufacture of the electronic system and its end user.

As happens right now some IC manufacturers scrap products if they have a single fault or did not
pass their manufacturing test and/or cannot be fixed. That is because the current manufacturing
failure rate for producing conventional complementary metal oxide semiconductor (CMOS)
devices is roughly 10~7 — 10~¢ faults [92]. This failure rate will change in the future and chip
manufacturers need to deal with these defective parts within their production. For the user of these
chips another key figure is the failure-in-time (FIT) rate, measured in one failure in 10° device
(chip) hours uptime. Applying a given FIT rate of 10 on a given number of one million components
(e.g. transistors) operating for one thousand hours would mean to expect 10 components having
failures. The chip user acceptance FIT rate for electronic devices in the year 2000 was 10 FITs for
a certain chip type. But for the future the users are expecting a smaller FIT rate for a given chip
family [89]. This expectation does not coincide with the demand for more functionality and speed
out of a given chip area. These chip customer demands can only be achieved by increasing the
stress on the chip because of higher current densities and higher electronic fields within smaller
geometric transistor dimensions. Another industry-used failure definition for a single electronic
component is the value of the mean time to failure (MTTF). Each single component (e.g.
transistors) could have a MTTF of a billion years. But due to the fact that a single microcontroller
has hundreds of millions of individual components with individual MTTF, the overall MTTF of the
microcontroller could be just a few months. Today’s electronic systems contain a number of chips
and so the overall MTTF of this particular electronic system could be possibly months or weeks or

days [93]. Figure 4.3 is showing the definition of MTTF within a system.
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Figure 4.3: Mean time of failure-type definition within a system [17]

In Figure 4.3 two more industry definition for mean time of failure are demonstrated. The first is
mean time between failure (MTBF) and the second one is mean time to repair (MTTR). MTTR
defines the time between the detection of the fault and the time it takes to repair the fault. MTBF is
the added time of MTTF and MTTR together and describes the time frame for how long it takes
before the system works fault-free again [93]. Two more definitions are being used for the
description of the ability of a system’s fault-handling capability, which are mean time to manifest
(MTTM) an error and mean time to detect (MTTD) a fault. These two types of fault definitions are
linked to configuration bits used to define functionality within a flexible programmable logic
system like an FPGA. MTTM defines the time an error is dormant within a system. A dormant
fault is a fault which is not active at the time due to fact that it could be possible that the fault is
present within a occasionally used or a spare part of the chip/circuit [94]. This time can vary
depending on the functionality assigned to this faulty configuration bit. Only in the case of actually
using this functional part of the chip or logic structure of the application where the fault is located,
will the effects of the fault show up within the system. The MTTD defines the elapsed time
between the corruption of the configuration bit and the detection of the faulty bit within the

configuration [95].

4.3. Definition of fault and error in an electronic system

The definition of a fault being active within an electronic system is when the circuit or logic system
produces an error, which represents a result or action that deviates from the correct service state of
the equipment [95]. Because of this link between the different phases it takes for the manifestation
a fault within an electronic system the phases have to be described in more detail. First, a fault
occurs within a sub function of an electronic system, which triggers an error. The error sets off a
failure within the subsystem or sub-function. A failure is the end product of a system-level or
functional hardware block fault. This is only the case if the failure shows up on the boundary of the
system otherwise the fault is dormant. Any type of dormant fault could be present within systems
(50]
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parts, which are not in an active or used part within the system on a frequent count. Even they can
be present in spare part, which are only be used in cases of reconfiguration and in this case are not
sufficient for fixing a faulty system [94]. For the stability of any electronic system the propagation
of any fault through the system has to be prevented and this is the area of fault-tolerant systems. If
an electronic system shows an error or delivers incorrect results this happens because of a fault or
failure within this system. In this way an error is more or less the manifestation of a fault for the
user of this electronic system. Errors within an electronic system could manifest themselves during
operation time, e.g. a changed memory bit within a memory cell. Only in the case of activation of
these faulty logic parts of the chip will the fault show up and possibly traverse through an
electronic system. The definition of a fault-tolerant system is that it is designed to deal with faults
within given design limitations for maintaining the required system functionality. A fault within an
electronic system could be caused by a hardware or software fault. The research work done for this

thesis is focused only on the electronic hardware faults.

4.4, Faults and errors in an electronic system

With Figure 4.4 the possible fault propagation within an electronic system is demonstrated. In the
case A of Figure 4.4 the fault is being masked within the inner scope of the electronic system with
the help of fault-tolerant logic. The electronic system will not show an error at the outer system
scope. So the user of this system will not know that a fault happens within his electronic system. In
the case of a masked fault which happened at the inner scope of the system the system designer has
designed an indication for this purpose and the user will be informed about it. In case B of Figure
4.4 the fault shows up in the outer scope visible to the user. This can be through an alteration of the
required system response.

One approach to deal with faults in a system is to mask the fault within the inner scope of the
system. In this case the outer system scope will not see the fault and will generate no error or
system misbehaviour. The technique of fault-masking relies on the capability of detecting a fault
which exists within the electronic system and is adapting the logic design of the system to cope
with this type of fault. In some cases different masking capabilities have to be used. Miscellaneous

masking schemes are available for electronic logic systems.
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Figure 4.4: Fault propagation within system [17]

4.5. Types of faults in an electronic system

All these different types of electronic hardware faults within an electronic system can be classified
into three categories: permanent, intermittent and transient faults. Besides these three main fault
categories two more fault-types have to be mentioned which are benign and malicious type faults.

A benign fault of an electronic system is a fault condition when the system just goes dead during
normal operation without any prior indication. This kind of fault-type would be easily detectable
and repairable, but the impact of this fault happening during operation could be a real misfortune
for the user of this system. If this kind of possible fault happens during a space flight of a satellite
the whole project would be lost without the possibility of repairing the system. Malicious faults,
which are also called Byzantine faults, are such as when a system will deliver reasonable looking
results on request but these results are incorrect. For example an altitude sensor of an airplane
reports 1000-feet altitude instead of the correct 8000-feet altitude [96]. These two types of faults
are falling into the category of logic function-related faults or even design related. Because of the
way benign faults happen within a system they cannot be resolved within this block or system. Due

to that impact and the way these faults react they will not be part of this research work.

4.5.1. Transient faults in an electronic system

Transient faults occur and vanish within a system and manifest themselves in most cases in the
nature of bit flips, which got stored or logic gate malfunction. The root cause of a transient fault is
due to a high energy particle like a neutron or alpha particle hitting the silicon structure of the chip.
This impact of this particle has to be near a transistor or capacitor of a static random access

memory cell logic to cause a bit flip. This is due to the energy induced at this point of the chip
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where the particle struck. The current ongoing dimension reduction of all components on a chip
reduces the amount of charge stored within the capacitor of a static random access memory
(SRAM) cell. Due to this reduced charge stored within the capacitor it makes it more susceptible to
gamma particle radiation [25].

By hitting the silicon chip structure the high energy particle creates a charge that alters the voltage
levels in this area and can flip a bit in a memory cell or a logic latch. Within the memory chip the
effect of the flipped bit can be detected and corrected with the help of parity bits and ECC.
Researchers expect that per new generation of chip technology the soft-error rate per logic state
will increase by 8%. In Figure 4.5 the soft-error rate in relation to the technology generation is
demonstrated and is showing that the soft-error rate for future chip structures will increase. This is
happening because of the reduced component size of a given chip into the nano regions and this
will cause the likelihood of an increase of soft-errors at sea-level increases. These soft-error effects
in a given next-generation chip will no longer only be a problem to high altitude applications and
because of this it will require the same fault-tolerant approaches to be implemented for low altitude
applications.

The detection and correction of flip bits caused by energy particles within a flip-flop of a chip is a
much harder problem [16]. New chips are equipped with more functionality built-in and because of
the reduced size the number of components within a given chip area is significantly increased. Both
points lead to bigger chip sizes within the package and this means an increase of the target area for

energy particles [25].
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Figure 4.5: Soft-error failure-in-time of a chip (logic and memory) [10]

The second cause of this type of fault can be electromagnetic interferences. Transient faults cannot
be fixed with the exchange of the hardware [97]. This type of fault gets described as single event
upset (SEU). In the case that this upset happens in the same component with a certain frequency,
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this is getting defined as a single event rate (SER) for this specific component. Because of the
transistor structure dimensions being close to nano-style feature size on a chip it is possible to
generate MBUs by a single radiation hit. It is much easier to generate MBUs within a memory chip
due to the density of memory cells within a certain area. The SER gets commonly measured in FIT.
Modern chips with their reduced structure dimensions of a single transistor will have soft-error
rates, which are producing a failure rate that is higher than all the permanent hardware failures
combined. Today’s electronic devices have a typical failure rate of a gate oxide breakdown, metal
electro migration for example of 1-50 FIT for a single device type. The overall FIT rate of a chip
will be due to the critical reliability mechanisms of any chip, which are going to be more in the
range of 50-200 FIT. By comparing the chip FIT rate against an easily exceeding SER driven FIT
rate of possible 50000 FIT/chip the scope of the relevance of the FIT driving effect changes [16].
These numbers show that in the future the soft-error-induced FIT rate is going to be the dominant
FIT rate within an electronic system of a given application in the future. According to [98] the FIT
rate at sea level for latches and SRAM cells varies between 0.001 — 0.01 FIT/bit which increases
with altitude. The combined FIT rate of a whole chip is the sum of all raw FIT rates multiplied by

the soft error susceptibility factor of this individual component [98].

4.5.2. Permanent faults in an electronic system

A permanent fault can be described in this way; as that part of an electronic system that produces a
fixed result permanently. This result in any digital system can be either correct or incorrect. For
example if the permanent created result due to the fault is a constant digital high level and in the
case the system is requiring a high level result, which means that the evaluation of the result will be
seen as correct even if the result has not been generated. But in the case of a required zero level it is
incorrect. Judging the correctness of the circuit only on the comparison against similar circuit
output will not always reveal a faulty system. It could be possible that more output results for
evaluation are required or another type of indication in the case of a fault is necessary.

A permanent fault reflects irreversible physical changes within a chip logic circuit of the system
[97]. In this way a permanent fault will remain for an indefinite period within the electronic system
until this device or component gets replaced. A permanent fault can be best described with the
example of a defective light bulb. In the case of a fault the light bulb will not generate light. The
fault will only be fixed in the event of replacing the light bulb. Within an electronic system this
could mean for example that at a given chip an input or output of a logic gate is stuck-at high or
zero permanently. This type of fault could be due to wear-out, migration, manufacturing issues or
using the device out of specification. Latch-up effects within the chip can also act as a permanent
fault. The difference between hardware related issues and latch-ups means that the latch-ups can be

resolved with power cycling. But in some cases a burn-out of the particular logic circuit, which is
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having a latch-up, can become a permanent hardware fault. In this case the hardware needs to be
replaced with new equipment or the chip by itself is capable of altering the application-specific

logic structure to be reconfigurable for avoiding this part of the chip.

4.5.3. Intermittent faults in an electronic system

Intermittent faults are faults, which could appear and disappear over time during the operational
period of the electronic system. As the name indicates this kind of fault is not of a permanent
nature, it will happen from time to time. Sometimes errors, which are intermittently affecting an
electronic system, tend to occur within this system in bursts if the transient fault happens at the
same location and activation [97]. Intermittent faults can be seen as an early device indication for
permanent faults, which could manifest within this device as a certain individual component. An
example of an intermittent fault could be a partial oxide wear-out of a single transistor of a chip. A
study, which has been done, was based on fault data collected from a number of data servers for
identifying intermittent faults and their effect on the operation of these data servers. This data
represented the fault data of these data servers over 310 operational years. The data showed that the
systems experienced 6% intermittent single-bit errors (SBE) within their memory during the time
of observation. All these faults were corrected with the memory error correcting code (ECC) and
therefore no service interruption happened. Failure analysis carried out when possible indicated
that manufacturing residues on the contacts of the memory cards caused an intermittent contact

problem [97]. This was seen as the root cause of the intermittent bit faults within these data servers.

4.6. Detection of fault or error occurrence in an electronic system

As Figure 4.4 demonstrated, the definition of a fault is that the fault stays within the limits of the
functional block of the total electronic system. The fault gets identified at the boundary of the
functional block and masked. Faults which are masked stay within the functional block
unnoticeable to the outside world. Errors are manifestations of faults occurring within any system
noticeable to the outside world. This indicates that the fault had passed through every boundary of
each functional block. For masking a fault at the functional block boundary different approaches

such as majority-voting or comparing can be applied within a logic based system.
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4.6.1. Majority voter at the boundary of a functional block

The function of a majority voter can be seen as majority-voting the overall output result out of a set
of individually created or a stored number of data bits. In this way the majority voter is working on
the concept of data redundancy, which should all represent the same value. The functional block
diagram of majority voter in general is demonstrated in Figure 4.6. According to von Neumann
[99] at least more than N/, of the inputs () supplied from the identical circuits (M) have to carry
the correct result for a majority-voted result. The identical circuits (M) are forming the main
functional block of an electronic system and the number M represents the number of hardware
overheads compared to a single structure. In principle the voter demonstrated in Figure 4.6 can
only work on single digital results or data structure due to the direct comparability of the system
results. The majority-voted result of single digital results can be done within one clock cycle. For a
majority-voting based on data structures the voting has to majority vote on each individual data
structure bit and this must accord to the number of data bits the structure contains. For creating a
majority-voted output result of the data, each individual bit of the data word has to be majority-
voted and has to be in accords to the requirement of more than N/, bits have to match of the same
data structures. It is also possible to create a majority voter, which will take the whole data
structure and create a majority-voted output result by means of doing the comparison of the whole
data within one clock by parallel majority-voting. This concept would require the number of data

bits majority voter working in parallel.
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Figure 4.6: Majority voter block diagram for an NMR system [18]

The majority voter demonstrated in Figure 4.7 shows the logic circuit of a conventional triple

module redundant (TMR) majority voter. The Boolean equation of this TMR voter is:

Y1 = (X1IAX2)V(X1AX3)V(X2AX3) (Equation 4.1)
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Figure 4.7: Conventional triple module redundant (TMR) majority voter

logic circuit created out of single logic gates

For this example of a majority voter a TMR system gets chosen because it is the minimal redundant
system, which is fulfilling the von Neumann rule. The resulting truth table of the majority voter for
a TMR system is shown in Table 4.1. The principle of majority-voting can be observed within the
data shown in Table 4.1 and the rule that N/, of the inputs are required to have the same result for
the majority vote to generate a valid output result. The results of the table reflect this rule for all the
different input sequences. The data represented in Table 4.1 shows the output results of a fault-free
majority voter for a TMR system. But how is the output result of a TMR majority voter affected by
fault-injection of SAH or SAL faults at different injection points in accordance with Figure 4.8?
The majority voter is the functional block within a fault-tolerant system based on fault-masking and
the fault-behaviour affects the fault performance. The reliability calculation for a TMR-based fault-
tolerant system demonstrates the impact on the overall reliability of a TMR system with majority
voter. The general reliability equation for a TMR system with majority voter is for two out of three

subsystems of a TMR system to be correct is:

Remr with voter ) = Ryoter () Tio(()(1 — RMO)'R(D3F  (Equation 4.2)

General TMR reliability equation with majority voter

Remr with voter () = Ryoter (1) Eico()R(O'(1 —R(#)*™  (Equation 4.3)
TMR reliability equation with majority voter where two out of

three subsystems are correct

Remr with voter (t) = Ryoter (t) (3R2(t) - 2R3(t)) (Equation 4-4)
The reliability equation of a TMR system with majority voter

where two out of three subsystems are correct
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As equation 4.4 shows the overall reliability of a TMR system with majority voter is determined by
the reliability of the majority voter. This is due to the multiplication of the reliability of the
majority voter with the overall reliability of the whole TMR system. In this regard the majority
voter can be seen as the single point of failure within this fault-tolerant structure. Any deviation of
a 100% reliable majority voter cannot be tolerated for the performance of the reliability of a fault-
tolerant and reliable TMR system with majority voter. In this regard the question of the fault-
tolerance of a majority voter will show how the fault-tolerance of a TMR system with majority

voter affects the trustworthiness of this system.

X1|X2 | X3QY1
o|jojo0Q0
110|040
oO|j1j0f0
111|041
o|joj140
110]1Q1
oj1]191
11111

Table 4.1: Truth table of the TMR majority voter

demonstrated in Figure 4.7

For analysing the fault-behaviour of the conventional TMR majority voter regarding SAH or SAL
faults injected into the circuit at the appropriate points in accordance with Figure 4.8, a fault rate
analysis will reveal the fault-behaviour effects. This simulation was performed to reveal the fault
rate (FR) of the circuit and the effect on the majority-voted output with regard to trustworthiness.
For indicating a fault the comparison between the output result of the fault-free against a fault-
injected one for a given input stimuli has been used. In this case for a TMR majority voter any
deviation of the output value of the fault-free results (shown in Table 4.1) can be seen as an
untrustworthy output result. Out of this type of results it can be seen as a system error generated
and passing through a functional boundary caused through a fault within the majority voter. This
example illustrates the impact the fault within the majority voter has on the fault-behaviour of the
entire system and proves the point that the majority voter is the single point of failure. The method
of FR was chosen because it offers the best comparability of fault-behaviour between different
system structures. The calculation of the FR of a given circuit structure can be done by the

following equation that is usable for different circuit structure set-ups:

FR = —MFaults . 1000 (Equation 4.5)

NInput_Stimuli
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The FR for the fault simulation of the TMR majority voter is shown in Table 4.2 with a total FR of
22.6% for injected stuck-at fault simulations at appropriate stimulus points (see Figure 4.8). Each
of these results of the TMR majority voter in response of a stuck-at fault-injection is a deviation
and resulting in an error (see Figure 4.4). This error revealed by means of stuck-at fault-injection
shows that the trustworthiness for the TMR majority voter is given by an FR of 22.6%. With this
FR the TMR majority voter will generate 77.4% correct results under the influence of a stuck-at
fault and cannot be identified as a fault-tolerant or a 100% correctly working system under the
influence of a stuck-at fault. Out of this fault-behaviour and the importance of the majority voter on
the overall system behaviour the majority voter will require further analysis work for increasing the
competence of this vital functional block of a fault-tolerant system. This further analysis and circuit
alteration is carried out within Chapter 7.

The majority voter in general is placed at a boundary of a subsystem and supplies a result into
another subsystem or to the outside of the system. Masking of a faulty generated output signal in
this circuit set-up is shown in Figure 4.7 and is not part of the logic structure. So in the case of a
fault within the TMR majority voter the faulty output signal will propagate through the system and
will pass functional system boundaries. Inherent or designed into the circuit structure capabilities of

fault-indication is not possible with the circuit demonstrated in Figure 4.7.
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Figure 4.8: Conventional TMR majority voter logic circuit with

stuck-at simulation points (1 to 13)

1 2 3 4 5 6 7 8 9 J10oj11] 12| 13
SAH 2 2 2 1 1 1 1 1 1 4 4 4 4
SAL 2 2 2 1 1 1 1 1 1 1
# of faults| 4 4 4 2 2 2 2 2 2 5 5 5 3
Faultrate | 25| 25| 25| 13|13 (13|13 [ 13 (13| 31|31 31| 50

Table 4.2: Fault rate data of the stuck-at simulation at specified

injection points indicated in Figure 4.8
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If a fault-tolerant TMR majority voter (see Figure 4.7) is required the circuit needs an additional
circuit part that indicates through a signal if not all input signals (Y,) of the TMR majority voter do
not have the same digital value. For this example the number of inputs for any type of logic gate
used within a circuit is limited to two inputs. This has been chosen for evaluation purposes. The
fault-indication circuit is demonstrated in Figure 4.9 where YF indicates the situation that not all

input signals feeding into the majority voter are of the same logic level value.
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Figure 4.9: TMR majority voter with fault indicator circuit for the case that inputs
are homogenous. (a) for homogenous of all inputs,

(b) for homogenous of two out of three

The fault-indication solution demonstrated in Figure 4.9(a) is for the case that all inputs are

homogenous and the logic equation is therefore:

YF=(X16DX2)Vv (X166 X3) (Equation 4.6)

The equation demonstrated in Equation 4.6 and the corresponding Figure 4.9(a) represent a circuit
for indication of consistent input signals feeding into the TMR majority voter. This circuit solution
is not in accordance with the von Neumann rule that N/, inputs have to be the same and a matching

circuit in accordance with this rule is shown in Figure 4.9(b). For this circuit the logic equation is:

YE=(X16DX3)v(X1DX2)V (X2 X3) (Equation 4.7)

With this circuit structure (shown in Figure 4.9(b)) this altered TMR majority voter is now able to
indicate that a deviation of one input signal has occurred. For these different faults indication
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signals of these altered TMR majority voters will indicate a fault condition to the higher controlling
circuit. With these fault-indication signals the identification of the specific fault within a path is
possible and with the help of another circuit structure the identification of the faulty input path is
possible. The identification of the faulty input path is possible through an evaluation of the
majority-voted result signal against the individual voter signals. This approach also discloses the
cured influence of a fault affecting a single track of a TMR system to a system controller of this
TMR system. A simple comparison circuit is delineated in Figure 4.10 and the associated logic

equations of this circuit are the following ones:

YFX1=X1Y1 (Equation 4.8)
YFX2=X2@Y1 (Equation 4.9)
YFX3=X3dY1 (Equation 4.10)

-1 ——OYFX1

-1 ——OYFX2

=1 ——OYFX3
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Figure 4.10: TMR majority voter with output fed-back comparator
against inputs for identifying faulty input path

For a fault-tolerant TMR majority voter the total circuit would be a combination out of the
following circuits illustrated in Figure 4.9(b) and Figure 4.10, which then would work side by side.
This combination would indicate the presence of a fault and the fault creating input path of the
TMR system. Comparing the overhead based on transistors the following logic gate transistor

counts has been used:

AND = 6 Transistors, OR = 6 transistors, NOR = 4 transistors,
XOR =12 transistors, XNOR = 14 transistors.
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Total transistor count in accordance with the figures and comparison against the transistor count of
the TMR majority voter (see Figure 4.7) is represented in Table 4.3. The overhead for the different
circuit configuration is significant. By using two standard input logic gates for making the TMR
majority-voter fault-tolerance the overall problem of faults is still maintained due to the fact that in

the case of a faulty component within the circuit no indication of this is built-in.

Transistor | Owverhead
Fig. 4.6 24 0
Fig. 4.8 [a) G2 117%
Fig. 4.8 [b) 72 200%
Fig. 4.9 &0 150%
Fig 4.8 |b) + Fig. 4.9 108 250%

Table 4.3: Transistor count comparison against TMR voter

(see Figure 4.7) as overhead

4.6.2. Comparator at the boundary of a functional block

Instead of the majority-voting a comparison of the results produced from individual blocks can also
be used for avoiding fault propagation through the system. The resulting circuit uses less individual
components than the TMR majority voter, which in this case should result in a reduced FR. This
comparator approach is mostly used for dual redundancy electronic systems displayed in Figure

4.11 in which a single AND gate is being used as the comparator.

X1o—| M [—

A HOY1

x20— m

Figure 4.11: Dual redundancy electronic system with AND-gate

as a comparator at the output

This simple comparator solution done with the AND gate has a significant impact on the FR of this
set-up. In the case of a mismatch between both output results an overall result of zero is produced
and this correlates to a 50% FR. The circuit shown in Figure 4.11 needs a means of output
mismatch indication to a hierarchical higher control system. A simple solution is described in

Figure 4.12 where this comparison of the two outputs has been done with a single XOR gate [100].
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Figure 4.12: Dual redundancy electronic system with AND gate
comparator and XOR gate as fault indicator
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4.7. Summary of the chapter

Emphasis in this chapter was placed on temporary and permanent faults within a given logic
structure and their effect on the whole electronic system. In general any electronic system is
divided into different functional logic blocks and each functional logic block can be defined as
surrounded by a boundary. A fault which passes through this boundary unnoticed and without
masking/fixing is defined as an error. This behaviour puts the trustworthiness of the whole system
into question. Measuring at the boundary of the functional logic subsystem is required to perform
fault-tolerance and masking. The most commonly used logic structure to perform the task at the
boundary is the TMR majority voter. TMR majority voter requires a triplication of the functional
logic circuit for generating three independent output results. This by itself generates 200%
hardware overhead. The trustworthiness of the functionality of the functional block depends on the
fault-behaviour of the TMR majority voter. A fault-injection simulation performed on the input and
output structure of the discrete voter structure reveals its fault response to stuck-at high/low faults.
This simulation revealed that the FR of a TMR majority voter is 22.6%. Fault identification with
regard to identification of outputs feeding into the voter requires additional logic circuit facility.
The FR of the voter indicates that an altered logic structure or fault-tolerant logic gates are required
for designing a fault-tolerant TMR majority voter. Within a fault-tolerant TMR system the majority
voter can be seen as the single point of failure for the system. Because of the impact the majority
voter has on the fault-tolerance research work with regard to increasing the fault-tolerance of the

majority voter will be one focus of this thesis.

[64]



Chapter 5: Concepts for increasing dependability of logic systems

Chapter 5: Concepts for increasing dependability of logic systems

5.1. Introduction

Fault-tolerant systems are capable of preventing the propagation of a fault through their logic
structure, which subsequently could manifest as a noticeable error to the world outside of this
system. The fault-masking capabilities of these types of systems rely on certain logic structure
designs created to equip logic-based systems with fault-tolerance. By applying these techniques
onto a given logic circuit, the reliability of the resulting circuit regarding fault-tolerance will be
increased. This is the direct benefit but in most cases it comes with a price to pay, which is logic

overhead. This logic overhead affects all parameters of the logic circuit.
5.2. Fault-tolerant per system design

The concept of fault-tolerance per system design can be achieved with two different approaches.
The first one is fault-masking and the second one is fault correction. The fault-masking principle
works on the concept of using redundancy within the output result creating functional blocks so
that through means of comparing or majority-voting a final output result can be generated. Reliable
systems working with the approach of redundancy usually exploit one of the three possible
redundancy forms: temporal (time), spatial (hardware) or pertaining to information [88, 101]. The
information redundancy can also be defined as data redundancy where a set of the same value is
generated independently or stored within different memory locations. A generalised block diagram
of the majority-voting principle structure for an N-type design is shown in Figure 4.6, which is
used for the spatial redundancy principle for generating a single output data out of redundant data.
The original design principle was described in 1956 by von Neumann [99] for logic designs with a
high number of redundant copies of the same logic structure. The most commonly used redundancy
structure is the three-parallel electronic system or TMR working side-by-side, which also fulfils the
requirement that more than half of the redundant systems produce the same output result. Dual
redundancy systems cannot fulfil this requirement and an output result comparison can be utilised,
in which case both output results have to be identical. Comparison cannot offer fault-masking due
to the fact that there is no comparison in the case of a non-matching situation. The overall reference
is missing by only having two output results. Another type of spatial redundancy can be applied
onto the individual transistors creating the logic gate function, which has been proposed by El-
Maleh et al in [22]. This paper proposed to replace every transistor of a logic gate with an N2-
transistor structure. Through this approach the altered logic gate is fault-tolerant against stuck-at
faults. The principle of fault correction within a logic circuit defined as quadded logic structure was

introduced in 1960 by Tryon for a certain set of logic gates and in 1963 Jenson expanded it by
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another gate type [102]. The principle of fault correction can be done with replacing each two input
logic gate by four individual four-input logic gates. The fault correction works on the principle of
interwoven signal paths to these four logic gates and alteration of logic functionality throughout the

circuit.

5.3. Fault-tolerant approaches based on fault elimination or masking

Fault-tolerance within an electronic system can be performed with the help of two entirely different
methods. The first method is to mask the faulty output result out of N-numbers of output results,
these outputs are created by independent system structures. By using N-numbers of identical
system structures a single fault within one cannot propagate through the entire system because of
the masking done by means of output signal comparator for a dual system or majority-voting for N-
number of redundant systems. The impact of faults onto the behaviour of these two approaches has
been analysed in detail within Chapter 4. For the creation of the N-number output results three
different redundancy concepts can be used: spatial (hardware), temporal (time) and pertaining to
information [88, 101]. In today’s electronic systems the spatial redundancy is used in the majority
of fault-tolerant systems and in the form of TMR circuit structure in connection with a majority
voter. The second method is to detect, locate and repair the faulty part of the logic structure. This
approach of fault-tolerance is achieved through logic structure reconfiguration within an

appropriate device.

5.3.1. Redundancy concepts in a system

Redundancy concepts in a system can be broken down into two concepts. The first concept of
system redundancy is looking in detail at the creation of a set of output results, from which the
overall output result can be determined. To achieve this, three different system-based concepts can
be utilised: spatial (hardware), temporal (time) and data (information) [88]. For the two redundancy
concepts of spatial (hardware) and temporal (time) a valid output is generated by the use of
majority-voting, which is working on the principle of data redundancy. The second concept
focused on fine-grained redundancy centred on the transistors of each logic gate to perform fault-

masking within the individual logic gates [22].
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5.3.1.1. Spatial redundancy system structure

Spatial or hardware redundancy was originally postulated and described in 1956 by von Neumann
for high numbers of redundancy [99]. It is also referred to as N-module redundancy (NMR) as
displayed in Figure 4.6. N copies of the same logic design or functional block work side-by-side to
generate N-numbers of output results, which fall into the category of data redundancy. The
resulting N output results are fed into a decision-making circuit, thus creating a majority result out
of the N-number output results. This majority result is valid if it is representing the value of more
than N/, output results which have the same value [99, 103]. In the case of N=2 this overall output
result is generated by a comparator and for N>2 by a majority voter gets used. The original concept
of von Neumann was designed for N-number redundant devices where N was a big enough number
of duplicated copies of the original functional block design. This concept of using a big enough
number of functional block redundancies has the problem of logic hardware complexity and
overhead. The most commonly used adaptation of his concept is TMR and it is represented in
Figure 4.6 with the setting of N=3. TMR is used in mission critical systems and it is a balance
between circuit complexity and reliability. The number of redundancy blocks (R) required for
creating an NMR system that can tolerate a required number of faults (E) feeding into the majority
voter can be determined by the following equation:

R>2+E+1 [104] (Equation 5.1)

In accordance with equation 5.1 a TMR system can tolerate one fault feeding into the majority
voter. If the system is a dual module redundant (DMR) structure the equation 5.1 and N/, can never
both be achieved and no real majority-voted result can be generated within this system. Because of
the equation N/, the values of R within equation 5.1 will be odd numbers to fulfil the fault-tolerance
for a certain number of faults (E). In a DMR system both modules have to generate the same result
otherwise if one module is given an incorrect result the DMR system has a 50% chance of
generating the correct output result. This means in this case that the DMR system holds and
indicates the mismatch by means of a system-fault-flag.

Different types of NMR-based systems can be applied to make a system fault-tolerant. The basic
version of an NMR system is the DMR system, which works in lock-step system configuration
[101]. In some DMR-based applications the system repeats the execution until the results are
matching or until a certain number of repeats have been reached. In this case, the DMR-based
system is put on hold and this puts the system into a safe condition. The presence of a fault that
cannot be resolved will be indicated by the use of a system-fault-flag. DMR-based systems are used

in safety-critical automotive applications like anti-lock break systems (ABS) [79, 101].
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The hardware or spatial TMR system is the system which uses three identical copies of the same
functional circuit block working side-by-side to generate three output results in a lock-step
approach [101]. TMR is the base for all the deviation set-ups applied for making logic designs
radiation hardened by design and remains by far the most popular redundant system until today.

Variations of hardware TMR can be:

- Block TMR or BTMR [105] is an older methodology by triplicating the functional block
and adding a majority voter.

- Local TMR or LTMR [105] is focused on triplication of the result storing elements within
a BTMR and where the data path remains a single path. The resulting output majority-
voted value gets fed back into every flip-flop (FF) to correct any incorrectly stored values
within the output FFs of the LTMR. This fed-back loop can be seen as a self-correcting
circuit.

- Global TMR or GTMR [105] uses the approach of triplicating everything throughout the
system and due to this the upset rate regarding faults is very low. The triplication includes
the clock and domain circuit of the system, so they are independent of each other. The use
of the approach of GTMR can be seen in the use of large chip area overhead and power
usage.

- Distributed TMR or DTMR [105] is a basic version of GTMR in which everything gets
triplicated but this does not include the global clock-routing and reset. By not including the
clock into the triplication like the GTMR it is susceptible against upsets causing faults.

- Selective TMR or STMR [105] only triplicates selective circuits within the system which
can be identified as sensitive to SEU-induced faults. Due to the unique identification of
sensitive circuits this method cannot be automated by tools [106]. In paper [107] two more
different concepts for STMR have been proposed. The first one is coarse-grained TMR or
CGTMR referred to in [107] using the method to triplicate large parts of the logic circuit of
the system. The second one is fine-grained TMR (FGTMR) [107] which directly triplicates
fine parts of the circuits and uses BTMR on these parts.

- Functional TMR or FTMR [105, 108] works on the principle that the functional blocks are
triplicated and feed into a triple majority voter circuit. The resulting majority-voted values
get stored into triple sequential logic where the output gets fed into a triple majority voter
to generate the three independent overall results. These results are fed into the next FTMR
block and get fed back into the functional blocks of the first FTMR system for correction
of output values, if necessary.

- R-fold modular redundancy or RMR, where R is an odd number for the number of
redundant system copies working side by side [109]. In the case of R=3 it represent a TMR

system.
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- Cascaded triple modular redundancy or CTMR [109] uses three individual BTMRs within
its data path for creating a set of three fault-tolerant data paths. So each of these data paths
has its own BTMR system. At the end all majority-voted values of the three BTMR
systems are fed into a majority voter creating an overall majority-voted result out of these
three BTMR subsystems.

- Xilinx TMR or XTMR [95, 107] is part of the Xilinx development platform and can be
selected during design and compilation of the logic design. XTMR applies the following
logic structural design onto the application design; it triplicates all the following functional
blocks of the system: input/output, the throughput logic and inserts fed-back logic for
register data correction. In comparison with CTMR, XTMR is more advanced in protecting
data with the help of a feed-back register for checking if soft-error has occurred within this
data path. Also XTMR is part of the Xilinx design library and will be in use for a number
of applications where Xilinx FPGAs chips are used. This will make the XTMR approach
most certainly the new industry standard of radiation-hardening for logic devices within
FPGA devices. The XTMR solution is coming with a price in logic resources, performance

limitations, power consumption and vulnerability of the voter.

All of the described versions above of TMR systems are working in lock-step approach centred on
the individual output results. Without the lock-step approach the majority-voting of the different

output results would not be possible without mismatches due to timing problems.

5.3.1.2. Temporal redundancy system structure

Temporal redundancy uses redundancy in time differently to the spatial redundancy of the N-type
system redundancy approach [19]. The TMR system is the most common approach, which uses
three copies of the same functional block to produce a set of output results out of these and with the
help of a majority voter an overall output result gets voted. In the case of a transient fault or
permanent defect within one functional block one output result of this set of output results will be
different and by the use of majority voter will be excluded. The approach of spatial redundancy
increases the hardware complexity and if a system is needed where timing is less important than
hardware complexity, time redundancy can be utilised [110]. The method of time redundancy
works on the concept of creating a set of output results with only one functional block by using it
recurrently within a set time frame to create a set of output results. These output results are being
stored within separate memory cells. If a similar set of output results comparable to a TMR system
performance is required three memory cells are needed and each memory cell is filled after one
clock cycle. Novel concepts of memory utilisation could be applied onto the part of the storing of

the results generated after each temporal cycle. Within this research work a direct comparison
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between TMR, quadded logic structure and QLC within their output result structure is based on the
concept of using an N-number input majority voter logic circuit. This is because the majority voter
is the logic circuit, which is handling the fault-masking for the feeding logic functional block.

Out of these stored output results a majority-voted result can be formed similar to the TMR system.
The idea behind time redundancy is that if any type of intermittent or transient fault occurs it will
only happen within one output result creation due to the duration of the effects of the SEU [111]. In
the case of a permanent hardware fault in this functional block of the temporal-redundant system
all results created at different time intervals will have the same error. The overall majority-voted
output result will be affected and the incorrect output result gets chosen. Temporal redundancy
systems are designed to handle transient faults and not permanent hardware faults [19]. For
handling permanent faults within a temporal-redundant system an addition to the original structure
has been proposed in paper [19]. This concept uses data encoding algorithms before execution of
the functional block and inverse algorithm for data decoding afterwards for different execution
time frames within one general cycle. The sequence of result creation for the logic structure
illustrated in Figure 5.1 is working in accordance with a specified process flow. The first result gets
generated without data coding, the second one with one type of algorithm and the third result gets
created with an altered algorithm. Out of this set of output results an error-free result gets majority-
voted and the block diagram for the data encoded temporal-redundant system following the flow
defined beforehand is illustrated in Figure 5.1. Through this approach a single permanent fault
within the single functional block can be compensated because of using two different coding

approaches for the generation of the three output results for the data [19].
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Figure 5.1: Timing sequence of the encoding/decoding approach of the permanent

fault-masking temporal redundancy structure [19]

A different concept of using temporal redundancy instead of TMR was proposed in [19] as a time-
shared TMR (TSTMR) concept and in [112] as a quadruple time redundancy (QTR) concept. The
following chapter describes the concept of these two papers in more detail. Both concepts work

with the principle of splitting the functional block into three individual sub-blocks, which are
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getting their input data through MUXs. These MUXs are splitting the input data into three sub-data
segments of the whole data structure. The resulting outputs out of these three sub-blocks are fed
into a majority voter and by the use of a DeMUX unit the corresponding sub output result data gets
generated. The TSTMR block diagram of an adder is delineated in Figure 5.2. With the TSTMR
structure errors correcting adder and multipliers have been created accordingly. Similar to the
concept of splitting the data into three blocks as done for the TSTMR concept, the QTR concept
splits the data into four blocks. So instead of using three clock cycles for the TSTMR concept the
QTR concept needs four clock cycles to generate a set of four output data result structures. These
data result structures are fed into a majority voter for the generation of the output data structures.
The disadvantage of TSTMR and QTR is to generate the suitable MUX and DeMUX units, which
are, in this case, to be implemented within an FPGA, and are susceptible to SEUs. This would

make this structure unreliable.
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Figure 5.2: TSTMR error correcting adder [19]

5.3.1.3. Information redundancy data structures

The information redundancy works on the principle that additional data or information is being
added to the information or to protected data stored or used within an electronic system. The added
data facilitates detection and correction of faults within the information data. Information
redundancy can also be used in an approach of storing redundant copies of the same data at
different locations or memory units. This concept of working with multiple copies of the same data

is data redundancy and out of this set of individual values a common value has to be generated. The
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generation of this common value out of this set of values is performed by a majority voter.
Information redundancy adds extra bits to the information data, which protects against transient
errors or permanent faults within the memory cells used to store the data. This data, which got
added to the original data, is reflecting in a way the content of the stored information in memory so
that in the case of an alteration of the information it can be detected and regenerated. For storing
this information data plus added protection data more memory cells per individual information
word are required and because of this efficient compact protection concepts are needed.

The most commonly used error-correcting code (ECC) is based on the Hamming code, which is
designed to detect a certain number of faults within the original data and is also able to correct
them or indicate the presence of an un-correctable amount of them. Beyond a certain number of
faults within the data ECC is capable of detection without fault correction. The fault-tolerance
mechanism of the ECC is based on arithmetic equations or specific data structures. This principle
of Hamming code was invented in 1950 by R.H. Hamming [113] and since then many variations
tailored for a certain application, which are based on this mechanism, have been proposed and

implemented over time.

5.3.1.4. Fine-grained redundancy on logic gate level

Fine-grained transistor redundancy is centred on the approach of adding redundant transistors
within the logic gate. This adding of redundancy to a common gate is done with the focus of
improving the fault-tolerant behaviour of this specific logic gate. The fault-tolerance enhancement
done through the logic gate could empower the gate to mask certain types of faults or indicate the
presence of non-maskable faults. The part of indicating of non-maskable faults is the area this
thesis will focus on and can be seen as an innovated concept. With manufacturability in mind the
adding of redundant transistors is best done in complements of two. This is because for
manufacturing these redundant transistors can be created by adding only two parallel strips of p-
and n-diffusion material to the existing design. It could be possible that the redundant transistors
are using possibly the same poly-silicon input lines, which makes it easily addable to the common
logic gate chip design [12]. Most effective combinations are based upon adding an odd number of
transistors so that the original transistor is replaced by an even number of transistors. By using the
redundancy rule of adding transistors only by even numbers of redundant transistors this rules out
odd-based redundant transistor structures. The maximum number of transistors added as
redundancy to a single original logic gate transistor was limited to three within this thesis. Thus in
total a quadded transistor structure is replacing one logic gate transistor. Beyond this point the
created fault-tolerant gate structures defeat the proposed target of this work of creating the smallest

possible gate structure to cope with certain types of stuck-at faults.
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Within [21] from Naran S. et al it was proposed that dual transistors as redundancy are getting
added in parallel to the circuit structure and in [22] from EI-Maleh A.H. et al quadded transistor
structure are being proposed for replacing a single transistor of a given logic gate. By using dual
transistor structure this type of gate will not be capable of masking one permanent fault. But it is
capable of masking SAL faults, which has been verified within [20] from Djupdal A. et al with the
help of finding the best redundant structure by using evolutionary principles to find the best
transistor structures for enhancing fault-tolerance to a given logic gate function. An SAL resilient
inverter logic gate was the result of this investigation, which has been found within the paper [20]
and is described in Figure 5.3. The structure of this altered logic gate has a parallel redundant

transistor structure for each original logic gate transistor.
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Figure 5.3: Best evolved SAL resilient inverter gate [20, 21]
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The quadded transistor replacement structure proposed in [22] is represented in Figure 5.4 and can
also be described as N? transistor structure. This structure is capable of handling (N — 1)
permanent faults within each single quadded transistor replacement structure. This masking of an
SAH fault within this transistor structure is possible as long as the fault is only one permanent SAH
fault per replacement transistor structure of an original logic transistor. Investigation performed has
shown that this design can tolerate certain combinations of two permanent SAH faults but this
depends upon their locations. Also within Figure 5.4(a) the cross connection indicated between the
centres of the quadded transistor structure has an impact on the fault-tolerance. Without the cross
connection (see Figure 5.4(b)) two independent SAH faults within each signal path are possible,
with the cross connection (see Figure 5.4(a)) only if both SAH faults are present within the top or

bottom part of each of the signal paths.
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Figure 5.4: The two possible replacement quadded transistor structures for a single

transistor of a common logic gate [22]; (a) with and (b) without cross bridge

5.3.2. Reconfiguration concepts in a system

The concept of fault-tolerance by reconfiguration of the logic design can only be achieved by using
suitable chips composed of a uniform logic structure that are configurable by software. This
uniform reconfigurable chip structure includes programmable logic, interconnection and everything
associated with configuration capability through memory [114]. These chip structures can be found
within commercial off-the-shelf (COTS) chips like FPGAs. FPGAs chips support two different
reconfiguration options. The first one is the reconfiguration at run-time or dynamically and the
second applying reconfiguration only to a defined part of the device, which is called partial
reconfiguration of a logic block [115]. Customised chips that are also capable of offering
reconfiguration features are mostly designed for a certain application and not for adapting a general
application on the fly. In general, reconfiguration of a given logic circuit design requires the
capability of altering the way the logic circuit design is implemented within a fine-grained logic
elements structure provided within a given chip. Different methods of reconfiguration can be

utilised for constructing fault-tolerant logic circuit designs.
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5.3.2.1. Data scrubbing

The logic gate design configured within an FPGA is executed and stored within most modern-day
FPGAs within SRAM elements. Chapter 2.3.3 shows that the assignment of SRAM within an
FPGA can be 50% to 90% of the actual memory of a particular FPGA type. In [116] the allocation
of configuration memory of a Xilinx Virtex XCV1000 chip was 97.4% of the total memory bits.
Through these SRAM-type bits the configuration of the logic circuit gets set and alteration of this
information changes the designed circuit structure. SEUs altering the memory information can only
be detected through evaluation of the results generated through this circuit structure or through read
back of the data stored in the configuration memory. After the read back a comparison against a
golden copy reveals SEU-related bit alteration. The altered data can then be overwritten and this
task is referred as data scrubbing [117, 118]. This process is also described as read-back scrubbing.
Hardware related faults within the chip cannot be detected through this approach. The technique of
data scrubbing is not directly an approach of reconfiguration by altering a given circuit structure
due to a fault within a certain part of the chip structure. Data scrubbing, or better described as
rewriting the original configuration information rather, is a re-establishing of the intended logic
circuit design defined through the configuration data. Scrubbing can be divided into internal and
external scrubbing. Internal is done with the help of ECC associated with configuration memory
banks. In the case of a single-bit alteration through an SEU the altered bit within the configuration
data can be detected and restored with the ECC controller. External data scrubbing of a device is
divided into blind and read-back data scrubbing. Blind data scrubbing is writing the golden copy of
the configuration data stored in an external memory into the FPGA regardless of whether a fault
has occurred or has not occurred. The concept of read-back data scrubbing involves first reading
back the entire data of the device and checking for data alterations. In case of a found data

alteration this data and only the altered data gets written.

5.3.2.2. Reconfiguration with pre-defined data

In the case of a permanent fault within a logic circuit design configured data within an FPGA the
approach of using reconfiguration with pre-defined configuration data requires that the general
layout of the FPGA structure is divided into equal blocks, in this example into column-based
blocks. Each block contains a certain part of the whole design. In the case of a fault within one
function block, a predefined unused block is used to act as a replacement for this faulty block. The
configuration data of the different function blocks can be assigned to the blocks to the right of this
replacement block [23, 24]. This principle of logic design reconfiguration of a given logic design
inside an FPGA by means of block-dependent rearrangement is shown in Figure 5.5. Within this

figure is demonstrated the occurrence of a hardware fault within the functional block 3, which is
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currently used for function D of the application’s logic design. This block experiences a fault which
requires logic structure reconfiguration. The internal structure inside the FPGA is rearranged due to
the hardware fault present and detected in FPGA block 3 that the currently unused FPGA block 5
(see Figure 5.5(a)) is used for the functional block D reconfiguration (see Figure 5.5(b)). This
reconfiguration involves the shift of functional block C into FPGA block 4 and the functional block
D into FPGA block 5. After the reconfiguration the unused FPGA block 5 before the presence of
the fault is now FPGA block 3 which contains the hardware fault.
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Figure 5.5: Column-based precompiled individual functional blocks. The fault-free configuration

is displayed in (a) and an altered configuration after a fault is shown in (b) [23, 24]

The division of the entire FPGA structure into homogeneous pre-compiled blocks can be done in
any shape and size and this all depends on the application design of the system. The specification
of certain block structures within the given application design has to be done during the design of
the logic structure prior to the compilation of the configuration file data.

5.3.2.3. Tile approach with rotating reconfiguration

The four-tile approach within a given logic cell is defined in [25] from Lach J. et al. This logic
structure has a fixed input/output interface and contains four-tiles. The structure of this tile
approach is shown in Figure 5.6(a). The logic functionality of each tile is not pre-defined or fixed
and hence the tiles may be regarded as a configurable logic unit and are implemented within the
CLBs of the FPGA. Each logic cell can be a unique logic function selected or programmed into an
LUT out of the functionality of a CLB. For example within the four-tile approach, which is
illustrated in Figure 5.6(a), a fixed logic circuit has been defined as shown in Figure 5.6(b). The
tiled logic structure implements the fixed logic circuit using three out of the four logic units: the
remaining logic unit acts as a spare in the case of a hardware fault of another one. The
interconnection between different logic cells is not part of the investigation and proposed solution

of [25] for a fault-tolerant system solution. In the case of a fault within the interconnection
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structure complex reconfiguration of this interconnection structure for replacing a faulty logic cell
would require a set of pre-compiled configuration data for each possible arrangement. Another
solution for this problem could be during run-time with the help of an embedded microcontroller
on the FPGA chip or with the help of an external arrangement. All these approaches are complex
and would have a noticeable impact on the availability of the system during interconnection
reconfiguration. A possible solution for the reconfiguration problem of this logic cell matrix could
be by creating a fixed line structure for routing input or output signals through this fixed line
structure. This concept would require a fixed amount of lines between logic cells, which is given
within an FPGA. But within an FPGA the routing is done by means of the interconnection and
which is optimised during compilation of the logic design through the compiler tool. For creating
this bus-type interconnection structure it would have to be forced during compilation or a unique
chip design has to be created.

Reconfiguration of the interconnections between the internal logic units does not affect the
input/output interface of the logic cell. Any type of reconfiguration of the internal structure follows
a pre-defined arrangement, which is illustrated in Figure 5.7 subsections | to 1V, in the form of a

clockwise reconfiguration.
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Figure 5.6: (a) Logic cell with four logic units in accordance with [25];

(b) Internal logic structure created out of the three logic gates

The fixed logic circuit designed in each logic cell forms the logic circuit shown in Figure 5.6(b).
With this logic circuit the following logic function for an example is taken out of [25] and has been

created:

Boolean functionY = (AAB) A(C VvV D) (Equation 5.2)

The implementation within a logic cell of this Boolean function (Equation 5.2) from above is
shown in Figure 5.7 Hardware fault detection within this logic cell has to be done by external

functionality and in the case of a hardware fault, reconfiguration data is used, which is also stored
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externally within a memory-based functional block. After the detection of a hardware fault within a
logic cell a pre-defined altered configuration is applied, which alters the logic cell accordingly. The
predefined reconfiguration data mimics a clockwise rotation of the configuration until a fault-free
configuration has been detected by the external functional checker. The limitation of this approach
arises by virtue of not directly identifying the logic unit that has a hardware fault. Through the
clockwise rotational reconfiguration the identification of the faulty logic unit can be achieved
because presumably the newly created spare logic unit is the one with the hardware fault. This
cannot really be in the case of the concept of critical and non-critical logic gate alteration, which is
illustrated in Table 5.1.

A I A Il
BEAIWB- L“W
' j"’ - j"
C W C| ‘ul"—l_ﬂ

L

T l‘jﬂm
o
5
S fjn”nﬁ
e
=

-4

Figure 5.7: Clockwise reconfiguration of the internal circuit structure for

maintaining the required Boolean function [25]

5.4. Fault-tolerant approach based on fault-masking

The concept of fault-masking gets used within an electronic system to prevent any propagation of
faults through the electronic system and in the case of a fault it gets masked at a functional
boundary. The first idea of using redundant information paths assessed by a majority voter had
been first introduced by von Neumann in 1952 in an oral form and 1956 in paper form [99]. This
concept is in use as a TMR system with a majority voter as the minimal solution of this concept.
The approach of fault-masking within an electronic system can be done by knowing what is the
correct output result or statistical evaluation of a set of output results of a given electronic system.
The first method of knowing the resulting output values of an electronic system triggered by a
certain input stimulus can make the whole logic system obsolete. The logic system is obsolete

because why have a complex logic circuit if all the output results are matched to the corresponding
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input stimulus and could be programmed into a memory accessible by means of addressing? By
defining all this input/output information it is also possible to replace the logic circuit with an
appropriate memory chip. The addressing of the memory chip is used for the input stimulus
translation into the correct memory address. The stored data at this address is the corresponding
output result for this input or address stimulus. In the case of using the memory-mapped solution as
a logic circuit checker it has to work parallel to the logic circuit. In this case the assumption has to
be that the checker system is fault-free throughout its operation. If a fault-detecting electronic
system is required a combination of two systems in lock-step approach will create the required
fault-detecting system. One of these systems is going to be the original logic circuit and the other
one the checker system. This combination of two systems would be halted in the case of a detection
of a mismatch between both systems, which also does coincide as fault-indication. For this case a
supervisor checker system would be required to determine the correct response for this situation of
the system at this point. The supervisor checker is also required to contain the correct results for the
current input stimulus as the checker system. In this way the entire system transforms into a
majority-voting system, which is more or less the same solution as the second method for fault-
masking. This system can also be defined as a TMR system with majority-voting. Within this
system or in any other system using a majority voter a fault-masking logic structure has been added
to the original functional structure. This majority voter is a vital functional block where applied

within any fault-tolerant system.

5.5. Fault-tolerant approach based on fault correction

The concept of creating an electronic system with the capability of fault correction deviates from
the concept of fault-masking. Fault-masking within an electronic system is based on detection and
correction of a fault at a functional boundary. A system with fault correction works on the concept
of using logic circuits, which enables the logic structure to correct faults by means of its logic
circuit arrangement. The concept of fault correction and performing the required logic functionality
at the same time was introduced by Tryon in 1958 with the quadded gate logic structure [119, 120].
This original work focused on the logic gates AND, OR and NOT. In 1963 Jenson expanded the
logic gate selection with the NOR gate [102] and with this the whole fundamental range of basic
logic gate functionality was covered. The quadded logic gate structure cannot perform fault-
masking, it is more likely the kind of failure correction by the use of a given logic arrangement and
which performs the required logic function at the same time. Quadded logic gate structures require
a majority voter for performing the fault-masking. It requires four times the logic circuit compared
to a standard logic circuit design and each replacing logic gate becomes a four-input one [102, 119,
120]. Quadded logic circuits can correct all single faults within the structure through interwoven

redundant logic structure [37]. The concept of interwoven redundant logic structure is applied onto
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the input interconnection between the different layers of logic gates. With the help of replicated
input signals to each logic gate in accordance with a specific pattern, the fault correction within the
quadded gate structure can be achieved. In [37] Pierce also introduced with interwoven redundant
logic structure the concept of critical and subcritical errors between logic gates. Interwoven
redundant logic structures like the quadded logic design can fix permanent and transient faults until
the last layer of logic gates. Faults appearing at the last interconnection layer will affect the output
results in a way that an equal amount of zeros and ones are fed into a majority voter - (i.e. a
majority-voted result does not exist).

For the investigation of the fault-correcting capability of the interwoven logic structure the type of
faults will be limited to stuck-at faults i.e. SAH or SAL at the interconnection structure. Internal
effects of stuck-at faults injected at the individual transistors will not be done for this fault
investigation. The analysis of the fault-behaviour caused by the individual logic gate transistors and
increasing their resilience against stuck-at faults through redundancy is part of Chapter 7. The
results of this fault-handling capability of a quadded logic system will be based on fault-behaviour
regarding SAL and SAH individual results and will be based on comparison of FR. The FR is
calculated with the equation 4.2 for all the different simulation cases analysed within this chapter.
An example for the FR calculation can be seen in appendix 2.

The resulting impact of stuck-at fault conditions for different types of logic gates is illustrated in
Table 5.1 [37]. The definition of a critical fault is that a stuck-at fault at the input will lead to a
stuck-at fault at the output of this logic gate. A subcritical fault for a logic gate is that a stuck-at

fault at the input will not cause a stuck-at fault at the output of this logic gate.

Function Subcritical error | Critical error | Output error due
in the input inthe input | to critical error
AND 0>1 150 150
OR 150 0->1 0->1
NAND 0->1 150 051
NOR 150 0>1 150

Table 5.1: Critical and subcritical faults within different logic gate types [37]

Applying quadded logic design structures to a given logic design means that every logic gate is
replaced by four logic gates and each having four-inputs. An example of transforming an XOR
logic gate built out of individual gates (see Figure 5.8(a)) into quadded logic gate structure is
shown in Figure 5.8(b). With logic equation 5.3a to 5.3c the logic functionality of the XOR logic
gate is described. With logic equation 5.4ax to 5.4cx the logic functionality of the quadded logic-

based XOR logic gate is defined and the interwoven input arrangement can be observed. All these
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equations are the foundation of the logic simulation under stuck-at fault-injection at specific points
delineated in Figure 5.9 in subfigures (a) and (b).
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Figure 5.8: XOR logic gate design in (a) standard logic gate structure
and (b) quadded logic gate structure

Logic equation describing the behaviour of the XOR logic gate designed out of three logic gates in

accordance with circuit shown in Figure 5.8(a).

P=X1AX2 (Equation 5.3a)
Q=X1vX2 (Equation 5.3b)
Y1=PAQ (Equation 5.3c)
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The logic equations for the quadded logic design of the XOR logic gate (see Figure 5.8(b))
designed on the basis of the standard XOR logic gate shown in Figure 5.8(a).

PO=X11AX12AX21 AX22 (Equation 5.4al)
P1=X12AX11 AX22 N X21 (Equation 5.4a2)
P2 =X13AX14AX23 A X24 (Equation 5.4a3)
P3 = X14 AX13 A X24 A X23 (Equation 5.4a4)
Q0 = X11V X12V X21V X22 (Equation 5.4b1)
Q1 =X12vX11VvX22VX21 (Equation 5.4b2)
Q2 = X13V X14V X23 V X24 (Equation 5.4b3)
Q3 =X14v X13Vv X24 Vv X23 (Equation 5.4b4)
Y11 =POAP3AQOAQ3 (Equation 5.4c¢1)
Y12 =P1AP2AQ1AQ2 (Equation 5.4c2)
Y13 =P2AP1AQ2AQ1 (Equation 5.4¢3)
Y14 =P3APOAQ3AQO (Equation 5.4c¢4)

The standard XOR logic gate design (Figure 5.9(a)) contains 9 fault-injection points and the
quadded logic XOR logic gate design (Figure 5.9(b)) contains 68 fault-injection points. At each
fault-injection point SAL or SAH faults are statically applied for the duration of altering each
possible input combination at the circuit inputs, which is in this case four-input combination. The
corresponding output values generated for each input stimulus have been evaluated against the
known good value. Figure 5.9(b) shows four-inputs instead of the two inputs of the standard XOR
logic gate design in accordance with Figure 5.9(a). At these four-inputs of the quadded logic gate
structure a set of four equal input values is applied and no faults affecting these inputs are subject
of this simulation. For the standard XOR logic gate the output value is a single bit and for the
guadded logic XOR logic gate design a set of four output bits. The evaluations of the sets of bits
are done by comparison of the individual bits against known good values. For the overall
evaluation of the accuracy of the resulting output sets an evaluation by the use of a voter simulation

indicates if in a case of a faulty output this fault can be masked or not.
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Figure 5.9: XOR gate design in (a) standard gate structure and (b) quadded gate structure
both with specific defined stuck-at fault-injection points

Table 5.2 represents the results of the stuck-at fault-injection simulation for the standard XOR gate
represented. The results indicate that by means of injecting a fault at every injection point certain
faults are being corrected and others show an impact on the output values of the logic structure.
The total FR for all nine fault-injection points and all possible fault stimuli for the standard XOR
logic gate is 36.1%. Due to the single bit nature of the output value, masking of this fault is not
possible and the results will have an effect on the overall circuit. A standard XOR logic gate by
itself cannot be identified as fault-free under the influence of stuck-at faults injected at the defined

injection points. In accordance with the simulation results shown in Table 5.2 it is shown that the
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most impact on the combined fault-behaviour effect onto this logic structure are the injection points
1, 2 and 9. Including these points within the simulation has been important because of the nature of
comparing a logic unit against another type of logic unit structure and the interface points are the
central points of every unit. Points 1 and 2 are the corresponding input pins and a stuck-at fault at
this point will affect the input stimulus pattern. Point 9 affects the output behaviour of this logic
gate construction in a way that a permanent output value is present. A fault-tolerant version of the
standard XOR logic gate is only possible with the help of additional checker hardware or by
creating a TMR-style XOR logic gate. As found with the analysis of the standard XOR logic gate
the fragile points are both inputs and the output. This fault condition of faulty central inputs can be
applied onto the TMR version of the XOR logic gate. The central input, feeding into the TMR
structure, is the corresponding weakest point similar to the inputs of the standard XOR logic gate.
The majority voter in this regard is sharing the same fault-behaviour as the standard XOR logic
gate and this can be expanded onto any logic structure. Central inputs and outputs of logic circuits

in this regards are the main weak points for influences by faults.

Fault point 1|2|3|4|5]|6]|7]|8
Fault SAL 221|111 ]2|2]2
Fault SAH 221|122 f1f1]2

Table 5.2: Breakdown of the different fault results of the fault-injection at the different

injection points of the standard XOR logic gate displayed in Figure 5.9(a)

The quadded logic design of the XOR logic gate (see Figure 5.8(b)) has 68 fault-injection points
(see Figure 5.9(b)) where stuck-at fault-injections are going to reveal the fault-behaviour of this
logic structure. The individual result evaluation of the output responses after stuck-at fault-injection
for the quadded logic gate structure is illustrated in Table 5.3 in a way that each single bit deviation
of the output result set of the quadded logic structure is counted as an individual fault.

Injecting a stuck-at fault-type at the fault-injection points 1 to 40 (see Figure 5.9(b)) can be
corrected within the interwoven quadded logic circuit design and no alteration of the output result
set deviates from the defined good output values. For injection points 41 to 68 each injected SAL
fault has an effect on the output result set. The output values creating logic gates for this design are
AND logic gates and according to Table 5.1 the critical fault condition, which alters the output is
an SAL fault at the input of this type of logic gate. This SAL fault simulation is equivalent to a
logic gate output stuck-at low feeding into the AND logic gate. This is a possible fault condition for
a logic gate and the effect on the performance of the quadded logic circuit is tremendous. Injecting
an SAL fault into the injection points 41 to 48 of the quadded logic circuit (see Figure 5.9(b)) alters
the output result set in such a way that an equal distribution of zeros and ones in the output result

set is generated. By means of this output result distribution a majority voter circuit is connected to
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the outputs of the quadded logic circuit, which is shown in Figure 5.9(b). The shown logic circuit is
not capable of determining the correct majority-voted output value and defaults to a zero output
value. This fault effect on the resulting majority-voted output value is caused through the combined
injection of the SAL fault into the interwoven redundant signals feeding into the inputs of two
output-creating logic gates at the same time. The incorrect resulting output sets corresponding with
the stuck-at fault-type injection at points 49 to 68 (see Table 5.3) can all be masked through a
majority voter circuit and will not have a negative effect on the following logic circuit of the whole

system.

Injection point | 1 2 3 | 4 5 6 7 8 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17

Fault SAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fault SAH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Maskable

Injectionpoint | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34

Fault SAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fault SAH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Maskable

Injectionpoint | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51
FaultSAL | 0 | 0o | 0o | 0| 0| O | 4| 4| 4| 4| a|a|al|lal|2]|2]2

Fault SAH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Injection point | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68
FaultsSAL | 2 | 2 | 2| 2|2 |2 |2 |2|2|2|2|2|2]|21]2]|2]:2

Fault SAH 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2

Maskable

Table 5.3: Breakdown of the different fault results of fault-injection at the different

injection points of quadded logic XOR logic gate in accordance with Figure 5.8(b)

Altering the circuit components of the standard XOR logic gate, which is shown in Figure 5.8(a),
into a version with a NOR logic gate as the output logic gate changes the sensitivity of it to another
output dependent critical fault. In accordance with Table 5.1 this critical fault for the NOR logic
gate is the SAH condition. This can be translated into an SAH fault, which has been injected into
the fault-injection points creating similar fault-behaviour like the SAL fault affecting the logic
circuit shown in Figure 5.8(a), with AND logic gate creating the output. For the comparison
between fault-behaviour the quadded logic design of the XOR logic gate displayed in Figure 5.8(b),
was adapted in accordance with the logic gate configuration that is shown in Figure 5.10. The
similar fault-injection test which was used to create Table 5.3 was applied onto this circuit and the

resulting fault-behaviour is illustrated in Table 5.4.
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Figure 5.10: XOR logic gate design in standard gate structure with
altered output logic gate different from figure 5.8(a)

The equal fault-behaviour in response to the stuck-at fault-injection similar to the one illustrated in
Table 5.3 is delineated in Table 5.4 for the quadded logic circuit designed in accordance with the
logic gate definition displayed in Figure 5.10. The same non-correctable output condition is present
within this data and triggered through SAH fault injected at points 41to 48. This behaviour follows
the definition defined within Table 5.1 and affects the output result set of the quadded logic
structure. These output result sets cannot be fixed by means of the interwoven interconnect
structure or masked through a majority voter. These faults are fault cases where the quadded logic
design cannot fix a stuck-at fault and these faults generate an output result at the majority voter
which defaults to a given value. This value can be correct or not but this is indeterminate by the
standpoint of fault-tolerance. Calculating the FR for these discovered fault cases of the quadded
logic reveals that it is 5.9%. This FR is taking only the faults where the majority voter is not
capable of masking the fault present at the output of the quadded logic circuit. The FR for the ones,
which can be masked by the use of a majority voter, is 8.8%. By taking all the faults present at the
output as either maskable or non-maskable the total FR is 14.7% and this is, for a fault-tolerant
concept not an expected value, especially that all the faults are related to the last logic gate set of
the quadded logic structure. The corresponding fault-injection points are 41 to 68. All of these
fault-injection points affect the resulting output values. The output-creating logic gates of the
quadded logic structure are the most vulnerable ones and would need a logic structural

enhancement to become fault-tolerant.
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Table 5.4: Breakdown of the different fault results of fault-injection at the different

injection points of quadded logic XOR logic gate transformed out of Figure 5.10
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5.6. Summary of the chapter

The focus in this chapter was placed on the different concepts of fault-masking or correcting within
a given logic circuit. Fault-masking works on the concept of majority-voting by the use of a set of
output results to generate the majority-voted output value. The set of output results can be
generated by the use of spatial (hardware), temporal (time) or data (information) redundancy.
Spatial and data redundancy are the most frequently applied concepts within logic systems to mask
a fault. Temporal redundancy comes with the disadvantage of the required timing to generate a set
of results if used in time-critical applications. The advantages of temporal redundancy are reduced
hardware requirements and good at handling transient effects causing data alteration within the
hardware. Another disadvantage of this concept is that in the case of a permanent hardware fault
within the functional logic block all the output results of the result set are altered in the same way.
Due to this constant alteration of all output results it will become the majority-voted output result.
For overcoming this effect in temporal-redundant logic system hardware reconfiguration or other
approaches can be utilised for creating hardware alteration, which create unique hardware set-ups
for each output result creation. As found within this chapter each of the three redundancy concepts
has disadvantages in at least one area of logic circuit structure. A novel concept would be, if it was
possible, to combine all three redundancy concept within one fault-tolerant systems approach and
through the combination disadvantages of one redundancy concepts could be resolved by another
redundancy concept.

Fault correction within a given logic structure requires a specific logic design to perform the
required logic functionality and fault correction at the same time. The concepts of quadded logic
structure fulfil both of these proposed requirements and have been published in associated papers.
For evaluation of the fault-correction capability of a quadded logic circuit a given circuit was
injected with stuck-at faults and the output results were compared against the known good ones.
The FR generated from these incorrect output results had been used as an indication of the fault-
correction capability of quadded logic circuits. In general any quadded logic circuit requires a
majority voter for generating a single majority-voted output result and at the same time for masking
of a certain percentage of faults present within the output results. The quadded logic circuit is
relying on the majority voter regarding masking faults which are being generated within the circuit
structure and because of this are present within the output results at the output of the quadded logic
structure. A certain set of faults generated within the quadded logic circuit cannot be masked with
the help of the majority voter or by the interwoven interconnection structure of the quadded logic
structure. These types of faults show that the quadded logic circuit is not completely capable of
correcting all faults within its logic structure.

In all cases of fault-masking the majority voter is the central functional block to make a logic

system fault-tolerant by the means of fault-masking. As shown in the previous chapter the FR of a
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majority voter requires hardware alteration to the logic circuit of a common majority voter to be
more fault-tolerant. These hardware modifications are needed to make the voter fault-free
regardless of the fault happening within its circuit structure. The impact of the majority voter in
terms of the FR requires further investigation with the goal of creating a fault-tolerant majority
voter logic circuit for stuck-at faults by the use of altered logic gates.

The following question arose out of this chapter. Is it possible to alter the fine-grained transistor
structure of a logic gate to be better equipped against stuck-at faults at the transistor level with a
minimal hardware overhead and what impact on a given logic circuit can be achieved? Does this
altered logic gate design offer a feature, which could be utilised for an intrinsic built-in feature for
initiation of circuit alteration without the influence of external logic circuitry? Would it be possible
to combine the three redundancy concepts spatial (hardware), temporal (time) or data within one
overall redundant concept and what kind of impact has this concept on the FR compared against
quadded logic structure? Can it be done to create an FSM with minimal fault-tolerant hardware

fulfilling the task of fault location identification within a given logic structure?
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Chapter 6: Design of a fault-tolerant temporal-redundant matrix element

6.1. Introduction

Within this chapter the question stated in Chapter 5 concerning combining the three redundancy
concepts spatial (hardware), temporal (time) or data within one overall redundant concept is going
to be further investigated. The combination of the three redundancy concepts will originate a new
logic structure within a fixed functional block. This logic structure will contain an overlap of the
fault-handling capabilities of these redundancy theories and its ability will be evaluated by fault-
injection. The effectiveness of the new concept will be evaluated against the quadded logic
structure. This direct comparison has been selected for the fact that both structures comprise the
feature of fault correction and generate equal number of output results. The quadded logic is
achieving this through spatial redundancy and a distinct fixed gate interconnection. In contrast the
newly created logic structure utilises temporal triggered logic gate rearrangements out of a fixed
number of logic gates for achieving the same fault behaviour.

A logic system designed for accomplishing certain functionality cannot by itself be fault-tolerant
without increasing the logic complexity and hardware of the desired logic functionality. The
increased complexity of the fault-tolerant logic system reflects the fault-tolerant approach chosen
by the system designer required to meet the specification of the system. Fault-tolerance by masking
a fault of a logic system requires a set of results, out of which a majority voter can generate the
majority-voted output result, under the assumption that more than half of the output results are
valued ones. Temporal-redundancy reuses the same logic hardware for a specified number of times
to generate an independent set of output results from each other. Permanent hardware faults within
this logic hardware system will generate consistent faulty output results. By overcoming this
constant effect of a permanent hardware fault within a part of the logic system it can be addressed
by using temporal-dependent hardware reconfiguration. This temporal-dependent logic hardware
reconfiguration requires a newly designed logic structure, which can be time-triggered and altered
accordingly to the necessary logic functionality. The newly designed logic structure is based on the
concept of a matrix structure due to the reconfigurable requirement. This matrix structure is
designed with the capability of using a defined logic overlapping for every output result generation
out of its given matrix structure. This logic overlap is altered with each timing cycle and it also
excludes some logic functions for this duration. Through this non-fixed and overlapping hardware

logic usage identification of faults within this matrix structure can be achieved and reacted on.
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6.2. A fault-tolerant temporal-redundant structure

The concept of fault-tolerance is based on the level of functional complexity which is involved and
how it can be distinguished between the levels of functional complexity. The functional complexity
can be broken down into fine-grained and coarse-grained functional complexity. Fine-grained
complexities specify the functional complexity to be a single functional one and through combining
several of these fine-grained units a higher-level functional complexity can be achieved. Coarse-
grain complexity specifies the functional complexity as an ALU and if required a memory circuit.
Coarse-grained structures can perform functionalities on their own [49]. Out of this a fault-tolerant
system is a coarse-grained functional unit. The coarse-grained fault-tolerant logic systems work on
the principle of fault-masking or fault correction for containing a fault within a given functional
block and preventing the fault from propagating through the system to become an error. The
concept of fault correction requires a certain type of logic structure, like the quadded logic
structure. This logic circuit structure involves a robust design of logic and interwoven
interconnection for the logic functionality. The generation of the single-valued output result of a
guadded logic system is generated by the use of a majority voter. The concept of fault-masking is
working on the principle of using a defined number of redundant functional logic blocks to produce
a set of output results independently of each other. In this regard it is working with the data
redundancy concept for the set of output values. These sets of results are processed by a majority
voter to vote on the majority result. Both concepts require a majority voter and this is why the voter
is a vital functional block within any fault-tolerant system. Faults affecting the majority voter are
altering the majority-voting of the overall output result and counteract any fault-tolerance put in
place for generating the set of output results feeding into the majority voter.

A fault-tolerant electronic logic system, which is based on majority-voting, requires a set of N-
number of individually generated and stored output or results, out of which more than N/, of the
output results represent the same value [99, 103]. The most commonly used fault-tolerant logic
design is the TMR structure feeding into a majority voter, (see 4.6.1. majority voter at the boundary
of a functional block) which masks single faulty output results of one subsystem. In this regard a
TMR system is based on a spatial redundant concept to produce a set of three output values, which
are data redundant. TMR-based systems are designed for time-critical logic designs due to the
simultaneous generation of the three output results within the same time frame. This task of
generation of three independently produced logic system output results requires three identical
logic circuits working side by side and this increases the logic hardware requirement by 200%
overhead without the majority voter logic circuit. The reduction of the hardware overhead of a
fault-tolerant system can be done with temporal redundancy reusing one set of logic hardware a
given number of times to generate by temporal difference independent output results from each

other. These results are stored in separate memories, one per each generated output result. These
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stored output results are evaluated by a majority voter, which polls on the common output result. A
system, which is using temporal redundancy, can be described as a temporal-redundant system
(TRS). A TRS is designed for handling transient faults affecting its logic hardware and preventing
these faults from propagating beyond functional block boundaries. The effect of a transient upset
onto any logic structure can only become a fault if the deviation of the logic value coincides with
the storage of the altered output result or the intermittent internal value of this logic circuit. In this
way transient faults within a temporal-redundant logic system can, in the best case, modify only
one value of the set of output results and this depends on the occurrence of the frequency of the
transient upsets. A permanent fault within the logic hardware used by the TRSs alters the output
result sets in a consistent way during the generation of the individual output results. Due to this
consistent fault within the set of the output results the majority-voted result will reflect it as a
common factor amongst them. In this way permanent hardware faults within the functional logic
block (FLB) of a TRS require a similar redundant FLB to generate independent output results,
which can be evaluated against the other output results in a lock-step approach. By expanding the
TRS with a redundant FLB a hardware-redundant structure has been assembled similar to a dual
hardware-redundant system. This system increases the hardware requirement and takes the TRS
away from reducing unnecessary hardware overhead.

How can a logic structure be based on the three redundancy theories and show what kind of impact
this combination will have on the fault-handling ability? This question can and will be answered
within this chapter through the creation of a temporal-dependent reconfigurable “round-robin”
matrix element for creating a set of data redundant output results. The logic structure design will be
based on the three redundancy theories and is combining their fault-handling capabilities into
forward-thinking features. In this chapter the capability of this matrix element of handling faults is
the goal of this thesis. The concept of making a TRS resilient against stuck-at faults is based on the
idea of temporal-depending alteration of the logic gate structure generating for the output value
during one clock cycle. By using a fixed humber of clock cycles a set of independently generated
output results will be generated. This set of output results can be seen as data redundancy concept.
Altering the logic circuit structure of the FLB of the TRS in accordance with the generation of each
output result bears the approach of not having a permanent fault affecting logic gate functionality
constantly present in the used logic circuit. This temporal-depending reconfiguration of a logic
circuit is embedded into a defined matrix cell, which can be used to build a matrix element. The
fault-handling capability of this matrix element gets evaluated against known fault-tolerant logic
circuit structures. Can a temporal-dependent reconfigurable matrix element be as good as or even

better than a quadded logic circuit structure performing the same logic functionality?
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6.3. Design of a fault-tolerant temporal-dependent reconfigurable round-robin element

For creating a fault-tolerant logic system two different approaches can be applied within a logic
system, fault-masking with the help of majority-voting or fault-correcting within a given logic
structure. A TMR system uses fault-masking by the use of a majority voter and a quadded logic-
based system combines both fault-tolerant approaches. Influence on the output value of a fault-
tolerant system based on fault-masking by majority-voting requires that more than N/, of the data
redundant output results have to be created under the influence of a given fault or faults before the
voted output results are affected. In this chapter, the focus of the number of faults present in a logic
system, which is going to be analysed is limited to one stuck-at fault only within a given logic
structure. Because of this a comparison of the fault-handling capability of the temporal-dependent
reconfigurable round-robin matrix element against a TMR-based system is not possible. For the
creation of a noticeable majority-voted output result alteration at the voter of a TMR system it
requires two FLB of this TMR system to be under the influence of at least one fault at the
appropriate logic circuit location, which is capable of altering the output value. The only time a
TMR-based system can be altered by one fault only, is when the fault happens at one of the
common inputs feeding into the three FLBs of the TMR system and altering an input signal all the
time. A quadded logic structure generates four independent output results coming out of four
individual logic gates at the output layer with interwoven interconnection between each gate layer.
By design a quadded logic-based system should be fault-tolerant through fault-masking and
correcting against faults happening at its interwoven interconnection network. In Chapter 5 the
analysis of the behaviour of a quadded-based logic circuit revealed through Table 5.3 and Table 5.4
that by applying stuck-at faults at certain fault-injection points at the interwoven interconnection
structure the creation of faults at the output of the circuit occurs, which are non-maskable faults.

The objective of this concept of temporal-dependent reconfigurable round-robin matrix element
was to create a logic structure similar in output results numbers and equal or better fault-tolerant
behaviour like a quadded logic system structure. The matrix element incorporates the three
redundancy concepts spatial (hardware), temporal (time) and data (information) for achieving its
fault-tolerant behaviour. The matrix element, which can also be seen as cluster, has to be designed
with fever logic gates and interconnections between logic gates than required for a quadded logic
circuit. For the achieving of these objectives within a matrix element, a combination of the tile-
reconfigurable matrix structure proposed in [25] by Lach J. et al and the reconfigurable logic block
proposed in [26] by Koal T. et al has been utilised within this matrix element for providing
configurable logic functionality within this matrix element. Within Figure 6.1(a) the principle of
the tile-based reconfigurable matrix structure has been developed and is outlined in [25] by Lach J.
et al with the focus of limited localised reconfiguration through pre-defined reconfiguration data

for this cell divided into tiles in case of a fault within one tile. This matrix structure with its general
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structure has been used as the central component for designing the temporal-dependent
reconfigurable round-robin matrix element. The alteration applied to its behaviour was to use time
dependent reconfiguration of the internal four-tile structure instead of fault triggered
reconfiguration performed by an external system. The temporal reconfiguration is performed
through adding a switchable interconnection structure between the four-tile elements. These
interconnection switches are controlled by a programmable time-triggered shift-register. By doing
so the concept of temporal and spatial redundancy of achieving fault-tolerance has been applied
and can be identified as one functional principle. The reconfigurable logic block proposed in [26]
by Koal T. et al was developed with the focus of maintaining a required logic functionality within
given and fixed access points regardless of a fault present within its block. The block diagram of
the reconfigurable logic block is illustrated in Figure 6.1(b). This concept of reconfigurable logic
functionality has been designed into each of the four-tiles of the matrix element without deleting
the proposed replacement block for internal fault-tolerance. Also the proposed functional blocks
within its structure were replaced by fixed logic gate functionality. As defined within the concept
of [26] the internal switches remain unchanged but they are controlled by the same time-triggered
shift-register controlling the initial functional principle. Due to these changes to the internal tile
structure they had more logic units and represented the second functional principle. The second
functional principle is applying spatial redundancy within the logic unit. The logic unit can be seen
as fine-grained logic granularity and through this the level of logic complexity has been defined for
this research work. Coarse-grained logic functionality has not been selected due to the fact that this
research work focused on demonstrating a fault-tolerant concept possible through this approach.
Also this work is limited to the analysis of the fault-tolerance of a single matrix element and not a
multidimensional array of these matrix elements performing elaborate logic functions. These array
structures can be achieved in principle with this matrix element, but further research work has to be
performed on the design of these array structures, which are beyond the research objective of this

thesis.
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Figure 6.1: (a) Matrix structure divided into tiles which can be localised
reconfigured in the case of a fault within a single tile [25];
(b) A reconfigurable logic block between fixed interconnection points for maintaining a

logic functionality in the case of a fault within a functional block [26]

The temporal-dependent reconfigurable round-robin matrix element combines both functional
principles and the resulting functional block diagram combining both principles is illustrated in
Figure 6.2. The central part of this matrix element is within the four logic units, which provide the
necessary flexibility for fulfilling the logic function alteration triggered by the clock cycle. Before
each time-triggered alteration the current specified logic structure will perform the required logic
functionality by using the input stimulus for generating an output value. The number of time-
triggered alterations defines the number of output values and due to the comparison against the
quadded logic structure, four output values will be generated. This set of output values represents
the concept of data redundancy and the last of the three redundancy concepts utilised within the
matrix element to achieve fault-tolerance.

Due to the fact that this matrix element contains four logic units it can also be described as quadded
logic cluster (QLC). Each of the different functional blocks of a QLC which are shown in Figure

6.2 has the following functionality:

- register block
- switching unit

- logic unit

The register block of the QLC is shown in Figure 6.2 as the central controlling block and is realised
in the logic circuit as a loop-back shift-register. The function of the loop-back shift-register within
the QLC is to control each switch within the QLC elements switch and logic unit. The required
logic functionality can be configured for the logic circuit design within the individual logic units by
the programming of the configuration data into the shift-register. With every clock cycle the

configuration data within the shift-register gets shifted by one position and the logic functionality
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for the associated logic units is altered accordingly. Through the loop-back of the shift-register the
configuration data rotates around and this can be seen as temporal-controlled round-robin
reconfiguration of the matrix element or QLC. The other block of the QLC functional block
diagram shown in Figure 6.2 is also controlled by the means of this shift-register and this is the

switching block for controlling the inter-block connection.

Register
Logic Logic
™1 unit unit [*
Logic Logic
] -
Unit Unit

In/Out

Figure 6.2: Functional block diagram of the temporal-dependent

reconfigurable round-robin matrix element

The functional block diagram of the QLC is transformed into a general block diagram of the QLC,
which is illustrated in Figure 6.3. The clockwise orientation pointing arrow in the centre of the
general block diagram of the QLC represents the temporal-dependent loop-back shift-register,
which is controlled by a central clock and is illustrated in Figure 6.4(a). The shift-register is divided
into four sections SR1 to SR4 and each section is linked to the corresponding logic unit. For
instance the SR1 section is linked and controlling the logic unit 1 or is also defined as A (see
Figure 6.6(b)). As shown in Figure 6.2 the shift-register is controlling the switch unit and the
configuration of the logic unit. Through the switch unit the shift-register is controlling the selection
of a defined number of logic units within one clock cycle to be used for performing required logic
functionality. The selection of the logic unit is done through the control line SUL to SU4 of the
associated shift-register section SR1 to SR4 and is shown in Figure 6.4(a). The choice of the
selected logic function has been done by means of switches inside each logic unit and is shown in
Figure 6.4(b). The logic function required is done by means of selecting the required logic gate
through the switches S1.x of the logic unit 1, which are controlled through the corresponding shift-
register section for example. All the required reconfiguration of the QLC is done by means of
switches and not by reconfiguration through reprogramming a section of a configurable chip, like a
FPGA. Because of the use of switches for the temporal-triggered reconfiguration the
implementation of the QLC within a COTS chip like an FPGA is not feasible and for further fault-

tolerant behaviour analysis software simulation has to be used.

[96]



Chapter 6: Design of a fault-tolerant temporal-redundant matrix element

The four logic units of the general block diagram of the QLC represent the reconfigurable logic
blocks needed to alter the logic functionality of the single logic unit of the QLC. The alteration of
the logic functionality can be done out of a set of logic functions and in accordance with the
designed and required overall logic circuit. The logic functionality within a logic unit is altered as a
physical logic gate controlled through switches and not as a memory-based look-up table done in
FPGAs-based logic circuit designs. The internal physical logic gate structure of a single logic unit
is delineated in Figure 6.4(b). By choosing switchable physical logic gates at this state of the QLC
instead of memory-based look-up tables the logic circuit design at stuck-at simulation at the
different interconnection can be compared to other logic circuits. Also using physical logic gates
eradicates the susceptibility against SEUs and eliminates a lock-step redundant checker system
working parallel to the QLC for fault checking. The resulting fixed logic gate configuration within
a QLC per each clock cycle uses only three out of the four logic units. The generic fixed logic gate
configuration is outlined in Figure 6.5(a). The table described in Figure 6.5(b) shows the different
selectable physical logic gate functionalities within a single logic unit of a QLC. The table also
contains the relevant coding information for the selection of the logic functionality. This coding or
configuration information is written to the shift-register of a QLC and is shifted by one clock cycle.
After four clock signals the full round-robin cycle has finished and the relevant output results
stored within memory. Because of the four clock signals the QLC will generate four output results
comparable to the number of output results of a quadded logic structure and these four independent
output results can be seen as data redundancy. The selection of this four basic logic gate
functionality and the resulting internal logic unit circuit makes it possible to adapt other logic gate
functionality like XOR or XNOR with the help of an entire QLC.

Figure 6.3: General block diagram of the quadded logic cluster
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Figure 6.4: Functional blocks of the QLC matrix element; (a) the shift-register which
controls the selection of logic units and the selection of the logic gate functionality;

(b) internal structure of logic unit with switches for selecting logic gate functionality
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Figure 6.5: (a) Internal logic gate combination of the QLC per one clock cycle;

(b) Logic function corresponding to the required selection

The functionality of the QLC is based on the concept of altering a fixed amount of logic units per
clock cycle, which is present within a QLC as logic unit structure for creating and maintaining the
pre-defined logic gate circuit structure (see Figure 6.5(a)). The associated logic units of the QLC
used for the creation of the pre-defined circuit structure are exchanged in accordance with the clock
cycle. The required logic functionality specified for each logic unit of the pre-defined circuit
structure will be maintained through the data linked to each logic unit by the shift-register data. By
only utilising three out of the four possible logic units within a QLC it is guaranteed that between
each clock cycle an overlay of 2/, of the logic units through the fixed logic circuit exists (see Figure
6.5(a)). By using this overlay between each clock cycle a faulty logic unit rotates through the pre-
defined circuit structure and for one clock cycle it will not be used. Through this concept of using
different logic gate functionality for each of the logic unit of the pre-defined fixed logic structure, a
faulty logic gate within a logic unit will only be used within one clock cycle throughout the four

clock cycles. By applying this approach the faulty logic gate within one logic unit will only affect
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one of the four output results and so can be identified. This approach of using different sets of logic
units with a defined overlay will have an effect on dormant faults, which can in the best case only
be unnoticed for one clock cycle.

During each clock cycle alteration only one logic unit is exchanged out of the fixed logic circuit in
accordance with the pre-defined circuit schema. The resulting different pre-defined logic circuits
configurations, which are going to be created out of the four logic units for the four matrix clock
cycles (defined and shown in Figure 6.5(a)) are illustrated in Figure 6.6(b). Within Figure 6.6(a)
the four logic units are labelled for reference purposes with the letter A to D. Figure 6.6(b) shows
the different pre-defined logic configurations utilising the appropriate logic units labelled with
these letters. The configuration is utilising three out of four logic units in a round-robin approach
altered per matrix clock cycle. The matrix clock cycle defines the internal matrix count and it is
triggered by a central clock. By comparing the used logic units at two different succeeding matrix
clock cycles, for instance matrix clock cycles 2 and 3, represented in Figure 6.6(b) the utilisation of
the logic units can be seen. Matrix clock cycle 2 uses logic units A, C, D and matrix clock cycle 3
uses logic units A, B, D. The logic unit overlay of this fixed logic configuration between these two
matrix clock cycles is A and D. Both remaining logic units B and C are only used during one
matrix clock cycle in this example and a more detailed example for the function of the shift register
is outlined in Figure 6.7. Within this example the adaptation of a XOR logic gate function is
performed through the fixed logic configuration. The time triggered round-robin function through
the shift-register for the four clock cycles is illustrated. For each clock cycle the data within the
shift-register and the associated used logic units within the QLC element are outlined. This concept
of defined logic unit utilisation within a reconfigurable matrix per clock cycle will be used for fault
identification within a QLC.
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Figure 6.6: (a) Block diagram of QLC with labelled logic units,

(b) configuration of logic units in conjunction to round-robin clock
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Figure 6.7: Detailed example of the mapping of a XOR logic function onto the
QLC elements and shift-register details for the full round-robin cycle

6.4. Fault-handling capability of QLC compared against quadded logic structures

Fault-handling within a logic system per definition can be based on two concepts. The use of these
concepts can be done within the logic structure as fault-correcting or at the boundary between
functional blocks as fault-masking. The internal fault-tolerance of a logic system is based on the
concept of redundancy and usually uses one of these three redundancy forms: temporal (time),
spatial (hardware) or data [88, 101]. The most applied approach of spatial redundancy is applied
onto logic circuit designs and commonly utilised as N-type identical copies of hardware working in
parallel. This structure can be seen as a redundant system and the generation of N-number of
outputs can be seen as data redundancy. All the N-number output results of the redundant systems

have to be majority-voted to get a single overall output result. This is the concept of boundary-
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based fault-tolerance by means of fault-masking without fault correction. The quadded logic circuit
structure offers the fault-handling capability of fault correction within its logic structure and fault-
masking at the output logic gate interface by the use of a majority voter. The boundary fault-
handling applied at the functional block outputs requires a decision-making device, which in most
cases is fulfilled through a majority voter.

The evaluation of the fault-handling capability of quadded logic structure vs. QLC is split into two
parts. Part one is based on evaluation of fault correction performed by the use of the internal logic
structure and the second part is based on the effect of adding a majority voter to the logic structure.
For comparing the fault-handling capability of both logic circuits the investigation will be aligned

on the fault-rate analysis for each logic circuit.

6.4.1. Fault-handling evaluation of quadded logic vs. QLC, both without voter

The first investigation of the fault-tolerance of quadded logic vs QLC will be done on the basis of
fault-tolerance of the logic circuit by itself without using a majority voter for fault-masking.
Quadded logic circuits per design are capable of performing fault correction by the use of
interwoven interconnection and the use of four logic gates with four-inputs. The QLC works on the
concept of temporal-triggered reconfiguration by using a set of logic functionality, which is altered
by 1/ for each clock cycle. Both logic concepts are designed to generate a set of four independently
generated output results, which can be seen as data redundancy. But how independent is the
generation of this set of output results in the presence of stuck-at fault-injection at the inputs and
outputs of the individual logic gates of each logic structure? The stuck-at faults are going to be
injected into the inputs and outputs of each logic gate within each logic structure. This investigation
will show the fault-tolerance capability of both these logic circuits. Fault-behaviour investigation of
the impact of interconnection between logic gates of the quadded logic and QLC structure has not
been done and has not been specified for this research work as fault-free. In this analysis work all
the used switches within the QLC matrix element performing logic circuit alteration are defined as
fault-free. This is because of the fact that their fault-behaviour would create erratic logic structures,
which is beyond the set scope of this thesis.

For the evaluation a fair comparison of the fault-handling capabilities for these two different logic
circuits a common logic structure must be used. For this analysis the pre-defined logic structure
that is defined in Figure 6.5(a) is going to be used. This circuit structure is created within the QLC
matrix element at each matrix clock cycle with the help of interchanged use of logic units. The
fault-handling capability of the QLC is compared against the quadded logic structure performing
the pre-defined logic structure with alteration of the logic functionality within the logic units by
using a defined set of logic gate functionality. Both fault-injection evaluations of the logic circuit

are done within MATLAB simulations. The MATLAB simulation performed the required logic
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function as a true logic gate function. No memory mapping was performed. The faults injected into
the inputs or outputs of a logic function were done by altering the required variable before the logic
function evaluates the input data for generating the output. In the case of a fault of the output of
logic gate the output value was altered accordingly after the logic function evaluation. For
generating the possible faulty outputs the entire input range was evaluated one by one and the
resulting outputs out of the pre-defined logic structure with the selected logic function combination
were stored in an array. This data array was compared against the same output sequence generated
by a fault-free version of the pre-defined logic structure. Each deviation of the comparison was
counted and the FR was calculated with the equation 6.3. The MATLAB code and an example of
the logic structure evaluation can be found within appendix 3.3.

This fault-handling evaluation is performed by applying all the different logic gate combinations
possible at each logic gate specified within the table of Figure 6.5(b). The resulting output values of
the circuit under influence of the injected stuck-at faults are compared against the known good
output value of the fault-free logic circuit one. By applying this method of fault-injection into both
logic circuits a distinction between maskable faults (M), output values which deviated from the
correct value as faults (F) and non-maskable faults (NM) can be made. The sum of faults (F) and
NM faults of one type of logic circuit under the influence of injected stuck-at faults is the total
number of faults. These types of faults are the deviation from the correct output value of the fault-
affected logic circuit and these types of faults can propagate throughout the functional boundary
into the next functional block of a complex system. The definition for maskable faults (M) means
that N/, of the output values at the majority voter contain the same value and these output values
match the correct output value compared with the logic structure without a fault being injected.
Non-maskable faults are faults where the output value set, which are going into the majority voter,
are equally distributed between zeros and ones. In this case the majority voter will generate a zero
output value as a majority-voted result due to the internal logic circuit structure (see Figure 6.10 for
a four-input majority voter). In some cases the majority-voted output value of zero is the correct
value expected for this input stimulus. This fault-behaviour condition is not given in all possible
cases of this logic circuit.

The logic circuit structure for the fault-tolerance evaluation of QLC vs. quadded logic structure is
based on the pre-defined logic structure outlined in Figure 6.5(a). For this pre-defined logic
structure design N=64 different logic gate combinations are possible based on the logic
functionality defined within the table of Figure 6.5(b). The resulting FR of each logic gate
combination after the SAH and SAL fault-injection has been evaluated and the resulting FR has
been determined. The resulting FRs is shown within a table for each design. The structure of these
tables is that each column of this table is identifiable through the variance of the logic functionality
of the pre-defined logic structure. Instead of the logic functionality the selection information out of

the table, which is displayed in Figure 6.5(b), has been used for writing the selection number into
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the column fields of the resulting FR of both logic structures within their analysis result tables. This
concept is also applied on the result table of the reference result table to make the three tables

comparable based on their resulting FR.
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Figure 6.8: (a) Shows the logic gate configuration for logic function alteration and
fault-injection points at the inputs and outputs of each logic gate; (b) shows the

same as (a) but for the quadded logic structure

For the evaluation of the fault-tolerance of both logic structures under the influence of SAH and

SAL injected faults the FR for each variation of the logic configuration applied onto the pre-

defined logic structure has been established. The pre-defined logic structure is demonstrated in

Figure 6.5(a) and is built out of individual logic gates without any fault-tolerant hardware features
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and this logic structure is the reference logic gate structure for fault-tolerance evaluation. Figure
6.8(a) shows the fault-injection points for this generic logic gate structure and these points are
going to be used in principle for the two other logic circuit structures with fault-tolerance. The
QLC internal logic structure, which is performing the same logic structure defined within Figure
6.8(a), has the same fault-injection points at inputs and outputs of each logic gate as the reference
logic structure. The generic quadded logic structure is defined within Figure 6.8(b) and the
corresponding fault-injection points located at each input and output of all logic gates are also
defined within this illustrated figure.

The FR results of the SAH and SAL fault-injection simulation applied onto the reference logic gate
structure performing the pre-defined logic circuit are represented in Table 6.1. This table represents
the logic combinations possible by using the four logic gates selectable within each logic unit. The

total number of combinations can be calculated by:

Nygy = N, o0icvnits (Equation 6.1)

logic gates

Nyor = 43 = 64

The number of possible logic variations within this set-up is 64 and the different variations are
represented within the table through the columns L1, L2 and L3. Each logic set-up is colour coded
in accordance to the definition of Figure 6.5(b). Each row of this table represents the applied
variation of one of the 64 possible logic gate functionalities in accordance with the logic gate
selection defined within the table of Figure 6.5(b). The FR of each row of Table 6.1 represents the
sum of all individual FRs after applying all possible input stimuli at the logic structure, while being
under the influence of stuck-at faults at one of the defined injection points. The values of these
faults are shown in the table within the F column. For the calculation of the FR of one of these
logic gate variations the total number of possible output variations had to be defined. This value

can be calculated with:

Noutput var = Nrauit types Ninput var Nfault injection points (Equation 6_2)
Noutput var = 2167 = 224

For this logic gate structure, which is defined in Figure 6.8(a), the number of possible output
variations is 224. This reference logic gate structure has no fault-handling capability in regards of
fault-masking or correcting due to the lack of a reference output value feeding into a majority voter
or comparator or input signal redundancy, which are feeding into a set of redundant logic gates.
Because of these missing fault-handling capabilities each of the faults is a fault that is a deviation

to the correct output result and will propagate through the system. The propagation of this fault
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through the single logic gate structure will be seen as an error of this system due to the lack of
fault-tolerant circuit features as illustrated in Figure 4.4.

Within this reference logic gate constellation, each of the 64 logic gate variations show deviation of
the output value under the influence of a stuck-at fault injected at the injection points defined at
Figure 6.8. Comparable evaluation can be done on the basis of FR numbers. FR of a logic system

can be calculated in the following way:

FR = total number of faults 100 (Equation 6_3)

" total number of possible output logic results

The fault range defined by minimum and maximum of the FR for the reference logic gate structure
evaluation shows the following values taken out of Table 6.1. The minimum FR,,;,, = 14.3% and
the maximum of FR,,,,, = 28.6% have been evaluated for the reference logic structure under the
influence of stuck-at faults. Both values are common results for a set of logic gate variations shown
in Table 6.1. Table 6.2(a) displays all the logic gate variations for the minimum FR,,,;,, and Table
6.2(b) displays the same for the maximum FR,,,, logic gate variations taken out of Table 6.1.
Within both tables the breakdown of the faults is done by the causing fault-injection point. The data
reveals that the majority of the faults causing injection points are around the logic gate L3 for the
reference logic gate structure, which is the output-producing logic gate. Due to the similarity of the
FRs documented within Table 6.1 for the different logic gate variations the Table 6.2(c) shows the
faults per injection point breakdown as an example for the other sub-tables. As shown in Table
6.2(a) and Table 6.2(b) the fault-injection points, which are causing the most faults are around the
output-generating logic gate L3 for all the different logic gate variations. The fault-causing
injection points are affecting the inputs and the output of the L3 logic gate.

This evaluation of the fault-handling capability of a reference logic gate design forms the basis of
this comparison and each one of these fault-tolerant logic gate designs needs to show better FR

results.
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111|132 14,3 211|140] 17,5
111232 14,3 211|2140] 17,5
111 64| 28,6 211 36| 25,0
1|1 64| 28,6 2]1 36| 25,0
1]2]11]56] 250 2121 1|64| 286
112]2]36] 250 212|2]|64]| 286
1]2 401 17,2 2]2 32| 143
1)2 401 17,2 2]2 32| 14,3
1 56| 25,0 2 64| 28,6
1 56| 250 2 64| 28,6
1 401 17,9 2 32| 14,3
1 401 17,2 2 32| 14,3
1 32| 143 2 401 17,2
1 32| 143 2 401 17,2
1 &4 28,6 2 36| 25,0
1 64| 28,6 2 36| 250

Table 6.1: Results of fault simulation in accordance of logic gate alteration applied onto Figure 6.6

(a) reference logic gate circuit performing the fixed logic structure of Figure 6.5(a)
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(b)

62| 25 | 5 | 6| 6| 6 |12]|12] 15
6a| za6 | 6| 5| 6| 8 [12]12] 18
64| 286 | 6 | 6| 6| 6 |12]|12]1s
6a| 286 | 5| 6| 6| 8 [12]12] 185
1|ga| 286 | 6| 6| 8| 8 |12]12] 18
2|eal 286 6| 6|6 6 |12|122]1s
1|sa| 286 | 6| 6| 5| 6 |12|12]1s
2|6l 286 | 6| 6|66 |12|12]18
1|64 286 | 6|5 | 6| 6 [12]1218
2|6a| 286 |5 |6 | 6|6 [12]12]1s
1|54 286 | 5|6 |65 |12|122]18
2|ga| 285 | 6|5 | 6| 6 [12]1218
g6a| 286 | 5| 6| 6| 8 |12]12] 18
64| 286 | 6 | 6|68 | 6 |12]|12] 18
64| 286 | 5 | 6| 6| 6 [12]|22] 15
64| 286 | 6 | 6| 6| 6 [12]|12] 18

1(af{af32) 2azz2|z2]|2]|2 2|16
1(af2f32) 2az2|2]2]|2 2|16
1|1 64| 286 | 5| 6| 6|6 [12]12]16
1|1 64| 286 | 66| 6|6 [12[12]16
1|z s6| 250 | 6| 6|6 |6 |12 216
1|(2(2|s6| 2spo | 5|6 | 6|6 |12| 4|16
1|2 ao| 278 J 2| 2| 2| 2412|186
1|z ao| a7@ J 22|22 12 | 16
1 s6| 250 | 6| 6| 6|6 [12] 4 |16
1 s6| 250 | 6| 6| 6|6 [12] 4 |16
1 an| 7@ J 22|22 12 | 16
1 an| 178 J 2| 2| 2|2 12 |16
1 32| a3 |2 |2]|z2|z2 2|16
1 32| 143 J2|2]|2|2z2 2|18
1 64| 286 | 66| 6|6 [12[12]16
1 64| 286 | 5| 6| 6|6 [12]12]16

(©)

Table 6.2: Fault breakdown per fault-injection point for the reference logic gate structure;

(a) shows all the logic gate variations for the minimum FR; (b) shows all the logic gate

variations for the maximum FR; (c) shows the breakdown in regards to fault

injection point of the first table of Table 6.1
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The next FR analysis of stuck-at high/low faults injected into a logic structure at defined injection
points is performed onto the quadded logic circuit without a majority voter circuit evaluating the
generated output results. The adaptation of the base circuit structure of this quadded logic circuit
adapting the fixed logic structure is displayed in Figure 6.8(b). Each of the individual logic gates of
the circuit, shown in Figure 6.8(b) will be generalised in a way that the logic functionality
illustrated in this figure is going to be replaced with Lx.y replacements. These Lx.y replacements
are going to be used for the logic alteration specified for this simulation in accordance with the
table, which is shown in Figure 6.5(b). As determined in Chapter 5 the alteration of the interwoven
signals between the different logic gate levels of the quadded logic structure shows that there is no
impact on the fault-tolerance of this logic structure. Due to this evaluation it had been found that
the alteration of the interwoven signal structures of a quadded logic structure is not required and the
reference quadded logic circuit stays the way as shown in Figure 6.8(b). The fault-injection points
specified for the quadded logic structure are also represented in Figure 6.8(b) and these points are
going to be utilised for this stuck-at fault-injection simulation. The FR results for this fault-
injection simulation are illustrated in Table 6.3 in the same way for all possible logic function
variations as for the single logic gate reference structure in Table 6.1. In addition to the labels and
definition of Table 6.1 the Table 6.3 has more of the following columns. The column M shows the
number of faults, which are maskable through a voter due to the fact that only one single output
value is incorrect. The column NM illustrates the number of faults, which are non-maskable with a
majority voter due to the fact that the output set contains 50% ones and 50% zeros. Because of this
value distribution no majority voter can vote on a majority output value. The total number of output

results is calculated for this logic structure with equation 6.2:

Noutput var = NFault types Ninput var Nfault injection points

Noutput var =2°4-68= o44

For establishing the fault-tolerance capability of the quadded logic structure a comparison between
the reference logic gate structure and quadded logic structure will detail this. The overall FR
performance of these two logic gate structures will show that the quadded logic structure has an
overall much lower FR value for the different logic variations than the reference logic gate
structure. The quadded logic structure under the influence of stuck-at faults injected at the fault-
injection points defined at Figure 6.8(b) has the following FR range of minimal FR,,;, = 0.0%
value and the maximum FR,,,, = 9.2%. value. For any logic gate alteration having a FR,y;, of
zero value indicates that for this logic gate combination definition realised within the fixed logic
structure has created a fault-free or completely fault-tolerant logic circuit. Analysing the fault data
regarding where these fault-injection points are triggering a fault and a non-maskable fault is

located, the data did not show a clear pattern about where these injection points are. The mos