1,733,888 research outputs found

    A study of CPCP violation in BDhB^\mp \rightarrow Dh^\mp (h=K,πh=K,\pi) with the modes DKπ±π0D \rightarrow K^\mp \pi^\pm \pi^0, Dπ+ππ0D \rightarrow \pi^+\pi^-\pi^0 and DK+Kπ0D \rightarrow K^+K^-\pi^0

    Get PDF
    An analysis of the decays of BDKB^\mp \rightarrow D K^\mp and BDπB^\mp \rightarrow D \pi^\mp is presented in which the DD meson is reconstructed in the three-body final states Kπ±π0K^\mp \pi^\pm \pi^0, π+ππ0\pi^+ \pi^- \pi^0 and K+Kπ0K^+ K^- \pi^0. Using data from LHCb corresponding to an integrated luminosity of 3.0 fb1^{-1} of pppp collisions, measurements of several CPCP observables are performed. First observations are obtained of the suppressed ADS decay B[πK±π0]DπB^\mp \rightarrow [\pi^\mp K^\pm \pi^0]_D \pi^\mp and the quasi-GLW decay B[K+Kπ0]DπB^\mp \rightarrow [K^+ K^- \pi^0]_D \pi^\mp. The results are interpreted in the context of the unitarity triangle angle γ\gamma and related parameters

    MP 2008-06

    Get PDF
    SNAP is a collaborative network that includes the University of Alaska, state, federal, and local agencies, NGO’s, and industry partners. The SNAP network provides timely access to scenarios of future conditions in Alaska for more effective planning by communities, industry, and land managers. We meet stakeholders’ requests for specific information by applying new or existing research results, integrating and analyzing data, and communicating information and assumptions to stakeholders. Our goal is to assist in informed decision-making

    MP 2012-01

    Get PDF
    In 1994 the University of Alaska Fairbanks, School of Natural Resources and Agricultural Sciences, Agricultural and Forestry Experiment Station began a project to establish permanent sample plots (PSP) throughout the forests of northern and southcentral Alaska. Objectives of the project are to establish and maintain a system of PSPs to monitor forest growth, yield, forest health, and ecological conditions/change (Malone et al., 2009). To date, 603 PSPs have been established on 201 sites throughout interior and southcentral Alaska. The PSPs are square and 0.1 acre in size and in clusters of three. PSPs are remeasured at a five-year interval. The number of plot remeasurements after establishment ranges from one to three times. A large amount of data is collected at each site at time of establishment and at subsequent remeasurements. Four databases contain all the data: tree measurement and characteristics, site description, regeneration, and vegetation data. Vegetation data collected on the 0.1 acre PSPs includes species (trees shrub, herb, grass, and non-vascular plants) and cover, an estimate of the amount of the plot covered by the crown of each species (cover class) (Daubenmire, 1959). The vegetation database can be used by land managers and researchers to study species diversity and forest succession in addition to long-term monitoring of forest health. The species listed in Appendix 1 and in the vegetation database are presented by categories: tree, shrub, herb, grass, rush, sedge, fern, club moss, lichen, moss, and liverwort

    MP 2014-01

    Get PDF

    MP 2009-08

    Get PDF

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Get PDF
    Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with appropriate antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial therapy is associated with poor patient outcomes and the development of bacterial resistance. The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited development of new agents available to counteract them have caused an impending crisis with alarming implications, especially with regards to Gram-negative bacteria. An international task force from 79 different countries has joined this project by sharing a document on the rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA, involving many of the world's leading experts, can actively raise awareness in health workers and can improve prescribing behavior in treating IAIs

    Genome-wide transcription analysis of interaction between the human macrophage and Mycobacterium tuberculosis during concurrent drug administration by conventional and novel methods

    Get PDF
    Targeted drug delivery to alveolar macrophages harboring Mycobacterium tuberculosis (Mtb) holds promise of high efficacy against pulmonary tuberculosis (TB). It was investigated whether inhalable microparticles (MP) can rescue macrophages from ‘alternative’ activation induced by pathogenic Mtb in addition to achieving targeted drug delivery. A genome-wide transcription analysis (Affymetrix HG-U133 Plus 2.0 DNA microarray) of THP-1 cell line derived macrophages was undertaken after exposing them to infection with 10 MOI of MTB H37Rv at 0, 12 and 24 hours post infection. The Molecular markers of macrophage bactericidal activity were assayed in THP-1- and primary human peripheral blood mononuclear cell (PBMC)-derived macrophages, in the presence or absence of soluble anti-tuberculosis drugs, drug-containing MP and blank MP. About 1,500 genes were differentially upregulated and about 500 genes differentially downregulated in response to various modes of treatment. Variations were also observed in the kinetics of gene expression. Cluster analysis indicated activation of several pathways related to innate immune response (cytokines, chemokines, receptors and ligands), apoptosis, cytoskeleton and membrane remodeling, general metabolism and general housekeeping. Some of these results were validated at the functional level, by studying caspase activities, concentrations and time-courses of effector molecules , rates/extents of apoptosis and nitrite oxide induction. Production of cytokines and NO, apoptosis, and bacterial survival were studied as pharmacodynamic outcomes. Cytokine responses of THP-1 derived macrophages were estimated. MP reversed suppression of tumor necrosis factor (TNF) induced by infection, and transiently upregulated γ-interferon (IFN-γ). Drug-free MP surprisingly induced IFN-γ, but not TNF. Primary cells responded to MP, regardless of drug content, by upregulation of NO; but THP-1-derived cells did not respond to blank MP. About 19% of infected cells exposed to MP underwent apoptosis as compared to ~11% cells treated with soluble drugs or blank MP. Cell death induced by blank MP was caspase-independent. Only drug-containing MP induced apoptosis through caspase-8 and caspase-9. Bacterial survival after different treatments varied between individuals. In the best case, while untreated infection resulted in survival of 900±141 colony forming units (CFU), treatment with soluble drugs, drug-containing MP and blank MP respectively, reduced CFU counts to 8.5± 0.7, 3±1.4 and 102±138.6. The results suggest a role of the drug delivery system in macrophage activation as a component of therapeutic strategy against TB
    corecore