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Warehouse Scale Computers (WSCs) promise high cost-efficiency by amortiz-

ing power, cooling, and management overheads. WSCs today host a large

variety of jobs with two broad performance requirements categories: latency-

critical (LC) and best-effort (BE). Ideally, to fully utilize all hardware re-

sources, WSC operators can simply fill all the nodes with computing jobs.

Unfortunately, because colocated jobs contend for shared resources, systems

with high loads often experience performance degradation, which negatively

impacts the Quality of Service (QoS) for LC jobs. In fact, service providers

usually over-provision resources to avoid any interference with LC jobs, leading

to significant resource inefficiencies. In this dissertation, I explore opportuni-

ties across different system-abstraction layers to improve the cost-efficiency of

dataceters by increasing resource utilization of WSCs with little or no impact

on the performance of LC jobs. The dissertation has three main components.
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First, I explore opportunities to improve the throughput of multicore

systems by reducing the performance variation of LC jobs. The main insight

is that by reshaping the latency distribution curve, performance headroom of

LC jobs can be effectively converted to improved BE throughput. I develop,

implement, and evaluate a runtime system that achieves this goal with existing

hardware. I leverage the cache partitioning, per-core frequency scaling, and

thread masking of server processors. Evaluation results show the proposed so-

lution enables 30% higher system throughput compared to solutions proposed

in prior works while maintaining at least as good QoS for LC jobs.

Second, I study resource contention in near-future heterogeneous mem-

ory architectures (HMA). This study is motivated by recent developments in

non-volatile memory (NVM) technologies, which enable higher storage density

at the cost of same performance. To understand the performance and QoS im-

pact of HMAs, I design and implement a performance emulator in the Linux

kernel that runs unmodified workloads with high accuracy, low overhead, and

complete transparency. I further propose and evaluate multiple data and re-

source management QoS mechanisms, such as locality-aware page admission,

occupancy management, and write buffer jailing.

Third, I focus on accelerated machine learning (ML) systems. By pro-

filing the performance of production workloads and accelerators, I show that

accelerated ML tasks are highly sensitive to main memory interference due

to fine-grained interaction between CPU and accelerator tasks. As a result,

memory resource contention can significantly decreases the performance and
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efficiency gains of accelerators. I propose a runtime system that leverages ex-

isting hardware capabilities and show 17% higher system efficiency compared

to previous approaches. This study further exposes opportunities for future

processor architectures.

x



Table of Contents

Acknowledgments v

Abstract viii

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

1.1 Warehouse Scale Computers and Workloads . . . . . . . . . . 2

1.2 WSC Workload Management . . . . . . . . . . . . . . . . . . . 3

1.3 Performance Interference and Utilization Bottleneck . . . . . . 5

1.4 WSC Workload Statistical Behavior . . . . . . . . . . . . . . . 6

1.5 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2. Improving QoS and Utilization
on Multicore Sysmtes 11

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Target Workloads and Metrics . . . . . . . . . . . . . . 12

2.1.2 Contention Control Mechanisms . . . . . . . . . . . . . 13

2.2 Dirigent Principles . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Dirigent Design and Implementation . . . . . . . . . . . . . . . 17

2.3.1 Offline Execution Profiler . . . . . . . . . . . . . . . . . 18

2.3.2 Execution Time Predictor . . . . . . . . . . . . . . . . . 19

2.3.3 Performance Controller . . . . . . . . . . . . . . . . . . 22

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Workloads and Evaluation Infrastructure . . . . . . . . 28

xi



2.4.2 Predictor Accuracy . . . . . . . . . . . . . . . . . . . . 32

2.4.3 Coarse Time Scale QoS Control . . . . . . . . . . . . . . 33

2.4.4 Dirigent Performance . . . . . . . . . . . . . . . . . . . 34

2.4.5 LC Throughput and BE Performance Tradeoffs . . . . . 42

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 3. Mitigating Performance and QoS Impact of NVM
on Datacenter Applications 48

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Target Workloads . . . . . . . . . . . . . . . . . . . . . 49

3.1.2 Workload Characteristics . . . . . . . . . . . . . . . . . 49

3.2 Target Architecture . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Baseline Page Placement and Migration . . . . . . . . . 52

3.2.2 DRAM Admission Control . . . . . . . . . . . . . . . . 55

3.2.3 DRAM Occupancy Control . . . . . . . . . . . . . . . . 58

3.2.4 Write Bandwidth Metering . . . . . . . . . . . . . . . . 59

3.3 ONSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Simulator Architecture . . . . . . . . . . . . . . . . . . 62

3.3.2 Performance and Architecture Modeling . . . . . . . . . 65

3.3.3 ONSim Accuracy and Overheads . . . . . . . . . . . . . 66

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.2 Standalone Execution . . . . . . . . . . . . . . . . . . . 74

3.4.3 Colocation Scenarios . . . . . . . . . . . . . . . . . . . . 77

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5.1 Heterogeneous Memory Architectures . . . . . . . . . . 83

3.5.2 Cache Replacement Policies . . . . . . . . . . . . . . . . 85

3.5.3 HMA Performance Simulation . . . . . . . . . . . . . . 85

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xii



Chapter 4. Enforcing QoS for Accelerated Machine Learning
Systems 88

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.1 Target Accelerator Use Case . . . . . . . . . . . . . . . 89

4.1.2 Accelerator-CPU Interaction . . . . . . . . . . . . . . . 90

4.1.3 Managing Interference at WSC Scale . . . . . . . . . . . 94

4.2 Accelerated Machine Learning Workloads . . . . . . . . . . . . 95

4.2.1 Platforms and Workloads . . . . . . . . . . . . . . . . . 95

4.2.2 Interference Sensitivity . . . . . . . . . . . . . . . . . . 96

4.3 Kelp Design and Implementation . . . . . . . . . . . . . . . . 98

4.3.1 NUMA Subdomain Performance Isolation . . . . . . . . 99

4.3.2 Shared Memory Backpressure . . . . . . . . . . . . . . . 100

4.3.3 Improving System Throughput . . . . . . . . . . . . . . 103

4.3.4 Kelp Workflow and Implementation . . . . . . . . . . . 104

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4.2 Benchmark Case Studies . . . . . . . . . . . . . . . . . 109

4.4.3 Overall Results . . . . . . . . . . . . . . . . . . . . . . . 115

4.5 CPU Design Challenges and Opportunities . . . . . . . . . . . 116

4.5.1 Remote Memory Interference . . . . . . . . . . . . . . . 117

4.5.2 QoS-Aware Prefetching . . . . . . . . . . . . . . . . . . 118

4.5.3 Global Memory BW Backpressure . . . . . . . . . . . . 120

4.5.4 Fine-Grained Memory Isolation . . . . . . . . . . . . . . 120

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.6.1 Wide Adoption of Accelerators . . . . . . . . . . . . . . 122

4.6.2 Accelerator QoS and Utilization . . . . . . . . . . . . . 123

4.6.3 System Performance Isolation . . . . . . . . . . . . . . . 124

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Chapter 5. Conclusion 128

Bibliography 132

Vita 164

xiii



List of Tables

2.1 LC and BE Benchmarks . . . . . . . . . . . . . . . . . . . . . 27

3.1 Default workload generator configuration. . . . . . . . . . . . 71

3.2 Default simulation parameters. . . . . . . . . . . . . . . . . . 71

3.3 Best-Effort Tasks Used in This Study. . . . . . . . . . . . . . . 73

4.1 Accelerated ML platforms and production workloads. Detailed
measurements are not publishable due to confidentiality concerns. 95

xiv



List of Figures

2.1 Example LC completion time probability density functions when
run alone, under contention, and in an ideal scenario; the shaded
region points to underutilized resources when run alone. . . . . 16

2.2 Reservation-based scheduler efficiency with two different task
types: type A with high execution time variance and type B
with low variance. . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Execution time predictor example. . . . . . . . . . . . . . . . 19

2.4 Overview of LC Workloads. . . . . . . . . . . . . . . . . . . . . 30

2.5 Overview of BE Workloads. . . . . . . . . . . . . . . . . . . . . 31

2.6 Prediction Trace for Raytrace with RS. . . . . . . . . . . . . . . . 31

2.7 Prediction Accuracy for all LC-BE mixes. . . . . . . . . . . . . . 33

2.8 Exhaustive Search on Partition Size. . . . . . . . . . . . . . . . . 34

2.9 Comparison of LC and BE Performance. . . . . . . . . . . . . . . 36

2.10 Summary of All Single LC Workload Mixes. . . . . . . . . . . . . 37

2.11 Execution Time Probability Density Function Curve. . . . . . . . 39

2.12 BE Core Frequency Distribution. . . . . . . . . . . . . . . . . . . 39

2.13 Summary of All Multiple LC Workload Mixes. . . . . . . . . . . . 41

2.14 Normalized Standard Variation of Multiple LC Workload Mixes. . 41

2.15 Tradeoff Between LC throughput and BE performance . . . . . . 42

3.1 Baseline system architecture. . . . . . . . . . . . . . . . . . . . 51

3.2 Baseline page management policy. . . . . . . . . . . . . . . . . 53

3.3 Page management policy with NVM buffer. . . . . . . . . . . 56

3.4 Page admission with Idle Distance. The idle distance id of page
P is the number of NVM read requests between its most recent
access (tracked by glb rcnt) and when it was evicted last time
(tracked by per page rcnt). Our implementation updates id
using running average (RA) to filter out system noises. . . . . . 57

3.5 Miss Rate Fraction example. . . . . . . . . . . . . . . . . . . . 58

xv



3.6 Write Bandwidth Metering smoothes out write bursts to reduce
interference with LC tasks. . . . . . . . . . . . . . . . . . . . . 60

3.7 Simulator architecture. . . . . . . . . . . . . . . . . . . . . . . 62

3.8 ONSim PTE extension bits. . . . . . . . . . . . . . . . . . . . 64

3.9 ONSim Performance Overhead. . . . . . . . . . . . . . . . . . 69

3.10 ONSim NVM-latency accuracy. . . . . . . . . . . . . . . . . . 70

3.11 Performance sensitivity to DRAM size. QPS is normalized to
all-DRAM configuration. Bars with in each group represent
5/10/20 µs NVM latency. Results show larger performance
improvements when bottleneck shifts from write bandwidth to
read latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.12 DRAM Caching Efficiency Sweep Analysis. Each group of bars
show results of low, medium, and high locality from left to right. 75

3.13 NVM latency sweep. Curve is normalized QPS; the whiskers are
5%-ile and 95%-ile latency; box bounds are 10%-ile and 90%-ile
latency; line is average latency. . . . . . . . . . . . . . . . . . 78

3.14 Runtime statistics of memcached colocated with BT. . . . . . 79

3.14 Runtime statistics of memcached colocated with BT (cont.). . 80

3.15 Latency distribution colocated memcached. . . . . . . . . . . . 80

3.16 Performance results of task colocation. . . . . . . . . . . . . . 83

4.1 Architecture of an accelerated platform. . . . . . . . . . . . . 90

4.2 Example workflow of distributed TensorFlow training with pa-
rameter servers. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 RNN inference server execution timeline on a TPU platform.
Execution time for CPU-intensive phases increases by 51% un-
der heavy contention. The interleaving among different phases
in the execution timeline is on the order of sub-milliseconds to
millisecond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Workload sensitivity to shared resource interference. Perfor-
mance is normalized to no interference. . . . . . . . . . . . . . 97

4.5 NUMA subdomain and memory backpressure. . . . . . . . . . 99

4.6 Performance impact of shared memory backpressure and effec-
tiveness of backpressure management with prefetchers toggling.
Three levels of aggressiveness of the antagonists (L, M, and H)
are experimented with. . . . . . . . . . . . . . . . . . . . . . . 102

4.7 Kelp architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 105

xvi



4.8 Memory pressure sweep CNN1 + Stitch. . . . . . . . . . . . . 110

4.9 Memory pressure sweep RNN1 + CPUML. . . . . . . . . . . . 112

4.10 Parameters for three performance isolation configurations for
CNN1 + Stitch. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.11 Parameters for three performance isolation configurations for
RNN1 + CPUML. . . . . . . . . . . . . . . . . . . . . . . . . 114

4.12 ML and CPU task performance results. . . . . . . . . . . . . . 115

4.13 Performance tradeoff comparison between CT, KP-SD, and KP. 116

4.14 Workload sensitivity to remote memory interference compared
to LLC and local DRAM. . . . . . . . . . . . . . . . . . . . . 117

4.15 Cloud TPU Platform Remote Memory Sweep. . . . . . . . . . 119

xvii



Chapter 1

Introduction

Billions of dollars are invested every year in building warehouse scale

computers (WSCs). By amortizing power, cooling, and management over-

heads, WSCs promise significantly higher cost-efficiencies compared to private

datacenters, and attract applications with a large range of performance char-

acteristics and requirements. One important category of WSC workloads in-

cludes a combination of latency-critical and latency-noncritical tasks. Ideally,

noncritical tasks are used to “backfill” compute resources to fully utilize the

WSC. Unfortunately, this is often difficult to achieve while still maintaining

the performance goals of the latency-critical tasks because their performance

degrades from resource interference. In fact, hardware is often intentionally

over-provisioned to ensure quality-of-service (QoS) goals for latency-critical

tasks, and the resulting under-utilization translates into huge wastes of sys-

tem capacity and capital investment. As a result, performance interference

bottlenecks system utilization and causes significant loss in cost-efficiencies of

datacenters. This dissertation focuses on mitigating the fundamental conflicts

between stringent QoS requirements for latency-critical tasks and inflated in-
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frastructure Total Cost of Ownership (TCO)1.

1.1 Warehouse Scale Computers and Workloads

Warehouse Scale Computers (WSCs) power the Internet as we know it

today [15]. With the increasing adoption and deployment of machine learning

services, WSC operators continue to evolve their infrastructure and workloads

to maintain competitive service cost-efficiency.

From the hardware infrastructure perspective, a WSC usually consists

of thousands of computing nodes that are interconnected through a network

subsystem. While WSC operators update hardware over time, the infrastruc-

ture is relatively homogeneous in that there are relatively few configurations in

a given WSC (instead of hundreds of configurations in the consumer electronics

market). The small number of configurations significantly reduces overhead in

managing the system and allows the WSC operator to easily test and deploy

new services across the WSC.

From the workload perspective, WSC applications typically rely on dis-

tributed storage systems to process huge amounts of data. The scale of these

services dictates that applications have to leverage parallelisms over multiple

1Content in this chapter is published in the following article: Haishan Zhu and Mat-
tan Erez. 2016. Dirigent: Enforcing QoS for Latency-Critical Tasks on Shared Multicore
Systems. In Proceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’16). ACM, New
York, NY, USA. Authorship contributions: conception and design of study: Haishan Zhu
and Mattan Erez; data acquisition and analysis: Haishan Zhu and Mattan Erez; drafting
manuscript: Haishan Zhu and Mattan Erez; critical manuscript revision: Mattan Erez.
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levels of system abstraction (computation, storage, and network). Another

interesting characteristic of the workload is the increasing variety of applica-

tions that run on WSCs [97]. A wide range of services and applications are

attracted to WSCs because of immediate availability of large-scale compu-

tation resources and competitive cost-efficiency. For example, with constant

advances in data analytic techniques (e.g., machine learning), more entities

that handle large amounts of data depend on WSCs to extract information

and build services.

Finally, the recent advancement in machine learning applications leads

to increasingly wide adoption of accelerators in WSC environments. GPUs

have been widely used for ML training and inference [5, 94, 33, 59]. Other

solutions that are application specific (e.g., FPGAs [143] and ASICs [95]) can

achieve even higher efficiency and performance and have also been deployed

in production. Accelerated nodes can further scale-out to accommodate larger

ML models. As the heavy computation is carried out by the accelerators,

CPUs in these systems are often responsible for various supporting tasks to

sustain the high accelerator performance. This new computation paradigm

brings new challenges in resource management and CPU design.

1.2 WSC Workload Management

Workloads in the datacenter can be broadly classified into two cate-

gories: The first includes tasks that are best-effort (BE), for which through-

put is the primary concern and that can be freely scheduled in the background

3



when resources are available. The second category includes latency-critical

(LC) user-facing tasks, which often have a short execution time with strict

completion time targets to achieve certain quality-of-service (QoS) goals. This

LC category can be further divided into three application types:

1. Applications like key-value stores usually have extremely short delay

targets (a few milliseconds) in order to achieve good user experience.

[16, 78, 119] Caching services that built on top of these applications often

rely on sharding of data to improve system capacity and throughput,

which can cause high sensitivity to tail latency on each node for large

fan-out services [40].

2. Offloaded tasks from mobile devices is an emerging class of workloads.

Such tasks are computationally intensive and have relatively long exe-

cution times (e.g., hundreds of milliseconds) [114, 72, 182]. Examples

of this class of workloads include online video processing, online stream

data analysis, and recognition tasks.

3. Accelerated machine learning workloads, which include both training

and inference. These tasks have high priority because accelerators are

often capable of higher computational throughput and efficiency com-

pared to CPUs, and customers are usually charged more for using these

resources [66, 8]. Note that while training applications typically have

long execution time, latency is still critical for ML model design itera-

tions and service time to market.

4



LC tasks on their own cannot be used to fully utilize a node. It is often

undesirable to collocate LC tasks because of aspects relating to how data

is sharded across cloud servers and sizes of application state [15, 119, 40].

WSC applications often scale out to thousands of nodes, each of which works

on a portion of the total dataset to exploit data-level parallelism. Ideally,

best-effort tasks are used to “backfill” compute resources to fully utilize all

available resources in the WSC, thus providing optimal cost-efficiency for both

the datacenter operators and WSC clients. Unfortunately, this is often difficult

to achieve while still maintaining the performance goals of the latency-critical

tasks because their performance degrades from resource interference, as we

discuss in more detail next.

1.3 Performance Interference and Utilization Bottleneck

“Backfilling” BE tasks to better utilize nodes is not always possible

because of the detrimental impact it has on LC performance. Specifically,

collocating BE and LC tasks can cause performance degradation because of

the contention between LC and BE tasks for limited shared resources, such as

CPU time, cache and main memory occupancy, and I/O bandwidth. Due to

the scale-out design of WSC applications, the response time of each request

is ultimately determined by the delay of the slowest node. As a result, even

a small increase in the probability of a QoS violation at the node level can

be significantly amplified at the service level [40]. One of the most common

techniques to minimize QoS violations it to over-provision hardware resource

5



to guarantee quality-of-service (QoS) for latency-critical tasks. The resulting

under-utilization translates into wasting system capacity and capital invest-

ment. As a result, performance interference bottlenecks system utilization and

causes significant loss in the cost-efficiency of datacenters.

1.4 WSC Workload Statistical Behavior

WSC workloads exhibit various statistical behaviors in terms of work-

load intensity and resource requirements. As a result, it is often difficult for

programmers and WSC operators to accurately estimate and allocate resources

for production workloads. Resource allocation is often conservative to guar-

antee the performance of high-priority latency critical tasks, leading to low

utilization and loss of efficiency.

There are two main factors that contribute to the statistical behavior

of WSC workloads. First, user behavior is non-deterministic, which causes

the workload to vary over time. Specifically, user behavior varies on two time

scales. On the coarse time scale, user behavior varies in a diurnal pattern [119],

in addition to spikes events and holidays. On the fine time scale, user behavior

also oscillates over hours and even seconds [167]. Second, WSC application be-

havior is non-deterministic. For example, master-slave database architectures

are commonly used in data hosting. The slaves are mostly responsible for back-

ing up data from the master and exhibit low load. However, in cases when the

master fails, a slave will be promoted and its load will increase rapidly [138].

Other factors that contribute to the variability of WSC workloads include sys-

6



tem daemons, queueing at various layers, and maintenance activity [40, 122].

The statistical behavior of WSC workloads places unique challenges and op-

portunities in WSC resource provisioning. In this dissertation, I exploit this

observation to improve utilization of hardware resources.

1.5 Thesis Statement

Internet service providers need to further improve cost-efficiency of

Warehouse Scale Computing beyond simple resource aggregation. However,

increasing hardware utilization without managing resource interference can

cause performance and quality-of-service degradation for latency-critical tasks.

As a result, system operators often over-provision hardware resources, caus-

ing significant loss of total cost of ownership. My thesis is that the resource

utilization, hence cost efficiency, of a datacenter can be drastically improved

with a set of cross-layer techniques, which leverage the statistical behavior of

latency-critical tasks and maximize total system throughput without compro-

mising the quality-of-service for latency-critical tasks.

1.6 Contributions

In this dissertation, I study the performance and QoS issues caused

by task colocation in the WSC environment. I choose three representative

workload and system architecture combinations and tailor solutions based on

application requirements and architecture performance isolation capabilities.

These studies show that significant opportunities exist in increasing WSC re-
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source utilization without sacrificing QoS for latency-critical tasks. I propose a

set of runtime solutions to take advantage of these opportunities by measuring

workload performance characteristics and leveraging low-level hardware capa-

bilities. I evaluate these solutions on existing hardware when the capabilities

are available and use simulators when they are not. The main contributions

of this dissertation are summarized as follows:

1. To improve cost-efficiency of multicore systems that target emerging of-

floaded workloads, I propose to leverage the statistical behavior of LC

workloads to improve total system throughput. This is achieved by iso-

lating tasks to limit performance interference and guarantee QoS for LC

tasks, while converting latency headroom of the LC tasks to improve

total system throughput. I demonstrate the benefits of this approach

with Dirigent, a lightweight resource management runtime system that

reduces the execution time variation of LC tasks to improve the through-

put of BE tasks. Dirigent coordinates all contending processes with the

knowledge of expected completion times and deadlines. Dirigent is thus

able to improve background-task performance by enabling foreground

tasks to yield resources when they are expected to finish faster than

their required latency.

2. To improve the cost-efficiency of the memory subsystem, I identify an

opportunity to replace a significant portion of DRAM with slower but

cheaper Non-Volatile Memory (NVM). To quantify the performance im-
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pact of such a Heterogeneous Memory Architecture (HMA), I develop

and build ONSim, an OS-level NVM simulator. ONSim integrates within

the Linux kernel and virtualize multiple PTE bits to dynamically collect

and act on runtime memory access information. ONSim is transparent

to userspace applications. ONSim enables users to easily modify HMA

parameters, page migration policies, and various resource-allocation pri-

orities without changing the underlying functional kernel code. I per-

form rigorous evaluation on the capability of ONSim, and show that it

has both low overhead and high fidelity for its target workloads.

3. I study the performance of memcached, a popular key-value store appli-

cation, on systems with heterogeneous memory using ONSim. I analyzed

the performance of memcached in both standalone and colocated exe-

cution. I then propose three techniques to reduce NVM performance

impact by exploiting the performance characteristics of the target work-

loads, such as the strong locality in memory accesses, low write-to-read

ratio, and load variation over time. I evaluate these techniques with

ONSim and show that these techniques can maintain high performance

and QoS for the popular and important key-value store application on

HMA systems.

4. To improve the cost-efficiency of accelerated systems for machine learn-

ing (ML) applications, I first profile a set of production ML workloads

on various accelerated systems. Through a detailed sensitivity study, I
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show that the performance of these workloads can be significantly im-

pacted by host memory bandwidth pressure, which prevents colocation

of low priority tasks and leads to wasted resources. To tackle this prob-

lem, I propose Kelp, a lightweight runtime system that leverages existing

hardware features to mitigate performance interference. Evaluation re-

sults show that Kelp is effective in isolating accelerator performance from

memory bandwidth interference while sustaining high system through-

put. This study also shows that high-performance accelerators pose new

system architecture challenges, and motivates the need for fast and low-

overhead fine-grained memory performance isolation mechanisms

1.7 Dissertation Organization

The rest of my dissertation is organized as follows. Chapter 2 discusses

mechanisms that improve cost-efficiency of multicore systems by leveraging

latency headroom to achieve better system performance. Chapter 3 details the

design and evaluation of ONSim, which simulates HMA systems with high

fidelity and low overhead. I also describe the work on performance and QoS of

HMA systems in this chapter. Chapter 4 presents the study on performance

interference in accelerated ML systems and discusses mechanisms to mitigate

it on real systems. Finally, Chapter 5 discusses future work and concludes this

dissertation.
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Chapter 2

Improving QoS and Utilization

on Multicore Sysmtes

Latency-critical applications suffer from both average performance degra-

dation and reduced completion time predictability when collocated with batch

tasks. Such variation forces the system to overprovision resources to ensure

Quality of Service (QoS) for latency-critical tasks, degrading overall system

throughput. We explore the causes of this variation and exploit the oppor-

tunities of mitigating variation directly to simultaneously improve both QoS

and utilization. We develop, implement, and evaluate Dirigent, a lightweight

performance-management runtime system that accurately controls the QoS of

latency-critical applications at fine time scales, leveraging existing architecture

mechanisms. We evaluate Dirigent on a real machine and show that it is sig-

nificantly more effective than configurations representative of prior schemes1.

1Content in this chapter is published in the following article: Haishan Zhu and Mat-
tan Erez. 2016. Dirigent: Enforcing QoS for Latency-Critical Tasks on Shared Multicore
Systems. In Proceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’16). ACM, New
York, NY, USA. Authorship contributions: conception and design of study: Haishan Zhu
and Mattan Erez; data acquisition and analysis: Haishan Zhu and Mattan Erez; drafting
manuscript: Haishan Zhu and Mattan Erez; critical manuscript revision: Mattan Erez.
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2.1 Background

2.1.1 Target Workloads and Metrics

Based on prior publications, we classify cloud workloads into three cat-

egories [15, 109, 72, 27, 31, 114]. The first includes tasks that are not user-

facing, for which throughput is the primary concern, and that can be freely

scheduled in the background when resources are available. The second class

includes short latency-critical user-facing tasks, such as responding to web

search requests and content caching. This class of workloads is characterized

by short deadlines in the order of tens of milliseconds. The third is an emerg-

ing class of workloads that correspond to offloading of work from user devices

to the cloud. Examples include recognition tasks. Such tasks are user facing

and latency critical, yet are also computationally intensive and have relatively

long execution times. compared to some other user-facing cloud These tasks

can take hundreds of milliseconds or more to finish and therefore can benefit

from being offloaded to the cloud [114, 72, 27].

Both the second and third classes are typically user-generated tasks,

of which those arising from sophisticated data and sensor processing applica-

tions often belong to the third class. Both classes pose challenges for efficient

cloud resource usage. In particular, their performance is expressed both in

terms of throughput (number of tasks processed per unit time) and in terms

of strict latency constraints where only a small fraction of tasks can violate the

constraints without severe penalties. Two common and useful measures corre-

sponding to these performance goals are average execution time for through-
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put and 95-percentile execution time (or other percentile goals) for latency

constraints. Note that in evaluating Dirigent in this paper, we use workloads

comprised of tasks from the first and the third categories.

2.1.2 Contention Control Mechanisms

Dirigent relies on existing mechanisms to manage interference and pro-

vide good QoS for the LC jobs. Dirigent uses per-core DVFS and cache par-

titioning, which we summarize below. We also discuss additional hardware

mechanisms that have recently been proposed.

Per-Core dynamic voltage and frequency scaling (DVFS) is a common

mechanism for controlling performance and improving processor energy ef-

ficiency [130, 104, 86]. Per-core frequency management enables performance

adjustments at fine time scales [147, 78], and it can also be used as a throttling

mechanism to manage contention and resource usage [74, 80].

Cache partitioning is another well-studied mechanism that provides

performance isolation of processes that are collocated and that is used to limit

variation and contention [145, 115, 100, 150, 30, 35, 81]. Prior work established

the effectiveness of cache partitioning as a QoS mechanism and it has recently

been implemented in commercial processors. However, because of the large

capacity of the last level cache, changes to cache partitions take significant

time to have an impact on execution, an effect termed cache inertia [100].

Thus, cache partitioning is effective at relatively long time scales.

While we do not currently use these mechanisms in Dirigent as they
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are not yet available in commercial processors, there is also a large body of

work on QoS mechanisms for managing memory bandwidth and latency re-

sources. Yun et al. studied the performance benefits of memory bandwidth

reservation for latency-sensitive applications [173]. Mutlu et al. show different

levels of QoS goals and performance benefits that can be achieved by making

memory scheduling QoS aware [133, 134, 105, 135]. Usui et al. presented QoS

aware memory scheduler that handles different priority levels in heterogeneous

systems [164]. In other related work, Ebrahimi et al. proposed source throt-

tling, which is a hardware-based mechanism controls the rate at which cores

generate requests to shared memory system [51]. Jeong et al. studied the row-

buffer locality interference in multicore processors [92]. Zhou et al. proposed

an architecture that allows fine-grain micro-architecture resource partitioning

among threads [180]. Ma et al. designed a mechanism to control queueing

delay of requests in different architecture structures [121]. While other con-

tention sources exist in warehouse scale datacenters, there is a large body of

related work that show how intelligent task schedulers can identify and avoid

such resource conflicts [96, 110, 112, 46, 47].

2.2 Dirigent Principles

An important insight that Dirigent leverages is that minimizing varia-

tion can simultaneously meet the performance targets of latency-critical tasks

and improve system utilization. Large variations in the completion time of

LC tasks cause inefficiencies in the shared system because they lead to over-
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provisioned resources for LC tasks and system underutilization for latency

targets to be met. To understand these inefficiencies, consider an LC task

that can meet its throughput and latency targets when running alone, but

suffers from large variation in execution time when under contention.

Figure 2.1 shows an example of the execution time probability density

function of such a program, where the blue curve represents standalone execu-

tion, the red curve shows the behavior under contention, and an ideal curve is

shown in green. In standalone execution, LC tasks often complete significantly

ahead of the deadline and the throughput achieved (average execution time) is

higher than required. As a result hardware is not fully utilized because there

is large performance headroom in most LC executions that could be used for

other tasks (shown as the highlighted region). However, when a BE task is

introduced, too many deadlines are missed despite the average throughput

target being maintained.

Previous work focused on keeping core occupancy high while meeting

latency goals [126, 119, 176]. However, by explicitly addressing task-to-task

variation at fine time scales within a single task, the ideal (green curve) can

be achieved. In this ideal case, both throughput and latency targets are met

precisely and core and frequency resources are maximally utilized. Dirigent

achieves this ideal curve through unique fine time scale monitoring and control

mechanisms.

Furthermore, high variation reduces resource utilization because of task

scheduling policies designed for meeting LC task latency constraints. Consider
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Figure 2.1: Example LC completion time probability density functions when
run alone, under contention, and in an ideal scenario; the shaded region points
to underutilized resources when run alone.

a common reservation-based scheduling policy that ensures on-time comple-

tion of LC tasks by reserving sufficient resources to guarantee a 95% latency

target [10]. :.Figd:fig:scheduler shows how this scheduler operates on two dif-

ferent sets of tasks: tasks of type A, which have high execution time variance,

and type B which have low variance. With high variance, the scheduler re-

serves too much time for the first task (shown in green) because allocation is

forced to expand due to the long tail of execution time probability distribution

curve, leading to poor system utilization. This does not happen with the low-

variance tasks. Significant prior work on scheduling has shown that scheduling

tasks with deadlines can be done more aggressively and with higher system

resource utilization when variance is low [154].

Dirigent controls fine-grained scheduling and frequency to maximize

utilization while meeting QoS goals. In this way overall utility per unit energy
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Figure 2.2: Reservation-based scheduler efficiency with two different task
types: type A with high execution time variance and type B with low variance.

is maximized. This is in contrast to a line of prior work that reduces the impact

of variation by rapidly adjusting processor clock frequency [118, 78, 165, 99,

117, 25]. Matching frequency to LC compute needs reduces processor energy

consumption, but falls short of maximizing efficiency because the processor

itself consumes just 25%− 35% of total system power [127, 118, 54].

2.3 Dirigent Design and Implementation

Dirigent is composed of three main components: profiler, predictor,

and controller. The profiler examines and records the execution of an LC

applications offline and in isolation. The profiling information is then used

online to predict the expected execution time of the LC application. The con-

troller then partitions resources and throttles tasks to minimize the execution

time variation of LC tasks while providing as much resources as possible to

BE tasks, thus achieving the goal of simultaneously meeting latency-critical

requirements and allowing high processor utilization. The rest of this section

discusses in detail the design and initial implementation of Dirigent. Again, we

point out that Dirigent is unique in the fine time scales on which it operates.
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We implement Dirigent in C++ and evaluate it using a 6-core Intel

Xeon E5 2618L-v3 processor, which supports per-core frequency settings and

cache partitioning [81].

2.3.1 Offline Execution Profiler

Dirigent profiles the execution of an LC application when running alone

offline. The profiler records progress information that is then used to make

accurate online predictions of completion time under contention while a task

is still executing. The Dirigent profiler periodically samples the execution

progress of the LC task being profiled by measuring and recording a series of

(time, progress) pairs when the LC is running alone without any contention (see

Figure 2.3a). The LC program in the example of Figure 2.3a has 3 profiled

segments and takes 3∆T time units to execute, where ∆T is the sampling

period. We measure progress by counting the number of retired instructions

using the processor’s model-specific performance counter monitors [86], but

more abstract metrics can also be used. Note that progress can significantly

differ between segments even though the sampling frequency is constant. This

is because progress depends on the instruction mix, data access pattern, data

set size, and other factors.

Dirigent requires minimal profiling. In our current implementation,

the profiler requires no extra hardware as both execution time and instruc-

tion count are readily available in most architectures today. Dirigent uses

performance counters and sleep method for periodic sampling with negligible
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Figure 2.3: Execution time predictor example.

impact on the running application. Although performance overhead is not

a great concern in offline profiling, this low overhead ensures the accuracy

of these measurements. Furthermore, note that while our current implemen-

tation of Dirigent relies on offline profiling, it is possible to perform online

profiling instead, which requires the system to run the LC task a few times

while all other tasks are paused to record a stable profiling record.

2.3.2 Execution Time Predictor

To predict LC completion time and control resources, Dirigent period-

ically samples progress during contended online execution. Dirigent predicts

LC completion time by tracking actual progress, comparing this progress to

the profiled data, and computing a time penalty experienced by the LC pro-

cess, which is then projected forward to completion as explained below. We

pin the Dirigent runtime thread to a core that runs a BE task and again use the
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sleep method to periodically interrupt the BE task and execute the Dirigent

runtime task.

The time penalty of a specific segment is computed assuming a fixed

rate of progress within each segment. The penalty is the difference between

the expected time to make the amount of progress within the profiled segment

at the rate of progress experienced in the online segment vs. the profiled time

for this segment. This is summarized in Equation 2.1 where Pi is the penalty

for the ith segment and ∆Ti is the duration of that segment. Note that ∆Ti

can be slightly different than ∆T in the real implementation because of factors

such as errors in timers. We account for that difference in Dirigent to ensure

the accuracy of the prediction. Also, we introduce the symbol αi shown in

Equation 2.1 as shorthand for the ratio of measured vs. expected progress

rates for the ith segment.

Pi =
Profiled progress i

Measured progress i

∆Ti −∆Ti = (αi − 1) ∆Ti (2.1)

Frequent samples increase the execution time prediction accuracy and

the opportunities for performance management, but each prediction and con-

trol segment has overhead. We measured this overhead using a subset of our

workload mixes. Results show the runtime overhead is minimal and each Diri-

gent invocation requires on average less than 100µs (including predictor and

throttler). We therefore chose a sampling period ∆T = 5ms to balance the

overhead and effectiveness of online prediction and control. This sampling
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period provides 100 or more segments in all the LC applications we test with

only negligible runtime overhead.

To increase prediction accuracy, Dirigent maintains an exponential mov-

ing average (with weight 0.2) of the penalty within each segment across multi-

ple executions of the LC task, which we denote Pi = 0.2Pi+0.8Pi. Figure 2.3b

shows the average penalty in blue. Note that just like progress, the average

penalty can differ significantly across segments. The moving average smooths

occasional outlier executions. At a given point in time during a single LC

task’s execution, Dirigent’s predictor uses the penalties observed so far for

each segment, the total elapsed time from the start of the process, and the

average penalties of the segments yet to execute to compute the expected exe-

cution time of the task. The formula is shown in Equation 2.2, where k is the

segment corresponding to current time T , N are the total number of segments

in the profiled execution, and MA
(
{αi}ki=1

)
denotes an exponential moving

average over the rate factors measured so far in the current execution. This

moving average is used as the expected penalty scaling factor for the remainder

of the current execution.

Test,k = T +
N∑

i=k+1

(
MA

(
{αi}ki=1

)
Pi + ∆Ti

)
(2.2)

Figure 2.3c illustrates how the prediction calculation of Equation 2.2 is

performed. When the example program finishes executing the second segment,

the penalty scaling factor α2 is much smaller than the factor α1 of the first
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segment. This difference arises from factors such as OS noise, phase changes

of the BE applications, and context switches. The moving average across

executions and of executions within the segment smooths out the difference

of the scaling, which is then used as the predictive factor for the remaining

segment.

In our experiments with Dirigent, we arbitrarily chose a weight of 0.2

for the exponential moving averages and a 5ms sampling interval. As we show

in Section 2.4.2, the predictor is highly accurate with these parameters and

is able to predict the expected execution time to within 2%, typically, across

multiple applications and different levels of contention. We tested the sensi-

tivity of Dirigent to weight factors in the range of 0.1− 0.3 and conclude that

Dirigent is robust. We also evaluate Dirigent’s sensitivity to sampling periods.

We conclude that even 40 samples per execution of the LC task tested provide

for accurate completion-time predictions. However, the low performance over-

head (< 100µs per invocation) enables high sampling frequency for accurate

prediction and tight QoS control for LC tasks that widely differ in execution

time.

2.3.3 Performance Controller

Dirigent monitors the performance of LC applications online and uses

the predictor to determine whether these applications are progressing faster

or slower than necessary to meet their latency goals. Recall that Dirigent

does not strive to minimize the execution time of LC tasks, but rather to
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minimize their execution time variation while meeting their latency targets.

As a result, resources for the LC tasks are not over-provisioned. If a LC task

is expected to complete before its target time, it is deprioritized and BE tasks

can achieve higher throughput. On the other hand, if a LC task is lagging,

Dirigent prioritizes resources toward that LC task and away from BE tasks.

In our current implementation of Dirigent, we allocate resource by con-

trolling the frequency at which each core operates, by partitioning the last-level

cache (LLC), and by pausing BE tasks when necessary. We chose these mech-

anisms from the possible ones described in Section 2.1.2 because they are both

effective and available in current systems. We use frequency and task-pausing

to control LC progress at fine time scales and cache partitioning at a coarser

ones; with large caches, cache inertia means significant time passes before the

impact of adjusting partitions takes effect [100].

Fine time scale control: The goal of the fine time scale controller is to

quickly respond to changes in contention and LC task progress to ensure dead-

lines are met and minimize performance variance. The controller observes the

execution time predictions and decides whether LC tasks can yield resources

or whether BE tasks must be throttled and to what extent. A simplified ver-

sion of the fine time scale controller policy for a single LC task is designed as

follows.

At each decision point, the controller determines if the LC task is ahead

or behind. If ahead, the controller will check the following three options in
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order. First, if any best-effort jobs are paused, the control decision is to con-

tinue them. Second, if no tasks are paused but some are throttled, the decision

is to speed up any throttled BE processes by one speed grade (using existing

per-core DVFS mechanisms). Third, if all BE tasks are already running at

their maximum frequency, the decision is to throttle the LC task frequency.

Similarly, if the LC task is behind schedule, the decision is to speed up to

maximum frequency. If it is already at maximum frequency, the decision is

to immediately throttle the frequency of the BE tasks. If the BE tasks are

already at the minimum frequency, the most intrusive active BE is paused;

we define intrusiveness as the number of LLC load misses a task generates,

which we obtain from existing performance counters. The throttler controls

each core using the CPUFreq Governor of Linux [18].

While the Dirigent runtime is very lightweight, the impact of control

decisions is not instantaneous. We therefore only make control decisions every

some small number of prediction segments (5 in our experiments, arbitrarily).

Furthermore, we only take control actions if the expected LC execution time

is more than 2% ahead the target deadline and only pause BE tasks if the LC

task is expected to complete more than 10% behind its deadline. We chose

2% because it corresponds to the typical error of the predictor and is thus

a good safety margin that prevents prematurely slowing down or interfering

with a LC task. We chose a larger threshold for pausing because its overhead

is greater (again, the value of 10% was arbitrarily chosen within a reasonable

value range; sensitivity studies reveal that Dirigent is not sensitive to this
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choice).

The decision making process is slightly more complicated when there

are multiple collocated LC processes along with BE tasks. Each LC task may

exhibit different levels of performance degradation even when the interference

level is the same for all of them. Furthermore, any action taken on BE tasks

will impact all collocated LC tasks. As a result, when all LC tasks show

the same performance tendency, we use the same policy described before for a

single LC process. Otherwise, BE tasks are throttled based on the performance

of the slowest concurrent LC task, and any other LC tasks that are expected

to finish sooner than the deadline are throttled down individually.

Coarse time scale control: Dirigent uses cache partitioning for coarse-

grain control over the expected execution time of LC tasks, specifically the

Cache Allocation Technology recently introduced by Intel [81], which can be

used to specify which cache ways may be used by each processor. Because

of cache inertia the system’s response time to partition changes is fairly slow

when compared to the typical short durations of LC tasks. We therefore use

statistics collected over multiple executions of a LC task to guide adjustments

to cache partitioning. Specifically, our current implementation of Dirigent

tracks three measures: (1) the correlation between a LC tasks’ execution time

and the LLC misses it generates (over multiple executions); (2) a history of

the absolute number of LLC misses over executions; and (3) a history of the

Dirigent decisions states over time. In our current implementation, we use the
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history of 10 last executions to compute the measures above. We construct

three heuristics to determine whether LC tasks benefit from greater isolation

and more dedicated cache ways or whether BE tasks are allowed to utilize a

greater portion of the LLC.

First, if there is strong correlation between the execution time of LC

tasks and their LLC misses, it indicates that growing the LC partition is likely

to improve LC performance. Therefore, if correlation is strong and LC tasks

have recently missed deadlines, we increase isolation and add one LLC way to

the LC partition (removing it from the list of ways utilized by BE tasks). We

somewhat arbitrarily chose a correlation coefficient of 0.75 as the threshold

determining strong correlation.

Second, Dirigent observes the LLC hit-rate history and if growing the

LC partition does not lower LC tasks LLC misses, Dirigent shrinks the LC

partition. This heuristic coupled with the coarse time scale and averaging per-

formed prevents the LC partitions from continuously growing due to anoma-

lous executions.

It is also possible for the correlation between misses and performance

to not be strong yet for partitioning to still help: when LC performance is

bottlenecked by high memory latency caused by contention from BE tasks.

Because Dirigent’s fine time scale controller throttles BE tasks when they

heavily contend for resources, correlation would not detect the need for stricter

partitioning of LC and BE tasks. Therefore, our third heuristic grows the

LC partition when the controller history indicates that BE tasks are heavily
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throttled and their utilization of core resources is low. The second heuristic

then differentiates between scenarios where BE tasks should be throttled from

those where partitioning is more beneficial by shrinking the LC partition back

if hit-rate does not improve. We show the effectiveness of our method in

Section 2.4.3.

2.4 Evaluation

We evaluate Dirigent on a real machine with a range of workloads repre-

sentative of a wide range of LC and BE behaviors. We first introduce the eval-

uation infrastructure and workloads. We then discuss a set of experiments that

demonstrate the accuracy of Dirigent’s completion-time predictor, the effec-

tiveness of the coarse time scale partitioning heuristic, Dirigent’s performance

benefits compared to a baseline configuration and configurations that roughly

correspond to prior work, and the new tradeoff between BE task throughput

and LC deadline target that Dirigent enables.

2.4.1 Workloads and Evaluation Infrastructure

System: We evaluate Dirigent on a 6-core Intel Xeon E5-2618L v3 server

processor. The nominal per-core maximum frequency is 2GHz and 9 frequency

steps are available for throttling (1.2 − 2.0GHz, though Dirigent uses just 5

equi-spaced frequencies). Turbo Boost is enabled in all experiments. The pro-

cessor has a 15MB L3 LLC and supports Intel’s Cache Allocation Technology,

which enables us to partition the cache between LC and BE tasks to provide
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Table 2.1: LC and BE Benchmarks

Type Name Description

LC

bodytrack Body tracking of a person
ferret Content similarity search
fluidanimate Fluid dynamic for animation
raytrace Real-time raytracing
streamcluster Online clustering of an input stream

Single
BE

bwaves Simulation of blast waves in 3D
PCA Principal Component Analysis
RS Range Search

Rotate
BE

namd Biomolecular system simulation
soplex Linear program solver
libquantum Simulation of quantum computer
lbm Simulation of fluids with free surfaces

additional isolation. The system is configured with 4 2133MHz DDR4 chan-

nels and has a total of 16GiB. We run a Linux 3.13.0 kernel at runlevel S,

which provides an environment with little OS interference and good facilities

for implementing both the Dirigent predictor and controller, with an efficient

sleep implementation and the built-in CPUFreq Governer, respectively. We

pin all tasks to individual cores and Dirigent is pinned to a core that is shared

with a BE task. We set the BE processes to have higher process niceness than

the Dirigent runtime and LC processes to have the lowest niceness. We use

the configuration above with no explicit resource management as the baseline

configuration.

Workloads: Table 2.1 lists the benchmarks we use in the evaluation. We

select the subset of PARSEC applications that represent latency-sensitive ap-

plications as LC tasks [17]. We chose PARSEC as it is designed to represent
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emerging and user-facing workloads of the type that are being offloaded to

cloud systems. We use a single run of each benchmark with sim-medium in-

puts as a single LC task. As shown in Figure 2.4, these tasks span a range of

completion times (0.5 − 1.6s) and LLC miss rates. The figure shows the be-

havior of the LC benchmarks both when running alone and under contention.

For this figure, we use 1 LC for all LC tasks and 5 BE cores all running

bwaves, which falls in the middle of contention range. The LC workloads are

all fairly compute-intensive, making them good offload candidates. While they

are compute-intensive, they still offer a range of sensitivity to interference from

BE tasks both because of LLC and memory access contention. This can be

seen by the different correlation levels between LLC miss rate increase and

execution time degradation between the different benchmarks. To ensure ac-

curate measurements of these tasks, execution time is measured inside the LC

processes using PARSEC’s Region of Interests (ROI) interface.

We use two kinds of BE workloads to represent different interference

types: BE phase changes and context switches. We use three standalone BE

workloads that exhibit strong phase change behavior: the scientific simulation

bwaves from SPEC 2006 [73] and the machine learning applications Princi-

pal Component Analysis (PCA) and Range Search (RS) from MLPack [39].

All other benchmarks we examined did not provide strong phase behavior,

at least with respect to impact on interference, and we omit them from the

evaluation—such workloads do not pose significant challenges to the Dirigent

predictor.
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Figure 2.4: Overview of LC Workloads.

To mimic varying interference caused by context switches, we select

four applications from SPEC 2006 that exhibit a range of memory intensive-

ness [73], though we arbitrarily chose between all benchmarks that exhibit sim-

ilar intensity. We then form two-benchmark workloads and randomly switch

between the two paired benchmarks each time a LC task completes. The pairs

we use are (lbm+namd), (lib+namd), (lbm+soplex ), and (lib+soplex ). We

refer these BE workloads as Rotate BE workloads. Figure 2.5 summarizes

the different behaviors of the BE workloads while using a single core running

ferret as a representative LC workload. The blue bars show the total num-

ber of L3 load misses per thousand LC instructions generated by all 6 cores.

The red curve shows the fraction of misses generated by LC tasks, which can

be interpreted as the ratio between LC task and total memory bandwidth

consumption. As can be seen, the BE workloads cover a wide spectrum of

behaviors and contention pressure. Similar trends are observed when mixing

these BE tasks with other LC workloads.
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2.4.2 Predictor Accuracy

Since the throttling actions of Dirigent are guided by the execution

time predictor, it is important to validate its accuracy. Figure 2.6 shows the

execution time, prediction results, and prediction error for 50 consecutive exe-

cutions of raytrace and RS workload in the baseline configuration (no explicit

resource management). The results shown correspond to a completion-time

prediction that is made about half-way through a LC task’s execution. Pre-

dicted completion closely tracks the actual completion time. Figure 2.7 shows

the average predictor accuracy and the completion time standard deviation

normalized to the mean of each workload for all 35 workload combinations

we use (combinations of one of the 5 LC benchmarks with each of the 7 BE

workloads). Average error (ε) is computed as shown in Equation 2.3 at the

midpoint of each task over 100 consecutive task executions. The predictor is

highly accurate across all these workload combinations with an overall average

error of just 2.4%. As expected, higher execution time variation poses greater

challenges and predictions tend to be less accurate in such cases; the 5 points

with average error of > 4% all use streamcluster as the LC, with each of the

BE we included in the workload. Among those, RS gives the highest error rate

(12.5%) and the mix between libquantum and namd gives the lowest error rate

(4.4%). Note that the standard deviation of execution time in these cases is
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Figure 2.7: Prediction Accuracy for all LC-BE mixes.

significantly larger than predictor errors.

ε =
1

N

N∑
i=1

|predicti −measurei|
measurei

(2.3)

2.4.3 Coarse Time Scale QoS Control

To verify the effectiveness of the heuristics used in the coarse time

scale QoS controller in Dirigent, we conducted an exhaustive search on cache

partitions for 5 arbitrarily chosen workload mixes and show one of the results,

for streamcluster as the LC task and PCA as the BE task in Figure 2.8. We

chose this combination to present because it is one of the few workloads in

which LC tasks require a larger partition and therefore stresses the heuristic.

As the partition dedicated to the LC tasks grows, the performance of the LC

task improves. The knee of the curve representing this exhaustive search is at

5 ways. Dirigent’s coarse time scale controller converges to this same partition

after just 32 LC task executions (5 coarse time scale controller invocations).
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2.4.4 Dirigent Performance

We use five configurations to evaluate the effectiveness and benefits of

Dirigent. In the Baseline configuration all cores run at the highest frequency

and freely contend for resources. StaticFreq sets the LC cores to run at the

highest allowed frequencies (2GHz) and BE cores to run at the slowest speed

(1.2GHz), giving more resources to LC tasks. StaticBoth sets the best static

cache partitioning (corresponding to Dirigent’s heuristic, which we verified is

near-optimal) as well as the best frequency for the BE cores. DirigentFreq

uses Dirigent’s fine time scale control only and does not use cache partition-

ing. Dirigent is the full Dirigent implementation that combines coarse time

scale cache partitioning with fine time scale frequency control. Note that we

omit the coarse time scale-only configuration of Dirigent because it performs

just slightly worse than StaticBoth because both use the same partition. Our

understanding is that the StaticBoth configuration is very similar to the be-

havior of Heracles [119] in our scenario because the execution time of LC tasks

in our experiments are much shorter than polling intervals and controller’s
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optimization convergence time in [119]; our workloads also do not exercise the

network.

To quantify the benefits of reduced variation in LC task execution time,

we define the deadline for each LC task to be µBaseline + 0.3σBaseline, where

µBaseline and σBaseline are the average and standard deviation of LC completion

time in the Baseline configuration; PARSEC does not define latency goals even

though the applications do represent potential user-facing tasks. We set the

deadline for each benchmark to be slightly larger than the uncontended run

time of a task but still far smaller than when contention is unmanaged. In

this way Dirigent has the LC run time slack to allow BE jobs to run. The

tradeoff between deadline tightness and system throughput is demonstrated

later in Section 2.4.5. For LC tasks, we focus on the LC success ratio, which

is computed as the fraction of LC task executions that complete within the

deadline defined above. For BE tasks, we report BE performance, which is the

total number of instructions executed during the experiment (across all cores)

normalized to Baseline. Results are normalized to Baseline since running with

no constraints results in the highest BE throughput.

Single LC process: Figure 2.9a and Figure 2.9b report the performance of

both LC and BE tasks in all the workload mixes with one LC process and

five BE processes, respectively. The results are summarized in Figure 2.10

with arithmetic mean of LC success rate and harmonic mean of relative BE

throughput.
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Figure 2.9: Comparison of LC and BE Performance.

36



0.0

0.2

0.4

0.6

0.8

1.0

1.2

Baseline StaticFreq StaticBoth DirigentFreq Dirigent
R
at
io

Configuration

LC Ratio BE Throughput

Figure 2.10: Summary of All Single LC Workload Mixes.

We make three key observations about these results. First, while BE

performance is high with Basline, the LC success rate is very poor, averag-

ing just under 60%. Second, while the (semi-)static mechanisms significantly

improve LC completion rate (to nearly 100% in the case of StaticBoth, BE

performance is severely degraded. On average, BE throughput is reduced to

∼ 60% that of Baseline. Not shown in the graphs is that the LC through-

put is improved by 7.5% on average with StaticFreq ; this is because more

BE tasks are throttled more than with the other configurations. Third, the

importance of fine time scale control is clearly demonstrated by both Diri-

gentFreq and Dirigent. Even without cache partitioning, DirigentFreq is able

to meet the 95% completion target for all but a few workloads and is able to

consistently deliver better BE performance than the static schemes (85% of

Baseline on average). Finally, Dirigent, which combines both fine and coarse

time scale control, is able to consistently match or exceed both the LC success

rate (> 99% on average and 97% in worst success) and BE throughput of all

other managed schemes simultaneously; the BE throughput of Dirigent comes

very close to the throughput of unconstrained execution, averaging 92% and

never dropping below 75% of Baseline.
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We further look at the execution of one of the workload mixes, a ferret

LC task collocated with five RS BE tasks. Figure 2.11 shows the execution

time probability density function curves for the five configurations. Results

show that the curves for Baseline and StaticFreq stretch wide horizontally.

Comparing to the StaticBoth, the DirigentFreq is able to significantly reduce

execution time variation by moving the two peaks in StaticBoth’s curve closer.

Dirigent is able to further reshape the curve and merge the two peaks together,

achieving even more predictable performance and better BE job throughput.

Figure 2.12 demonstrates the distribution of frequencies that DirigenttFreq and

Dirigent use for cores running BE tasks, and show that partitioning the cache

significantly reduces the performance contention on LC performance, allowing

BE process to run safely at much higher frequency on average. Overall, Diri-

gent can achieve 85% reduction in the standard deviation of execution time of

LC tasks at the cost of only 9% of BE performance loss across all the workload

mixes we tested. DirigentFreq captures part of the benefits in reducing perfor-

mance variation, achieving 70% reduction in standard deviation of execution

time, but suffers from higher BE performance loss at 15%.

Concurrent LC Processes: Figure 2.9c uses the same metrics but with

workload mixes that have multiple LC processes. These detailed per-workload

results are summarized in Figure 2.13. Due to the large number of possible

combinations, it is impractical to exhaustively experiment with all of them.

We therefore select five combinations that cover a low to high performance
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variation range in Baseline and measure the performance of these mixes using

a varying number of concurrent LC tasks. The workloads in Figure 2.9c are

sorted in ascending order of number of concurrent LC processes within each

pair; the total number of LC and BE processes is always 6 (the number of

cores).

Overall, the results show similar trends and observations to those ex-

hibited by single-LC process workloads. We discuss two additional insights.

First, each LC task may experience different levels of contention due to dif-

ferent LC-BE phase interleavings. This forces the fine-grain controller to use

conservative BE performance settings to try and allow even the slowest LC

task to complete on target. As seen in Figure 2.9c, within each LC-BE work-

load mix with DirigentFreq, the general trend is that BE throughput decreases

with each additional LC task. This problem is alleviated by the introduction

of cache partitioning, as it effectively isolates most of the performance inter-

ference between LC and BE tasks. Second, since all LC tasks share the same

partition, increasing the number of LC tasks also increases their performance

variation. This is shown in Figure 2.14, where standard deviation for each

configuration is normalized to the value in the baseline. While the results

show increased variance with more LC processes within each workload mix,

Dirigent is still able to effectively reduce the performance variation with low

BE task performance overhead.
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Figure 2.14: Normalized Standard Variation of Multiple LC Workload Mixes.
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Figure 2.15: Tradeoff Between LC throughput and BE performance

2.4.5 LC Throughput and BE Performance Tradeoffs

So far we evaluated Dirigent with a fixed LC target execution time

that reflects the baseline LC throughput. We now show the tradeoff that

Dirigent enables between LC task throughput and BE task performance with

precise QoS control. Figure 2.15 shows one arbitrarily chosen workload: a

single raytrace LC process and 5 BE bwaves processes. We gradually increase

the target completion time from the average completion time in standalone

execution until it is larger than the average Baseline execution time. The blue

bars show the average execution time normalized to the standalone execution

time, the red bars show the standard deviation at each target normalized to

that of Baseline, and the green curves show the BE task throughput normalized

to Baseline.

Dirigent is able to accurately control the execution time across the en-

tire range of target deadlines; the only exception is when the target is set

at the standalone execution time because there is no opportunity for colloca-

tion without violating QoS. When the deadline is set higher, Dirigent exploits
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opportunities when LC tasks are running faster than necessary and converts

them into BE performance. Importantly, Dirigent effectively enables the trade-

off between LC throughput and BE performance at high system utilization by

reducing the variance of LC task execution time. Note that we do not plot

the success rates because Dirigent consistently achieves them at the desired

> 99% rate, except for when the target is set at the standalone execution time.

2.5 Related Work

Online QoS Management: Mars et al. proposed an interference charac-

terization methodology and QoS management schemes that target data cen-

ter applications [126, 172]. Heracles is a performance management runtime

that uses multiple control modules leveraging software and hardware mech-

anisms to enforce QoS for latency sensitive tasks that are collocated with

batch jobs [119]. Zhang et al. proposed to identify interference using cycle-

per-instruction data, and the results can be used to enforce QoS by static

and manual throttling [176]. most closely related to Dirgient, however, these

mechanisms use only coarse time scale statistics and performance variation is

not discussed or addressed. As a result the system lacks the ability to ad-

just contention at fine time granularity, which we demonstrate is crucial to

maximizing utilization.

Other related work studies fine-granularity QoS with a focus on sav-

ing the energy of executing only LC tasks. PEGASUS improves the energy

efficiency of datacenters by dynamically adjusting the power limit of proces-
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sors [118]. Adrenaline categorizes queries for target applications and only

speeds up ones that are likely to fail QoS goals [78]. TimeTrader and Rubik

exploit request queueing latency variation and apply any available slack from

queueing delay to LC computation to reduce energy consumption [165, 99].

Suh et al. propose to use various execution time prediction mechanisms to

guide frequency scaling to save energy [117, 25]. In contrast, Dirigent converts

variation in the run time of LC tasks into improved system throughput.

To the best of our knowledge, Dirigent is the first to trade off the per-

formance of latency-critical jobs that finish sooner than required with higher

system throughput for BE tasks. A related mechanism proposed by Min et al.

tackles fine time granularity QoS problems for GPUs in heterogeneous plat-

forms [91]. However, the progress heuristics used for the GPU were not general

and the mechanism proposed is limited to managing main memory bandwidth

contention between the CPU and GPU.

Interference Analysis: Interference is a well studied problem and many

models and heuristics have been proposed. A good example is the sophisti-

cated model for predicting multicore interference proposed by Zhao et al. [178].

However, this and other prior models do not address deadline-oriented appli-

cations because the prediction is made on coarse time scales. Further, these

analysis techniques require complex computation that are not suitable for a

dynamic lightweight runtime such as Dirigent [178, 176]. Application Heart-

beats is a general progress report framework [77], our profiler uses similar
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concept but on a millisecond scale.

QoS-Aware Scheduling: In addition to the QoS control mechanisms dis-

cussed in Section 2.1.2, task scheduling across multiple nodes in a cloud server

or cluster can also be used to manage contention and performance. Kam-

badur et al. proposed a sample-based interference prediction methodology for

identifying application pairs whose collocation should be avoided [96]. SMiTe

predicts the SMT-level interference by profiling interference and sensitivity on

each kind of shared resources to guide cluster scheduler [177]. Lee et al. de-

signed and implemented a scheduler in the virtual machine hypervisor for soft

realtime applications [110]. Leverich et al. analyzed the source of QoS degra-

dations of latency-critical workloads, and devised a new scheduler to handle

these issues [112]. Paragon and Quasar are two task schedulers that classify

applications and schedule them into data centers by performing resource al-

location and assignment to minimizing interference [46, 47]. Q-Clouds and

DeepDive are two QoS-aware scheduler that handle contentions and interfer-

ence in virtual environment [136, 137]. These works are orthogonal to Dirigent

and Dirigent can be integrated with these schemes to manage performance on

each node.

2.6 Summary

In this work, we expose the problem of performance variation for latency-

critical tasks when collocated with batch jobs and the associated challenges and
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opportunities. We explain how such variation leads to low hardware utilization

and resource over-provisioning. Our main insight is that minimizing task-to-

task variation offers significant opportunities for improving system utilization

without compromising QoS goals. We present the design, implementation,

and evaluation of the Dirigent lightweight contention management runtime to

exploit these opportunities. Dirigent is effective because it can accurately pre-

dict the completion time of a running task at very fine time scales. It can thus

control resources during a task’s execution to meet deadlines and maximize

batch throughput.

We show that Dirigent is particularly well suited for cloud-oriented

applications where it is common to run just one latency-critical process per

node and use batch-oriented tasks to improve utilization. In this case Dirigent

exerts precise control over completion time and resources to boost utilization

by ∼ 30% compared to configurations that are similar to previously proposed

schemes while providing higher QoS for the latency-critical tasks. We further

show that even with multiple concurrent latency-critical tasks, Dirigent is still

effective, much more so than alternative techniques, and always achieves very

high deadline success rates (> 98%).

We opted to implement Dirigent using existing hardware mechanisms

and evaluate it on a real machine. Even without new hardware techniques,

Dirigent has low runtime overhead (< 100µs per invocation) and we are able

to demonstrate the effectiveness and benefits of our techniques. However, for

tasks with very tight latency constraints (. 10ms) additional hardware sup-
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port may be required. One limitation of the current Dirigent implementation

is its dependency on profiling. In this paper we assumed offline profiling but

because of the short profiling duration it can be performed online, though

it will require pausing all BE tasks while profiling. In future work, we plan

to improve the Dirigent prediction and control algorithms to allow concur-

rent profiling by adding interference offsets into the baseline execution time.

A second limitation is that in this first effort with Dirigent, we limited our

evaluation to performance variation caused by external interference. Accu-

rate predictions of execution times in the presence of strong input dependence

may require interfaces that extend Application Heartbeats [77] or program

slicing [117]. Finally, we intend to evaluate Dirigent for parallel applications,

where precise control over completion time reduces the overheads associated

with synchronization and load imbalance.
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Chapter 3

Mitigating Performance and QoS Impact of

NVM on Datacenter Applications

Recent developments in non-volatile memory (NVM) technologies en-

able datacenter operators to further improve the cost-efficiency of warehouse-

scale computing (WSC) by provisioning system memory using both DRAM

and NVM. To understand the performance and QoS impact of the resulting

heterogeneous memory architecture (HMA), we design and implement ON-

Sim, a performance emulator in the Linux kernel that runs workloads with

high accuracy, low overhead, and complete transparency. We evaluate ONSim

in terms of simulation accuracy and performance overhead using both syn-

thetic and real-world workloads. We then perform a detailed study of HMA

with ONSim using memcached as the target workload. By exploiting the in-

herent data locality in access streams and statistical behavior of application

traffic, we bridge the performance gap between HMAs and traditional DRAM

systems with simple yet effective HW/SW co-optimizations. Our results show

that the proposed mechanisms can achieve 97.5% of baseline performance while

only 60% of the data footprint is contained in DRAM and over 96% of base-

line performance while sharing limited DRAM with best-effort tasks. We also

show that the proposed mechanisms effectively reduce request tail latency and
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improves QoS for heterogeneous memory systems.

3.1 Background

3.1.1 Target Workloads

In this work, we focus on one specific kind of LC task: the in-memory

key-value store. This application type is widely used in web services by major

service providers such as Google, Facebook, and Twitter. Many recent aca-

demic and industry studies focus primarily on memcached [78, 112, 9, 45, 43,

16]. A common approach studied in previous work is to provide large scale data

caching service (in both capacity and throughput) is to shard the data across

multiple memcached nodes. However, this design can cause high sensitivity

to request tail latency for large fan-out services. To study the performance

of memcached in production environment, we use an open-source memcached

load generator [112] that mimics traffic patterns observed in a production envi-

ronment [9]. We further augment the load generator to demonstrate different

levels of access locality (Section 3.4.1).

3.1.2 Workload Characteristics

Previous work makes three observations about WSC workload charac-

teristics and use cases. First, average memory utilization is low in production

clusters today. For example, recent studies report typical memory utilization

of 40% to 50% at both Twitter [47] and Google [149], and even lower numbers

from other service providers [116, 14]. There are a few reasons for this low
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utilization.

(a) Memory usage varies over time while resources are provisioned based on

worst-case expectations. For example, Google’s scheduling system Borg

consistently checks the memory usage of each task and tries to reserve

extra guard band memory to tolerate accidental usage spikes [167].

(b) Low occupancy is sometimes necessary to avoid performance interfer-

ence among colocated tasks. As a result, total system usage can be

bottlenecked by other components such as the processor [182, 119] or

the network [93].

(c) Customers often intentionally over-subscribe resources to guarantee good

performance and QoS in the WSC environment.

Second, there is strong inherent temporal locality in many user-facing

WSC applications. For example, Atikoglu et al. present a detailed locality

study using access traces from key-value stores at Facebook [9], and find that

the hottest 20% of the keys cover over 90% of the accesses. Recently, Agarwal

et al. [6] report that up to 50% of application data footprint is accessed infre-

quently in datacenter workloads. Traditional database workloads also exhibit

strong locality in production [101].

Third, many user-facing LC tasks have inherently low write-to-read

ratios—in most general cases, write-to-read ratio is approximately 3% [9, 78].

Beaver et al. reach similar conclusions, showing significantly more reads than
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Figure 3.1: Baseline system architecture.

writes at both CDN and storage servers [16]. Traditional datacenter appli-

cations show a wider range of behavior, although read-dominant benchmarks

have a strong presence [101].

3.2 Target Architecture

We target a node with an HMA that consists of DRAM and a high-

performance NVM, where the NVM is used as a block device. We choose

this architecture because it offers significant advantages over systems that use

DRAM alone, yet does not demand extremely high-performance NVM device

that can completely replace DRAM. In addition, treating NVM as a block

device simplifies many of the mechanisms required for NVM reliability and
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cost-effectiveness. Concrete examples of such a system include low-latency

NVM connected over PCIe [3, 161] or in NVDIMM [90] (Figure 3.1). Appli-

cations do not directly access the NVM. Rather, the operating system maps

a portion of the virtual address space onto NVM and manages access and mi-

grations on behalf of applications. We assume the HMA systems host both

latency-critical (LC) and best-effort (BE) tasks, either of which can contend

for DRAM resources.

Pages are migrated from NVM frames to DRAM frames transparently.

Essentially, the NVM acts as a fast swap device, as assumed by prior related

work that targets NVM-based [6, 11, 171] and disaggregate-memory based

HMAs [113, 61]. Note that NVDIMM-p specifications have not yet been re-

leased and we treat it as caching pages rather than caching at finer granularity.

We leave the analysis relating to caching granularity to future work. Unlike

prior work, we assume important modifications to improve page migration for

QoS of latency-critical tasks and colocation scenarios. We therefore introduce

additional explicit components to NVM management. First, because writes

to NVM are slow and occur with relatively low bandwidth compared to reads,

we add a write queue that may reside in dedicated DRAM or within NVM or

HMA modules. We also add mechanisms and policies for provisioning DRAM

and NVM resources, and enable task prioritizing as explained below.
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3.2.1 Baseline Page Placement and Migration

Figure 3.2 shows the baseline page migration scheme that corresponds

to the baseline system architecture shown in Figure 3.1. Black arrows indicate

external events triggered by programs and gray arrows indicate internal OS

events. We track three types of pages: ones that are not backed by NVM

(NB) and which only have a DRAM frame, ones that are backed by NVM and

have clean copies in DRAM (BC) and have been copied to DRAM to improve

performance, and ones that are backed by NVM and are dirty in DRAM (BD)

and which have essentially migrated from an NVM to a DRAM frame.

Our baseline system follows prior work, which treats NVM as a swap

device for Linux’s standard page management mechanisms, but adds an ex-

plicit write queue. The baseline page allocator always places pages in DRAM

and creates NB pages (i.e., no NVM is allocated); ”page allocation” refers

to a physical frame being mapped to a virtual address and not a PTE entry
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being created. Baseline migration from DRAM to NVM is done following the

CLOCK algorithm [36], as in Linux’s current memory manager. Baseline page

migration from NVM to DRAM is done any time a page that is only in an

NVM frame is accessed. We assume that NVM is cheap relative to DRAM and

do not free the NVM frame after a page is migrated to DRAM, i.e., the page

is now backed by NVM. Initially the page is marked BC in DRAM, because

the copy in DRAM is clean. The first write to a BC page turns the page into

a BD page. BD pages are written back to NVM by first placing them in the

OS-managed NVM write queue. This queue is maintained as a linked list of

frames that need to be written back. The queue is processed in FIFO order in

the baseline system. Note that any access to a page that is in the write queue

is handled by DRAM without accessing NVM.

Limitations of baseline management This baseline scheme successfully

hides NVM from applications, but has three important limitations. First, as

also discussed by Agarwal and Wenisch [6], migrating cold pages from NVM to

DRAM displaces hot pages in DRAM and causes a significant increase in NVM

access. Our evaluation confirms these observations and quantifies the impact

of cold pages on performance and task latency statistics. We also identify

that NVM write-bandwidth constraints can also severely degrade performance;

displacing hot dirty pages by cold pages is thus particularly detrimental.

Second, in colocation scenarios, the baseline scheme does not prior-

itize pages of high-priority tasks over those of low-priority ones. This can

54



cause rapid degradation in the performance and latency statistics of high-

priority latency-critical tasks. Third, low-priority applications may dominate

limited NVM write bandwidth, further exacerbating their impact on high-

priority tasks. We develop, and later evaluate, three mechanisms that each

address one of the above limitations.

3.2.2 DRAM Admission Control

Our first mechanism targets the degradation caused by cold pages dis-

placing hot pages in DRAM. We enhance the page management scheme with

access frequency-based page admission. The main insight is that with a few

modifications to the kernel, we can gather enough information to determine

the “hotness” of a page with low overhead. We then leverage this informa-

tion to avoid bringing “cold” pages into DRAM. We thus prevent thrashing

and save DRAM resources for pages with higher access frequencies to improve

performance and QoS.

The only change from the baseline architecture is the addition of NVM

buffer regions that gate admission to “general” DRAM. These regions may

reside in dedicated DRAM if NVM is provided over the system bus (e.g.,

PCIe), or as part of the DRAM within each NVDIMM module. We choose

a fixed buffer size that totals 512MB in the system. DRAM size is reduced

by the same amount to keep the results comparable across configurations.

Pages that are identified as hot are migrated out of the buffer into a “general”

DRAM frame, while pages that are identified as “cold” remain in the buffer
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until they are evicted. Since we expect little locality in the NVM buffer, we

use FIFO as the replacement policy. Figure 3.3 depicts how this is done using

two additional page states: BC page in buffer and BD page in buffer.

Identifying hot pages To quantify the access frequency or “hotness” of

a page, we enhance struct page to track the Idle Distance of each page.

Figure 3.4 shows more details of this mechanism. A page’s idle distance is

the number of NVM read requests between its most recent access (tracked

by glb rcnt) and when it was evicted out of DRAM or NVM buffer last

time (tracked by per page rcnt). Our implementation updates idle distance

using running average (RA) to filter out system noises. To better adapt to

phase changes quickly, we set the maximum idle distance to be 2× the DRAM

size. With this mechanism in place, we avoid thrashing DRAM by keeping

“cold” pages (identified by large idle distances) in NVM. We use a customizable
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threshold (θ) to decide whether a page is hot or cold. Maintaining the idle

distance has negligible performance overhead because the interrupt delay is

included in the simulated NVM latency. It also has negligible storage overhead

because it only adds two extra integers to an existing per-page data structure.

This allows us to track “hotness” for each page. In contrast, Thermostat [6]

lacks this capability, but instead samples accesses to a subset of pages to

estimate the hotness of the entire dataset.

Idle distance is similar in concept to stack distance, which may be used

to compute cache miss rates. However, stack distance is significantly harder

to compute because it requires interception of all accesses to all pages. Stack
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distance also counts number of references to distinct pages, which requires

additional data structures. There is previous work that enables lightweight

reconstruction of miss rate curves using sampling [170], which can provide

valuable information to further improve memory management, but this is dis-

tinct from our per-page hot/cold mechanism. We leave the exploration of more

sophisticated page management schemes to future work.

3.2.3 DRAM Occupancy Control

To address contention for DRAM from colocating tasks, we develop a

new technique to balance DRAM usage between tasks under priority goals.

Instead of directly managing occupancy, we manage the DRAM miss rates

of different applications. We introduce a user-defined knob, the Miss Ratio

Fraction (MRF). The idea of MRF is to let users decide the ratio of miss

rates (i.e., number of misses per second) from high-priority and lower-priority

tasks when occupancy of DRAM reaches steady state, (e.g., DRAM resources

should be allocated such that BE tasks generate two times DRAM misses as LC

tasks). MRF-based page eviction will dynamically adjust DRAM occupancy

to reach this priority goal. Hence MRF provides users with a straightforward

metric to control DRAM occupancy based on the extent to which the user

prioritizes LC tasks over BE tasks. MRF is agnostic to access patterns and

can be implemented with very low overhead.

Figure 3.5 shows an example. We assume MRF is set to 1, meaning

the rate of misses between LC and BE tasks should be the same. As a result,
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the occupancy control mechanism will evict LC and BE pages from DRAM at

the same probability. In our example, LC (red) tasks generates DRAM misses

twice as fast as BE (blue), so the mechanism automatically increases the occu-

pancy of LC (red) pages in order to meet the MRF goal. Our implementation

of the arbitration mechanism uses only an atomic counter, the remainder of

which decides which set of pages to prioritize evicting.

There are several benefits to the MRF approach. First, it fits the

QoS requirements for millisecond-level LC tasks because it controls the rate of

DRAM misses, which directly affects tail latency. Second, it adapts to user-

specified priority without extra information on the working set size or access

patterns. Third, it gives users a metric that is easy to reason about. Note that

it is possible that a given MRF cannot be met unless BE tasks are given so

few pages that they essentially stop. It is better to kill the BE tasks in such

cases.
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3.2.4 Write Bandwidth Metering

When BE tasks have write bursts, a large number of write requests

can temporarily overwhelm the write queue and block LC tasks. We therefore

propose write queue “jailing” to meter BE task write bandwidth [181]. We

implement jailing by limiting the maximum write queue occupancy of pages

from BE tasks. While this approach does not limit the maximum write band-

width of the BE tasks, it limits the size of the write bursts that the write

queue absorbs and throttles BE tasks once their limit is exceeded. To show

the effect of this mechanism, Figure 3.6 plots example distributions of DRAM

misses with respect to the inter-arrival time. Because BW metering limits the

burst size that the HMA will absorb, it reshapes the distribution by throt-

tling bursty tasks. We show later that this mechanism together with MRF

effectively limits the performance and QoS impact of colocation.
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3.3 ONSim

Evaluating our proposed mechanisms is challenging because it requires

running applications with large datasets for long durations. As discussed in

Section 3.5.3, prior approaches lack the speed, precision, and flexibility for

this purpose. To overcome the limitations of previous performance evaluation

techniques, we propose a new simulation infrastructure called the OS-level

NVM Simulator (ONSim). We implement ONSim by modifying the mem-

ory management module of the Linux kernel (2700 LOC). ONSim offers the

following benefits:

• Accurate HMA modeling. ONSim simulates dynamic data migration

and injects appropriate, configurable delay when NVM is accessed. In addi-

tion, ONSim collects the necessary information to enable a programmable

HMA manager to make informed migration decisions.

• Transparency. WSC workloads often have complex dependencies and it is

tedious or impossible to change all the source code (including libraries) to

use a simulator. ONSim leverages kernel mechanisms and runs unmodified

binaries.

• Low performance overhead is crucial for latency-critical WSC workloads

because the QoS target can be milliseconds or lower. ONSim does not

degrade performance when a program is not accessing NVM and hides the

overhead of its book-keeping within the NVM access delay.

• Flexibility. The ONSim infrastructure enables users to design and exper-
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Command line interface:

echo $DRAM_SIZE > ...
echo $NVM_LATENCY > ...
echo $PRIORITY > …

Unmodified binaries:

int main() { 
... 
char* buff = malloc(); 
... 
buff[0] = ‘a’; 
... 
free(buff); 
return 0; } 
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Figure 3.7: Simulator architecture.

iment with HMA systems with flexibility. ONSim provides multiple knobs

to enable users to change parameters (e.g., latency, bandwidth, buffer sizes)

at runtime. ONSim further enables users to program different system ar-

chitectures and data management policies to explore the design space of

HMAs. Our evaluation of page management policies (Section 3.4.2 and Sec-

tion 3.4.3) demonstrates this flexibility. ONSim can also be used to simulate

other architectures (e.g., disaggregated memory [113]).

3.3.1 Simulator Architecture

Figure 3.7 shows the overall architecture of ONSim. ONSim inter-

faces with the user through Linux Control Groups. Linux Control Groups

(cgroups [4]) is a kernel mechanism that accounts for and partitions shared
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resources (CPU, memory, network, etc.) among a set of tasks. A pseudo-

filesystem (cgroupfs) is used to interface with resource controllers. In this

work, we extend cgroupfs to identify each userspace program being simulated

and to configure the simulator and task priorities. We assume two priority lev-

els: latency-critical (LC) and best-effort (BE); finer-grain task management

can be easily achieved by adding more priority levels to the simulator. Users

configure both global parameters (e.g., read latency, write bandwidth, and

DRAM size) and per-cgroup parameters (e.g., job priority and migration pol-

icy) through the command line interface (Figure 3.7).

Users run unmodified binaries and ONSim intervenes only when neces-

sary to simulate HMA performance impact. We enhance the cgroups hooks

that tap into the memory allocation and reclamation process within the kernel

to monitor and intercept page allocations and deallocations. Pages that are

moved to NVM are poisoned [60] so the next access triggers a page fault and

ONSim can intercept the access.

We create and extend several data structures within the Linux kernel

to implement ONSim. We use several linked lists to track pages from jobs of

different priority levels in the simulated DRAM and NVM queues. We also

extend struct page to track frame location, state, and timing information

(see Section 3.3.3). However, the most important extension is to the page

table entries (PTEs). Specifically, we enhance the PTE to implement three

functionalities: poison NVM pages, track clean pages, and get page access

information for page migration policies. Figure 3.8 shows the bits we use in
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Figure 3.8: ONSim PTE extension bits.

ONSim. This extension is necessary to preserve the original functionality of

the kernel.

To accurately simulate the HMA microarchitecture and write band-

width of NVM, ONSim must only simulate writing back dirty DRAM pages

to NVM. ONSim intercepts the first write to a DRAM page that is already

mapped to NVM. We use the read/write (RW) bit in the PTE, and “virtual-

ize” this bit to not break existing kernel operation. We clear the RW bits to

force exceptions the first time when clean pages that are backed by NVM are

written to and again intercept the resulting page fault. To make sure the rest

of the kernel functions normally, we use one bit (RW Backup, or RWB) from

the ignored bits in the PTE to make a copy of the RW bit, and another bit to

indicate whether the page is “Backed by NVM and Clean” in DRAM (BC);

more details in Section 3.2.1. Functions that access the original RW bit now

check the BC bit first to determine which bit to operate on. When simulated

programs write to a page that does not have system RW permission (which

is decided by checking
((
BC ∧RW

)
∨
(
BC ∧ RWB

))
), the kernel follows its

original (non-ONSim) code path to handle the fault. If the fault is caused by
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accessing a page that has system RW permission and BC is set, the page is

marked with RW permission and an ONSim routine is invoked to track the

write.

Furthermore, we borrow a technique from the kstaled kernel patch [111]

to get page access information. The CPU sets the accessed (A) bit of the PTE

whenever data in the page is accessed, which a migration algorithm reads

and clears to approximate usage information. To ensure that ONSim does not

break existing kernel code, we again introduce two new virtual bits in the PTE.

“Accessed cleared by kernel” (ACK) is set whenever the A bit is cleared by

the kernel for normal system operations, and “accessed cleared by simulator”

(ACS) indicates that the A bit was cleared by ONSim. When the simulator

clears A to implement the simulated migration algorithm, it also sets ACS and

clears ACK; (A ∨ ACK ) indicates to the simulator whether a page has been

accessed. Kernel code does the opposite. The simulator can thus maintain its

own access information without perturbing the underlying host system.

3.3.2 Performance and Architecture Modeling

Because of the asymmetric read and write performance of NVM, we

treat read and write accesses to NVM differently. ONSim injects a user-

specified delay whenever an NVM page is read, unless the access hits in a

simulated queue (e.g., the NVM write queue). Because the system architec-

ture we model uses coarse-grained access NVM, threads block on NVM access.

ONSim cannot simulate an HMA with fine-grained hardware load/store NVM
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accesses. This is because there is no way to accurately model memory-level

parallelism within a thread without highly-intrusive instruction-level instru-

mentation/simulation to track dependencies on data read from NVM.

NVM writes happen when pages retire from the write queue. It is

important to accurately enforce write bandwidth because it can easily be the

performance bottleneck of an HMA. We buffer write requests and process them

the rate corresponding to the user-specified write bandwidth (currently as a

FIFO). ONSim uses a linked list to store these requests and tags them with

a timestamp. It checks this list asynchronously to pop out any entry that

should have finished, assuming write requests are processed serially. As the

write queue becomes full, it blocks more pages from migrating out of DRAM

and pauses the execution of a program until its oldest entry is freed.

ONSim simulates NVM delay using ”busy waiting” on timestamp coun-

ters. One accuracy feature in our implementation is that ONSim hides its own

latency by recording current time immediately after the interrupt type is de-

termined and uses it as the start time of future injected delay. The current

version of ONSim targets NVM with ≥ 5 µs latencies. ONSim can be extended

to accurately simulate latencies down to ∼ 1 µs by batching the simulation of

NVM accesses. In this mode only page state is tracked by the page-fault han-

dler (modifying PTEs), which we measure at 0.77 µs. Delay is then injected

for each batch of NVM accesses.
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3.3.3 ONSim Accuracy and Overheads

We first quantify the overhead and accuracy of ONSim itself before

evaluating an HMA. We use a well-known WSC workload (memcached) and

three synthetic workloads, each mimicking a different memory access pattern:

(a) Thrash iterates over each allocated page and with the default CLOCK

replacement, each memory access from the benchmark triggers a page

fault;

(b) Random accesses any of the allocated pages with uniform probability;

and

(c) Locality accesses 20% of the allocated pages with 80% probability.

Each synthetic workload has a dataset of 100 pages, while DRAM size

is just 50 pages. The working set and capacity are intentionally small (first

bytes of each page) to minimize OS overhead and remove any performance

bottlenecks (e.g., cache capacity). We use one million accesses in each config-

uration. Note that Thrash is a pathological case and represent the absolute

worst-case scenario. The target workload for HMA (which we evaluate later)

has much higher locality, and ONSim overhead and error are much smaller.

Performance Overhead We quantify performance overhead by the extra

execution time when workloads run under ONSim. We set both read and write

latency to zero so the performance overhead can be completely attributed
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to the simulator. The overhead is normalized to the execution time of each

benchmark when running without ONSim.

Figure 3.9a summarizes the performance overhead measurements with

the three single-threaded synthetic workloads mentioned above. Different

memory access intervals are used in the benchmark to mimic different levels of

memory intensity. Thrash consistently shows over 3 times more performance

overhead than Locality and represents the worst case scenario. In all three

cases, the average delay for each page fault is consistently ∼ 0.77 µs. At about

10 µs (33K CPU cycles) between consecutive page faults, the performance

overhead of ONSim is 6.8% with Thrash, 4% with Random, and 1.7% with Lo-

cality. The performance of multi-threaded workloads is more complicated to

analyze because of lock contention in the operating system and ONSim code,

and nondeterministic thread interleaving. Figure 3.9b summarizes the results

for multi-threaded Thrash synthetic workloads, showing increased lock con-

tention level causing noticeably higher performance overhead. However, the

overhead is different from performance error, which will be significantly smaller

if the simulated NVM read latency is high compared to ONSim’s overhead.

Finally, for a more representative overhead measurement, we use a sim-

ilar method of injecting zero delay to measure ONSim performance overhead

with memcached. We configure memcached with our worst-case scenario (low

locality, DRAM size is 40% of working set size, two memcached threads, more

details in Section 3.4.1), and measure a 2.9% performance degradation. Given

that memcached is a very memory intensive application, and ONSim perfor-
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Figure 3.9: ONSim Performance Overhead.

mance overhead is proportional to memory intensity and DRAM miss rate, we

believe ONSim has low enough performance overhead for simulating HMA for

most applications, including memcached.

Simulation Accuracy We quantify delay accuracy by the relative delay

error, shown below. We sweep a wide read-latency range, which includes the

delay of recently released 3D XPoint devices [3, 2, 161].

(
TONSim − TNative

#NVM Accesses
−Delay Target

)
/ Delay Target
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Figure 3.10: ONSim NVM-latency accuracy.

Figure 3.10a shows the average delay error for each single-threaded

benchmark. Our measurements show a consistent 0.39 µs extra latency, which

suggests that ONSim successfully hides 49.4% of its total overhead within the

NVM latency, given the exception delay observed. Figure 3.10b summarizes

the results for multi-threaded Thrash at a fixed access interval. Error is signifi-

cantly higher at low NVM read latency, which is expected because of high lock

contention levels. For our target NVM, the overhead of ONSim has negligible

impact on simulation results and the relative error plateaus at 3.3%.
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Table 3.1: Default workload generator configuration.

Parameter Value
Key size 30 bytes
Value size 500 bytes
Interarrival distribution Generalized Pareto
Dataset size 10 GB
Memcached server thread# 2
Default locality level Medium

Storage Overhead ONSim extends existing Linux data structures to track

page locations. Specifically, it adds extra fields into struct page, which is a

native kernel data structure that describes physical page frames. On a system

with 32GB DRAM the storage overhead is less than 1%.

3.4 Evaluation

3.4.1 Methodology

In the rest of this paper, we demonstrate the capabilities of ONSim

by using it to study the QoS impact of HMAs on datacenter workloads. We

perform various sensitivity studies of different system parameters, quantify

performance and QoS challenges in using HMAs for datacenter workloads, and

evaluate our proposed DRAM admission, DRAM occupancy, and NVM band-

width metering mechanisms. We perform experiments when latency-critical

tasks run standalone and also when colocated with best-effort tasks.

We use memcached [58] as a representative application with latency-

critical tasks. We generate queries to memcached using a published mem-
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Table 3.2: Default simulation parameters.

Parameter Value
DRAM size 6 GB
Write queue size 256 MB
NVM buffer size 512 MB
Maximum write bandwidth 100 MB/s
Read latency 20 us

cached request generator [112], which guarantees that the memcached server

is consistently under very high load. Table 3.1 lists the default parameters we

use in the rest of the paper. Most of the parameters are derived from observa-

tions of real world traffic [9]. We use query-per-second (QPS) as memcached’s

performance metric, and percentile latency as the QoS metrics. Enough client-

side threads are used such that performance is not bottlenecked by request

generation.

One important enhancement we made to the request generator is the

distribution of request indexes. We add a power-law distribution generator

to mimic locality of user requests [38]. More specifically, the frequency of the

k-th most accessed item out of all N items is C/ks, where s is the parameter

that controls the locality of the distribution, and C is a normalization factor

that guarantees the sum of the probability over all N elements is one. We

simulate three levels of locality: low, medium, and high, where 40%, 20%,

and 10% of the most-accessed records cover 80% of the accesses respectively.

We use medium locality by default (sweep analysis in Section 3.4.2). We also

use deterministic key and value sizes to prevent changes in ”hot” records from
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causing performance results to vary across runs.

When running memcached standalone, we limit its DRAM capacity so

that the time for the system to reach steady state (e.g., DRAM page migrations

and heuristics warm up) is tolerable. We use a relatively small number of

threads to reduce the error caused by contention in the kernel (Section 3.3.3).

We use a low NVM write bandwidth to match the small number of threads. In

the default configuration, we simulate two memcached threads with a 10GB

working set and use 6GB of DRAM, where the rest of capacity is provided

by NVM. The default workload parameters are summarized in Table 3.1, and

Table 3.2 lists the default values for major system parameters.

To understand the performance impact of task colocation, we run three

workloads as best-effort tasks and study the performance interference. In each

case, we configure memcached to use the same amount of memory as the BE

task and provision only half of the total memory as DRAM. Table 3.3 summa-

rizes the BE tasks we use and their memory usage. Graph500 is a well-known

workload that represents graph algorithms, which often constitute a core step

in many analytics workloads [1]. We use the breadth-first search (BFS) phase

of the algorithm. GUPS (Giga Updates Per Second) is characterized by ran-

dom memory accesses and consistently generates high write bandwidth [120].

Block Tridiagonal solver (BT) from NPB suite represents computational fluid

dynamics applications [12]. Notably, BT shows strong phase changes and will

demonstrate the effectiveness of the performance isolation schemes we discuss

later.
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Table 3.3: Best-Effort Tasks Used in This Study.

Workload Description Memory Usage
Graph500 Breadth-first search 4GB
GUPS Random memory access and updates 8GB
BT Strong phases changes 10GB

3.4.2 Standalone Execution

We first evaluate the impact of an HMA on the performance of mem-

cached when running alone. We follow the methodology described above and

explicitly identify any parameters we vary. We explore the impact of DRAM

size (constant 10GB memcached footprint), locality of the workload, latency

of NVM, and NVM write bandwidth.

Performance and locality Figure 3.11 shows the impact of DRAM capac-

ity on memcached performance (QPS) normalized to the performance when

running with sufficient DRAM (all-DRAM). Each bar group represents a dif-

ferent capacity of DRAM, bars within each group represent different NVM

latencies (5/10/20 µs), and the stacks within each bar show different levels

of locality. This experiment uses the default Linux CLOCK migration policy.

Two important observations can be made from the results. First, workloads

with higher data locality are more tolerant to NVM latency and smaller DRAM

capacity because their small “hot” data footprint can be more easily contained

in the DRAM.

Second, for the same locality level, as DRAM size increases, perfor-
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Figure 3.11: Performance sensitivity to DRAM size. QPS is normalized to
all-DRAM configuration. Bars with in each group represent 5/10/20 µs NVM
latency. Results show larger performance improvements when bottleneck shifts
from write bandwidth to read latency.

mance changes at two separate rates. When DRAM is small and misses are

frequent, performance is bottlenecked by NVM write bandwidth. However,

when DRAM size crosses a threshold (6 GB for low locality, 4 GB for medium

locality), performance bottleneck shift to read latency, which leads to higher

overall performance. The reduction in miss rates also improves bandwidth

usage. In Baseline configuration, the admission control mechanism reduces

read and write bandwidth usage by 23% and 26% respectively compared to

CLOCK. Other results are omitted due to page limitation.

Next we compare the caching efficiency of admission control compared

to CLOCK and an oracle policy. Figure 3.12 plots the ratio between NVM

reads and the number of memcached requests; assuming all important meta-

data (e.g., hash tables) are always cached in DRAM, this ratio approximates

the frequency of migrating pages from NVM to DRAM (the “miss rate”).

With 4GB of DRAM with low and medium locality, and at 6GB with low lo-

cality, the miss rate is significantly higher than when more DRAM or locality
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Figure 3.12: DRAM Caching Efficiency Sweep Analysis. Each group of bars
show results of low, medium, and high locality from left to right.

is available. The stacks in Figure 3.12 also show that admission control is still

far from a theoretical optimal migration policy. The oracle policy is simply an

estimate of the theoretical miss rate curve for each locality level when DRAM

covers different percentage of the most-accessed blocks. We factor in the seg-

mentation of record size with respect to page size and assume the oracular

replacement policy always keeps the pages with the highest access frequency

in DRAM. ONSim enables future studies of better migration policies than our

initial admission control mechanism.

Latency statistics Figure 3.13a shows the impact of NVM read latency

with the baseline CLOCK page migration policy. Other than latency, the

parameters follow those in Table 3.2. The line shows performance relative to

an all-DRAM system and the box plot shows average latency and the 5, 10,

90 and 95 percentiles for each read latency for the medium-locality workload.

At a low latency of 5 µs, average performance (normalized QPS) of medium-

locality workload is not affected when only 60% of the footprint fits in DRAM.
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However, even a fast device cannot provide satisfactory performance when

locality level is low. While results are not plotted, low locality configurations

suffer almost 30% performance degradation at 5 µs NVM read latency. At a

currently more-reasonable read latency of 20 µs, QPS degrades by 14% with

medium locality.

Figure 3.13b repeats the experiment using our DRAM admission pol-

icy. With the enhancement of page admission control, we can further reduce

DRAM miss rate by 2.8%, which is achieved by setting the idle distance thresh-

old to be 20% of the total DRAM size. In doing so, we not only reduce thrash-

ing of DRAM capacity, but also filter out victim pages that are not worth

caching. Overall, 63.8% of the evicted pages are from the 512 MB NVM

buffer. Remember we use a FIFO replacement policy in this buffer because

there is little locality. Overall, we are able to achieve 97.3% of the all-DRAM

QPS. Compared to baseline CLOCK, our DRAM admission policy improves

QPS by 11.3%.

To conclude, our systematic study demonstrates that, for memcached

with medium locality level, an HMA with even a 20 µs-latency NVM and

DRAM provisioned for just 60% of data footprint can deliver performance

with negligible degradation, while maintaining tail latency within 2.7% of that

when DRAM is overprovisioned.
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(b) CLOCK with Admission Control

Figure 3.13: NVM latency sweep. Curve is normalized QPS; the whiskers are
5%-ile and 95%-ile latency; box bounds are 10%-ile and 90%-ile latency; line
is average latency.
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Figure 3.14: Runtime statistics of memcached colocated with BT.
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Figure 3.14: Runtime statistics of memcached colocated with BT (cont.).
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Figure 3.15: Latency distribution colocated memcached.
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3.4.3 Colocation Scenarios

A major appeal of WSC is to maximize resource utilization. This can be

done by colocating best-effort tasks in the same nodes running latency-critical

high-priority tasks. We show detailed evaluation results of the colocation of

memcached with NAS BT [12]. BT exhibits strong interference and large

differences between multiple phases of execution. We also show summarized

results when colocating memcached with Graph500 and GUPS. In all experi-

ments, we use the default system and workload parameters (medium locality

and 20 µs latency). We configure the memcached workload to have the same

footprint as the interfering application. The system has enough DRAM for

just half of the combined memcached + BE task footprint.

Figure 3.14 shows how the relative performance (QPS for memcached

and IPC for BT, normalized to all-DRAM) and percentiles of memcached

query completion-times vary over time when memcached is colocated with

BT. Figure 3.14a shows a system with our admission control that is oblivious

to task priorities. Performance of memcached peaks at about 90% of all-

DRAM. This degradation is caused by increase in migrations as BT contends

for DRAM resources with memcached. As BT goes into its memory-intensive

phase, its IPC drops significantly because it saturates the NVM write band-

width. Memcached QPS degrades by another 10% in these periods. A similar

trend is observed for percentile request delays. Figure 3.14b shows the benefit

of our occupancy control QoS mechanism (Section 3.2.3). We set MRF to 2

(BT DRAM-to-NVM migrations occur twice as frequently as those of mem-
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cached). This prioritizes the DRAM occupancy of memcached at a coarse time

scale and increases average QPS by 7.1%. However, memcached performance

is still susceptible to BT write bursts and hence suffers from poor QoS and

large performance swings. These swings are mitigated by the write bandwidth

metering QoS mechanism (Section 3.2.4). Specifically, we limit BT to one third

of the 256MB write queue. Figure 3.14c shows that combining the two QoS

mechanisms effectively removes nearly all performance swings and achieves an

average of 95.7% of standalone QPS.

The completion-time statistics and performance are summarized in Fig-

ure 3.15). Thee QoS mechanisms are able to maintain memcached targets

even at the extreme conditions of this experiment, which mimic worst-case

peak usage scenarios on a system with 20 µs-latency NVM. This is achieved

without killing the BT best-effort task, which exhibits an IPC that is 14.3%

of its standalone performance. This is slightly higher than the 12.3% observed

without the Qos mechanisms in the baseline system. While this seems like

low performance for BT, it saves significant datacenter resources because the

alternative is to put BE tasks in dedicated BE nodes. Graph500 and GUPS do

not show strong phase behavior and colocation results for these two BE tasks,

together with that for BT, are summarized in Figure 3.16. Graph500 exerts

the least amount of pressure on memcached because it accesses cold data at

a much lower frequency. As a result, memcached is able to keep most of its

hot pages in DRAM. Graph500 also writes to few pages and does not saturate

the write bandwidth. When colocated with GUPS, memcached sees similar

82



Baseline Clock+ADM OccControl Metering
Configuration

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
ze

d
 Q

P
S

 a
n

d
 I

P
C

Graph500 IPC

BT IPC

GUPS IPC

Graph500 QPS

BT QPS

GUPS QPS

Figure 3.16: Performance results of task colocation.

performance to BT. However, performance of GUPS itself is completely bot-

tlenecked by NVM write bandwidth and doesn’t change significantly across

configurations.

3.5 Related Work

3.5.1 Heterogeneous Memory Architectures

Loosely, a heterogeneous memory architectures (HMA) is one that com-

bines multiple memory types in a single memory system, where data can be

accessed with fairly-low latency even from the slower memory device (e.g.,

under 10− 20 µs). Prior HMA studies can broadly be classified based on the

exposure of heterogeneity to the software.

Some prior work completely hides the HMA from software. Examples

include: an HMA with faster on-package, and slower off-package DRAM [156,

158, 179, 129, 157]; an HMA with a small DRAM acting as a cache for a
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separate slower NVM [146, 148, 144]; and possibly future memory modules

that offer DRAM-cached access to NVM on the same module [62]. At the

other end of the spectrum are architectures that fully expose memory het-

erogeneity to applications. Examples include: library interfaces for explicit

memory allocation within slower NVM [11, 171]; explicit use of on- vs. off-

package DRAM [128, 158, 34, 139]; and also architectures that directly target

fine-grained NVM (e.g., [32]) are out of scope of this paper. In addition,

there is work on application-specific use of an HMA. Debnath et al. study

a tiered-memory architecture optimized for key-value stores and propose to

use flash memory as a cache for disks, storing only hashing data in DRAM to

reduce DRAM footprint [43, 44]. Dulloor et al. design a system to place data

between DRAM and NVM using offline profiling and change the application

source code [50].

A third approach is to assume a heterogeneous memory architecture

(HMA) that is exposed to the operating system but transparent to userspace,

so userspace programs can benefit from it without modification to source code

or even the binary. Huang et al. optimize flash memory performance by reduc-

ing the overhead associated with translations and indirections across system

layers [79]. Memory 1 from Diablo is an NVDIMM-f device that relies on

kernel and BIOS changes to communicate with the processor [163]. Kannan

et al. propose to improve HMA performance in virtualized environment with

both host and guest OS support [98].

Our goal is to balance QoS and system cost instead of solely minimizing
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DRAM provisioning, so we assume 50%-60% of system memory is provisioned

by DRAM. While this assumption matches the observations made in previous

work [6], we also perform a sensitivity study on DRAM size in Section 3.4.2.

Such an architecture is especially interesting in a WSC environment because

it effectively exploits the important WSC workload characteristics observed

above. We show in this paper that HMAs can offer new tradeoffs to system

design by exploiting the high density of NVM with little-to-none performance

or QoS degradation.

3.5.2 Cache Replacement Policies

Our work is within the third category of HMAs described above. As

such, it essentially improves the page migration and replacement mechanisms

of the OS in a way that is aware of the HMA, aware of task priorities, and aware

of write-bandwidth constraints. The modifications we propose fall within the

large body of work on page replacement policies, whose surveying is beyond

what can fit within this paper. Our specific mechanisms relate to the classic

CLOCK algorithm [36], admission-control based page replacement [13, 53,

152], ideas related to the fair sharing of cache resources [103, 22, 145, 89],

and bandwidth metering [181, 106, 174, 133]. We note that ONSim makes

implementing and evaluating replacement policies for an HMA simple and

opens the door to much future work that more carefully evaluates prior ideas

in this new context.
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3.5.3 HMA Performance Simulation

Accurate simulation of HMA performance is challenging. Traditional

cycle-accurate simulators (e.g., Gem5 and MARSSx86) are unfit for this pur-

pose because of the slow simulation speed and limited support for running

complex workloads. One alternative is to statically map applications’ memory

address spaces into a custom ramdisk-like character device and inject delay

whenever the programs access these data from the device [166, 19, 162]. An-

other approach is to model performance of NVM by repeatedly injecting delay

during a program’s execution based on estimating the number of NVM ac-

cesses using performance counters [49, 169]. Moneta [20], HASTE [19], and

FAME [125] instead use FPGAs to capture NVM performance events. Ther-

mostat uses PTE manipulation techniques; it samples a small them [6]. It

hence can only estimate percentage of hot pages in application’s dataset, and

lacks the capability to simulate architectural and performance events in the

HMA. HMEP simulate NVM performance using proprietary BIOS firmware

and special CPU microcodes [124]. FlashVM [151], NVMalloc [171], NV-

Heaps [32], and SSDAlloc [11] use off-the-shelf devices to approximate the

performance of NVM.

Unfortunately, none of the previous approaches can effectively simulate

HMA performance. The custom ramdisk approach assumes static memory

mapping. As a result, it is not capable of gathering access frequency infor-

mation or simulate dynamic data migration between DRAM and NVM. Delay

injection per epoch omits many important architectural details, such as data
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location, DRAM replacement, bandwidth limitation, etc. All but FPGA- and

PTE-based approaches require changes to existing code, which significantly

limits them in running complex workloads. FPGA-based approaches are dif-

ficult to set up and are less flexible in modeling complex page management

algorithms compared to software approaches. PTE manipulation techniques

are ideal, but the capability of the sampling approach [6] is limited and cannot

accurately simulate architectural events.

3.6 Summary

In this work, we enable accurate and low-overhead evaluation of hetero-

geneous memory architectures (HMA) to study cost-efficiency improvements

for warehouse-scale computing. We design and implement ONSim, an OS-level

NVM Simulator that is transparent to all workloads and runs unmodified bi-

naries and libraries. We demonstrate that ONSim is highly accurate (≤3.3%

relative delay error) and has very small performance overhead (≤3%) when

simulating a range of interesting and relevant NVM access latencies (which

corresponds to realistic devices [3, 2, 161]). We use ONSim to quantify the

performance impact of NVM on memcached, a representative WSC workload.

We show that while memcached performance and QoS degrade with naive data

management schemes, simple mechanisms such as CLOCK replacement algo-

rithm and Idle Distance based page admission are able to achieve 97.5% of the

baseline memcached throughput with 40% of memory provisioned using NVM.

We further investigate the cause of performance degradation with task colo-
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cation and propose Miss Ratio Fraction based DRAM occupancy control and

Write Bandwidth Metering. Results show that these techniques are effective

in mitigating performance interference from colocated tasks, achieving 97.6%

of the baseline memcached throughput with 50% of memory provisioned us-

ing NVM. Finally, we identify additional architectural and microarchitectural

enhancement opportunities to further improve HMA performance and QoS.
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Chapter 4

Enforcing QoS for Accelerated Machine

Learning Systems

Development and deployment of machine learning (ML) accelerators in

Warehouse Scale Computers (WSCs) demand significant capital investments

and engineering efforts. However, even though heavy computation can be of-

floaded to the accelerators, applications often depend on the host system for

various supporting tasks. As a result, contention on host resources, such as

memory bandwidth, can significantly discount the performance and efficiency

gains of accelerators. The impact of performance interference is further am-

plified in distributed learning for large models.

In this work, we study the performance of four production machine

learning workloads on three accelerator platforms. Our experiments show that

these workloads are highly sensitive to host memory bandwidth contention,

which can cause 40% average performance degradation when left unmanaged.

To tackle this problem, we design and implement Kelp, a software runtime that

isolates high priority accelerated ML tasks from memory resource interference.

We evaluate Kelp with both production and artificial aggressor workloads, and

compare its effectiveness with previously proposed solutions. Our evaluation
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shows that Kelp is effective in mitigating performance degradation of the ac-

celerated tasks, and improves performance by 24% on average. Compared to

previous work, Kelp reduces performance degradation of ML tasks by 7% and

improves system efficiency by 17%. Our results further expose opportunities

in future architecture designs.

4.1 Background

4.1.1 Target Accelerator Use Case

We focus on the use case in which the accelerator is used by a sin-

gle application while the CPU is shared by multiple applications. This is in

contrast to previous work that assumes multiple workloads share the same

accelerator at the same time [24, 23]. While our assumption is different to

that of previous work, we find this use case to be very common in production

environments. Two main factors lead to our usage model. First, we observe

in our measurements that performance of the accelerated workloads is mostly

bottlenecked by accelerator memory BW. This is also confirmed by Jouppi et

al. [95], who arrived at a similar conclusion through detailed roofline analysis.

As a result, time-multiplexing accelerators is unlikely to improve performance.

Second, given the large datasets of many production ML workloads, acceler-

ator memory is often not large enough to fit the data of multiple workloads.

Time-multiplexing is hence infeasible due to the large overhead of data spilling.

However, we show in this work that, even in the absence of accelerator resource

interference, colocation of accelerated tasks and CPU tasks can still lead to

90



Processor Package

Core

LLC

Core

LLC

Core

LLC

Core

LLC

Interconnect

Memory 

Controller

ML Task CPU Task

P
C

Ie
In

te
rf

a
ce

Accelerator Package

P
C

Ie
In

te
rf

a
ce

Interconnect

Local Memory

Accelerator 

Engine

ML Task

Figure 4.1: Architecture of an accelerated platform.

large performance degradation.

4.1.2 Accelerator-CPU Interaction

We assume that each machine is shared by a high priority ML task and

multiple low priority CPU tasks. Accelerated tasks typically have high priority

because accelerators are often capable of higher computational throughput

and efficiency compared to CPUs, and customers are usually charged more for

using these resources ([66, 8]). Figure 4.1 shows the general architecture of an

accelerated platform. While the ML workload offloads its heavy computation

to the accelerator, part of the computation still runs on the CPU. These tasks

are often memory-intensive due to their large datasets. As a result, under

heavy memory BW contention, the CPU tasks in the accelerated ML workload

can easily become the bottleneck of the entire ML application.

One example of such dependence on the CPU is the parameter server

in distributed machine learning. In this configuration, a cluster of worker

tasks executes the TensorFlow graph using different training data, while the

shared parameters are hosted by multiple parameter server instances spanning
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across nodes [65, 41]. Figure 4.2 shows an example workflow. Each worker

first computes the gradients of the variables by gathering results from all local

accelerators 1 and sends them to the parameter servers 2 . Each parame-

ter server then aggregates the gradients and computes the updated training

variables using a pre-defined optimizer 3 [67]. Finally, updated variables are

copied to each worker at the end of the iteration 4 . The parameter server

tasks are memory intensive and can easily become the performance bottle-

neck of the entire service, as we show later in the paper. Furthermore, due

to the distributed nature of the computation model, performance degradation

on any parameter server instance is amplified at the service-level [40]. An-

other example of CPU assistance is the in-feed operation, in which the host

processor is responsible for interpreting and reshaping the input data before

it is consumed by the accelerators [68]. It is also common for CPUs to handle

miscellaneous computation tasks, which take advantage of CPUs’ capability to

handle irregular and complex instruction streams. For example, beam search

is a commonly used algorithm to reduce the search space in machine transla-
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tion programs [107]. Instead of greedily following the best candidate in each

iteration, beam search sorts partial solutions and expands on a subset of best

candidates [107]. Slowdown of the above tasks can starve the accelerators and

significantly degrade performance of the application. The machine learning

workloads used in this work include all three types of interaction discussed

above (Section 4.2).

The supporting role of CPUs in accelerator platforms brings new chal-

lenges in system design and resource management. Specifically, host memory

bandwidth (BW) interference can cause significant performance and Total Cost

of Ownership (TCO) loss for the entire accelerated application. To demon-

strate the impact of such interference, we show the execution timeline of a

production RNN inference server running on the TPU platform [95]. Each

query to the server in this workload is broken down into multiple iterations

and Figure 4.3 shows one such iteration. We further break down the execution

time into different phases, which include CPU-assist tasks, CPU-TPU commu-

nication, and TPU computation. We then show the execution timeline with

and without a DRAM aggressor. Note that for this illustrative example, we

generate requests serially to simplify the presentation of the trace.

The results show that, while the CPU-accelerator interaction is not sen-

sitive to the DRAM BW aggressor, the CPU-intensive phases are highly sen-

sitive to memory BW interference. Execution time for CPU-intensive phases

increases significantly by up to 51%. As a result, service-level tail latency in-

creases by over 70%. In this work, we first use synthetic workloads to confirm

93



0 1 2 3 4 5 6 7 8
Time (ms)

Colocation

Standalone

C
o
n

fi
g

u
ra

ti
o
n

CPU Communication TPU

Figure 4.3: RNN inference server execution timeline on a TPU platform. Ex-
ecution time for CPU-intensive phases increases by 51% under heavy con-
tention. The interleaving among different phases in the execution timeline is
on the order of sub-milliseconds to millisecond.

memory BW interference to be the dominant factor that causes performance

degradation. We further observe similar performance degradation with bench-

marks across platforms. If left unmanaged, the resulting performance degra-

dation can discount the efficiency gain of accelerators and cause significant

loss of the capital investments in accelerator development and deployment.

Such contention also highlights the needs for robust and efficient perfor-

mance isolation mechanisms. As shown in Figure 4.3, the interleaving among

different steps in the execution timeline is on the order of sub-milliseconds to

millisecond, which is too fine-grained for effective polling-based reactive core

throttling, such as the approaches proposed in previous work [119, 182, 176].

Request pipelining (as used in production environments and evaluation in

Section 4.4) further exacerbates this issue because the timeline becomes more

complicated due to phase interleaving and overlapping. Because of the above

reasons, hardware-based solutions, such as fine-grained memory BW QoS (e.g.,
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request-level prioritization), are much better suited to provide the much needed

BW interference protection in future system architectures.

4.1.3 Managing Interference at WSC Scale

Contention for host resources between the ML tasks and low priority

CPU tasks causes significant performance degradation and efficiency loss for

the accelerated workload. The resource contention problem is further exacer-

bated when deploying accelerators at the WSC scale by the following factors.

(a) Accelerated workloads can span multiple nodes and cross-node synchro-

nization is often necessary for each iteration of variable computation [5].

As a result, service-level performance of distributed workloads is even

more susceptible to interference due to “tail amplification” [40].

(b) ASIC accelerators are largely programmable, and different accelerated

workloads can have different levels of sensitivity to resource contention

and different requirements on host resources. As a result, an ideal solu-

tion needs to handle different application behaviors (e.g., compute and

memory intensity, interaction time granularity, etc.) at runtime.

(c) There is a large number of CPU workloads with drastically different

performance characteristics in WSC production environments [97]. Per-

formance of any colocated accelerated ML tasks can be severely impacted

without effective and adaptive isolation mechanisms.
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Workload Platform Description
CPU-Accelerator
Interaction

CPU Intensity
Host Memory
Intensity

RNN1 Inference TPU Natural language processing Beam search Medium Low
CNN1 Training Cloud TPU Image recognition Data in-feed Low Low
CNN2 Training Cloud TPU Image recognition Data in-feed High Medium
CNN3 Training GPU Image recognition Parameter server Low High

Table 4.1: Accelerated ML platforms and production workloads. Detailed
measurements are not publishable due to confidentiality concerns.

4.2 Accelerated Machine Learning Workloads

We use four ML workloads that run on three accelerated platforms in

this study (see Table 4.1; details of the workloads are, unfortunately, confiden-

tial because they are used in production). In this section we first describe the

platforms and workloads. We then analyze their sensitivity to different types

of shared resources.

4.2.1 Platforms and Workloads

The TPU platform is equipped with the first generation Tensor Pro-

cessing Unit. The TPU is a PCI-e based accelerator that targets inference

workloads. The execution engine is a Matrix Accumulation unit with peak

throughput of 92 TFLOPS [95]. We run an RNN-based natural language

processing inference workload (RNN1) on the TPU platform. Requests are

generated in a pipelined fashion to ensure high utilization of all computing

resources. Specifically, we sweep the query throughput (measured in queries-

per-second or QPS) and analyze the tail latency. The target throughput we

use in the paper is at the knee of the tail latency curve. The sweep plot is

omitted for brevity.
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Cloud TPU is the second-generation Tensor Processing Unit. A Cloud

TPU device has a peak throughput of 180 TFLOPS and 64 GB of high-

bandwidth on-chip memory [42]. Compared to the first generation TPU,

the Cloud TPU can also execute both training and inference workloads in

the cloud. We include two CNN training benchmarks (CNN1 and CNN2),

which have different CPU and memory intensities in the workload mix.

Finally, we also study GPU platforms which are widely used for train-

ing ML models (CNN3). While CNN3 is based on a distributed TensorFlow

architecture, we only use one GPU worker in the experiment in order to re-

duce noise caused by the network. The training steps of this benchmark are

processed in lock-step among all distributed workers and parameter servers,

and latency of the slowest parameter server can bottleneck the service-level

throughput [40]. As a result, performance degradation caused by resource in-

terference measured in production configurations is mostly similar to what is

observed in our evaluation.

4.2.2 Interference Sensitivity

As we discussed in Section 4.1.1, we focus on the use case in which one

high priority application has exclusive access to the accelerators. However, low

priority CPU tasks can still interfere with the accelerated task by contending

for shared resources, including in-pipeline resources and private caches shared

through simultaneous multi-threading (SMT), the last-level cache, and main

memory BW. To identify the performance bottlenecks and quantify sensitivity,
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Figure 4.4: Workload sensitivity to shared resource interference. Performance
is normalized to no interference.

we use the following two synthetic workloads (we will introduce more produc-

tion workloads in Section 4.4). LLC contends for the last-level cache, all

caches closer to the CPUs, and in-pipeline resources (SMT is enabled in all

experiments). Its dataset size is just small enough to fit in the LLC on the

CPU of each platform. DRAM contends for DRAM BW. It traverses a large

array that doesn’t fit in the LLC. On our multi-socket platforms, we use core

affinity and control the NUMA policy (numactl) to ensure that all threads

and data reside in the same socket as the accelerated workload.

Figure 4.4 summarizes the results of the sensitivity study. On average,

LLC resource contention causes a noticeable performance degradation of 14%.

However, colocation with the DRAM aggressor causes a dramatic 40% perfor-

mance loss on average. This result is surprising because the accelerators are

already designed to minimize interactions with the host CPUs [95]. While not

shown in our evaluation, we performed a sweep analysis of the ratio of compu-

tation and communication between accelerator and host CPU for CNN1 and
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CNN2. The same level of sensitivity is observed across the spectrum for both

workloads.

In the rest of this paper, we focus on mitigating performance inter-

ference caused by DRAM BW contention because it dominates the perfor-

mance degradation. We use a combination of production and synthetic batch

workloads in our evaluation. LLC interference is addressed by dedicating an

LLC partition to accelerated tasks using Intel’s Cache Allocation Technology

(CAT) [86]. We also identify another performance bottleneck in memory traf-

fic that crosses socket boundaries. Related experiments are discussed in Sec-

tion 4.5.

4.3 Kelp Design and Implementation

The goal of Kelp is to mitigate performance impact of DRAM BW

interference as observed in the previous section. While much work has been

done on various performance isolation mechanisms (Section 4.6), we are con-

strained to techniques that are already implemented today. A commonly used

approach explored by previous work is core throttling [119, 182, 176]. It relies

on a software runtime to detect performance interference and throttles tasks

at core granularity. While effective, core throttling is not efficient to fully

exploit the available bandwidth due to the coarse throttling granularity and

time granularity.

To further improve system efficiency, we leverage NUMA Subdomain

mechanisms to separate each socket into two NUMA subdomains, enabling
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Figure 4.5: NUMA subdomain and memory backpressure.

low priority tasks to take full advantage of memory BW resources. We also

discover and address challenges in shared memory backpressure [83] and fur-

ther enhance system throughput with subdomain backfilling. The rest of this

section describes the design of Kelp in more detail. Our exploration of existing

CPU capabilities also exposes challenges and opportunities for future system

architectures (Section 4.5).

4.3.1 NUMA Subdomain Performance Isolation

One of the key CPU mechanisms that Kelp relies on is NUMA subdo-

main performance isolation. Figure 4.5 provides a high-level overview of this

feature. The technique splits a physical socket (cores, LLC, interconnect, and

memory controllers) into two NUMA subdomains, which are exposed to the op-

erating system as two NUMA domains. Memory requests within each NUMA

subdomain are handled by the corresponding memory controller. While chan-

100



nel partitioning has been discussed before for CPU workloads [133], we evaluate

it on real accelerated platforms with Intel processors that implement this tech-

niques as sub-NUMA Clustering (SNC) [132] and Cluster-on-Die (CoD) [131].

As a result of the partition, local memory requests enjoy both lower

LLC and memory latency compared to when NUMA subdomain is disabled,

although latency for memory accesses to the remote NUMA subdomain will

be worse. Because memory traffic for each NUMA subdomain is handled by a

different memory controller, we can largely isolate contention for memory re-

sources between the accelerated tasks and low priority CPU tasks by assigning

them to two different NUMA subdomains.

4.3.2 Shared Memory Backpressure

While the NUMA subdomain ideally should provide almost perfect

memory isolation, in our experiments with synthetic benchmarks, we still

observe noticeable performance degradation. After further investigation, we

identify the source of cross subdomain interference to be the shared backpres-

sure mechanism, which is also shown in Figure 4.5. When CPU tasks in the

low priority subdomain generate a large amount of memory traffic, requests

queue up at the corresponding memory controller and saturate its bandwidth.

In such cases, that memory controller broadcasts a distress signal to all CPU

cores across the entire socket. After receiving the distress signal, the CPU

cores are throttled in order to avoid congesting the interconnection network.

Such throttling is essential in most cases to prevent unnecessary delay of other
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communication over the network. Unfortunately, this mechanism is detrimen-

tal in our use case because most of the memory traffic is routed within each

NUMA subdomain. Instead, this mechanism actually reduces the effectiveness

of the memory interference protection that NUMA subdomains can potentially

provide.

Fortunately, system software can measure the level of memory satu-

ration on our hardware using existing hardware performance monitoring in-

frastructure. Specifically, we use measurements from the performance event

FAST ASSERTED from the Intel uncore LLC coherence engine [83]. This event

reports the number of cycles in which the distress signal is asserted. We can

then quantify memory saturation by dividing this cycle count by the number

of elapsed cycles between two measurements. To control the memory pressure

generated by the low priority CPU cores, we resort to disabling L2 prefetch-

ers for the low priority CPU tasks [168], which significantly reduces memory

traffic at the cost of performance loss of low priority CPU tasks.

To demonstrate the impact of the global throttling caused by memory

backpressure and the effectiveness of toggling prefetchers, we run three acceler-

ated workloads (RNN1, CNN1, and CNN2) with synthetic DRAM aggressors.

The aggressors are configured to produce three levels of memory pressure (low,

medium, and high). Accelerated tasks and CPU tasks run in separate NUMA

subdomains. Performance of the accelerated tasks is normalized to that of

a standalone configuration. For each workload mix, we gradually change the

number of prefetchers disabled and plot the performance of the accelerated
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Figure 4.6: Performance impact of shared memory backpressure and effective-
ness of backpressure management with prefetchers toggling. Three levels of
aggressiveness of the antagonists (L, M, and H) are experimented with.
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task and measured memory saturation. For the RNN1 inference workload, we

further plot the 95%-ile tail latency. Results are summarized in Figure 4.6.

Each cluster of bars plots ML task performance (and tail latency for RNN1)

for the given prefetcher configuration across three levels of memory pressure.

Measured memory pressure is plotted as lines using the right axes.

Several observations can be made from the results. First, NUMA sub-

domains alone cannot provide enough protection. When no prefetchers are

turned off, RNN1 QPS decreases by 14% and tail latency increases by 16%.

CNN1 and CNN2 suffer a performance degradation of 50% and 10% respec-

tively. Second, turning off prefetchers successfully reduces the performance

degradation caused by shared backpressure for most of the workload mixes.

Finally, when memory pressure is low, performance of the accelerated tasks

may be slightly better than standalone due to the lower LLC and memory

access latency associated with enabling NUMA subdomains (e.g., CNN1 and

CNN2 performance is 9% and 2% higher than standalone in best cases).

4.3.3 Improving System Throughput

One significant limitation of using NUMA subdomains alone to provide

performance isolation is that this degrades total system throughput. Due to

the coarse granularity of NUMA subdomains (SNC and CoD), we can only

achieve memory BW interference isolation between two subdomains. As a

result, this approach can suffer from significant fragmentation of resources

(core, cache, and memory). We quantify this performance loss in Section 4.4.

104



To regain the lost throughput due to fragmentation, we backfill the high

priority subdomain with CPU tasks. We show in Section 4.4 that combining

backfilling with subdomains can improve system efficiency by 17%. This is

largely because CPU tasks in the low priority NUMA subdomain can have high

utilization of memory resources with relatively small performance penalty on

the colocated ML task. Furthermore, backfilling CPU tasks in the high priority

NUMA subdomain enables the system to leverage most of the fragmented

resources.

With task backfilling, it is crucial to tightly manage the BW interfer-

ence within the high priority subdomain. Since the DRAM BW is lower than

when NUMA subdomains are not enabled, a similar level of BW interference

can potentially cause even higher performance degradation. In this work, we

measure the BW consumed by the memory channels that correspond to the

high priority subdomain, and throttle CPU tasks when necessary by reducing

the number of cores available to the low priority tasks using CPU masks.

4.3.4 Kelp Workflow and Implementation

To put everything together, Figure 4.7 summarizes the architecture of

Kelp. Kelp is designed to run with the node-level scheduler runtime (e.g. Bor-

glet [167]) in order to gather necessary task information such as job priority

and profile. When applications are first scheduled onto the server, the corre-

sponding profile is loaded by Kelp, which includes high and low watermarks

for each measurement. Kelp assigns both accelerated ML tasks and low pri-
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Figure 4.7: Kelp architecture.

Algorithm 1 Kelp Resource Management Algorithm

1: procedure KelpResourceMngt
2: bws, lats, sats = MeasureSocket()
3: bwh = MeasureHiPriority()
4:

5: if HiBWh(bwh) or HiLats(lats) then
6: actionh = THROTTLE
7: else if LoBWh(bwh) and LoLats(lats) then
8: actionh BOOST
9: else

10: actionh = NOP

11:

12: if HiBWs(bws) or HiLats(lats) or HiSats(sats) then
13: actionl = THROTTLE
14: else if LoBWs(bws) and LoLats(lats) and LoSats(sats) then
15: actionl = BOOST
16: else
17: actionl = NOP

18:

19: ConfigHiPriority(actionh)
20: ConfigLoPriority(actionl)
21: EnforceConfig()
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ority CPU tasks to the designated subdomains. CPU tasks are prioritized to

be assigned to the low priority subdomain. At runtime Kelp makes four types

of measurements from the processor: socket-level memory bandwidth, mem-

ory latency, memory saturation (Section 4.3.2), and high-priority subdomain

bandwidth. Kelp samples system performance every 10 seconds and has neg-

ligible performance overhead. The effectiveness of Kelp is not sensitive to the

sampling frequency.

Algorithm 1 describes the node level resource management algorithm

used by Kelp. Subscripts denote the scope (subdomain or socket) that the

corresponding value describes. By comparing measurements from performance

counters with the watermarks specified in the application profile, Kelp chooses

to boost, throttle, or keep the resource configuration for low priority CPU tasks

in each subdomain. Algorithm 2 details the approach we use to configure re-

sources within each subdomain. When throttling the low priority subdomain,

we are more aggressive in disabling prefetchers in order to prioritize ML task

performance.

4.4 Evaluation

4.4.1 Methodology

We evaluate Kelp with four production ML workloads across three ac-

celerator platforms as listed in Table 4.1. For the colocated CPU tasks, we

use a combination of synthetic and production workloads:

• Stream traverses a large array that does not fit in the last-level cache of

107



Algorithm 2 Resource Configuration Algorithms

1: procedure ConfigHiPriority(actionh)
2: if actionh = THROTTLE then
3: if coreNumh > minCoreNumh then
4: coreNumh -=1

5: else if actionh = BOOST then
6: if coreNumh < maxCoreNumh then
7: coreNumh +=1

8:

9: procedure ConfigLoPriority(actionl)
10: if actionl = THROTTLE then
11: if prefetcherNuml > 0 then
12: prefetcherNuml /=2
13: else if coreNuml > minCoreNuml then
14: coreNuml -=1

15: else if actionl = BOOST then
16: if prefetcherNuml < coreNuml then
17: prefetcherNuml +=1
18: else if coreNuml < maxCoreNuml then
19: coreNuml +=1
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any of the platforms.

• Stitch is a production batch job that stitches images to form the panoramas

for Google Street View.

• CPUML is a production CNN training workload based on TensorFlow-

Slim [69]. CPU-based training as a low priority task is common because of

high resource availability.

To better demonstrate the effectiveness of Kelp, we compare evaluation

results of four system configurations:

• Baseline (BL): Task priority is specified through the Borg [167] interface;

resource contention is unmanaged.

• CoreThrottle (CT): A competitive resource management configuration

that closely mimics mechanisms from previous work[119, 182, 176]. Memory

BW interference is managed by limiting the number of cores available to

the low priority CPU tasks, while LLC interference is managed by using

dedicated LLC partitions to the accelerated tasks.

• Kelp Subdomain (KP-SD): A simplified Kelp implementation that uses

only NUMA subdomains (SNC and CoD) and manages global throttling due

to memory backpressure by toggling L2 prefetchers for CPU tasks [168].

• Kelp (KP): The full Kelp implementation which further improves system

throughput by backfilling CPU tasks.

We evaluate the workload mixes on real hardware. Experiment for each

configuration and workload mix combination is repeated multiple times and
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the median is reported. Performance results are captured from the applications

using application-specific metrics. Hardware measurements are made through

performance counters. Requests for RNN1 are generated in a parallel and

pipelined fashion. While the results are not included in the paper, we sweep

load generation configurations for RNN1 and choose a target rate at the knee

of the throughput-latency curve. Application profiles for each configuration

are derived from sweep analysis with synthetic aggressors.

4.4.2 Benchmark Case Studies

To understand the effectiveness of Kelp, we perform a configuration

sweep analysis that compares the performance of the four configurations for

all workload mixes. In this section, we discuss the results for two representative

cases.

In the first mix, we run CNN1 with Stitch. This workload mix is

interesting because CNN1 is highly sensitive to BW contention and Stitch ag-

gressively contends for BW resources. Figure 4.8a plots CNN1 performance

and Figure 4.8b plots Stitch throughput. As the number of Stitch instance

increases, Baseline performance of CNN1 decreases by up to 60%. In the

mean time, throughput of Stitch keeps increasing as more instances are added.

CoreThrottle improves the average performance of CNN1 by 16% while de-

creasing the harmonic mean of throughput of the low priority Stitch by 11%.

Subdomain further improves CNN1 average performance from CoreThrottle

by 12%, but Stitch suffers from a significant 25% average throughput degra-
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Figure 4.8: Memory pressure sweep CNN1 + Stitch.

dation. In comparison, Kelp improves the average performance of CNN1 from

CoreThrottle by 8%, while only reduces Stitch throughput by 9%. We con-

clude that Kelp achieves higher efficiency for this challenging workload mix

compared to previous work because it achieves 8% higher CNN1 performance

and 2% higher Stitch throughput.

For the second workload mix, we run RNN1 with CPUML. Compared to

the previous workload mix, RNN1 is less sensitive to memory BW interference

and CPUML is also less aggressive. Figure 4.9a plots the QPS of RNN1, Fig-

ure 4.9b plots the tail latency of RNN1, and Figure 4.9c plots the normalized

throughput of CPUML. In this workload mix, Baseline performance of RNN1
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(both QPS and tail latency) gradually plateaus as more CPUML instances

are added and system resources saturate. Comparing with the other three

configurations, on average CoreThrottle manages 9% average QPS loss, 13%

average tail latency increase, and 5% decrease in CPUML throughput. Sub-

domain achieves almost no performance degradation for RNN1 at the cost of

33% average CPUML throughput degradation. In comparison, Kelp achieves

the best of both worlds with 5% QPS loss, 8% tail latency increase, and 13%

average CPUML throughput degradation.

Figure 4.10 and Figure 4.11 show the key parameters that each of the

three performance isolation mechanisms use at runtime for the two workload

mixes. As a general trend, each mechanism becomes more aggressive in throt-

tling CPU tasks to enforce performance isolation as more memory BW con-

tention is introduced to the system. Overall, the second workload mix exerts

less stress on memory BW and the system is throttled less; in Figure 4.11b the

vanilla Subdomain configuration is able to achieve enough isolation without

having to toggle any prefetchers off. However, Kelp is able to consistently

achieve better performance isolation despite different levels of BW sensitivity

and interference. Comparing the number of cores allocated for CPU tasks be-

tween CoreThrottle and Kelp (Figure 4.10a and Figure 4.10c, Figure 4.11a and

Figure 4.11c), Kelp enables the CPU tasks to use more resources and achieves

higher system efficiency.
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Figure 4.9: Memory pressure sweep RNN1 + CPUML.
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(b) KP-SD prefetchers for CPU tasks.
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(c) KP cores allocated for CPU tasks.

Figure 4.10: Parameters for three performance isolation configurations for
CNN1 + Stitch.
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(b) KP-SD prefetchers for CPU tasks.
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(c) KP cores allocated for CPU tasks.

Figure 4.11: Parameters for three performance isolation configurations for
RNN1 + CPUML.
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Figure 4.12: ML and CPU task performance results.

4.4.3 Overall Results

Figure 4.12 summarizes the evaluation results for all workload mixes.

We plot ML workload slowdown on the left axis (average computed as arith-

metic mean) and CPU workload slowdown on the right axis (average computed

as harmonic mean). Compared to Baseline, Kelp reduces the slowdown of ac-

celerated ML tasks by 43%, at the cost of 24% CPU task throughput loss.

Compared to previous work, as represented by CoreThrottle, Kelp reduces the

slowdown of ML tasks by 7% while achieving the same CPU throughput. Com-

pared to Subdomain, Kelp increases ML task slowdown by 4%, but achieves

19% higher CPU task throughput.

To quantify the efficiency achieved by each runtime solution, we de-

fine a new metric that represents the tradeoff between ML and CPU task

performance. Specifically, we define the efficiency of a runtime to be the ra-

tio of performance gain of high priority ML tasks compared to Baseline, and

throughput loss of CPU tasks compared to Baseline. This metric can also be

interpreted as the ML task performance gain per unit of CPU task throughput
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Figure 4.13: Performance tradeoff comparison between CT, KP-SD, and KP.

loss (so higher is better). Note that this metric does not account for tail latency

changes (e.g., RNN1 + CPUML as shown above). Figure 4.13 summarizes

the results for all workload mixes. Overall, Subdomain has the lowest effi-

ciency because of the fragmentation of resources at coarse granularity. Kelp

has higher efficiency compared to CoreThrottle for almost all the workload

mixes we tested. While Kelp is less efficient than CoreThrottle for two RNN1

workload mixes, Kelp reduces the tail latency of RNN1 in both cases as we

demonstrated with the second case study above. On average, Kelp achieves

17% higher efficiency compared to CoreThrottle, and 37% higher efficiency

compared to Subdomain.

4.5 CPU Design Challenges and Opportunities

Our exploration of the capabilities of existing hardware also exposes

several challenges in CPU designs for accelerated platforms. We summarize

these challenges in this section and provide suggestions for future architectures.
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Figure 4.14: Workload sensitivity to remote memory interference compared to
LLC and local DRAM.

4.5.1 Remote Memory Interference

So far we have studied memory BW interference when both accelerated

ML tasks and low priority CPU tasks reside on the same socket. However, on

some of the platforms we tested, we notice remote memory traffic that crosses

socket boundaries causing exceptionally large performance degradation. To

focus on this issue, we use an additional synthetic workload Remote DRAM.

Remote DRAM is similar to DRAM with the exception that only some of

the data and threads are resident on the local memory socket (where the

accelerated ML task resides), while the rest reside in the remote socket. This

exercises the inter-processor interface (i.e., UPI [85] and QPI [82]). We observe

that, compared to TPU and GPU platforms, Cloud TPU platform (CNN1

and CNN2) are more sensitive to Remote DRAM traffic that crosses socket

boundaries. Figure 4.14 summarizes the results. Compared to the performance

degradation caused by DRAM, Remote DRAM causes an additional 16%

and 27% performance loss for CNN1 and CNN2.
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To further understand the performance impact of remote memory traf-

fic on the Cloud TPU platform, we perform a sweep analysis in which we

gradually change the percentage of the aggressor’s dataset on the socket local

to the ML tasks. Within each dataset percentage configuration, we sweep the

percentage of threads that reside on the ML tasks’ local socket. Results of this

experiment are shown in Figure 4.15. The figure shows that remote memory

traffic causes even higher slowdown than local memory interference. While the

high sensitivity can be an artifact caused by processor-specific implementation

choices (e.g., overhead associated with the coherence protocol), future scaling

of multi-processor multi-core systems is likely to encounter similar issues in

the memory subsystem. These architectural and micro-architectural decisions

can have significant system-level performance and utilization implications.

4.5.2 QoS-Aware Prefetching

We show in Section 4.3.2 that prefetching requests can cause high mem-

ory pressure. This is shown by the restored accelerated task performance when

L2 prefetchers for low priority CPU task cores are partially turned off. While

it is well understood that prefetcher requests should not impact the perfor-

mance of demand memory requests [52], this problem still exists in our scenario

because it involves interactions between the memory subsystem and NUMA

subdomains. Although Kelp solves the issue by managing prefetcher pres-

sure in system software, this functionality can be integrated into hardware.

A hardware-based solution has the advantage of being able to adapt to fast-
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Figure 4.15: Cloud TPU Platform Remote Memory Sweep.
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changing system behavior with little performance overhead. It can also guide

the aggressiveness of prefetchers based on the immediately-available informa-

tion of memory resources. Srinath et al. proposed similar ideas for adaptive

prefetching but, importantly, miss the key notion of priority across tasks [159].

4.5.3 Global Memory BW Backpressure

We show in Figure 4.6 that NUMA subdomains alone cannot provide

performance isolation because of the global memory backpressure mechanism.

The slowdown caused by global memory backpressure is an example of how

the on-chip interconnect and memory subsystems can together cause unex-

pected QoS issues. Specifically, the backpressure-based throttling mechanisms

do not differentiate requests coming from different subdomains. Ideally, mem-

ory backpressure should be sent to the offending hardware thread in order to

avoid unnecessary performance loss. Exposing the capability of throttling indi-

vidual threads to system software (through interfaces such as machine specific

registers [86]) can help further improve system utilization. One example is to

let users annotate priority of hardware threads so that low priority offending

tasks can be throttled first in cases of memory BW contention.

4.5.4 Fine-Grained Memory Isolation

While we show in Section 4.4 that Kelp is able to successfully isolate

performance interference and improve system efficiency compared to previous

work, it has the limitation of depending on SNC and CoD to achieve most
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of the benefits. Therefore, Kelp operates on a relatively coarse granularity.

Industry has made significant progress in enhancing the QoS capabilities of

server products. For example, Intel introduced the Memory Bandwidth Al-

location (MBA) feature in recent architectures that uses a hardware request

rate controller [86]. Users can de-prioritize memory-intensive jobs by throttling

these jobs’ memory requests [86]. Unfortunately, this rate controller appears to

throttle traffic from the core to the interconnect, last-level cache, and memory

controllers. As a result, any throttling decisions also impact last-level cache

BW in addition to main memory BW.

In future work, we will explore the possibility to further improve sys-

tem efficiency when enforcing QoS for accelerated tasks by hardware-based

fine-grained memory performance isolation [164, 91, 174, 181]. Compared to

software solutions (e.g., Kelp), hardware techniques can differentiate memory

requests from different tasks and handle them with different policies. By ex-

posing the hardware QoS capability to software, system software can further

control the tradeoff between ML-task QoS and system throughput.

To estimate the effectiveness of such fine-grained mechanisms, our eval-

uation results on Subdomain and Kelp in Figure 4.12 approximate an upper

bound of what can potentially be achieved. Specifically, fine-grained isolation

can achieve ML performance better than Subdomain (at least 4% higher than

Kelp), because Subdomain methods increase memory access latency at high

BW due to decreased channel interleaving. In the meantime, low priority per-

formance can still be higher than CoreThrottle or Kelp because the hardware

122



mechanism can achieve higher total memory BW utilization. More impor-

tantly, hardware solutions can provide more robust performance by adapting

to program behavior changes faster (we demonstrate examples of such oppor-

tunities in Figure 4.3), which is critical for high priority tasks that have short

execution time deadlines.

4.6 Related Work

4.6.1 Wide Adoption of Accelerators

Recent years have seen the increasingly wide adoption of accelerators,

especially for ML applications due to their inherently high computation and

data intensity. Notably, GPUs are frequently used in various ML frameworks

(e.g., [5, 94, 33, 59]) and applications (e.g., [108, 76, 160]). Jouppi et al.

describe the first generation TensorFlow Processing Unit (TPU) that targets

inference for neural network applications [95]. The recent release of the Cloud

TPU further expands the capability of Google’s ML accelerator to training and

to scale out using high-speed interconnection [42]. Many other ASIC neural

network accelerator designs (e.g., [21, 26, 29, 28]) and optimizations (e.g.,

[70, 71, 7, 175]) have been proposed while other work explores the option of

using FPGA-based solutions (e.g., [141, 142, 56, 55]).

Many other disciplines have adopted accelerators to improve perfor-

mance and energy efficiency for mission-critical tasks. Putnam et al. explore

the option of using FPGAs to accelerate Bing’s ranking stack [143]. Khazraee

et al. study designs of ASIC-based acceleration schemes for video transcod-
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ing and cryptocurrency systems [123, 102]. Baidu and Xilinx develop FPGA

acceleration services to accelerate encryption and decryption, in addition to

deep learning applications, for public Cloud services [63]. Intel also announced

Programmable Acceleration Card product that uses FPGAs to improve both

performance and efficiency of WSC workloads [84]. Custom accelerators are

also being adopted in the super-computing community. The Cray XT5H in-

tegrated CPUs and FPGAs with AMD’s HyperTransport interconnect [37].

Tianhe-2A uses a proprietary accelerator to improve performance and energy

efficiency [57]. The wide adoption of accelerators further emphasizes the im-

portance of enforcing QoS for accelerated workloads.

4.6.2 Accelerator QoS and Utilization

Accelerator QoS and utilization have been studied with different as-

sumptions in the past. Chen et al. study QoS for accelerators, assuming that

the accelerators are time-multiplexed between several tasks that are catego-

rized into two priority groups [24, 23]. Baymax focuses on performance inter-

ference caused by queuing delay and PCI-e BW contention [24]. It predicts

task durations using linear regression and KNN, and re-orders tasks based on

the prediction results to enforce QoS targets. Prophet further considers intra-

accelerator memory BW and profiles each application with testing inputs to

estimate runtime memory BW usage [23]. Shen et al. focus on the utilization

of arithmetic units for FPGA-based CNN accelerators and propose to partition

FPGA resources to improve utilization [155].
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However, we assume in this work that each accelerator device can be

subscribed by only one application at a given time. As shown in the roofline

model analysis in [95], performance for production workloads is almost always

bound by accelerator memory BW instead of computational throughput, so

there is little motivation to enable the time sharing of accelerators across appli-

cations. Doing so will also increase the complexity of on-chip memory manage-

ment and potentially data management overhead. Also, while not discussed in

the evaluation, we do not observe PCI-e BW constraining performance of the

profiled workloads. On the other hand, we demonstrate that resource inter-

ference of host memory can cause significant performance degradation across

various production workloads and accelerator types.

4.6.3 System Performance Isolation

There is a large body of work on performance interference and isolation

for tasks of different priorities, the most related of which monitor and manage

shared CPU [96, 126, 172, 176, 119, 182, 112, 78, 100, 87, 88, 91] and memory

[133, 164, 91, 174, 181] resources at runtime through various mechanisms.

Kambadur et al. conduct a study of application interference using

Google’s production datacenter workloads [96]. Mars et al. use microbench-

marks to measure workload sensitivity and stress for the memory subsystem

and schedule tasks accordingly [126, 172]. Zhang et al. propose to use CPI data

to identify interference issue and throttled the interfering tasks with CPU cap-

ping [176]. Heracles is a feedback-based controller that uses architectural tech-
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niques to guarantee that high priority tasks meet their latency targets [119].

Zhu et al. propose to convert latency headroom for high priority tasks to im-

proved system performance [182]. Jacob et al. and Hsu at al. study the tail

latency of memcached and address interference problems using an improved

kernel scheduler [112] and fine-grained voltage boosting [78]. Kasture et al.

propose a cache partitioning technique to balance the tail latency of high pri-

ority tasks and system throughput [100].

Muralidhara et al. propose to reduce memory interference through

channel partitioning [133]. Usui et al. [164] and Jeong et al. [91] focus on

memory request scheduling policies for SoC memory controllers. Yun et al. im-

plement a memory BW reservation scheme to provide memory isolation [174].

Zhou et al. study memory inter-arrival time traffic shaping and proposed to

avoid congestion caused by bursty traffic through BW metering [181].

Kelp builds on many of the ideas proposed by previous work (e.g.,

cache partitioning [100], core throttling [119, 182, 176], and channel partition-

ing [133]). However, we identify the new problem of performance interference

in accelerated machine learning platforms due to fine-grained interaction be-

tween CPUs and accelerators. We successfully apply a combination of the

above techniques in this new context. We show that these techniques, when

enabled by hardware, can effectively tackle the problem of accelerator QoS

which was not present before. Our detailed profiling of production workloads

also shows additional opportunities to further improve system utilization and

QoS for accelerated platforms through hardware-based performance isolation.
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4.7 Summary

In this work, we study the performance interference between high prior-

ity accelerated ML tasks and low priority CPU tasks. We use three accelerated

platforms and experiment with four production ML workloads. Our experi-

ments with synthetic workloads show that these production ML workloads are

highly sensitive to memory BW contention. Specifically, while core resource

contention causes a noticeable performance degradation of 14%, resource con-

tention for DRAM BW causes a 40% performance loss on average. To address

the resource interference problem, we design and implement Kelp, a software

runtime that isolates high priority accelerated ML tasks from memory resource

interference. Kelp uses existing hardware features such as cache partitioning,

NUMA subdomains, and memory pressure management by toggling prefetch-

ers. We evaluate Kelp with both production workloads and synthetic aggres-

sors and compare its effectiveness with a previously proposed solution. Results

show that Kelp is effective in mitigating performance degradation of the accel-

erated tasks and improves their performance by 24% on average. Compared

to previous work, Kelp reduces performance degradation of ML tasks by 7%

while achieving the same throughput from low priority CPU tasks, and in-

creases system efficiency by 17%.

The wide adoption of accelerators creates exciting opportunities to

evolve traditional system architectures. Our work focuses on node-level run-

time mechanisms and demonstrates multiple challenges posed by high-performance

accelerators. Specifically, we show that further exploring the design space of
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fine-grained memory performance isolation can potentially enable better trade-

off between performance and QoS of high priority accelerated tasks and total

system throughput. In future work, we would like to continue exploring the

architectural and micro-architectural opportunities to improve efficiency and

performance for accelerated systems. We would also like to study the QoS

impact of cluster-level task scheduling in the WSC environment.
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Chapter 5

Conclusion

This dissertation presents a set of cross-layer mechanisms that improves

the utilization and cost-efficiency of datacenter resources, which are driven by

the key observation on the statistical behavior of WSC workloads. Specifically,

I design and implement mechanisms that leverage this observation by carefully

exploiting spare hardware resources at runtime through cross-layer techniques.

I evaluate these mechanisms with real-world workloads and show that they can

achieve better tradeoff between performance and QoS of latency-critical tasks

and throughput of best-effort tasks. Overall, this dissertation has three main

components:

Multicore Systems. I explore opportunities to improve the efficiency of

task colocation on multicore systems in Chapter 2. The main insight is that

by reshaping the latency distribution curve, performance headroom of LC jobs

can be effectively converted to improved BE throughput. I develop, implement,

and evaluate a runtime system called Dirigent that achieves this goal with

existing hardware. Specifically, Dirigent predicts application performance with

a lightweight and accurate predictor, and reconfigures hardware resources at

runtime to adapt to resource interference.
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Heterogeneous Memory Architecture. To improve the cost-efficiency of

the memory subsystem, I explored opportunities enabled by Heterogeneous

Memory Architecture (HMA) in Chapter 3. I develop and build ONSim, an

OS-level NVM simulator, which transparently executes unchanged binaries.

I further propose a set of mechanisms that exploits the performance char-

acteristics of the target workloads and evaluated them with ONSim. These

mechanisms, while having negligible overheads, significantly improve DRAM

caching efficiency, automatically adjust DRAM occupancy, and avoid NVM

bandwidth interference.

Accelerated Machine Learning Systems. In Chapter 4, I study the per-

formance of production machine learning workloads on accelerated systems in

WSC environment. I show that accelerated ML tasks are highly sensitive to

memory interference due to fine-grained interaction between CPUs and ac-

celerators. I propose a runtime solution called Kelp to isolate performance

interference using a set of low-level hardware features. This study also mo-

tivates the need for fast and low-overhead fine-grained memory performance

isolation mechanisms.

While this dissertation studies opportunities across system components,

there is still a large design space to explore in WSC efficiency. The rest of this

chapter outlines other opportunities and challenges in future work.
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Priority-Aware Microarchitectures. Microarchitectures for CPUs are tra-

ditionally designed with performance and power efficiency as the main target-

ing metrics. However, to further drive the cost-efficiency of WSC, future mi-

croarchitectures also need to address the needs of priority-aware performance

isolation when tasks are colocated. Performance isolation at hardware level

has significant advantages over software-based solutions on both effectiveness

and robustness. As discussed in Chapter 4, computation in WSC is becom-

ing more heterogeneous and distributed, and the rapid maturity and wide

adoption of accelerators further highlight this challenge. While much work

has been done in studying and enforcing job fairness of specific system com-

ponents (e.g., [133, 164, 91, 174, 100, 145, 150, 81]), no holistic solution has

been proposed to enable truly safe task colocation for high-priority tasks at

low overhead. Many open research opportunities branch off from this topic,

such as holistic microarchitectural isolation mechanisms, SW/HW interface

for isolation capabilities, and designs of runtime system that leverage these

features.

QoS-Aware WSC Scheduler and Interaction with Runtime. Task

scheduling is critical to achieving high utilization and low contention. While

there is a large body of previous work on WSC scheduler [167, 153, 75, 64,

140, 48, 126], the interaction between scheduler and runtime is often not con-

sidered. In most cases, the QoS runtime can effectively mitigate performance

interference and reduce QoS impact on latency-critical tasks. A QoS-aware
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scheduler that cooperate with the node-level runtime will have more freedom

in terms of number of available node candidates to schedule a task on. This

is likely to help the scheduler to both improve schedule quality and achieve

higher resource utilization. A potential approach to this problem is to ana-

lyze the tradeoff between WSC performance benefits and scheduler overhead

across different extent of scheduler-runtime cooperation. There are also signif-

icant challenges in designing scheduling algorithms that can explicitly describe

and accommodate the resource requirements and interactions of tasks at low

latency and high throughput.
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