
Explicit uncore frequency scaling for energy
optimisation policies with EAR in Intel architectures

Julita Corbalan
Comp. Science Dpt. (BSC)
Comp. Science Dpt. (UPC)

Barcelona, Spain
Email: julita.corbalan@bsc.es

Oriol Vidal
Comp. Science Dpt. (BSC)

Barcelona, Spain
Email: oriol.vidal@bsc.es

Lluis Alonso
Comp. Science Dpt. (BSC)

Barcelona, Spain
Email: lluis.alonso@bsc.es

Jordi Aneas
Comp. Science Dpt. (BSC)

Barcelona, Spain
Email: jordi.aneas@bsc.es

Abstract—EAR is an energy management framework which
offers three main services: energy accounting, energy control
and energy optimisation. The latter is done through the EAR
runtime library (EARL). EARL is a dynamic, transparent, and
lightweight runtime library that provides energy optimisation
and control. It implements energy optimisation policies that
selects the optimal CPU frequency based on runtime application
characteristics and policy settings. Given that EARL defines a
policy API and a plugin mechanism, different policies can be
easily evaluated.

In this paper we propose and evaluate the utilisation of
explicit Uncore Frequency Scaling (explicit UFS) in Intel ar-
chitectures to increase the energy savings opportunities in the
cases where the hardware cannot select the optimal frequency
for the Integrated Memory Controller (IMC). We extended
the min energy to solution policy to select the CPU and IMC
frequencies and we executed and evaluated it with some kernels
and six real applications. Results showed an average energy
saving of 9% with an average time penalty of 3%. On some
use cases, the impact of explicit UFS compared with HW UFS
was up to 8% of extra energy savings.

Index Terms—Energy management, Data centers, energy op-
timisation, energy models, DVFS, uncore frequency, Intel

I. INTRODUCTION

The increase of new generation processors performance
and the race for achieving exascale machines have put on
the spotlight power/energy consumption as a factor that high
performance computing needs to consider very seriously. The
key challenge for green computing is to control/save power
and/or energy consumption without reducing performance.

The most employed technique to achieve this goal is through
Dynamic Voltage and Frequency Scaling (DVFS) which leads
to tuning CPU frequency. Since Haswell micro-architecture
[1], processors operate at different frequencies for core com-
ponents and uncore components (e.g. LLC and DRAM). Intel
architectures include a dynamic uncore frequency scaling that
automatically adapts the uncore frequency. However, even
though the hardware is doing a good job when selecting the
uncore frequency, there are use cases where a fine grain selec-
tion taking into account the impact on application performance
can result in a more energy efficient execution.

The fact Intel architectures expose the tools to explicitly
manage the uncore frequency brings an opportunity to save

This work has been funded by the BSC-Lenovo collaboration agreement.

power for some applications which not depend, or are not
bound, on uncore performance to get good throughput and also
for those applications for which hardware selects a suboptimal
uncore frequency in terms of efficiency.

EAR is a holistic system software for energy management
for data centers. One of the EAR services, among others,
is energy optimisation though energy policies executed in
the context of parallel applications. Energy policies are dy-
namically loaded by the EAR Library, and they have been
implemented as plugins. All the policies implements the same
policy API, being relatively easy to compare energy and
performance results with EAR and different policies. In the
previous work presented in [2] DVFS applied to the CPU was
the technique used by energy policies for energy optimisation,
where UFS was enabled by hardware.

This paper shows how we integrate the explicit Uncore
Frequency Scaling (we will refer also as eUFS in this pa-
per.) in EAR energy policies in Intel architectures (Skylake
in particular). The EAR API for energy policies has been
extended to select frequencies for the CPU and Integrated
Memory Controller (IMC) scopes. We have incorporated and
evaluated the utilisation of eUFS applied to one of the EAR
default policies: min energy to solution. The second one,
min time to solution, is still under evaluation.

We have extended min energy to solution to apply a state
diagram where the CPU frequency is selected in a first stage
and then the uncore frequency is selected. Section V presents
the different approaches evaluated for uncore frequency se-
lection. This paper presents the min energy to solution al-
gorithm and the extensions to incorporate the eUFS, the
new energy models used in this evaluation and the eval-
uation compared with using no energy policy and with
min energy to solution with hardware UFS. Results are pre-
sented using DC node power which includes all the sources of
power in a node and not only the package (PCK) power, which
are the components mostly affected by the uncore frequency.

For the evaluation we executed some kernels and real
applications with the uncore frequency enabled and disabled
compared with the execution at nominal CPU frequency and
UFS automatically done by the HW. We will present the
impact on time, average DC node power and energy.

Results show promising energy efficiency benefits when

1

explicitly dealing with the uncore frequency with a limited
performance penalty, where more computational intensive ap-
plications become ideal cases as they don’t get penalized when
reducing uncore frequency while we get package and DC node
power savings. For memory intensive applications we show
that UFS default management done by HW can be improved
to get a better ratio between energy savings and time penalty.
Results show an average energy saves up to 13.77% with a
time penalty up to 2.47% for cpu bound applications and an
average energy save up to 11.64% with a time penalty up to
4.95% for the worst case evaluated.

The rest of this work is as follows: in section II we present
the starting point by giving a first study on how UFS affects
power consumption and performance of some applications;
section III introduces EAR and how it works; in IV we
collect information of how Intel(R) processors manage IMC
frequency; section V contains our approach to join CPU fre-
quency selection with our eUFS for min energy to solution
policy followed by the evaluation in VI; finally, we show
related work in VII and conclusions and future work in VIII.

II. MOTIVATION

In order to look for opportunities in energy savings, we
ran some applications with fixed core and uncore frequencies
combinations to see the impact of these parameters on the
application performance. We ran tests with different pairs of
core and uncore frequency to mimic the case where EAR
selects the optimal core frequency based on the energy policy.
For details on CPU frequency selection see section III. The
goal of this experiment was to check if we could improve the
IMC frequency selected by hardware (see section IV) once
EAR sets the optimal CPU frequency.

Tests were made using a two socket Intel(R) Xeon(R)
Gold 6148 20 core package at 2.4GHz. DRAM memory
is DDR4 SDRAM with a maximum frequency of 2.4GHz.
Table I shows results for two kernels with the EAR policy
min energy to solution (see V-B). It shows the average cycles
per instructions (CPI) , memory bandwidth (GB/s) , average
CPU frequency and also the average IMC frequency selected
by hardware across three runs of each application using the
policy. We used 160 processes for class C multi-zone Block
Tri-diagonal solver (BT-MZ) executed across four compute
nodes (40 processes per node, OMP THREADS = 1) and 2
processes across two compute nodes (one process per node,
OMP THREADS = 40) for class D Lower-Upper Gauss-
Seidel solver (LU) , both taken from [3]. In the case of BT-
MZ, application signature corresponds with a CPU intensive
use case where the policy did not reduce the CPU frequency
and therefore the HW selected the maximum IMC frequency.
Second case, LU, is more memory intensive, so even though
the CPU frequency had been reduced one pstate in average,
the HW left the IMC up to the maximum. We can see how,
even having clearly different performance profiles, the uncore
frequency selected by the hardware has been the same.

This first test gave us the CPU frequency reference and the
IMC frequency selected by the HW. Given this reference, we

TABLE I
KERNELS’S METRICS APPLYING EAR’S MIN ENERGY TO SOLUTION

POLICY WITH HARDWARE IMC SELECTION

kernel CPI GB/s CPU freq.
(GHz)

IMC freq.
(GHz)

BT-MZ.C 0.38 10.19 2.38 2.39
LU.D 1.04 75.93 2.31 2.39

ran again applications with the CPU frequency selected by
the policy fixed since the beginning and the IMC frequency
set to its default values (2.4GHz - 1.2GHz) , allowing the
HW to dynamically set it. This second set of executions gave
us the performance and power reference metrics when using
a hardware uncore selection. The goal of these graphs was
to compare the uncore HW selection vs. an explicit software
selection.

To do this comparison, applications were executed again
with the same CPU frequency but fixing the uncore frequency
by setting values from 2.4GHz to 1.2GHz with 100MHz steps.
For each configuration, we also made three runs and computed
the average. Figures 1(a) and 1(b) show results for BT-MZ and
LU. Each graph contains, respectively, the average DC node
power and energy savings and time and GB/s penalties with
respect to the average of these metrics across the three runs
where we enabled the hardware UFS. The second y-axis shows
a constant line which represents the average IMC frequency
selected by hardware across these first three runs mentioned
for each application, respectively, and also the average IMC
for each fixed uncore frequency configuration.

We noted three facts when analyzing the above graphs. The
first one is that reducing the uncore frequency step by step
brings to more power saving than time penalty. This assertion
looks more clear on the first figure which shows results for a
less memory dependent kernel than the others, but it’s worth
mentioning for all figures that at lowest uncore frequencies
the time penalty outweighs energy saving. The second fact we
noted is that time and memory bandwidth penalties have very
closed results for the uncore frequency variations in figure
1(a) while for figure 1(b) we noted that uncore variation also
affects CPI performance. This leads us to think about GB/s and
CPI penalties as intuitive metrics for selecting a local optimal
uncore frequency.

III. EAR: ENERGY MANAGEMENT FRAMEWORK

EAR is a system software for energy management in data
centres [2]. EAR offers four main services concerning energy
management: Monitoring, Accounting, Control and Optimi-
sation. EAR Library (EARL) is a dynamic, transparent, and
lightweight runtime library that provides energy optimisation
and control. EARL identifies on the fly the application iterative
structure existing in many parallel codes. It does it without any
user intervention (without hints, code marks, tags, etc). When
the application is MPI, we use our Dynais technology to detect
outer loops of the application based on repetitive invocations
of MPI calls. When the application is not MPI, EARL is
time guided. Anyway, every 10 or more seconds depending

2

(a) Tests results for BT-MZ kernel. CPU frequency set to 2.4GHz. (b) Tests results for LU kernel. CPU frequency set to 2.3GHz.

Fig. 1. Average time penalty, average DC node power and energy save, memory bandwidth penalty for different fixed values of uncore frequency with respect
to execution with default uncore frequency range for BT-MZ and Lu kernels.

on the application and the architecture, EARL computes
the application loop signature. The duration of the signature
computation depends on the application and HW facilities to
measure power. As we use average DC node power1, typically
measured with IPMI commands, it cannot be measured at high
frequencies. Energy readings to compute power have been
done every 10 seconds 2. The loop (or application) signature
is a set of performance and power metrics characterising
application computational behaviour. This signature is then
used by the energy policy applied by EARL to select the
optimal frequency. Up to this paper, EARL have been only
dealing with CPU frequency. In this paper we extended one of
the energy policies included with EAR by default to select the
CPU and IMC frequencies. The policy selected for this paper
has been min energy to solution. The idea of this policy is
to minimise the energy by applying DVFS with a limit in the
performance degradation suffered by the application. Section
V describes the proposed min energy to solution extension
and it also includes the CPU frequency selection algorithm
used till now.

IV. UNCORE FREQUENCY MANAGEMENT IN INTEL
ARCHITECTURES

Haswell-EP was the first release which incorporated UFS,
an independent frequency management of uncore components.
Previous Intel(R) processor generations such as Nehalem-EP
and Westmere-EP have worked at fixed uncore frequency,
while Sandy Bridge-EP and Ivy Bridge-EP have used a com-
mon frequency for cores and uncore [4]. The IMC frequency
can be guided through writing on the Model Specific Register
(MSR) 0x620H called UNCORE RATIO LIMIT provided by
[5]. This register lets the user specify the minimum and
maximum values for uncore frequency through bits 14-8 bits
and 6-0 respectively, so hardware can then apply a multiplier to

1Computed using the accumulated energy.
2In this paper we have used Intel Node Manager for energy readings. INM

offers an energy counter updated every 1s.

get the operational frequency for each socket. In order disable
the default UFS mechanism offered by hardware the user may
put specific values for the two ranges of bits mentioned and
therefore the same value for both parts if one wants to set a
fixed IMC frequency. The available uncore frequency range
that a specific hardware offers can be read from this MSR
register after the boot.

By default, the hardware implements a control loop which
controls the uncore frequency based on the workload on
the current socket and the information given by the UN-
CORE RATIO LIMIT register. Authors of [4] state that an-
other factor to take in consideration is the Performance and
Energy Bias Hint (EPB) , which serves as a hardware heuristic
for power management features [5]. According to Intel’s patent
[6] and results showed in [4], uncore frequency selection
depends on the fastest active core frequency, and in [7] is
stated that it takes an average of 10 ms to detect workload
patterns changes and therefore adapt uncore frequency.

V. EAR ENERGY POLICIES WITH EXPLICIT UFS

CPU frequency selection is based on the application signa-
ture, the time and power predictions are made using the energy
model and the policy settings (specific for each policy). Each
policy predicts the time and power for each CPU frequency
using the models and selects the optimal CPU frequency,
were optimal depends on the policy. The utilisation of energy
models and signatures computed at runtime makes possible
EARL selects CPU frequency after few seconds of execution
and can be re-applied dynamically each time the signature
changes.

The application signature includes performance and power
metrics. The ones used by the energy models are: DC node
power, Iteration time, CPI, TPI (main memory Transactions
per Instruction) and the percentage of AVX512 instructions
compared with the total number of instructions (VPI).

3

A. EAR AVX512 energy model

The energy model is a new one based on the default model
used in [2]. The default model was proposed in [8] and [9]. It
has been extended to take into consideration the new types of
AVX instructions and their relationship with CPU frequency.
In this paper we have only considered AVX512 (and not
AVX2) instructions because AVX2 maximum frequency was
higher than the maximum frequency for non-AVX instructions
(when turbo was not used).

The new functions for predicting time and power receives
three inputs: the signature, and the source (from) and target (to)
pstates. Source is the CPU pstate at which the signature has
been computed and target is the CPU pstate we want to predict
time and power. The new model combines two predictions
each: (1) the one generated with the requested to CPU pstate
(default_pred) and (2) one were the target pstate has been
limited based on the maximum pstate supported when all cores
are running AVX512 instructions (avx512_pred). Finally,
time and power predictions are generated by combining the
two predictions (default pred and avx512 pred) weighted by
VPI. For example, in the Intel(R) Xeon(R) 6148 used in the
evaluation, the nominal CPU frequency is 2.4GHz and the
maximum CPU frequency for AVX512 when all the cores are
running is 2.2GHz, corresponding with pstate 3. This model
captures the fact that AVX512 instructions will not take benefit
of higher CPU frequencies.

B. Min energy to solution: CPU and explicit uncore frequency
selection

The min energy to solution basic algorithm is a linear
search. The algorithm selects the CPU pstate with the min-
imum energy where the predicted time penalty is below the
limit (limit = time *(1 + cpu_policy_th)). The
cpu policy th is a policy argument and it can be either speci-
fied at runtime or by default by the sysadmin. In the evaluation
of this paper, we have used 3% and 5% as cpu policy th
values.

EARL implements a state diagram to deal with application
phases, signature computation, policy validation, etc. Code
1 shows a simplified version of the function executed each
time a signature is computed. EARL re-applies the energy
policy until the policy state returned is READY. This allows
the implementation of iterative policies as it is this case.
Policy symbols are dynamically loaded in a policy operations
data structure with function pointers. The policy API is not
included in this paper but several application lifetime events
are captured to invoke policy functions. These events include,
among others, start/end of the application, loop, mpi call and
the signature computation.

s t a t e s t a t e n e w s i g n a t u r e (s i g t * s i g)
{

n o d e f r e q s t n e x t f ;
s t a t e n e x t = READY;
sw i t ch (e a r s t a t e){
case NODE POLICY :

n e x t = p o l i c y o p s . n o d e p o l i c y (s i g , n e x t f) ;

i f (n e x t == READY){
s e t f r e q s (n e x t f) ;
e a r s t a t e = VALIDATE POLICY ;

}
break ;

case VALIDATE POLICY :
ok = p o l i c y o p s . v a l i d a t e (s i g) ;
i f (! ok){

e a r s t a t e = NODE POLICY ;
p o l i c y o p s . s e t d e f (n e x t f) ;
s e t f r e q s (n e x t f) ;

}
}
re turn e a r s t a t e ;

}

Listing 1. EAR state diagram

The basic min energy to solution basic algorithm has been
extended and it is now the first stage of a more complex
policy. The policy implements the state diagram shown in
figure 2. The first time the application is executed, it en-
ters in the CPU FREQ SEL state and selects the CPU fre-
quency applying the basic min energy to solution algorithm.
Depending on the selected CPU frequency, it goes to the
COMP REF state, which is basically an intermediate state
to compute the reference metrics to the next state. In case
the CPU frequency selected is the default frequency for
min energy to solution (the maximum frequency), the policy
goes to the IMC FREQ SEL state directly. The policy enters
N times into this state until it reaches the optimal IMC
frequency.

We evaluated two approaches in this search: a linear search
and HW guided search. The first one sets the IMC frequency
to the maximum value and starts the search from this. The
second one lets the initial IMC settings to be decided by the
HW and then uses this value as reference. This second strategy
is faster than the first one because even though the HW is
applying a conservative strategy, it is faster than starting from
the maximum. In the evaluation section we will include only
results for the second strategy except in one of the cases to
show the impact of using HW guide.

The uncore configuration supports to specify the maximum
and the minimum frequency, so different alternatives could
be applied such as setting max and min to the same values,
defining a given range (0.1 GHz for example) between max
and min, or reducing only the maximum, being possible to be
reduced by the HW in case the application enters in a different
phase. We have done a pre-evaluation of the proposal (not
included in the paper) and decided to just move the maximum
uncore frequency and reduce it by 0.1GHz each try.

In order to control the impact of the uncore frequency, the
policy settings have been extended with a second threshold:
the unc policy th. This value is the percentage of extra per-
formance penalty supported because of the uncore frequency
scaling. This percentage is a limit on the supported CPI and
GB/s variation. If current CPI is greater than the reference
CPI + extra CPI (where extra CPI is CPI*unc policy th) or
current GB/s is bellow reference GB/s - extra GB/s (where

4

penalty > imc_th
state = READY

CPU_FREQ_SEL
state= CONTINUE

IMC_FREQ_SEL
state = CONTINUE

COMP_REF
state = CONTINUE

new_cpuf != curr_cpuf new_cpuf== curr_cpuf

penalty < imc_th

Fig. 2. Min energy to solution state diagram

extra GB/s is GB/s*unc policy th), the last uncore frequency
selected is reverted and the policy returns a READY state to
the EAR Library, otherwise the uncore frequency is reduced
by 0.1GHz and it returns a CONTINUE state.

When a policy returns with a READY state, the EAR
Library changes its internal to become stable (applies the
same CPU and IMC frequencies) until a significant change is
detected in the signature. In this work, we accept up to 15%
of variations in the signature before re-applying the energy
policy again. When a policy returns CONTINUE, it is executed
again once the signature is recomputed. To summarize the
min energy to solution extensions:

1) It uses a new energy model which takes AVX512
instruction characteristics into account.

2) IMC frequency selection starts on HW selection.
3) We change the maximum but not the minimum IMC

frequency.
4) An additional threshold is used to limit the performance

penalty.
5) CPI and GB/s are used to determine whether the IMC

is the optimal.
6) CPI and GB/s are used to determine signature changes.
As min energy to solution has become an iterative policy,

we have introduced an additional check to detect cases where
the signature changes during the IMC frequency selection. If
that happens, the policy state is set again to CPU FREQ SEL.
This situation is not usual, but it could happen.

VI. EVALUATION

We have evaluated two types of applications: single node
kernels and MPI real applications using multiple nodes.

A. Kernels

Table II shows the list of kernels executed. BT-MZ and
SP-MZ are the OpenMP implementation of the NAS parallel
benchmarks [3]. CUDA versions have been downloaded from
[10]. DGEMM is from the [11]. For OpenMP and MKL
kernels 40 threads are used whereas for CUDA kernels one
thread and one GPU are used. Columns show, respectivelly,
the application name, the programming model, the execution
time in seconds, the CPI and GB/s and the average DC node
power.

Kernels and applications have been executed in a cluster of
Lenovo ThinkSystem SD530 nodes where each node includes
two Intel(R) Xeon(R) Gold 6148 CPU @ 2.40 GHz (20c)

TABLE II
SINGLE NODE KERNELS

kernel Prog. Model Time
(s) CPI GB/s Avg.DC

Power(W)
BT-MZ.C OpenMP 145 0.39 28 332
SP-MZ.C OpenMP 264 0.53 78 358
BT.D CUDA 465 0.49 0.09 305
LU.D CUDA 256 0.54 0.19 290
DGEMM MKL 160 0.45 98 369

per node (Hyper-threading is activated, but we are not using
it.) , 40 cores in total and 12 * 8GB dual rank DIMMs per
node. Maximum/minimum uncore frequencies for this system
are 2.4 GHz - 1.2 GHz respectively. For all the experiments,
three runs have been executed, and we are using the average
of all three. For a fair comparison, all the executions for each
application have been done using the same set of nodes.

For the particular case of CUDA kernels, a Intel(R) Xeon(R)
Gold 6142M CPU @ 2.60 GHz (16C) with two NVIDIA
Tesla V100 per node at 1.38GHz. CentOS Linux release
8.2.2004 is installed and intel OpenMp version 2020.4.304
was used for OpenMP, CUDA 10.1 and intel mkl version
2020.4.304 for dgemm. Uncore frequency limits are the same
(2.4 GHz - 1.2 GHz). However, even though the nodes have
two GPUS, the kernels use only one and one single core
that is mostly running a busy waiting code. The power of
the second GPU is automatically reduced by the NVIDIA
driver both in the execution at nominal frequency and with
min energy to solution.

Table III shows the performance penalty, power
saving and energy saving when running the kernels
with min energy to solution policy with the uncore
frequency selection done by the hardware (ME) and
min energy to solution with explicit uncore frequency
selection done by EAR (ME+eU). We show performance
metrics compared with the default values when the
applications are executed at the nominal frequency (2.4
GHz for non-CUDA applications and 2.6GHz for the CUDA
ones). In the case of CUDA apps, the savings comes from
the fact the CPU is doing a busy waiting while the GPU is
computing. EAR detects the uncore frequency can be reduced
without affecting the application performance given the main
memory activity is very low. All these experiments have been
done with cpu policy th set to 5% and unc policy th set to
2%.

Results show there is window for improvement in energy
savings by doing a fine grain uncore frequency selection
additional to the HW selection. We can see how EAR is able to
get additional energy savings by reducing the uncore frequency
without penalising execution time.

To fully understand results, table IV shows the average
node CPU frequency3 and the average node IMC frequency
in the three use cases executed: No policy (nominal frequency
used in both CPU and GPU) , min energy to solution with
UFS done by the hardware and min energy to solution with

3Remember CUDA kernels use only one core.

5

TABLE III
SINGLE NODE KERNELS EVALUATION

Application Time penalty Power saving Energy Saving
ME ME+eU ME ME+eU ME ME+eU

BT-OMP.D 0% 1% 0% 8% 0% 7%
SP-OMP.D 1% 0% 0% 8% -1% 8%
BT.CUDA.D 0% 0% 10% 11% 10% 11%
LU.CUDA.D 0% 0% 0% 5% 0% 5%
DGEMM 0% 0% 0% 2% 0% 1%

TABLE IV
AVG CPU AND IMC FREQUENCY DOMAINS

Kernel Dom No policy ME ME+eU

BT-MZ.C CPU 2.38 2.38 2.38
IMC 2.39 2.39 1.98

SP-MZ.C CPU 2.38 2.38 2.38
IMC 2.39 2.39 2.08

BT.CUDA CPU 2.44 2.28 2.13
IMC 2.39 1.51 1.30

LU.CUDA CPU 2.02 2.01 2.05
IMC 2.39 2.39 1.60

DGEMM CPU 2.18 2.19 2.19
IMC 1.98 1.95 1.87

eUFS (done by EAR). The average is computed using all the
cores and the whole kernel execution. In this case the table
shows absolute values. We can see how in the OpenMP cases
the CPU frequency selected by the min energy to solution
policy is not reduced given the limit on the cpu policy th,
however, the new stage of the policy is able to reduce the
uncore frequency without penalty in all the cases. We can
see how the CPU frequency is adapted in all the cases (with
min energy) to CPU requirements and how the eUFS adapts
the uncore frequency to memory requirements. The case of
DGEMM is a bit different because this kernel has a VPI of
100% therefore the CPU frequency is automatically reduced
by the hardware (and the uncore frequency), so the eUFS done
by EAR is only applying a minor adjustment (from 1.98 to
1.87 in average).

B. Applications

For this second part of the evaluation we have used the
following applications and use cases.

• BT-MZ class D. Block Tri-diagonal solver from the NAS-
PB [3]. We used 160 MPI processes, four nodes.

• BQCD. Berlin quantum chromodynamics program [12]
is a Hybrid Monte-Carlo program for simulating lattice
QCD with dynamical Wilson fermions. We used 40 MPI
processes, four threads per task in four nodes.

• GROMACS. GROningen MAchine for Chemical Sim-
ulations [13] is a molecular dynamics package mainly
designed for simulations of proteins, lipids and nucleic
acids. In this work we present two different inputs, (I)
ion channel with 160 MPI processes equally distributed
within four nodes, and (II) lignocellulose-rf with 640
MPI processes within 16 nodes.

• HPCG [14]. The High Performance Conjugate Gradients
(HPCG) Benchmark project is an effort to create a new

metric for ranking HPC systems. HPCG is designed to
exercise computational and data access patterns that more
closely match a different and broad set of important
applications, and to give incentive to computer system
designers to invest in capabilities that will have impact
on the collective performance of these applications.

• POP [15] is the open source Parallel Ocean Model version
2 developed by Los Alamos National Lab. We used 384
MPI processes, 10 nodes.

• DUMSES [16] is a 3D MPI+OpenMP & MPI/OpenACC
Eulerian second-order Godunov (magneto)hydrodynamic
simulation code in cartesian, spherical and cylindrical
coordinates. We used 512 MPI processes, 13 nodes.

• AFiD. AFiD is a highly parallel application for Rayleigh-
Benard and Taylor-Couette flows. It is developed by
Twente University, SURFsara and University of Rome
”Tor Vergata” [17]. We used 576 MPI processes, 15
nodes.

In this section we present different use cases for applying
EAR’s eUFS in conjunction with min energy to solution pol-
icy: Eight applications which can be divided into two classes:
cpu bound (e.g. BQCD, the two GROMACS configurations
and BT-MZ) and memory bound (e.g. HPCG, POP, DUMSES
and AFiD) applications.

As stated for kernels evaluation, we present per-application
characteristics and average nodes CPU and IMC frequencies
in tables V and VI, respectively. In all the cases, we show per-
formance penalty (the lower the better) and energy and power
savings (the higher the better). Results compare the execution
with min energy to solution with the different cpu policy th
and unc policy th compared with the metrics when running
at the nominal CPU frequency and the IMC selected by the
hardware. Power and energy are evaluated with the DC node
power measured with the Intel Node Manager.

All the applications have been executed with a
cpu policy th of 5% except BQCD, where a cpu policy th
of 3% was used because this application gets more penalized
in terms of energy save.

By default, an unc policy th of 2% was used except in
BQCD and BT-MZ where different threshold have been shown
to demonstrate the effect of this parameter. Cases evaluated are
(except the specific thresholds):

1) ME: Min energy to solution where the uncore fre-
quency is selected by the hardware.

2) ME+eU: Min energy to solution where the uncore fre-
quency is selected by EAR.

Figure 3 shows graphically BQCD’s savings and penalties.
These configurations are the policy with HW UFS (e.g. ME)
and the policy with eUFS with different unc policy th (e.g.
ME+eU 1%, ME+eU 2% and ME+eU 3%). As the policy
doesn’t reduce core frequency, results for ME configuration
don’t show any saving, so the rest of configurations show
the effect of reducing uncore frequency in terms of DC node
power save and time penalty and the resulting energy save.
Note that power saving scales better than time penalty. Figure

6

TABLE V
MPI APPLICATIONS

kernel Time
(sec) CPI GB/s Avg.DC

Power(Watts)
BQCD 130.54 0.68 10.98 302.15
BT-MZ 465.01 0.38 6.60 320.74
GROMACS (I) 313.92 0.48 10.39 319.35
GROMACS (II) 390.60 0.63 13.34 315.48
HPCG 169.61 3.13 177.45 339.88
POP 1533.03 0.72 100.66 347.18
DUMSES 813.21 1.08 119.07 333.69
AFiD 268.22 0.77 115.20 333.65

TABLE VI
AVG CPU AND IMC FREQUENCY DOMAINS

Application Dom No policy ME ME+eU

BQCD CPU 2.38 2.37 2.38
IMC 2.39 2.39 2.19

BT-MZ CPU 2.38 2.38 2.38
IMC 2.39 2.39 1.79

GROMACS
(I)

CPU 2.28 2.27 2.27
IMC 2.39 2.04 1.91

GROMACS
(II)

CPU 2.29 2.27 2.27
IMC 2.39 1.45 1.41

HPCG CPU 2.38 1.75 1.73
IMC 2.39 2.39 2.29

POP CPU 2.38 2.23 2.23
IMC 2.39 2.35 2.06

DUMSES CPU 2.38 2.12 2.12
IMC 2.39 2.39 2.13

AFiD CPU 2.38 2.2 2.22
IMC 2.39 2.35 2.17

Fig. 3. Average time penalty, DC node power and energy save for BQCD
applying different min energy to solution (ME) configurations.

4 shows same behaviour for BT-MZ, but we show results
for applying unc policy th values from 0% to 2%. First case
(e.g. unc policy th to 0%) shows that we can reduce uncore
frequency without reducing per-iteration execution time (See
section III) and we are still saving power.

Figure 5 shows results for GROMACS(I) when executed
with cpu policy th 3% and 5% respectively (both cases with
unc policy th set to 2%). In this case, we show the impact
of selecting the uncore frequency without the hardware guide
(e.g. Not-Guided Uncore, ME+NG-U) or using it as the
starting point for the algorithm (ME+eU). This second strategy

Fig. 4. Results comparing average time penalty, DC node power and energy
save for BT-MZ applying min energy to solution policy (ME) and EAR’s
UFS (ME+eU) configurations with a cpu policy th value of 3%.

Fig. 5. Average time penalty, DC node power and energy save for GRO-
MACS(I) applying different min energy to solution (ME) configurations with
a cpu policy th value of 3% and 5%.

is the one used by default but we have included this case here
to show the benefits of this solution. Note that adding EAR’s
UFS policy (e.g. ME+NGU and ME+eU) leads to improve
results of applying a HW UFS policy (e.g. ME) giving an
energy save up to 7.32% for a cpu policy th of 3% and 8.17%
for a cpu policy th of 5%, which leads to get savings up to
7 and 3 times greater than time penalties, respectively. This
figure also shows that a less restrictive DVFS policy (e.g.
cpu policy th value of 5%) brings more energy savings than
a more restrictive one at the cost of getting more time penalty
due to reducing both CPU and IMC frequencies.

Figure 6 shows a simplified graph where we put results for
applying ME policy with a cpu policy th and unc policy th
values of 5% and 2%, respectively, on GROMACS(II). In this
case, EAR’s uncore frequency selection on ME+eU has been
the same than the hardware’s UFS applied on ME test, but
we could improve energy savings as EAR’s UFS mantains the
selected uncore frecuency fixed after HW’s selection.

In a similar fashion we present results for HPCG and
POP in figures 7(a) and 7(b), respectively. On the former

7

Fig. 6. Average time penalty, DC node power and energy save for GRO-
MACS(II) applying different min energy to solution (ME) configurations
with a policy cpu th value of 5%.

ME+eU doesn’t improve ME’s efficiency ratio (e.g. 3.5 vs.
4.76, respectively) as this application is the most memory
bound we present in this work, but leads to improve energy
saving if a time penalty up to 3.33% is tolerated. The latter
shows a ratio improvement up to 2.31.

Finally, we show a comparison of applying EAR’s eUFS
using different cpu policy th values for DUMSES and AFiD
applications in figures 8(a) and 8(b), respectively. Figures
show how EAR offers flexibility by giving to the user two
threshold values which will be related to the final execution
time of the application. In both cases it can be seen that
different combinations can be chosen depending on whether
the user wants to optimise the efficiency ratio between energy
save and time penalty or wants to improve the energy savings
get by only applying DVFS policy. For example, in figure 8a as
the average core frequency remains the same for both ME and
ME+eU tests, the ratio gets improved in the two cpu policy th
cases. On the other hand, figure 8b shows that AFiD lost CPI
when applying ME+eU tests, but note that the average core
frequency for ME+eU tests with policy cpu th of 3% was
very closed to ME tests applying a policy cpu th value of
5%, but in the first case, as EAR had applied its UFS, the
resulting energy savings were better than the latter.

In this section we presented different use cases for apply-
ing EAR’s UFS in conjunction with min energy to solution
policy. We showed eight applications which can be divided
into two classes: cpu bound (e.g. BQCD, the two GROMACS
configurations and BT-MZ) and memory bound (e.g. HPCG,
POP, DUMSES and AFiD) applications. For those in the first
class, we have seen that reducing uncore frequency leads
to save power and energy without significantly affecting the
execution time and we have even managed to obtain savings
opportunities for those cases where the DVFS policy does
not reduce the core frequency to prevent the application from
being affected in terms of performance. For the second one
class, we showed how we can improve energy savings offered
by DVFS policy applying EAR’s eUFS where in most cases
the average uncore frequency remained one or two MHz below

TABLE VII
DC NODE POWER SAVINGS VS. RAPL PCK POWER SAVINGS

Application DC Node Power RAPL PCK power
BQCD 4.69% 10.56%
BT-MZ 10.15% 15.03%
GROMACS (II) 14.06% 15.65%
HPCG 14.49% 16.88%
POP 10.25% 13.37%
DUMSES 13.13% 15.43%
AFiD 12.02% 13.37%

default hardware selected frequency.
Finally, we have compared the average DC node power

variation and the average RAPL PCK (package) power when
using the ME+eU policy. All the papers in the related work
(see VII) use the RAPL PCK power as reference to evaluate
energy and power savings as well as for developing their
controller-based policy like [18], [19]. The PCK power is a non
constant percentage of the DC node power, this is the reason
why we think we must evaluate energy policies with DC
node power. Table VII shows the DC and PCK power savings
when running with ME+eU with the cpu policy th 5% and
unc policy th 2% compared with the nominal CPU frequency
and hardware UFS. As we can observe, the difference is not
constant. Moreover, these values are percentages but the same
behaviour, even more, can be observed in absolute values.
Using PCK rather than DC node power could lead us to
incorrect conclusions in terms of savings.

VII. RELATED WORK

There exist several studies about UFS in order to get
energy savings on the execution of HPC applications without
considerable losses in execution time. [1] presents a survey
of architectural features among different generations of Intel
processors and show how Uncore clock speed has an impact on
the power consumption of memory (and L3 cache) bandwidth
applications such as LINPACK and HPCG benchmarks. [7]
is a study about energy efficiency and performance impact
features of new Intel(R) Skylake-SP architectures. The most
relevant to what we are dealing with is that it shows hardware
latencies on UFS changes and AVX frequencies to adapt
itself to application behaviour changes. Authors previously
published a similar study with Haswell-EP micro-architecture
in [4]. Remain works that play with UFS can be divided in two
main categories: model-based and controller-based strategies.

First ones create models based on the impact of Uncore
frequency on performance and power consumption. In [20]
search trees are used to find the optimal Uncore frequency
values for SPEC CPU2017 benchmark suite on Intel Xeon
Processor E5-2620 v4 server. Authors build a model based on
apps’ cache characteristics taking into account that multiple
apps are running at the same time on the same core, and make
experiments executing programs for 30 seconds. This approach
predicts optimal Uncore frequency but not Core frequency,
and the predictor is executed once before the application
execution, while our approach is based on changing CPU
and IMC frequencies dynamically based on execution time

8

(a) (b)

Fig. 7. Results comparing average time penalty, DC node power and energy save for HPCG (a) and POP (b) applying min energy to solution policy (ME)
and EAR’s UFS (ME+eU) configurations with a policy cpu th value of 5%.

(a) (b)

Fig. 8. Results comparing average time penalty, DC node power and energy save for DUMSES (a) and AFiD (b) applying min energy to solution policy
(ME) and EAR’s UFS (ME+eU) configurations with policy cpu th values of 3% and 5% and policy imc th value of 2%.

metrics. Authors of [21] develop a tuning plugin for Periscope
Tuning Framework that selects optimal OpenMP threads and
build a neural network to select the optimal CPU and IMC
frecuencies. They also make comparisons for static and dy-
namic tuned applications from NPB, CORAL, Mantevo and
LLCBench benchmark suites and the real world application
BEM4I on two Intel Xeon E5-2680v3 processors with 12
cores each. Finally, [22] build a model to evaluate the impact
of Core and Uncore frequency on power consumption and
performance loss on a 20 core Haswell-EP platform using class
C NAS benchmarks and the real-world application GAMESS
for evaluating the proposed work. Authors also compare in
[23] the quality of their strategies based on only controlling
DVFS and joining it with UFS in GAMESS.

Those in the second category aim to find local optimal
Uncore frequency by changing it during execution time taking
as reference the impact of Uncore frequency changes on some
metrics. Controllers consist of two principles. First, based on
the fact that a reduction of the uncore brings power savings

without significantly decreasing performance, they try to lower
the uncore. Then with metrics obtained from this uncore
change they decide whether this change has achieved the
expected effect and decide whether to keep lowering it, keep
it, or raise it. In [18] authors monitor DRAM power to detect
phase changes and IPC to detect performance degradation,
as they relate these metrics to memory intensive and cpu
intensive phases, respectively. They show results for some
class C NPB and class D ECP proxy applications suites,
running up to 16 Broadwell with two Intel Xeon CPU E5-2620
v4 @ 2.10GHz with eight cores each. Authors of [19] find a
similar approach but this time they use memory bandwidth
and FLOPS as metrics for their controller, but also checks for
L3 cache bandwidth changes to detect phase changes. They
also compare their result with the last mentioned [18], getting
similar results on power savings but improving performance
penalty on Broadwell and Skylake microarchitectures, using
class C for most of NPB on first testbed and class D for
the second one. They also make tests with High Performance

9

Linpack and LAMMPS and Nwchem.
All works presented use RAPL for power performance

accounting. This paper shows how we integrate a controller-
based approach to manage UFS in EAR framework. We
present an algorithm here which coexists with EAR’s
min energy to solution policies, trying to be a counterpart of
it to improve energy savings in terms of DC node power and
per-application execution time. For MPI applications where
EARL is guided by Dynais our method can manage uncore
frequency with direct knowledge of time penalty. On the other
hand, when EARL policy is called periodically (e.g. no MPI
application) , our UFS policy lets to be parametrised by the
metric the user wants to limit its penalisation, which will be
correlated with the performance. We also take into account the
limitations imposed by hardware when selecting the uncore
frequency.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has presented an extension on the EAR Li-
brary to include the uncore frequency selection on en-
ergy policies and the integration of this new option in the
min energy to solution policy. This feature has been evalu-
ated on Skylake architectures with different types of applica-
tions. Results have demonstrated there are three main sources
of energy savings: CPU bound applications where the CPU
frequency is the nominal (or turbo) , memory bound appli-
cations and CPU bound where the average CPU frequency is
lower than nominal.

After considering different strategies, we have selected a
HW-guided strategy as the best one, using HW uncore fre-
quency selection as the starting point for our search algorithm.
CPI and GB/s metrics variation have been selected as the
reference to identify the additional penalty introduced by the
uncore frequency reduction. Results have shown a maximum
benefit of 13.77% of energy savings when using a software
uncore frequency selection. The configuration used by default
in this paper have been done with a maximum penalty of
5% for the CPU frequency selection and an additional 2%
for the uncore. However, the maximum performance penalty
measured has been 4.95%. The average energy savings and
time penalty have been 8.75% (with seven out of eight
applications having more than 10%) and 2.91%, respectively.

As a future work, we are integrating the same strategy in
the other policy included with EAR, min time to solution. In
this case, we are also considering additional strategies such as
increasing the uncore frequency. We are also evaluating the po-
tential impact on high communication intensive applications.

ACKNOWLEDGMENT

Authors want to thank the SURF Open Innovation Lab, in
particular Dr Axel Berg and Sagar Dolas with their help in
evaluating POP and AFiD and also to Marc Joos for his help
with DUMSES application.

REFERENCES

[1] J. Hofmann, G. Hager, G. Wellein, and D. Fey, “An analysis of core-
and chip-level architectural features in four generations of intel server
processors,” High Performance Computing, p. 294–314, 2017. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-58667-0\ 16

[2] J. Corbalan, L. Alonso, J. Aneas, and L. Brochard, “Energy optimization
and analysis with ear,” in 2020 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 2020, pp. 464–472.

[3] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo, and
M. Yarrow, “The nas parallel benchmarks 2.0,” Technical Report NAS-
95-020, NASA Ames Research Center, Tech. Rep., 1995.

[4] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and
R. Geyer, “An energy efficiency feature survey of the intel haswell pro-
cessor,” in 2015 IEEE international parallel and distributed processing
symposium workshop. IEEE, 2015, pp. 896–904.

[5] Intel(R) 64 and IA-32 Architectures Software Developer’s Manual, Intel
Corporation, Apr 2021. [Online]. Available: https://software.intel.com/
content/www/us/en/develop/download/

[6] “Dynamically controlling interconnect frequency in a processor,” U.S.
Patent US9 323 316B2, 2016.

[7] R. Schöne, T. Ilsche, M. Bielert, A. Gocht, and D. Hackenberg, “Energy
efficiency features of the intel skylake-sp processor and their impact on
performance,” in 2019 International Conference on High Performance
Computing & Simulation (HPCS). IEEE, 2019, pp. 399–406.

[8] R.Bell, L. Brochard, D. DeSotta, R. Panda, and F.Thomas,
“Energy-aware job scheduling for cluster environments,” U.S. Patent
US8 527 997B2, 2011.

[9] L. Brochard, R. Panda, D. DeSota, F. Thomas, and R. H. Bell Jr,
“Power and energy-aware processor scheduling,” in Proceedings of the
2nd ACM/SPEC International Conference on Performance engineering,
2011, pp. 227–234.

[10] Npb-cuda web page. [Online]. Available: https://www.tu-chemnitz.de/
informatik/PI/sonstiges/downloads/npb-gpu/index.php.en

[11] Intel® math kernel libray. [Online]. Available: https://software.intel.
com/en-us/mkl/documentation/code-samples

[12] The BQCD website. [Online]. Available: https://www.rrz.uni-hamburg.
de/services/hpc/bqcd/

[13] The GROMACS website. [Online]. Available: http://www.gromacs.org
[14] Hpcg benchmark. [Online]. Available: https://www.hpcg-benchmark.

org/
[15] Parallel ocean program. [Online]. Available: http://www.cesm.ucar.edu/

models/ccsm4.0/pop
[16] The DUMSES website. [Online]. Available: https://github.com/

marcjoos-phd/dumses-hybrid
[17] E. P. Van Der Poel, R. Ostilla-Mónico, J. Donners, and R. Verzicco,

“A pencil distributed finite difference code for strongly turbulent wall-
bounded flows,” Computers & Fluids, vol. 116, pp. 10–16, 2015.

[18] N. Gholkar, F. Mueller, and B. Rountree, “Uncore power scavenger: A
runtime for uncore power conservation on hpc systems,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’19, vol. 27. New York,
NY, USA: Association for Computing Machinery, 2019, pp. 1–23.
[Online]. Available: https://doi.org/10.1145/3295500.3356150

[19] E. André, R. Dulong, A. Guermouche, and F. Trahay, “DUF :
Dynamic Uncore Frequency scaling to reduce power consumption,”
Feb 2020, working paper or preprint. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-02401796

[20] S. A. Bekele, M. Balakrishnan, and A. Kumar, “Ml guided energy-
performance trade-off estimation for uncore frequency scaling,” in 2019
Spring Simulation Conference (SpringSim). IEEE, 2019, pp. 1–12.

[21] M. Chadha and M. Gerndt, “Modelling dvfs and ufs for region-based
energy aware tuning of hpc applications,” in 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2019,
pp. 805–814.

[22] V. Sundriyal, M. Sosonkina, B. Westheimer, and M. Gordon, “(2018)
core and uncore joint frequency scaling strategy,” Journal of Computer
and Communications, vol. 6, pp. 184–201, 2018.

[23] V. Sundriyal, M. Sosonkina, B. M. Westheimer, and M. Gordon,
“Comparisons of core and uncore frequency scaling modes in quantum
chemistry application gamess,” in Proceedings of the High Performance
Computing Symposium, ser. HPC ’18, vol. 13. San Diego, CA, USA:
Society for Computer Simulation International, 2018, p. 11.

10
© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI 10.1109/Cluster48925.2021.00089

