19 research outputs found

    Explicit uncore frequency scaling for energy optimisation policies with EAR in Intel architectures

    Get PDF
    EAR is an energy management framework which offers three main services: energy accounting, energy control and energy optimisation. The latter is done through the EAR runtime library (EARL). EARL is a dynamic, transparent, and lightweight runtime library that provides energy optimisation and control. It implements energy optimisation policies that selects the optimal CPU frequency based on runtime application characteristics and policy settings. Given that EARL defines a policy API and a plugin mechanism, different policies can be easily evaluated. In this paper we propose and evaluate the utilisation of explicit Uncore Frequency Scaling (explicit UFS) in Intel architectures to increase the energy savings opportunities in the cases where the hardware cannot select the optimal frequency for the Integrated Memory Controller (IMC). We extended the min_energy_to_solution policy to select the CPU and IMC frequencies and we executed and evaluated it with some kernels and six real applications. Results showed an average energy saving of 9% with an average time penalty of 3%. On some use cases, the impact of explicit UFS compared with HW UFS was up to 8% of extra energy savings.This work has been funded by the BSC-Lenovo collaboration agreement.Peer ReviewedPostprint (author's final draft

    Enabling Hyperscale Web Services

    Full text link
    Modern web services such as social media, online messaging, web search, video streaming, and online banking often support billions of users, requiring data centers that scale to hundreds of thousands of servers, i.e., hyperscale. In fact, the world continues to expect hyperscale computing to drive more futuristic applications such as virtual reality, self-driving cars, conversational AI, and the Internet of Things. This dissertation presents technologies that will enable tomorrow’s web services to meet the world’s expectations. The key challenge in enabling hyperscale web services arises from two important trends. First, over the past few years, there has been a radical shift in hyperscale computing due to an unprecedented growth in data, users, and web service software functionality. Second, modern hardware can no longer support this growth in hyperscale trends due to a decline in hardware performance scaling. To enable this new hyperscale era, hardware architects must become more aware of hyperscale software needs and software researchers can no longer expect unlimited hardware performance scaling. In short, systems researchers can no longer follow the traditional approach of building each layer of the systems stack separately. Instead, they must rethink the synergy between the software and hardware worlds from the ground up. This dissertation establishes such a synergy to enable futuristic hyperscale web services. This dissertation bridges the software and hardware worlds, demonstrating the importance of that bridge in realizing efficient hyperscale web services via solutions that span the systems stack. The specific goal is to design software that is aware of new hardware constraints and architect hardware that efficiently supports new hyperscale software requirements. This dissertation spans two broad thrusts: (1) a software and (2) a hardware thrust to analyze the complex hyperscale design space and use insights from these analyses to design efficient cross-stack solutions for hyperscale computation. In the software thrust, this dissertation contributes uSuite, the first open-source benchmark suite of web services built with a new hyperscale software paradigm, that is used in academia and industry to study hyperscale behaviors. Next, this dissertation uses uSuite to study software threading implications in light of today’s hardware reality, identifying new insights in the age-old research area of software threading. Driven by these insights, this dissertation demonstrates how threading models must be redesigned at hyperscale by presenting an automated approach and tool, uTune, that makes intelligent run-time threading decisions. In the hardware thrust, this dissertation architects both commodity and custom hardware to efficiently support hyperscale software requirements. First, this dissertation characterizes commodity hardware’s shortcomings, revealing insights that influenced commercial CPU designs. Based on these insights, this dissertation presents an approach and tool, SoftSKU, that enables cheap commodity hardware to efficiently support new hyperscale software paradigms, improving the efficiency of real-world web services that serve billions of users, saving millions of dollars, and meaningfully reducing the global carbon footprint. This dissertation also presents a hardware-software co-design, uNotify, that redesigns commodity hardware with minimal modifications by using existing hardware mechanisms more intelligently to overcome new hyperscale overheads. Next, this dissertation characterizes how custom hardware must be designed at hyperscale, resulting in industry-academia benchmarking efforts, commercial hardware changes, and improved software development. Based on this characterization’s insights, this dissertation presents Accelerometer, an analytical model that estimates gains from hardware customization. Multiple hyperscale enterprises and hardware vendors use Accelerometer to make well-informed hardware decisions.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169802/1/akshitha_1.pd

    Power Bounded Computing on Current & Emerging HPC Systems

    Get PDF
    Power has become a critical constraint for the evolution of large scale High Performance Computing (HPC) systems and commercial data centers. This constraint spans almost every level of computing technologies, from IC chips all the way up to data centers due to physical, technical, and economic reasons. To cope with this reality, it is necessary to understand how available or permissible power impacts the design and performance of emergent computer systems. For this reason, we propose power bounded computing and corresponding technologies to optimize performance on HPC systems with limited power budgets. We have multiple research objectives in this dissertation. They center on the understanding of the interaction between performance, power bounds, and a hierarchical power management strategy. First, we develop heuristics and application aware power allocation methods to improve application performance on a single node. Second, we develop algorithms to coordinate power across nodes and components based on application characteristic and power budget on a cluster. Third, we investigate performance interference induced by hardware and power contentions, and propose a contention aware job scheduling to maximize system throughput under given power budgets for node sharing system. Fourth, we extend to GPU-accelerated systems and workloads and develop an online dynamic performance & power approach to meet both performance requirement and power efficiency. Power bounded computing improves performance scalability and power efficiency and decreases operation costs of HPC systems and data centers. This dissertation opens up several new ways for research in power bounded computing to address the power challenges in HPC systems. The proposed power and resource management techniques provide new directions and guidelines to green exscale computing and other computing systems

    Energy Concerns with HPC Systems and Applications

    Full text link
    For various reasons including those related to climate changes, {\em energy} has become a critical concern in all relevant activities and technical designs. For the specific case of computer activities, the problem is exacerbated with the emergence and pervasiveness of the so called {\em intelligent devices}. From the application side, we point out the special topic of {\em Artificial Intelligence}, who clearly needs an efficient computing support in order to succeed in its purpose of being a {\em ubiquitous assistant}. There are mainly two contexts where {\em energy} is one of the top priority concerns: {\em embedded computing} and {\em supercomputing}. For the former, power consumption is critical because the amount of energy that is available for the devices is limited. For the latter, the heat dissipated is a serious source of failure and the financial cost related to energy is likely to be a significant part of the maintenance budget. On a single computer, the problem is commonly considered through the electrical power consumption. This paper, written in the form of a survey, we depict the landscape of energy concerns in computer activities, both from the hardware and the software standpoints.Comment: 20 page

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems
    corecore