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As technology scales down, the likelihood of hardware errors that

silently corrupt the results of applications is increasing. Evaluating the re-

silience of applications against hardware errors is thus of significant concern.

Current evaluation techniques via error injection are either low-fidelity or inef-

ficient in terms of using computing resources. This dissertation demonstrates

that sophisticated integration of injectors across abstraction layers and novel

sampling algorithms can significantly improve both the fidelity and efficiency.

Specifically, this dissertation describes an open-source instruction-level error

injector that generates high-fidelity hardware errors due to particle strikes

and voltage droops. Two acceleration techniques, nested Monte Carlo and

Injection-Point Overprovisioning, are proposed to speed up error injection

campaigns by 1 − 2 orders of magnitude. This dissertation also answers the

question of when high-fidelity is needed to evaluate the impact of hardware

errors on applications and the effectiveness of error detectors.
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Chapter 1

Introduction1

Due to technology scaling and the need of energy efficiency, hardware

is increasingly susceptible to various run-time fault sources that may lead to

errors, which corrupt architectural state. However, the impact of hardware

errors on applications varies. Some errors have no impact on some applica-

tions, some lead to system crashes, and others, which are known as silent-data

corruptions (SDC), silently corrupt the results of applications. Hence, under-

standing the application-level effects of hardware errors is crucial for evaluating

the reliability of computer systems.

The error-injection Monte Carlo methodology is widely used to quantify

the impact of hardware errors on applications and the effectiveness of detectors

designed to catch errors. This methodology requires thousands of application

runs for sufficient accuracy. Each run injects one error by perturbing the

state at some level of the system (e.g., the transistor level, the gate level, the

micro-architectural level, the instruction level, or the application level) and

then application-level impact is observed. The statistically expected impact is

1Part of this chapter appears in [1]. The author of this dissertation is the main contributor
of the idea, implementation, and evaluation. The other coauthors in [1] assist development
of the idea and implementation.
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derived by analyzing injection results.

As compute resources are limited, to obtain results in a reasonable

amount of time, researchers heavily rely on instruction-level error injection. It

models errors by corrupting an instruction of the application under test. Com-

pared with low-level injection (e.g., injecting to flip-flops at the gate level) that

requires significant compute resources for hardware simulation, instruction-

level injection is faster by five orders of magnitude [2].

However, existing instruction-level injection methodologies have a mod-

eling fidelity problem. Ideally, the way that instructions are corrupted should

match the effects of actual hardware errors. Errors generated at the gate level

are high-fidelity as they are close to realistic hardware errors. In contrast, as

shown later in this dissertation, existing error models at the instruction level

(e.g., randomly flipping a bit of an operand) are low-fidelity because they do

not take operand values into account.

This dissertation demonstrates that it is possible to use high-fidelity er-

rors, which model particle strikes and voltage droops, at the instruction level

and still maintain the higher injection speed of prior tools. The key enablers

are hierarchical injection and novel sampling algorithms. Hierarchical injec-

tion combines a faster high-level injector with another detailed injector that

is launched on demand to generate high-fidelity errors. The novel sampling

algorithms accelerate the entire injection process by 1−2 orders of magnitude

while keeping sampling quality equal.
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The aforementioned error injection framework and acceleration tech-

niques are bundled into the Hamartia hardware error analysis suite2 that is

open-source and available to the resilience community. Hamartia enables rapid

evaluation of software-based error detectors against realistic hardware errors.

This research conducts case studies to evaluate the effectiveness of compiler-

level and application-level error detectors at mitigating SDCs.

1.1 Research Goals

A desirable instruction-level error injector should generate high-fidelity

error patterns to model various hardware errors without impacting the effi-

ciency of reliability evaluation. Since existing injectors are either low-fidelity

or inefficient, this dissertation develops a high-fidelity instruction-level error in-

jection methodology along with novel acceleration techniques in order to meet

the following goals and obtain new insights (e.g., understanding the effects of

fidelity on experimental results).

High-fidelity error injection: Existing instruction-level injectors commonly

rely on simple error models (e.g., single-bit flips) even though it is already

known that such low-fidelity models do not match error patterns in actual

hardware [3, 4, 2]. An ideal injector should generate error patterns that are

as close to realistic hardware errors as possible.

Rapid resilience evaluation: Evaluating the resilience of applications using

2Available at https://lph.ece.utexas.edu/users/hamartia

3
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low-fidelity models is already time-consuming and requires significant compute

resource (thousands of core-hours per application). Improving error fidelity

must not exacerbate the evaluation overhead. Furthermore, as applications

and software-based error detectors are evolving rapidly, the error injection

methodology should be fast enough to keep up with them.

Open-source evaluation framework: Modern hardware development heav-

ily relies on proprietary tools and so does detailed error injection methodology.

Ideally, the parallelism of error injection experiments should not be artificially

limited by the number of tool licenses. It is thus beneficial to have a resilience

evaluation framework that is independent of proprietary tools and publicly

available to the community. In addition, open sourcing makes scientific results

reproducible and expedites the development of novel research ideas.

Comprehensive error modeling: Transient hardware errors result from

various run-time fault sources, each having distinct impact at the system

level. Existing instruction-level injectors assume particle strikes as the error

model [5, 6, 7, 8, 9, 1], though researchers have pointed out that circuit timing

uncertainty also poses challenges for low-power system reliability [10, 11, 12].

It is desirable for an injector to encompass as many error models as possible

for evaluating different types of errors.
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Table 1.1: Open-Source Error Injectors.

Injection High Acceleration Beyond
Level Fidelity Techniques Particle Strikes Platform

LLFI [13] LLVM IR LLVM
KULFI [14] LLVM IR LLVM
P-FSEFI [6] Emulation QEMU
gem5-Approxilyzer [15] Micro-arch X x86
FAIL* [16] Micro-arch, binary x86, ARM
PERSim [17] Gate level X X OpenRISC (FPGA)
Chiffre [18] Gate level X RISC-V (FPGA)
Hamartia Gate level, binary X X X x86

1.2 Current Approaches

Current resilience studies employ hierarchical injection to enhance error

fidelity with low overhead and error pruning to accelerate instruction-level

error injection. However, none of the existing open-source tools meet the

above goals simultaneously (Table 1.1).

1.2.1 Hierarchical Injection

Although low-level error injection (e.g., at the gate level) leads to high

error modeling fidelity, it is too slow to obtain results in a timely manner (five

orders of magnitude slower than instruction-level injection [2]). To strike a

balance between injection speed and fidelity, previous work proposes hierar-

chical injection where a faster injector invokes another detailed injector just

in time [19, 20, 21, 22]. However, using hierarchical injection alone is not

fast enough because many injected errors are masked within hardware with-

out affecting the software layers, which significantly increases the number of

Monte Carlo trials and the total evaluation time. This research introduces

5



new acceleration techniques to speed up resilience evaluation.

1.2.2 Error Pruning

Several acceleration techniques are proposed to prune error-injection

paths that are unimportant [23, 24, 25]. However, they are only applicable

when errors propagate to the micro-architectural level or to the instruction

level. As described later in this research, many hardware errors are masked at

the circuit level or the gate level without corrupting architectural state. Thus,

additional techniques orthogonal to error pruning are needed for high-fidelity

error injection.

1.3 New Approaches in This Dissertation

This dissertation not only adopts hierarchical injection to enhance error

fidelity but also proposes two novel sampling algorithms to accelerate high-

fidelity error injection at the instruction level. The general idea of these new

algorithms is to save evaluation time by embedding multiple Monte Carlo

trials per application run while keeping sampling quality equal. In addition

to high-fidelity error models for particle strikes, this research also develops

high-fidelity error models for voltage droops. All of these error models and

acceleration techniques are bundled within an open-source resilience evaluation

suite named Hamartia,3 which meets the above design goals.

3Hamartia means to err in Greek.
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Key discoveries from evaluation include: (1) without detectors, single-

bit flips are a good approximation of high-fidelity errors resulting from particle

strikes, (2) existing low-fidelity error models do not represent errors caused by

voltage droops, and (3) software-based detectors can effectively detect errors

caused by particle strikes but not voltage droops.

1.4 Contributions

To summarize, the objectives of this research are: (1) increasing error

modeling fidelity, (2) reducing the number of application runs while keeping

sampling quality equal, and (3) evaluating the effects of modeling fidelity on

experimental results. This work makes the following contributions:

• This research develops Hamartia, an open-source hardware error analysis

suite with high fidelity and low overhead.

• This research enhances Hamartia’s modeling fidelity for particle strikes

and voltage droops.

• This research introduces two novel sampling algorithms, nested Monte

Carlo and injection-point overprovisioning, which speed up error injec-

tion by 1− 2 orders of magnitude while keeping sampling quality equal.

• This research evaluates the impact of errors on applications and the

effectiveness of software-based error detectors at mitigating SDCs.

7



1.5 Dissertation Structure

Chapter 2 reviews the basic concepts of hardware transient errors and

resilience evaluation techniques. Chapter 3 introduces Hamartia, an open-

source and high-fidelity error injection and detection suite used throughout this

research. Chapter 4 develops error models for particle strikes in tandem with

an acceleration technique called nested Monte Carlo. Chapter 5 proposes er-

ror models for voltage droops along with another acceleration technique called

injection-point overprovisioning. Chapter 6 evaluates the effectiveness of vari-

ous software-based error detection techniques using error models developed in

this research. Finally, Chapter 7 summarizes this research and sheds light on

future directions of error injection and resilience studies.
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Chapter 2

Background

Before describing the contributions of this research, some fundamental

concepts are reviewed in this chapter. Section 2.1 introduces relevant termi-

nology and assumptions in this dissertation. Section 2.2 surveys the different

methodologies for resilience evaluation. Section 2.3 summarizes the simple yet

low-fidelity error models widely used in resilience studies at the instruction

level.

2.1 Hardware Faults and Errors in Computer Systems

This research denotes faults as physical events that affect hardware

components. If a fault eventually changes the architectural state, it becomes an

error. The focus is transient (soft) errors in particular since they are random

and transient in nature and thus hard to detect. In contrast, permanent

faults that frequently lead to errors are typically detected once they occur. As

modern computers usually protect memory with error checking and correcting

codes (ECC), this research focuses on transient errors resulting from faults in

arithmetic and logic units. Furthermore, this research is concerned with the

impact of errors, but not the rate of errors. This is because the fault rates for

9



current technologies are well-studied [26, 27, 28, 29], and the fault rates for

future technologies are largely unknown.

2.1.1 Fault Mechanisms

This dissertation specifically discusses two types of fault mechanisms:

particle strikes and voltage droops. Both mechanisms are expected to occur

more frequently due to technology scaling and low-power design.

2.1.1.1 Particle Strikes

Energetic particles from the environment can interact with a sensitive

node in a micro-electronic device and cause electron-hole pairs that perturb

the state of the affected node until a new value is written. The major contrib-

utors are high-energy neutrons from cosmic rays [30]. Although these faulty

events rarely occur, modern processors are sensitive to particle strikes as they

contain billions of transistors. This is the fault mechanism assumed by most

prior work on instruction-level error injection [5, 6, 7, 8, 9, 1]. Both mem-

ory components and combinational logic are susceptible to particle strikes.

Chapter 4 in particular discusses the modeling of particle strikes.

2.1.1.2 Voltage Droops

Voltage variations (or droops) include static IR drops and dynamic dI
dt

droops [10]. The former is the result of current (I) passes through resistance

(R) in the power distribution network. The latter is caused by abrupt changes

10



in switching activity that induce transient changes to current and voltage.

As voltage fluctuates, circuits can experience timing violation and thus some

flip flops may latch a wrong value. Since the magnitude of IR drops are

static throughout the execution of applications, this dissertation focuses on dI
dt

droops.

Processors typically have pre-determined operating points (in terms of

clock frequency, supply voltage, and temperature) that are known to be safe.

Additionally, sufficient design margins (or guardbands) are added to account

for various variations in the field such as process, voltage, and temperature

variations, ensuring that the processor functions correctly even in the worst

cases. Prior work has shown that such guardbands account for about 18% of

total node power [31, 32].

A new design strategy known as better-than-worst-case (BTWC) de-

sign has emerged [33]. The rationale behind BTWC design is that in typical

scenarios the processor can run with reduced guardbands without generating

any errors, resulting in higher energy efficiency. As for non-typical cases, errors

are either avoided with error prediction [34, 31] or corrected with detection-

recovery mechanisms [35, 36, 37]. Avoidance-based BTWC design has its lim-

its and can still lead to errors. On the other hand, existing correction-based

BTWC designs conservatively correct all detected errors without exposing er-

rors to the software stacks. However, studies have shown that a variety of

applications are resilient to errors and suitable for more aggressive BTWC

design [38, 39]. For instance, exposing errors to applications can lead to sig-
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nificant energy savings (10% to 50%) at little accuracy cost [39]. Evaluating

the impact of voltage droops on applications can help identify applications or

code regions that are resilient to errors and lead to improvements for BTWC

design. Chapter 5 specifically discusses the modeling of voltage droops.

2.2 Reliability Evaluation Methodologies

In this section, existing resilience evaluation techniques are summa-

rized. Since much prior work assumes particle strikes as the fault model,

evaluation methodologies for particle strikes are described first, followed by

methodologies for evaluating voltage droops.

2.2.1 Hardware-Based Methodologies

An example methodology is beam testing, which exposes electronic de-

vices to a heavy-ion radiation environment in order to quantify the rate and the

impact of radiation effects on applications [40, 9]. This methodology is highly

accurate and offers high fidelity because real devices are used. The analogous

methodology for evaluating timing errors is directly undervolting or overclock-

ing commercial processors [41, 42, 43, 44]. Disadvantages of this methodology

include high cost, high experimental setup time, limited availability of testing

equipment, and an inability to precisely control the fault locations of interest.

Evaluating software detectors using this methodology is thus cumbersome.

Also, the results are specific to the devices under test. It is impractical for

each application developer to test their application susceptibility and detector

12



effectiveness.

2.2.2 Software-Based Methodologies

Software is used to perform fault/error injection at various abstrac-

tion layers. These methods can target specific layers of interest with different

fault/error models. For instance, faults/errors can be injected into applica-

tions [9], the operating system [45, 46], the architecture level [5, 13, 8], the

micro-architecture level [47, 25], RTL gate level [19, 2, 1], etc. Software-based

methods are more flexible because the injection substrate is decoupled from

the fault/error models such that tools can be repurposed to model different

types of faults.

However, software-based methods have a fidelity problem because: (1)

they can only inject faults/errors into the layer(s) modeled by software, and

(2) the fault/error model assumed may differ from reality. As a result, prior

work adopts hierarchical injection to balance injection speed and accuracy by

integrating injectors at different levels [20, 19, 1]. The tool developed in this

research is of this type.

2.2.3 Monte Carlo Methods

Transient faults are assumed to occur randomly and uniformly during

execution because they depend on a large number of factors including the dy-

namics of the system and variations of the operating environment. To evaluate

the resilience of applications against transient errors, the Monte Carlo method
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Figure 2.1: An example to show the inefficiency of simple random sampling.

(or sampling) is necessary because the error space is enormous.

2.2.3.1 Inefficiency of Simple Random Sampling

The conventional sampling algorithm known as simple random sampling

is embarrassingly parallel, yet is inefficient in terms of collecting errors that

are observable at the instruction level. Figure 2.1 shows an example of simple

random sampling in which each application run is provided with one random

fault injection point (a random dynamic instruction instance for instruction-

level error injection). Faults that are masked at the circuit level or the gate

level are marked in green, while errors that propagate to the instruction level

are in red. In this example, eight application runs end up collecting only

two observable errors. In reality, error injection experiments need to collect

thousands of errors for statistical significance. Note that the higher the fault

masking rate at the lower levels (i.e., beneath the instruction level), the more

Monte Carlo trials are needed, which significantly increases evaluation time

and enormously wastes resources. To reduce the number of application runs

required for error injection campaigns, two novel acceleration techniques are

proposed in this dissertation.
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2.3 Current Error Models

Existing error models used at the instruction level are low-fidelity in

general to allow rapid evaluation. This dissertation compares the impact of

high-fidelity error models developed in this research with the current models

summarized below.

2.3.1 Random Bit-Flipping

This type of models corrupts the instruction affected by a particle strike

by flipping bits of an operand randomly. Single-bit flips are widely used in prior

work because of their simplicity. The fidelity loss of single-bit flips results from

the fact that particle strikes can corrupt multiple bits at the architectural level

in a complex and application-dependent manner (discussed in Chapter 4).

2.3.2 Previous Value

This model is used by prior work to model the effect of voltage

droops [39]. It assumes that when a droop occurs, all output pins of the

affected circuit experience timing violation and thus latch the output value

of the previous instruction using the same execution unit. The fidelity loss

results from the fact that the impact of voltage droops on instructions is de-

pendent on the application, the circuit, and its operating condition (discussed

in Chapter 5).
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2.3.3 Random Value

This model replaces the value of an instruction operand with a random

value, possibly mimicking the worst-case errors. The fidelity loss results from

the fact that it is data-independent.
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Chapter 3

Evaluation Methodology

In order to increase error modeling fidelity, to reduce the number of

runs while keeping sampling quality equal, and to evaluate the effects of fi-

delity on experimental results, this chapter introduces the Hamartia tool and

the methodology for experiments. Section 3.1 describes Hamartia, an open-

source tool for hardware error analysis.1 Section 3.2 presents the common

experimental setup used in this research.

3.1 Hamartia: An Open-Source Error Injection and De-
tection Suite

Section 3.1.1 motivates the creation of Hamartia. Section 3.1.2 de-

scribes the error injection and analysis flow. Section 3.1.3 introduces the key

features of Hamartia. Section 3.1.4 describes the implementation details.

3.1.1 Motivation

Need for high-fidelity error models at the instruction level: Sim-

ple error models (e.g., single-bit flips) are currently used in resilience studies

1Available at https://lph.ece.utexas.edu/users/hamartia
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at the instruction level and higher levels. On the other hand, prior work

that evaluates the impact of high-fidelity errors on applications either does

not model value dependency (i.e., error patterns are fixed across applications

[48, 39, 49, 50]) or relies on special hardware platforms such as FPGAs [48, 2].

As shown later in this research, the impact of particle strikes and voltage

droops on an application is determined by the values of the affected instruc-

tion(s). Since the number of FPGAs can artificially limit the parallelism of

error injection experiments, it is thus desirable to model value dependency and

to be able to perform resilience analysis on a general-purpose computer.

Need for low-overhead evaluation for high-fidelity errors: It is already

time-consuming to perform error injection at the instruction level, let alone

enhance error fidelity. Hamartia incorporates two novel acceleration techniques

enabling high-fidelity error injection with low overhead.

Need for unified interface for instruction-level error injection: The

resilience community lacks a common, shared interface for instruction-level er-

ror injection. Currently, error models and detector models have to be reimple-

mented for new projects. Hamartia addresses this issue by creating a shared

interface which allows existing instruction-level injectors to integrate high-

fidelity error models developed in this research and in the future.

Need for hassle-free error injection at scale: To take advantage of

the embarrassingly-parallel property of the Monte Carlo method, error in-

jection experiments need to be conducted on large-scale systems. Hamartia
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is equipped with a set of scripts which automatically submit error injection

experiments to the job scheduler of a large-scale system. Hamartia is an all-in-

one suite that allows high-fidelity and low-overhead error analysis at scale. The

design of Hamartia adopts modern software engineering practices for portabil-

ity, extensibility, and usability.

3.1.2 Error Injection and Analysis Flow

The overall injection flow of Hamartia consists of three phases: profiling,

injection, and analysis. As explained in Section 2.2.3, transient errors are

assumed to affect each instruction with equal likelihood for modeling uniform-

random particle strike times and dynamic variations in digital circuits. The

profiling phase is used for this purpose and derives the upper bound of dynamic

instructions in the program. The injection phase uses the Monte Carlo method

to evaluate the impact of errors at the application level. In each Monte Carlo

trial, the injector chooses a random instruction instance (based on the profile),

injects an error into that instruction, and logs the behavior of the affected

application. The analysis phase classifies the injection result for each Monte

Carlo trial and generates a reliability report, which includes statistics such as

SDC ratios and visualization results for further analysis.

3.1.3 Features

High-fidelity, low-overhead injection at the binary level: Hamartia

performs error injection at the binary level because it results in the most ac-

19



curate results for instruction-level error injection. High-fidelity errors are gen-

erated with hierarchical injection. Overheads incurred by error injection are

minimized through the novel sampling algorithms introduced in this research

and other acceleration features of the underlying dynamic binary instrumen-

tation tool (Section 3.1.4.1).

Error models and detector models: Hamartia implements a plethora of

error models, including simple ones introduced in Section 2.3 and high-fidelity

error models for particle strikes (Chapter 4) and voltage droops (Chapter 5).

Additionally, several detector models such as arithmetic residual checkers [51,

52] are included.

Automatic injection and analysis pipeline: Hamartia takes only one

input from the user: an error configuration file which specifies the binary of the

application under test, the error model, and the detector model (if any). Error

injection experiments are automatically submitted to the job scheduler. Once

results are ready, Hamartia runs user-specified analysis scripts and generates

a report.

Reusable and extensible design: The core of Hamartia is an Application

Programming Interface (API) which allows error models and detector models

to be used by other injectors even written in different languages.2 Object-

oriented programming is widely adopted in the design of Hamartia for better

manageability and extensibility.

2Hamartia currently supports C++ and Python.
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3.1.4 Implementation

For high error fidelity, Hamartia adopts hierarchical injection in which

an instruction-level injector invokes a specific RTL gate-level injector at a spe-

cific instruction instance.3 The RTL gate-level injector performs just-in-time

fault simulation at the register-transfer level with input from the instruction-

level injector. An error context API enables communication between the

instruction-level injector and the gate-level injector.

3.1.4.1 Instruction-Level Injectors

The implementation of the instruction-level injector is based on Pin,

a dynamic binary instrumentation tool [53], which allows modification to the

architectural state of a dynamically-instrumented x86 application at runtime.4

Pin (and dynamic binary instrumentation in general) is selected for

the following reasons: (a) it is much faster than micro-architecture-level sim-

ulation and lower-level injectors since instrumentation can be disabled after

the injection point to run at native speed, (b) it is more accurate than com-

piler IR-level injectors [8], and (c) it allows injection into specific binary and

source code regions. Using Pin, it is still possible to map injected instructions

back to the program source lines (i.e., directly pointing out which lines are

problematic).5

3The invoked injector depends on the error model specified in the error configuration.
4Although the Pin-based implementation limits the usage to x86 platforms, the frame-

work itself can be easily generalized to the others.
5The application needs to be compiled with debugging information.
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The design of the instruction-level injectors are object-oriented. The

base injector is able to inject a single-bit flip to the output operand of a random

instruction instance (as in prior work). Developers can inherit the base injector

to develop new injectors. For instance, two injectors are implemented in this

research to model particle strikes and voltage droops, respectively.

3.1.4.2 The Error Context API

One of the main challenges of integrating an RTL gate-level injector

with a higher-level injector is software compatibility across abstraction layers.

To solve the compatibility problem, a generic error context API is designed to

carry essential information regarding a dynamic instruction instance. Some of

the crucial components are: (1) instruction type, which can be used to select

the target circuit for fault injection at the gate level, (2) input operands,

which are used to drive the circuit, (3) the error-free output operands, which

can be used to determine if an injected fault propagates to the ouptut of the

circuit (necessary for the acceleration techniques proposed in this research),

and (4) potentially corrupted output operands, which are filled by the gate-

level injector and might be the same as the error-free output if the injected

fault is masked.

3.1.4.3 RTL Gate-Level Injectors

The gate-level injector performs just-in-time fault simulation based on

the error context built by the instruction-level injector. There are two gate-
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level injectors developed in this research: one models transient faults due to

particle strikes and the other models faults due to voltage droops. The details

are presented in Chapter 4 and Chapter 5, respectively. When the just-in-

time fault simulation finishes, the gate-level injector updates the potentially-

corrupted output operands in the error context and returns the context to the

instruction-level injector.

Each RTL gate-level injector is wrapped into a set of Python mod-

ules. The actual simulation is done by Icarus Verilog, an open-source Ver-

ilog simulation tool [54]. With the cross-language error context API, gate-

level injectors can be easily integrated with other instruction-level injectors as

well [14, 13, 6, 55, 56].

3.2 Experimental Setup

This section explains how the application-level injection outcomes are

classified and the testbed on which the experiments are conducted in this

research.

3.2.1 Injection Outcome Classification

Unless otherwise noted, the analysis phase classifies all injection out-

comes into three primary categories:

• Masked: the injected error is masked by application, with output iden-

23



tical or similar to the error-free run.6

• Detected Uncorrectable Error (DUE): errors that crash or hang

the program are categorized as DUEcrsh. Errors that result in obviously

erroneous application output (e.g., output is not finite or mismatch in

matrix size) are also in this category and denoted as DUEtest.

• Silent Data Corruption (SDC): the program ends normally with

output errors that are hard to detect.

3.2.2 Testbed

A machine that runs OpenSUSE 42.3 on an Intel i5-6500 CPU with

16GB DRAM is used to develop tools and techniques proposed in this research.

Once functionality is verified, error injection experiments are deployed on the

Lonestar5 supercomputer at TACC (Texas Advanced Computing Center).

6The error tolerance of output is application-dependent.

24



Chapter 4

Error Models for Particle Strikes and

Acceleration with Nested Monte Carlo1

This chapter develops high-fidelity error models for particle strikes

along with an acceleration technique called nested Monte Carlo which speeds

up evaluation by orders of magnitude. Section 4.1 describes the background

and motivation of developing high-fidelity models. Section 4.2 presents the

design of the high-fidelity injector for particle strikes in Hamartia. Section 4.3

introduces the nested Monte Carlo technique. Section 4.4 and Section 4.5

compare the results of error injection using high-fidelity errors vs. current

low-fidelity ones.

4.1 Background and Motivation

Section 4.1.1 describes the propagation of transient (soft) errors due to

particle strikes within digital circuits. Section 4.1.2 explains the modeling gap

between existing simple error models and realistic soft errors. Section 4.1.3

shows the error patterns of realistic errors at the instruction level to motivate

1Part of this chapter appears in [1, 57]. The author of this dissertation is the main
contributor of the idea, implementation, and evaluation. The other coauthors in [1, 57]
assist development of the idea and implementation.
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the need for high-fidelity models for particle strikes.

4.1.1 Fault Propagation and Masking

Soft errors that affect storage elements and combinational logic are trig-

gered by random radiation events such as particle strikes. Only those strikes

that are energetic enough can potentially lead to data corruption; otherwise,

they are said to be electrically masked. When a strong particle strike hits a

memory component (e.g., latches and flip-flops), the data is corrupted until

new data is written into the component. On the other hand, if a logic gate

is hit, a transient pulse known as a single-event transient is created. If the

faulty signal (i.e., the single-event transient or the corrupted data signal from

a memory component) reaches the next latching window, erroneous data can

be written into a latch. The propagation process continues and might eventu-

ally corrupt data in architectural components such as the register file. At this

point, the fault manifests as an error.

This research assumes that faults escape electrical masking and timing

masking; that is, considered are particle strikes that carry sufficient charge

and result in faulty signals that arrive on time at the next latch. However,

logical masking is modeled (e.g., the faulty signal enters an AND gate with

the other input being 0) because it depends not only on the circuit but also

on the application. In other words, recall that this research is concerned with

the impact of errors, but not the rate of errors (Section 2.1). Also, the focus is

soft errors that affect execution units of the processor because errors occurring
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Figure 4.1: Particle strikes that are not modeled by high-level error injection.

within those circuits directly affect application data and thus more likely lead

to SDC. The same is assumed in previous work [13, 14, 58].

4.1.2 The Modeling Gap of Existing Error Models

Consider a fault that occurs at a random location within a circuit mod-

ule consisting of an input buffer, combinational logic, internal pipeline buffers,

and an output buffer (Figure 4.1). Since the goal is to inject errors, this work

assumes the circuit has inputs and/or outputs associated with architectural

state (e.g., an ALU).

Note that soft errors can be grouped based on their initial fault site

within the circuit. First, consider the faults that occur at either the input

buffer or the output buffer. When a fault happens at the output buffer, it

directly manifests as an error. On the other hand, when a fault occurs in the

input buffer, it can be masked by the operation (e.g., erroneous bits are shifted

out). Such errors can be modeled by bit flips because they either directly affect

the output or logical masking can be modeled by running the operation with
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erroneous inputs. These soft errors are already modeled in previous work via

injecting errors into instruction operands [5, 13, 59, 60, 61, 8].

Next, consider the case where the fault site is at either a logic gate

within combinational logic or internal pipeline buffers. Here the assumption

is that the fault induces a pulse that flips the output of the affected unit.

Although this faulty signal may be masked logically before propagating to

output buffer, it is possible that it leads to a soft error that corrupts multiple

bits of the output buffer. Because the exact impact of the soft error on the

output buffer depends on the initial fault site, the circuit, and the input data

vector, there is no corresponding simple architecture-level modeling for soft

errors originating from these internal circuit nodes. These errors are termed

hidden soft errors in this chapter. To quantify the impact of this modeling gap,

gate-level fault injection is performed to study characteristics of these hidden

soft errors. This gate-level injection is also called RTL injection because the

register-transfer level (RTL) description of a circuit specifies the circuit’s gates

and latches.

4.1.3 Characterization of Hidden Soft Errors

Figure 4.2 shows the distribution of how many bits in the circuit output

buffer are flipped if a fault from a circuit internal node is not logically-masked.

On average, 78% of errors manifest as single-bit flips. Hence, the single-bit flip

model does not accurately reflect 22% of errors, and these errors potentially

cause more severe data corruption. Note that the distribution varies across
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applications since logical masking depends on circuit input.

Modeling multi-bit errors is challenging because of correlations between

bit-flip positions at a circuit’s output (Figure 4.3). First, correlations vary

across circuits because the circuit’s structure determines its logic operations,

which in turn affect logical masking. Second, correlations are related to input

data. For example, using input data from LULESH, the floating-point adder

has strong correlations between bits in the exponent field (bit 52-62), while

such phenomena are not observed with input from MG. This is because log-
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ical masking depends on input data. Hence, not only do correlations vary

across circuits, they also depend on input data and thus on applications. Such

complex and data-dependent correlation is not modeled by existing random

bit-flipping models.

Although realistic error patterns are different from single-bit errors

at the instruction level, the impact on applications is still unknown due to

application-level error masking. Thus, it is necessary to perform error in-

jection to evaluate the end-to-end effects of hardware faults on applications.

Next, the design of a high-fidelity instruction-level for modeling particle strikes

is introduced.

4.2 A High-Fidelity Error Injector for Particle Strikes

The injector is developed on top of Hamartia introduced in Chapter 3.

It is based on the same architecture for hierarchical injection, consisting of an

instruction-level injector and a gate-level injector.

The instruction-level injector: The role of the instruction-level injector is

to build the error context for the target instruction (Section 3.1.4), pass the

error context to the gate-level injector, and then change the architectural state

of the application based on the modified error context returned by the gate-

level injector. Since the base instruction-level injector already implements the

functionality of injecting a random dynamic instruction, the implementation of

the instruction-level injector simply inherits the base injector without changes.
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The gate-level injector: To model particle strikes at the gate level with

low overhead, the implementation is split into two stages: pre-processing and

runtime. In the pre-processing stage, an additional gate is inserted at each

node of the circuit by modifying the RTL source code with Pyverilog [62].

For instance, to model a particle strike that flips a node’s value, the circuit

is augmented with XOR gates, each of which has one input connecting to an

existing node and the other input as a trigger signal.2 Note that the pre-

processing stage is an one-time effort and is totally transparent to the end

users.

The runtime stage consists of several steps. First, the tool selects a

pre-processed circuit based on the instruction type in the error context. For

instance, if the target instruction is an integer ADD, then a pre-processed

integer adder is fetched. Next, gate-level simulation is performed using the

circuit and the values of input operands in the error context. The tool ran-

domly triggers an XOR gate (by setting its trigger signal to 1) to emulate a

fault. Finally, the output of the circuit is written into the error context as the

new output operands of the target instruction, and the error context is sent

back to the instruction-level injector to modify the architectural state of the

application.

Note that due to logical masking, the output of the circuit may still be

2The tool also supports modeling of stuck-at-0 and stuck-at-1 (by inserting AND gates
and OR gates), but they are not evaluated in this research because the focus is transient
errors instead of permanent errors.
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Figure 4.4: Error injection flow: Nested Monte Carlo vs. simple random sam-
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the same as the error-free operation, and thus the fault has no impact at the

instruction level. The next section introduces a novel technique to increase

the likelihood of generating realistic errors that propagate to the instruction

level to accelerate evaluation.

4.3 Nested Monte Carlo

As explained in Section 2.2.3.1, the traditional simple random sampling

is not efficient in terms of evaluating high-fidelity errors at the instruction level

due to fault masking at lower levels. This section introduces a refined hierar-

chical injection methodology to boost error injection by orders of magnitude.
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The error injection flow for simple random sampling is depicted in Fig-

ure 4.4. Note that the pre-injection and post-injection stages account for

the majority of overheads (>95%). As a result, the idea is to use a form of

nested Monte Carlo methodology. The outer portion follows the traditional

instruction-level error injection campaign described in Section 3.1.2. How-

ever, within each Monte Carlo trial a nested Monte Carlo is performed at the

gate level. In each outer iteration, the correct instruction (arithmetic circuit)

output is first logged and then, a single random fault is repeatedly and im-

mediately injected at the gate level until a fault manifests as an error that

corrupts the output. By doing so, only an actual error that has not been log-

ically masked is injected into the outer Monte Carlo trial, saving significant

time by avoiding complete application runs when the outcome has already

been determined. This novel injection flow is also shown in Figure 4.4, which

also shows how the methodology is extended to include detectors.

Evaluation using simple random sampling is even worse when error de-

tectors are introduced. Numerous Monte Carlo runs and RTL gate-level fault

injections are necessary to generate faults that truly affect the application be-

cause good error detectors have high coverage and detect most errors that are

not logically masked. As a result, faults are generated iteratively at the RTL

level to filtering out detected errors. That is, errors that would be detected

should also be pruned since the injection outcome is known at this point (de-

tected). Thus, fault injection is repeated until an undetected error is generated

to save time. Otherwise, similar to the cases of masked faults at the RTL level,
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it is wasteful to restart the application for other injection points.

This filtering notion can be extended to resilience techniques at differ-

ent abstraction layers by cascading error detectors starting from fine granu-

larity to coarse granularity. For instance, only errors that are not detected

by instruction-level hardware detectors are sent to fine-grained software state-

recovery mechanisms [63]. Note that the longer the detector chain, the greater

the savings that can be achieved.

An important aspect of this nested Monte Carlo methodology is that it

requires multiple faults that propagate to actual errors to be identified in order

to establish statistical bounds on the logical fault-masking rates for different

instructions and applications. In that way one trial at the outer level is indeed

equivalent to a flat methodology for the purpose of evaluating the logical mask-

ing rate and detector coverage. Note that a limit on injection attempts needs

to be set to avoid practically infinite loop when the masking rate of the circuit

is high. The selection of the limit can affect the tradeoff between evaluation

time and accuracy. While the nested algorithm provides the same statistics as

a traditional Monte Carlo, the specific instructions to which actual errors are

injected will differ from a traditional injection campaign where each trial ran-

domly selects an instruction. This nested methodology is fully equivalent to a

traditional campaign despite this potential difference. The validation results

are shown in Section 4.5.1.
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4.4 Evaluation Methodology

The evaluation consists of six main parts: (a) verifying the proposed

nested Monte Carlo methodology, (b) evaluating the benefits of nested Monte

Carlo, (c) evaluating the impact of the error model on the reliability of ap-

plications, (d) evaluating the impact of error detection on the reliability and

error types of applications, (e) evaluating the impact of the error model on

application output quality in the context of HPC scientific applications, and

(f) evaluating the impact of the error model on the overhead of an overall

resilience scheme (specifically, checkpoint-restart).

Before discussing the evaluation results, this section describes the error

models, the detector models, and the applications studied in this work.

4.4.1 Detector Models

To study the impact of hardware detectors on application resilience,

arithmetic residue checkers are chosen. They are shown to provide high cov-

erage for errors from execution units with relatively low cost [51, 52], and

are also adopted by commodity processors (e.g., POWER6 [64]) and previous

work on hardware resilience design [65, 66].

Residue checkers detect errors by comparing output of the arithmetic

unit with that of a relatively low-cost datapath. The checking can be de-

scribed by Equation 4.1 where ⊕ denotes integer addition, subtraction, or
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multiplication and |x|m denotes x mod m.

|a⊕ b|m
?
= | (|a|m ⊕ |b|m) |m (4.1)

It is assumed that no errors affect the final equality checker, so these

residue checkers have perfect coverage for single-bit datapath errors. Specifi-

cally, implementations include a residue checker with modulus 3 and another

with two moduli, 3 and 5. The latter provides higher coverage because an

error is not detected only when both checks fail.

4.4.2 Error Models

Assume on-chip SRAM and system DRAM are protected by ECC and

only inject errors to instructions using arithmetic and logic units. In each

experiment, an error is injected into a random instruction’s output operand

with one of the four error models below.

• Single-bit flip (RB1): randomly flips a single bit, as commonly done

in prior work in the HPC community.

• Double-bit flip (RB2): randomly flips two bits.

• Random (RND): replaces the output with a random value, possibly

mimicking worst-case errors.

• RTL gate-level model (RTL): generates an error pattern using the

methodology described in Section 4.2. RTL-G and RTL-L are used to
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denote injection into gates only and latches only, respectively; latch in-

jection is only done for pipelined floating-point units.

• model+: uses model on a design with a single-modulus residue checker

where model is one of the error model described above.

• model++: resembles model+ but with a double-modulus residue

checker (i.e., stronger detection).

For the RTL model, gate-level netlists of integer and floating-point

execution units are synthesized using Synopsys tools (Design Compiler and

DesignWare Library) with the 45nm Nangate Open Cell Library, optimized

for performance. Because the DesignWare Library does not include pipelined

floating-point units, the register retiming feature of Design Compiler is used

to pipeline the circuits. The pipeline stages are tuned to mimic those used

by Intel Broadwell processors based on the latency data from [67]. Table 4.1

lists the circuits used in this work. Note that the synthesized circuits can be

different from those designed and optimized for commodity processors, but

this work has shown that they lead to errors different from single-bit errors at

the instruction level.
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Table 4.1: Circuits used in the RTL error model, their pipeline stages, and the
fault-masking probabilities of injecting a logic gate and a latch, respectively.
The reported masking rates are averages of all applications in this work.

Name Stages Gate Masking Rate Latch Masking Rate

INT add sub 1 0.17±0.02 n/a
INT mult 1 0.09±0.05 n/a
Shift 1 0.30±0.08 n/a
FP add sub 3 0.28±0.03 0.27±0.04
FP mult 3 0.41±0.02 0.33±0.02
FP div 10 0.49±0.09 0.54±0.12
FP sqrt 1 0.46±0.10 n/a

4.4.3 Benchmarks and Output Quality

Evaluation is based on the serial version of 9 HPC benchmark programs

and applications (Table 4.2).3 For each application, 3000 injection experiments

are performed, which ensures a margin of error <2% for a confidence level of

95% [68], on 10 combinations of error models and detector models. Injection

outcomes are classified into three categories as in Section 3.2.1. Table 4.3 lists

the output quality for each application. The same metric shipped with the

application or suggested by previous work are adopted [69, 70].

3A more resilient IS is used in which an assertion is inserted at the end of randlc() to
check if the output falls within [0, 1].
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Table 4.2: Benchmark, input, and injection overhead per experiment.

Program Input Native Time Simple Time RTL Time RTL+ Time RTL++ Time

FFT [71] -m 16 0.01s 1.3s 1.7s 5.2s 19.1s
miniFE [72] nx=18 ny=16 nz=16 0.04s 2.1s 6.0s 8.1s 12.1s
LU cb [71] default 0.04s 1.2s 1.8s 4.8s 11.2s
IS [73] A 1.2s 3.0s 4.6s 7.4s 21.3s
CG [73] A 1.2s 7.1s 7.8s 8.8s 10.9s
MG [73] A 1.5s 11.9s 15.0s 18.0s 51.7s
CoMD [74] default 5.7s 28.5s 29.1s 32.2s 52.4s
LULESH [75] default 22.1s 103.7s 109.7s 112.3s 121.9s
XSBench [76] small 30.9s 91.7s 92.5s 93.4s 96.3s

Table 4.3: Benchmark output quality metric.

Program Quality Metric DUEtest Criteria

FFT [71] Rel-L2-Norm Infinite values
miniFE [72] Resid-Norm Resid-Norm > 1
LU cb [71] MaxAbsDiff Infinite values
IS [73] n/a Failed verification
CG [73] Zeta Infinite values
MG [73] L2-Norm L2-Norm > 1
CoMD [74] Potential energy Lost atoms, infinite energy, or potential energy > 0
LULESH [75] Measure of symmetry (MaxAbsDiff) [69]
XSBench [76] n/a n/a

4.5 Experimental Results

4.5.1 Validation of Nested Monte Carlo

To validate the statistical equivalence between the nested Monte Carlo

and simple random sampling, the outcome distributions of each methodol-

ogy are compared (Figure 4.5). Notice that any differences between the

two methodologies, for all experiments we conducted with RTL injections are

within the 95% confidence intervals of each experiment. In other words, the

specific numbers obtained are not identical, but the 95% confidence intervals

of the two methodologies overlap. Note that the nested approach has narrower

(better) confidence intervals for a given number of trials because each outer

Monte Carlo trial identifies multiple non-masked errors in the inner stage.
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Figure 4.5: Validation of nested Monte Carlo against simple random samping
in terms of outcome distributions. Error bars are 95% confidence intervals.

Evaluation of output quality shows similar statistical equivalence.

Note that there is a pitfall when comparing the RTL error injection

results of nested Monte Carlo with simple random sampling: the proportion

of each instruction type among the error samples is different between the two

methods because each circuit has different logical masking rate. Nested Monte

Carlo collects error samples following the instruction mix of the application

since fault injection is repeated until an error is generated for each experi-

ment, while simple random sampling collects more samples from circuits with

lower masking rate since the experiments end as soon as the injected fault is

masked. Thus, it is necessary to normalize the proportion of each instruction

type among the error samples before comparing the injection results. Such

normalization is performed in the aforementioned validation campaign.

Table 4.4 illustrates the normalization process. Suppose there are two

types of instructions in a program: ADD and MUL. The instruction mixes
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Table 4.4: Illustration of the normalization process for comparing simple ran-
dom sampling (SRS ) with nested Monte Carlo (NestedMC ).

ADD MUL Total
instruction type ratios SRS 0.2 0.8

I NestedMC 0.6 0.4
NestedMC/SRS 3.0 0.5

original outcome ratios Masked 0.2 0.4
II DUE 0.5 0.2

SDC 0.3 0.4
normalized outcome ratios Masked 0.6 0.2 0.23

III DUE 1.5 0.1 0.46
SDC 0.9 0.2 0.31

obtained using simple random sampling and nested Monte Carlo are shown

in region I. The original outcome distributions by instruction types measured

with simple random sampling are shown in region II. The normalization pro-

cess consists of two steps: (1) the outcome ratio of each instruction type is

multiplied with the NestedMC/SRS value, and (2) the outcome ratios are

summed across instruction types and then normalized. The last column in

region III shows the normalized outcome ratios (0.23, 0.46, 0.31 for Masked,

DUE, and SDC, respectively).

Observation 1: the nested Monte Carlo approach is equivalent to traditional

injection campaigns, despite significant potential benefits in execution time.
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4.5.2 Injector Overhead

Overhead of various error models in Hamartia: Table 4.2 compares

the execution time overheads of using the Hamartia injector with a simple

bit-flipping error model, RTL injection, and RTL injection with detectors,

to the time each application runs natively. Recall that instrumentation is

disabled after the injection point (Section 3.1.4.1), so the injector overhead

depends on the injection point (i.e., a dynamic instruction). Therefore, the

table reports the average injector overhead, which corresponds to injection at

the mid-point of program execution. Evaluation is performed on the testbed

system described in Section 3.2.2.

There are three interesting observations. First, very short-running ap-

plications, which require a fraction of a second to run natively, incur a sig-

nificant relative overhead for injection because starting up the Pin injector

and invoking the error model have a fixed overhead of 1− 2s. Second, longer

running applications incur a reasonable injection overhead with a slowdown of

3−5× without detectors and 5−10× with detectors, even when RTL injection

is used. This is because the relative time to bring up the injection infrastruc-

ture is small relative to the execution time of these applications. Third, the

overhead of RTL injection and detector evaluation varies between applications

because the masking factor and detector coverage are data dependent—the

higher the masking or coverage, the more iterations are required within the

inner Monte Carlo step.
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Figure 4.6: (a) Speedup of Hamartia over PINFI with simple error models (RB1,
RB2, and RND) and the proposed RTL gate-level model. Error bars denote
maximum and minimum speedups. (b) Scaling of per-experiment execution
time as native time increases.

Overhead of Hamartia vs. the state-of-the-art: Figure 4.6(a) shows that

the overhead of Hamartia, even with RTL injection, is actually lower than

PINFI [13], which is one of the fastest injectors currently available. PINFI

is chosen because recent work has shown that it has lower overhead than

compiler-based injectors [8]. Hamartia outperforms PINFI even with RTL-

level injection, except for applications that can finish in under two seconds.

The performance loss is due to the additional features for injecting specific

binaries and instructions, but the overhead is amortized for larger applications.

On average, the injector developed in this research is faster than PINFI by a

factor of 3.

Since full-scale HPC applications have much longer execution times,

the tool’s execution time vs. problem size is shown in Figure 4.6(b). The

input size of LULESH is increased to mimic native execution time of larger HPC

applications. Note that the overhead increases linearly due to instrumentation

43



FFTminiFELU_c
b IS CG MG

CoM
D

LULE
SH

XSBe
nch
Aver

age

RT
L+

  
RT

L+
+

RT
L+

  
RT

L+
+

RT
L+

  
RT

L+
+

RT
L+

  
RT

L+
+

RT
L+

  
RT

L+
+

RT
L+

  
RT

L+
+

RT
L+

  
RT

L+
+

RT
L+

  
RT

L+
+

RT
L+

  
RT

L+
+

RT
L+

  
RT

L+
+

0
20
40
60
80

100
120

Sp
ee

du
p Detector

RTL

FFTminiFELU_c
b IS CG MG

CoM
D

LULE
SH

XSBe
nch
Aver

age

RB
2+

RB
2+

+
RN

D+
RN

D+
+

RB
2+

RB
2+

+
RN

D+
RN

D+
+

RB
2+

RB
2+

+
RN

D+
RN

D+
+

RB
2+

RB
2+

+
RN

D+
RN

D+
+

RB
2+

RB
2+

+
RN

D+
RN

D+
+

RB
2+

RB
2+

+
RN

D+
RN

D+
+

RB
2+

RB
2+

+
RN

D+
RN

D+
+

RB
2+

RB
2+

+
RN

D+
RN

D+
+

RB
2+

RB
2+

+
RN

D+
RN

D+
+

RB
2+

RB
2+

+
RN

D+
RN

D+
+

0
5

10
15
20

Sp
ee

du
p

Figure 4.7: Execution savings (relative to actual runs) by nested Monte Carlo
for RTL and injection-detection coupling. Left: RTL error model with residue
checkers. Right: Simple error models with residue checkers.

overhead of the Pin tool. When the problem size is large enough, the difference

in overhead between simple models and the RTL model is negligible (4.32X and

4.34X slowdown for simple and RTL model, respectively). The overhead can be

further reduced by taking checkpoints during the profiling phase and starting

each injection experiment at the checkpoint closest to the target injection point

as in [47].

Benefits of nested Monte Carlo: Next, the execution savings of the er-

ror injection experiments are measured for each application. The savings are

presented as the ratio of runs saved due to nested Monte Carlo:
∑N

n=1 itern×

dyninstn/total dyninst, where N is the number of injection experiments, itern

is the number of local iteration for the nth experiment, dyninstn is the dy-

namic instance number of the nth experiment, and total dyninst is the total

dynamic instructions of the application. This work assumes the overhead of

actual error injection at the injection site is small relative to the overhead of

pre-injection and post-injection period, which are true for all applications that
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are not very short. Figure 4.7 shows that the overall savings are larger when

the RTL model is used since the injector keeps injecting faults until one man-

ifests as an error. Also the savings increase with the strength of the detector

used. Note that LU cb has the highest savings due to most of the instructions

can be protected by the residue checkers (Table 4.5). In contrast, LULESH has

a small portion of instructions protected by residue checker but its savings at

the RTL level is significant because of the input data result in high logical

masking.

Observation 2: with the nested approach, the overhead of injection, even

when using detailed error models and high-coverage detectors, can be kept low

and roughly match that of current injectors with simple error models.

4.5.3 Reliability Outcome Distributions

RTL vs. simple error models: Figure 4.8 shows the outcome distribu-

tion of all combinations of error models without detectors. The most surpris-

ing result here is the small difference between RTL and RB1 for all appli-

cations. While the small confidence intervals demonstrate that the outcome

distribution is sometimes statistically different, the absolute difference is very

small. The largest difference in SDC ratios between the two models is only

4% (XSBench), and the difference in DUE ratios is also only 4% (CG). This

shows that even though the two models are quite different at the instruc-

tion level (Section 4.1.3), the impact on applications is likely unimportant

due to the large proportion of single-bit errors, correlated error patterns, and
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Figure 4.8: Injection outcome distributions (without detectors). Error bars are
95% confidence intervals.

application-level error masking. However, neither RB2 nor RND can closely

approximate the RTL model because of aggressive (uncorrelated) bit-flips in

these two models.

Gate soft error vs. latch soft error: Next, the impact of gate soft errors

(i.e., a logic gate output is flipped) vs. latch soft errors (i.e., the output of

a flip-flop is flipped) is studied. Results of six applications are reported here

because compiled binaries for the others do not use pipelined circuits. The

left of Figure 4.9 compares the distribution of bit-flip count at the instruction

level between gate and latch soft errors. Notice that latch soft errors have

more multi-bit patterns than gate soft errors. However, similar final impact

on application resilience is observed for both error types (right of Figure 4.9)

due to application-level error masking.

Observation 3: without detectors, RB1 is a good approximation of RTL in-

jection, whether experiencing gate or latch faults.
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Figure 4.9: Comparison of bit-flip count distribution at the instruction level
(left) and injection outcome distribution (right) between gate soft error and
latch soft error. Only floating-point instructions are injected here because they
are pipelined (i.e., having both gates and latches).

4.5.4 Impact of Hardware Residue Checkers

Coverage: Figure 4.10 shows the coverages (i.e., error detection rates) of the

checkers with different error models applied. First, coverage is application-

dependent when the RTL error model is used. The residue checker with a single

modulus can detect 88% of errors on average, while the coverage increases to

97% with two moduli. Second, when RB2 is used, the coverage of the single-

modulo checker is slightly application-independent, while that of the double-

modulus checker has larger variation across applications. Finally, when RND

is used, coverages of both detectors are nearly the same across applications

but significantly lower than RTL model.

Outcome distributions: The impact of residue checkers on final outcome

distribution is shown in Figure 4.11. The results only include the distribu-

tion of protected instructions (i.e., integer add/sub/mul instructions) so as to

decouple protection ratio from the result. To account for the fact that each

instruction is injected multiple times until an undetected error is generated,

this work assumes a detected error triggers an exception that leads to DUEcrsh

47



FFT
miniFE

LU_cb IS CG MG
CoMD

LULESH
XSBench

Average
0.0
0.2
0.4
0.6
0.8
1.0
1.2

D
et

ec
to

r 
Co

ve
ra

ge RTL+ RTL++ RB2+ RB2++ RND+ RND++

Figure 4.10: Coverage of residue checkers with different error models. Coverage
for RB1 (not shown) is always 100%. Error bars are 95% confidence intervals.

FFT CG MG CoMD LULESH miniFE IS LU_cb XSBench

RT
L

RB
1

RB
2

RN
D

RT
L+

RB
2+

RN
D+

RT
L+

+
RB

2+
+

RN
D+

+
RT

L
RB

1
RB

2
RN

D
RT

L+
RB

2+
RN

D+
RT

L+
+

RB
2+

+
RN

D+
+

RT
L

RB
1

RB
2

RN
D

RT
L+

RB
2+

RN
D+

RT
L+

+
RB

2+
+

RN
D+

+
RT

L
RB

1
RB

2
RN

D
RT

L+
RB

2+
RN

D+
RT

L+
+

RB
2+

+
RN

D+
+

RT
L

RB
1

RB
2

RN
D

RT
L+

RB
2+

RN
D+

RT
L+

+
RB

2+
+

RN
D+

+
RT

L
RB

1
RB

2
RN

D
RT

L+
RB

2+
RN

D+
RT

L+
+

RB
2+

+
RN

D+
+

RT
L

RB
1

RB
2

RN
D

RT
L+

RB
2+

RN
D+

RT
L+

+
RB

2+
+

RN
D+

+
RT

L
RB

1
RB

2
RN

D
RT

L+
RB

2+
RN

D+
RT

L+
+

RB
2+

+
RN

D+
+

RT
L

RB
1

RB
2

RN
D

RT
L+

RB
2+

RN
D+

RT
L+

+
RB

2+
+

RN
D+

+

  0%

 20%

 40%

 60%

 80%

100%

O
ut

co
m

e 
Ra

ti
o

SDC
DUEtest
DUEcrsh
Masked

Figure 4.11: Injection outcome distribution for instructions protected by residue
checkers (i.e., integer addition, subtraction, and multiplication operations). See
Section 4.4.2 for the definitions of error models and detector models.

and thus compute the distribution as following. First, four empty bins cor-

responding to each outcome category are created. Next, for each of the 3000

injection outcomes, it contributes ce to the DUEcrsh bin and (1 − ce) to the

outcome category of the undetected error where ce is the averaged detector

coverage of error model e in Figure 4.10. In the end, the outcome distribution

and confidence intervals are computed with data in the four bins.

Since residue checkers have perfect coverage for RB1 and good coverage
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for the RTL model, the RTL model has larger improvement in SDC ratio

compared with RB2 and RND. However, with the RTL model, the additional

improvement in SDC ratio by adding another modulus to the residue checker is

marginal because the coverage of the single-modulus residue checker is already

high (except for XSBench).

It is important to note that SDC improvement due to residue checkers

on all instructions is highly dependent on the protection ratio (Table 4.5).

For example, although SDC ratio is improved by nearly 9% for protected

instructions in MG, the actual SDC ratio improvement is only 2% as only 25%

of instructions are protected. The injection outcome results can guide the

adoption of software error detectors and how they should be tuned. When the

hardware detector can detect most critical errors such that the resultant SDC

ratio already meets the resilience target, the software detector is not necessary

and thus performance would not be degraded. On the other hand, the software

detector should be tuned to target those errors left by hardware detectors to

minimize impact on performance.

Observation 4: When detectors are introduced, the impact of the error model

is large when the fraction of instructions protected is also large.

4.5.5 Impact of Error Models and Detector Models on Application
Output Quality

Perturbed application output quality due to SDC: Previous work

demonstrates that reliability and output quality may be traded off (e.g., [77,
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Table 4.5: Ratio of dynamic instructions protected by residue checkers.

Program Ratio Program Ratio Program Ratio

FFT 0.78 miniFE 0.88 LU cb 0.99
IS 0.38 CG 0.59 MG 0.25

CoMD 0.35 LULESH 0.09 XSBench 0.65

70]). With a bounded degradation of quality, the cost of protecting the ap-

plication against soft errors can be reduced. Thus, the application output

qualities of SDC cases between error models are compared. Two methods

are used to objectively compare output quality degradation distributions from

different error models. First, comparison is based on the quality metric of

each SDC sample to the golden value to identify the most significant decimal

position of the outcome error. A histogram of these positions is computed for

each application and model. Then the histograms between each pairs of error

models are compared using the chi-squared test, which is widely used to test

the similarity of one set of binned data against another [78].

The second comparison method treats the perturbed quality of each

error model as a continuous random variable. Thus, for each error model,

the perturbed quality can be uniquely described as a cumulative distribution

function (CDF). To measure similarity between two CDFs of continuous data,

the Kolmogorov-Smirnov test is used.

For both hypothesis tests, the null hypothesis H0 is no difference in

output quality between a pair of error models; the alternative hypothesis H1

is there is difference in output quality between error models. Thus, if the null
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Table 4.6: p-values of Chi-squared and Kolmogorov-Smirnov tests for applica-
tion output quality between error models. Bold fonts represent output qualities
are significantly different.

Program
p-values (Chi-squared / Kolmogorov-Smirnov)

RTL vs. RB1 RTL vs. RB2 RTL vs. RND RTL+ vs. RB1+ RTL++ vs. RB1++
FFT 0.87 / 0.36 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00

miniFE 0.77 / 0.99 0.03 / 0.01 0.06 / 0.09 0.00 / 0.00 0.00 / 0.00
CG 0.05 / 0.66 0.74 / 0.22 0.01 / 0.18 0.00 / 0.16 0.21 / 0.50
MG 0.76 / 0.32 0.23 / 0.51 0.10 / 0.60 0.95 / 0.76 0.74 / 0.89

CoMD 0.74 / 0.69 0.38 / 0.49 0.00 / 0.45 0.15 / 0.04 0.91 / 0.33
LULESH 0.67 / 0.86 0.01 / 0.07 0.05 / 0.00 0.24 / 0.51 0.69 / 0.78

hypothesis is rejected, it indicates output quality differs significantly between

the pair of error models. The significance level (α) is chosen to be 0.05. As a

result, if the calculated p-value from a test is less than 0.05, the observed data

rejects the null hypothesis. The results of both tests are shown in Table 4.6.

Both tests show that there is no significant difference in output quality

between RB1 and RTL when there are no hardware residue checkers.4 How-

ever, neither RB2 nor RND result in similar output quality as RTL. When

residue checkers exist, the perturbed output quality of RTL is statistically dif-

ferent from bit-flipping models for applications in which the detectors protect

a reasonable fraction of instructions. This is because multi-bit errors gener-

ated with RTL model may not be detected by residue checkers and thus affect

the output quality.

Effective application output quality: So far this work only shows how

4These results do not mean that both RB1 and RTL lead to the same distributions of
output quality for these applications.
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error models and detector models affect application output quality given an

error always results in SDC. Nonetheless, the effective output quality actually

depends on SDC ratio and the coverage of the detector (if any). The effective

output quality can be computed as

(1− c) ∗ ((1− PSDC) ∗MeanerrFree + PSDC ∗MeanSDC)

+ c ∗ (MeanerrFree)
(4.2)

where c is detector coverage, PSDC the SDC ratio of the error model,

MeanerrFree the expected output without error, and MeanSDC the mean per-

turbed output due to SDC. Here detected errors contribute to MeanerrFree

because they can be corrected either by checkpoint-restart, or by restarting

the whole application from the beginning.

Using this metric, the findings are that: (1) both RB1 and RTL lead to

very similar effective output quality because their SDC ratios and MeanSDC

are similar, (2) residue checkers fail to improve effective quality of miniFE

and LULESH because the MeanSDC is significantly different from MeanerrFree,

and (3) the impact of error models on effective quality is negligible for the

applications whose effective quality is improved by the residue checkers (e.g.,

RND++ and RTL++ have similar effective quality for FFT, CG, MG, and CoMD).

Observation 5: While the specific output quality degradation of a specific

run with detectors requires a high-fidelity error model, the overall impact on

ensemble methods can be reasonably estimated with RB1.
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Figure 4.12: Application efficiency due to checkpointing overhead vs. the ratio
of dump time to MTTF where alpha is the ratio of estimated MTTF to true
MTTF. This implies that slight estimation error of DUE ratios has negligible
impact on achieving minimal checkpointing overhead.

4.5.6 Impact of Error Models on Resilience Overhead

Recall that the DUE ratios obtained with RB1 and RTL are slightly

different (max difference is 4% for CG in Figure 4.8). With the DUE ratios

from error injection results, researchers can tune the checkpointing interval

for minimal overhead incurred by checkpointing and rollback. To quantify the

impact of tuning the checkpointing interval based on RB1 instead of the RTL

model, the application efficiency is derived (i.e., the fraction of time for real

computation as opposed to checkpointing) using the higher-order formula in

[79, 80]. Note that the 4% difference of DUE ratios for CG (39.4% vs. 35.5%)

leads to around 10% estimation error of the mean time to failure (MTTF).

However, such difference has negligible impact on application efficiency (Fig-

ure 4.12). This is also true when the residue checkers are considered. The

maximal difference of the DUE ratios between RB1 and RTL with detectors
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is XSBench (100% for RB1+ vs. 90.5% for RTL+), which also leads to 10%

estimation error for MTTF. Thus, tuning the workload-specific checkpointing

interval through single-bit error injection is good enough.

Observation 6: RB1 is sufficient for evaluating the overall performance effi-

ciency impact of errors (on checkpoint-restart) whether detectors are used or

not.

4.6 Summary

This chapter develops high-fidelity error models for particle strikes

along with an acceleration technique called nested Monte Carlo which speeds

up evaluation by orders of magnitude. By demonstrating the outcome dis-

tributions, application output quality, and the impact on checkpointing over-

head, single-bit errors remain a good approximation of realistic soft errors from

arithmetic and logic circuits when hardware detectors are not considered. If

hardware detectors are known to exist, a more realistic error model should be

used to evaluate and tune the software resilience techniques.
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Chapter 5

Error Models for Voltage Droops and

Acceleration with Injection-Point

Overprovisioning1

This chapter develops high-fidelity error models for voltage droops

along with an acceleration technique called injection-point overprovisioning

that speeds up evaluation by an order of magnitude. Section 5.1 describes

the background of voltage droops and motivation of developing high-fidelity

models. Section 5.2 presents the design of the high-fidelity injector for voltage

droops in Hamartia. Section 5.3 introduces the injection-point overprovision-

ing technique. Section 5.4 and Section 5.5 compare the results of error injection

using high-fidelity errors vs. current low-fidelity ones.

5.1 Background and Motivation

Section 5.1.1 describes the propagation of timing errors caused by volt-

age droops within digital circuits. Section 5.1.2 explains the impact of timing

errors on modern computer systems. Section 5.1.3 discusses the capabilities of

1Part of this chapter appears in [81]. The author of this dissertation is the main con-
tributor of the idea, implementation, and evaluation. The other coauthors in [81] assist
evaluation of the idea.

55



existing timing error models.

As defined in Section 2.1, faults denote physical events that affect hard-

ware components. If a fault eventually changes architectural state, it becomes

an error.

5.1.1 Timing Errors in Digital Circuits

Timing faults result from variations in supply voltage, temperature, or

device characteristics that change circuit timing. As a result, some inputs may

take too long to propagate through the circuit and lead to an error when a

corresponding output flip-flop latches a not-yet-stable value. In a sequential

circuit, a timing fault manifests as a timing error when at least one flip-flop

latches an incorrect value and it eventually perturbs architectural state. This

process is complicated because it depends on the variation’s magnitude and

duration, the circuit, its operating condition (including clock frequency, volt-

age, temperature, etc.), and the sequence of input values to the circuit; both

current inputs and previous inputs are important. This work targets timing

errors as a result of voltage droops.

Although the circuit structure determines the delay of each path, in-

put values control which paths are toggled (or sensitized). For example, in

Figure 5.1, given the input pair, it is the red path that determines the timing

of the endpoint E1, while the other paths are false paths because their tim-

ing is irrelevant given the inputs. Only variations that are strong enough can

significantly delay the toggled paths such that old values or glitches (interme-
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Figure 5.1: An example timing error caused by a voltage droop.

diate values) are latched by flip-flops at the circuit endpoints. However, old

values are not always different from the correct values. As a result, whether

an instruction is affected by a timing fault depends on the input history of the

circuit as well (i.e., circuit inputs at previous cycle).

Whether faults become errors also depends on logical masking. For in-

stance, in Figure 5.1, even though the flip-flop of E1 fails to latch the new

value produced by gate G2, the fault only affects the output of G4 but not

G5 in the subsequent stage. This is because the other input to G5 is a con-

trolling value (in this case, 0). Thus, high-fidelity modeling of timing errors in

pipelined circuits needs to consider logical masking as well.

Timing errors may affect multiple instructions and corrupt multiple

bits in output operands. For instance, consider variations that persist across

multiple cycles or those that impact multiple pipeline stages simultaneously.

Note that this is different from radiation-induced errors, which usually affect

a single instruction. For a detailed discussion of timing errors, see [10, 12].
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5.1.2 Impact of Timing Errors on Computer Systems

Modern systems apply substantial voltage and/or frequency guard-

bands in hardware to ensure that timing errors never occur, even at the worst

operating condition. However, guardbands waste energy and performance be-

cause typical use cases do not lead to timing errors. Prior work has shown

that such guardbands can account for about 18% of total node power for IBM

POWER7 [31] and ARMv8 systems [32].

Researchers have been advocating cross-layer techniques to over-

come the power constraints of future systems without expensive guardband-

ing [82, 12, 83]. Nonetheless, due to dynamic variations (e.g., voltage droops

and temperature fluctuations) and shared power delivery networks in many-

core processors [84, 85, 12], the likelihood that timing errors occur in large-

scale systems may become non-negligible. Technologies such as near-threshold

voltage computing are even more susceptible to timing errors [86]. Thus, a

methodology to evaluate the resilience of applications against timing errors is

highly desirable.

5.1.3 Existing Timing Error Models

Table 5.1 summarizes prior work on modeling timing errors. Features

of a high-fidelity error model include whether it is value-dependent, whether

it models logical masking for pipelining, and whether the operating condition

is tunable. Since no prior work is comprehensive, this research develops high-

fidelity timing error models available to the research community.
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Table 5.1: Prior work on timing error modeling.

Publicly Value Logical Frequency Voltage Temperature Process
Available Dependent Masking Tunable Variation Variation Variation

SWAT-Sim [19] X X X
VARIUS-NTV [87] X X X X
CrashTest [48] X X X
b-HiVE [49] X X X
CLIM [88] X X
Constantins et al. [50] X X X
This work X X X X X X ∗

∗This is achievable by enhancing the underlying timing analysis tool with the capability of statistical timing analysis.

5.2 A High-Fidelity Error Injector for Voltage Droops

This injector is developed on top of Hamartia which was introduced

in Chapter 3. It is based on the same architecture for hierarchical injection,

consisting of an instruction-level injector and a gate-level injector to acceler-

ate injection and still generate high-fidelity errors. At the injection point, the

instruction-level injector provides the gate-level injector with: (1) the instruc-

tion type (used to determine which circuit to simulate) and (2) a pair of input

vectors to the circuit for the previous and current cycle. A user-provided error

configuration supplies the voltage droop profile (i.e., magnitude and duration).

The gate-level timing error injector then returns a potentially corrupted out-

put to the instruction-level injector. Figure 5.2 shows the overall flow of the

timing error injector.

5.2.1 The Instruction-Level Injector

As mentioned in Section 5.1.1, the manifestation of a timing error

depends on the circuit’s computation history. As a result, the role of the
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Figure 5.2: Instruction-level timing error injector for a pipeline of depth D.
Each timing fault injector is the per-stage injector in Figure 5.4.

instruction-level injector is to collect the data necessary for reproducing cir-

cuit state. The workflow of the injector is explained with the example in Fig-

ure 5.3. The instruction instances affected by a timing fault are called victim

instructions. Specifically, the injector logs: (1) input pairs, which are input

operands of victim instructions and those of the previous instructions that

utilized the same circuit and (2) instruction types of those instructions (e.g.,

ADD, MUL, etc.). For the example in Figure 5.3, the input pair is ((r1,r2),

(r4,r5)) and the instruction type is floating-point addition. These data are

used to build the error context which is passed to the gate-level injector along

with the error configuration.
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//	binary	snippet
fpadd	r1,	r2,	r3	
		//	r3	=	r1	+	r2	(previous	inst)
fpadd	r4,	r5,	r6	
		//	r6	=	r4	+	r5	(victim	inst)

//	error	config
voltage:	"0.85V"
frequency:	"400MHz"
duration:	"single_cycle"
occupancy:	"low"
																	

Figure 5.3: Example binary snippet and error configuration.

5.2.2 The Gate-Level Injector

This injector produces the potentially corrupted output operand for

each victim instruction. The core consists of a fault driver and multiple timing

fault injectors. Each fault injector models temporal masking in one pipeline

stage. The fault driver prepares inputs for the fault injectors which are chained

to model logical masking across stages.

5.2.2.1 The Fault Driver

Based on the instruction type, it first looks up the circuit database to

determine the circuit used by the victim instruction. If the circuit’s pipeline

depth is D, then D fault injectors are chained together. Next, the driver

prepares input for each fault injector. It decides the operating condition of the

circuit based on the error configuration. It also generates fault-enable signals

to control whether a stage should be injected or not. These fault-enable signals

are determined based on the fault duration and pipeline occupancy (explained

in Section 5.4.1.1). Once all input to fault injectors are ready, the driver

launches simulation of the first stage and waits for the result of the last stage.
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Figure 5.4: Per-stage timing fault injector.

For the example in Figure 5.3, the victim instruction uses the floating-

point adder, which has three pipeline stages in the evaluation of this research

(see Table 5.2). Therefore, three fault injectors are chained together. Since the

user specifies that the droop decreases the voltage to 0.85V, the driver fetches

the characterization corner for that voltage level from the cell library database.

Assuming the victim instruction is in the third stage when the single-cycle

droop occurs, only the fault-enable signal to the third stage should be set (i.e.,

the results of first two stages are error-free). Finally, the input pair, ((r1,r2),

(r4,r5)), is sent to the first stage and the simulation begins. The output of

the first stage becomes the input to the second stage, and so on. In the end,

the fault driver sends the potentially corrupted output of the last stage back

to the instruction-level injector, which modifies the value of r6 accordingly.

5.2.2.2 Modeling Temporal Masking

Figure 5.4 shows how to model temporal masking within each pipeline

stage. To this end, those endpoints (i.e., input of flip-flops or circuit’s output
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pin) experiencing a timing violation must be identified given the input pair to

the circuit and its operating condition. Dynamic timing analysis is performed

to determine which endpoints encounter a timing violation using the method

proposed by Cherupalli and Sartori [89]. The idea is to remove false paths

before running static timing analysis (STA) such that only paths with gates

toggled in the specific cycle determine signal arrival times at the endpoints

(e.g., the red path in Figure 5.1). The false paths are derived by parsing

the value change dump (VCD) generated by gate-level simulation. Although

the original evaluation in [89] uses a proprietary STA tool, this research uses

OpenTimer, an open-source STA tool [90]. For gate-level simulation, the open-

source Icarus Verilog simulator [54] is used.

Once the output pins encountering a timing violation, the error-free

output of the victim instruction, and error-free output of the previous in-

struction that used the same circuit are identified, the potentially corrupted

output operand for the victim instruction (the timing fault generator box in

Figure 5.4) can be derived. For example, if the error-free output of the victim

instruction is 0010, the output of previous instruction is 1111, and all bits ex-

cept the least-significant bit encounter a timing violation, then the corrupted

output operand is 1110.

5.2.2.3 Modeling Logical Masking

Logical masking is modeled by chaining fault injectors. If a fault is

injected at one stage, it may be logically masked by one of its following stages.
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Each pipelined circuit is preprocessed by splitting it into individual stages

using Pyverilog, a hardware design processing toolkit for Verilog HDL [62].

The functionality of the resultant circuits are verified to ensure that the circuit

transformation does not break functionality. This is a one-time procedure and

it is completely transparent to the user. At runtime, the fault driver provides

the circuit of each pipeline stage to each corresponding fault injector.

5.2.3 Limitations

This research makes two assumptions: (1) the magnitude of variations

is constant within each cycle, and (2) the execution order of instructions fol-

lows the program order. This is not always true for processors with out-of-

order execution, which require detailed modeling of their micro-architecture

for full fidelity. For such a study, the gate-level injector can be integrated with

injectors at the micro-architectural level [47, 25]. Metastability is not mod-

eled because the estimated mean time between metastability events (using the

models in [91]) is larger than 1040 years even for the worst operating condition

evaluated in this work.2 Although the evaluation focuses on timing errors as

a result of voltage droops, the tool can be used to evaluate timing faults due

to overclocking or temperature fluctuations as well.

2If the user specifies very small cycle time or very strong droop, the tool reports the
mean time between metastability events based on existing models and warns the user if the
mean time between metastability is lower than 105 years (i.e., metastability rate is higher
than 0.1 FIT).
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5.3 Injection-Point Overprovisioning

This research assumes that timing faults occur randomly and uniformly

during execution because timing errors depend on a large number of factors

that include dynamics of the system and variations of the operating environ-

ment. To evaluate the resilience of applications against timing errors, the

Monte Carlo method is adopted because the error space is enormous. How-

ever, as explained in Section 2.2.3.1, it takes a large number of Monte Carlo

trials to collect statistics on errors that do affect applications. Although hier-

archical injection helps reduce per-trial evaluation time, the overall evaluation

is still slow because the number of trials remains large.

The nested Monte Carlo method proposed in Section 4.3 is not appli-

cable for injecting timing errors hierarchically. This is because particle strikes

usually affect only one component (or just a few components) in the circuit at

a time. If a fault is masked, nested Monte Carlo can inject a fault to another

component. On the other hand, timing errors affect many components in the

circuit simultaneously (all components that share the same power delivery net-

work in the cases of voltage droops). As a result, if a timing fault is masked,

there are no other sites to inject a fault into at the same instruction.

This dissertation introduces another novel sampling technique called

Injection-Point Overprovisioning. This technique is based on the observation

that masked faults do not change the architectural state (i.e., are invisible to

applications). Unlike simple random sampling which provides only one injec-

tion point per application run, injection-point overprovisioning provides mul-
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Figure 5.5: The proposed injection-point overprovisioning technique vs. simple
random sampling. (a) simple random sampling, (b) injection-point overprovi-
sioning, and (c) an example of applying injection-point overprovisioning on two
cores in parallel. Green crosses denote masked faults and red ones are errors
that change the architectural state.

tiple potential injection points, sorted by injection time. If a fault is masked at

an early injection point, the next point is evaluated until an error is generated

or until all injection points for the run are exhausted. Once injection succeeds

in manifesting an architecturally-visible error, all remaining points are passed

to the next run to ensure that the sampling is unbiased.

Figure 5.5b illustrates the idea of injection-point overprovisioning with

the same set of injection points as shown in Figure 5.5a for simple random

sampling. Injection-point overprovisioning reduces the number of applications

runs from 8 to 2 in this example. Note that injection-point overprovisioning in-

creases the injection overhead per run because it performs multiple injections.

However, as long as the per-run injection overhead is negligible compared to

the overhead of running the application itself, the overall evaluation time will

be improved. An analytical model of the benefit is discussed later in this
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chapter.

Injection-point overprovisioning is easily generalized to machines with

parallel architectures and still reaches the same level of parallelism as simple

random sampling. Figure 5.5c shows an example of parallel overprovisioning on

two cores with the same set of injection points. Note that dependencies only

exist between application runs that execute back-to-back on the same core,

while runs on different cores are independent. A synchronization mechanism

among cores is needed to terminate the entire error injection campaign when it

collects enough errors to claim statistical significance, but this synchronization

is infrequent.

Implementation: This research demonstrates an example implementation of

injection-point overprovisioning with the master-worker parallel pattern. The

master thread is responsible for generating and updating the batch of injection

points associated with each core and for synchronizing worker threads upon

termination.

Recall that the overall injection flow of Hamartia consists of three

phases: profiling, injection, and analysis (Section 3.1.2). The profiling phase

simply determines the range of injection points, while the injection phase does

fault/error injection with the injection-point overprovisioning technique.

In the injection phase, the master thread initializes each batch with N

points randomly drawn within the range determined in the profiling phase.

It then launches a worker thread for each core that performs fault injection
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to the specified application. Next, each worker thread injects faults at points

specified in its batch until an error is generated or until the batch is exhausted,

and then records the remaining points (if any). When a worker thread on core

Ci is done, the master thread updates the batch associated with core Ci by

either passing the remaining points or generating a new batch of points. Once

the total number of collected errors reaches the target, the master thread waits

until all worker threads finish before terminating the injection phase.

The analysis phase examines the injection result for each application

run and generates statistics such as the injection outcome distributions. Note

that the efficiency of the proposed technique depends on the batch size N and

other factors.

Analytical Modeling: The goal is to understand when injection-point over-

provisioning outperforms simple random sampling. To this end, a first-order

analytical model for the cost of generating an error relative to application

execution time is derived.

Assume that at each injection point, the fault masking rate is an i.i.d.

Bernoulli random variable with masking-probability P . Let α be the injection

overhead normalized to the execution time of the application. The cost of using

simple random sampling is then formulated as in Equation 5.1. The first term

is the cost of injecting a fault for each application run and the second term is

the mean number of fault injections (equal to the number of application runs)

needed to generate an error. For instance, if P is 50%, it takes two runs on
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average to generate one error.

CSRS = (1 + α)× (
1

1− P
) (5.1)

The cost of injection-point overprovisioning (with N points per run)

can be formulated as in Equation 5.2, based on the law of total probability.

The first term is the expected cost if the first injection leads to an error. The

expected relative cost of running until the injection point is 1
N

because the

injection points are generated uniformly across time. The second term is the

cost if the first injection is masked but the second injection results in an error,

and so on.

CIPO = (1− P )(
1

N
+ α) + P (1− P )(

2

N
+ 2α)

+ . . .+ PN−1(1− P )(
N

N
+Nα)

= (
1

N
+ α)× (

1− (1 +N −NP )PN

1− P
)

(5.2)

The speedup of overprovisioning is defined as the ratio of CSRS to

CIPO. If speedup is greater than 1, then injection-point overprovisioning out-

performs simple random sampling. Parameters are swept in both equations

and speedup is shown in Figure 5.6. When injection overhead is small (e.g.,

α ≤ 0.1), injection-point overprovisioning outperforms simple random sam-

pling by at least 4X in most cases, and speedup increases with the batch size

(N). However, when the masking ratio (P ) is less than 0.2, or when the injec-

tion overhead is large (e.g., α = 1), injection-point overprovisioning is worse
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Figure 5.6: Speedup (CSRS / CIPO) of injection-point overprovisioning as a
function of the batch size, the masking ratio, and injection overhead. X-axis is
the batch size (N), and y-axis the masking ratio (P ). α is the injection overhead
normalized to execution time of the application.

than simple random sampling.

In reality, the fault masking ratio depends on multiple factors (including

circuits, operating condition, input data, etc.). Thus, it is not as simple as a

Bernoulli random variable. Experimental results for the benefits of injection-

point overprovisioning are presented in Section 5.5.1.

Optimization with Checkpoint-Restart: Injection-point overprovisioning

can be further improved with the aid of low-overhead checkpoint-restart. The

idea is to reduce the overhead of running applications toward injection points

by fastforwarding to the nearest checkpoint before each injection point. Note

that this optimization helps only when the overhead of restarting is small
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compared to application execution time. The analysis is beyond the scope of

this research.

5.4 Evaluation Methodology

The evaluation consists of the following parts: (1) assessing the benefits

of injection-point overprovisioning, (2) characterizing the timing error models

at the instruction level, (3) evaluating the impact of error models on the re-

silience of applications, and (4) conducting sensitivity studies of application

resilience to droop profiles and pipeline occupancy.

5.4.1 Error Models

This research focuses on timing errors resulting from transient voltage

droops (i.e., dI
dt

droops), but the tool and framework can be used to study

other types of timing errors as well. However, the injector overhead would be

too high to evaluate faulty events with very long duration (e.g., temperature

variations can last milliseconds or longer, which requires simulating millions

of instructions at the gate level). The proposed high-fidelity error models that

use just-in-time error generation are compared to two well-known low-fidelity

error models.

5.4.1.1 High-Fidelity Timing Error Models

Recall that the error manifestation process of timing errors is very

complex and depends on the following factors: (1) the circuit structure, (2)
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Table 5.2: Circuits and their fault injection overhead.

INT-ADD INT-MUL FP-ADD FP-MUL FP-DIV

Pipeline Depth 1 3 3 3 1
Overhead Mean 0.39s 4.80s 1.59s 3.95s 4.15s
Overhead Std. 0.003 0.112 0.011 0.026 0.029

the operating condition, (3) the variation’s profile, and (4) the history of input

values to the circuit.

Circuits and Operating Conditions: The tool injects errors to arithmetic

units because those circuits are more prone to timing errors according to pre-

vious work [92, 93]. Gate-level netlists of integer and floating-point adders

and multipliers are synthesized using Synopsys tools (Design Compiler and

DesignWare Library) with Synopsys’s SAED 32nm technology, optimized for

performance. The pipeline depths are tuned to match Intel’s Broadwell pro-

cessors based on the latency data from [67]. OpenTimer is used to obtain

the critical path of each circuit and set the clock frequency as 400MHz. The

nominal voltage of the cell library is 1.05V and temperature is set to 25◦C.

Table 5.2 lists the circuits studied in this work. These circuits can be dif-

ferent from those designed and optimized for commodity processors, but the

developed tool is generic enough to evaluate other circuits as well.

Droop Profile: Other than the nominal 1.05V voltage, two other voltage

levels (0.85V and 0.78V) are used to model droops. Both single-cycle droops
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and multi-cycle droops that persist for the maximum pipeline depths (i.e., 3

cycles for the circuits under test) are modeled.

Pipeline Occupancy: The number of instructions affected by a voltage

droop depends on the droop’s duration and the occupancy of the affected

pipeline. In general, for a pipelined circuit of depth D, the maximal number

of instructions affected by a T -cycle droop is D+T −1. The extreme cases are

modeled to understand whether accurate modeling of pipeline occupancy is

necessary. A low-occupancy pipeline has only one instruction in the pipeline

throughout duration of the droop, while a high-occupancy pipeline is fully

utilized with each stage occupied by an instruction.

For each droop magnitude, the combination of droop duration and

pipeline occupancy leads to four error groups:

• Single-cycle Low-occupancy (SL): a single-cycle droop affects a low-

occupancy pipeline.

• Single-cycle High-occupancy (SH): a single-cycle droop affects a

high-occupancy pipeline.

• Multi-cycle Low-occupancy (ML): a multi-cycle droop affects a low-

occupancy pipeline.

• Multi-cycle High-occupancy (MH): a multi-cycle droop affects a

high-occupancy pipeline.
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Figure 5.7: Illustration of error groups for a 3-stage pipeline. Data flow from
stage 1 (S1) to stage 3 (S3).

Figure 5.7 illustrates the four error groups for a 3-stage pipeline. In

this example, SL affects one instruction at a random stage. SH affects three

instructions simultaneously in one cycle. ML affects the same instruction in

three consecutive cycles at different stages. MH affects five instructions in total

across three cycles. For each instruction, the error group determines which

stages are affected by the droop. Recall that in the injector design, fault-enable

signals are used to control which stages to inject faults into (Figure 5.2). For

instance, when the ML error group is specified, I1 is affected by the multi-cycle

droop in three consecutive stages. Thus, fault-enable signals corresponding to

those stages are set.

To summarize, the error models are:

• Single-bit flip (RB1): randomly flips a single bit, shown to be a good

approximation of high-fidelity arithmetic errors due to particle strikes [1].

• Previous value (PREV): models a severe voltage droop which causes
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timing violation at all output pins and thus latches the output value of

the previous instruction using the same execution unit [39].

• Decreasing voltage to 0.85V (0.85V): generates a timing error re-

sulting from a droop that decreases the voltage to 0.85V. It consists

of four error groups with different combinations of droop duration and

pipeline occupancy (Figure 5.7).

• Decreasing voltage to 0.78V (0.78V): generates a timing error re-

sulting from a droop that decreases the voltage to 0.78V. It also consists

of four error groups.

5.4.1.2 Experimental Settings

This work assumes that timing faults occur randomly and uniformly

(e.g., when hardware error-mitigation techniques fail due to an unexpectedly

strong voltage droop). In each experiment, the tool injects an error into a

random instruction’s output operand with one of the four error models listed

above. For each model, injection-point overprovisioning is used to collect 2000

random errors. This ensures a margin of measurement error around 2.2% for

a confidence level of 95% [68]. Based on Figure 5.6, the batch size (N) is set

to 10. For SIMD instructions, the tool injects timing faults to all SIMD lanes

because they usually share the same power delivery network.
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Table 5.3: Benchmarks, their input, average execution time, and the criteria
to classify injection outcomes as SDCs.

Input Native Time Time w/ Injection SDC Criteria

FT Class A 3.5s 23.4s Failed verification
LU Class A 29.3s 201.8s Failed verification
MG Class B 5.8s 46.7s Failed verification
CG Class A 1.2s 7.6s Failed verification
CoMD default 5.7s 33.8s Potential energy > 10−10 [74]
LULESH default 22.1s 130.5s MaxAbsDiff > 10−8 [69]

5.4.2 Benchmarks

Six serial scientific kernels and proxy applications are used: FT and LU

and CG and MG from NPB [73], CoMD [74], and LULESH [75]. Table 5.3 sum-

marizes the benchmarks, their input, native execution time per experiment,

execution time with injection overhead, and how injection outcomes are classi-

fied as SDCs. All benchmarks are compiled with gcc 4.8.5 using their original

build scripts.

5.5 Experimental Results

5.5.1 Injection-Point Overprovisioning

Figure 5.8 shows the speedup of injection-point overprovisioning for dif-

ferent error groups under different droop magnitudes. The maximum speedup

is 7X (for LULESH in the setting with 0.85V and the SL error group). Speedup

is highest for the SL error group (i.e., voltage droop affects only one instruction

at a random stage). In this case, timing errors are more likely to be logically
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Figure 5.8: Speedup of injection-point overprovisioning for high-fidelity timing
error injection. Speedup here is defined as the ratio of evaluation time using
simple random sampling to injection-point overprovisioning. Left: 0.85V; Right:
0.78V. X-axis: four error groups (Figure 5.7).

masked at later pipeline stages, and thus the fault-masking rates are higher.

Also, speedup is higher when droop magnitude is lower (0.85V) because the

fault-masking rate is higher (mostly due to temporal masking). On average,

for the weaker droops (0.85V), speedup of injection-point overprovisioning is

4.7X, 2.2X, 2.2X, and 1.7X for the SL, ML, SH, and MH error groups, respec-

tively. For stronger droops (0.78V), speedup is 3.0X, 1.8X, 1.8X, and 1.6X,

respectively.

In terms of resource savings due to injection-point overprovisioning,

2,943 core-hours are saved for the entire evaluation. The original resource

requirement for simple random sampling was 5,585 core-hours. Notice that the

savings can be even higher if one needs higher accuracy (i.e., observing more

errors). The accuracy in this work is around 2%. The projected savings for a

1% accuracy target is 13,978 core-hours for the same set of experiments. The

resource requirement would be 26,527 core-hours if simple random sampling

is used.
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Figure 5.9: Distributions of the number of flipped bits at circuit output (simple
error models vs. the high-fidelity ML timing error group).

5.5.2 Injection Outcome and Analysis

In this section, presented are the characteristics of timing errors at the

instruction level and the injection outcome at the application level.

5.5.2.1 Instruction-Level Error Patterns

The characteristics of how many bits of the circuit output are flipped

(Figure 5.9) and which bits are more likely to be flipped (Figure 5.10) are

derived. Note that distributions are application-dependent.

According to Figure 5.9, timing errors flip multiple bits in most cases

(> 80%). The fact that timing errors tend to flip lower-significance bits is due

to value locality at the higher-significance bits. In other words, the higher-

significance bits rarely transition between previous output and current output

at the circuit level. Therefore, even though higher-significance bits are more

likely to experience timing violation, the latched values are still correct.
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Note that PREV in some cases (e.g., CG and LULESH) flips fewer bits

than the high-fidelity model. This is due to the fact that errors generated

by PREV exhibit a different instruction mix when compared with the high-

fidelity model; PREV essentially injects errors into some instructions that

never generate an error when using a higher-fidelity model. Although circuits

with lower complexity (e.g., integer adders) are less sensitive to timing errors,

PREV can still corrupt results generated by such simple circuits because it

lacks timing information.

Observation 1: timing errors that corrupt arithmetic circuits tend to flip

multiple lower-significance bits.
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Figure 5.10: Distribution of bit-flip positions at circuit output with input from
each benchmark under the ML error group. Note that these are not distribu-
tions of positions with timing violation.

80



FT LU MG CG CoMD LULESH
0.8

5V
-M

L

0.7
8V

-M
L
PR

EV RB1

0.8
5V

-M
L

0.7
8V

-M
L
PR

EV RB1

0.8
5V

-M
L

0.7
8V

-M
L
PR

EV RB1

0.8
5V

-M
L

0.7
8V

-M
L
PR

EV RB1

0.8
5V

-M
L

0.7
8V

-M
L
PR

EV RB1

0.8
5V

-M
L

0.7
8V

-M
L
PR

EV RB1
  0%

 20%

 40%

 60%

 80%

100%
O

ut
co

m
e 

Ra
ti

o
Reliability Outcome Distribution

SDC
DUEtest
DUEcrsh
Masked

Figure 5.11: Injection outcome distributions (simple error models vs. the high-
fidelity ML timing error group). Results of other error groups are in Figure 5.12.

5.5.2.2 Application-Level Impact

Figure 5.11 shows the distributions of error injection outcomes using

different error models. Recall that RB1 is shown to be a good approximation

of high-fidelity arithmetic errors due to particle strikes [1], and thus it can be

used as a proxy to compare timing errors with errors due to particle strikes.

Observation 2: timing errors rarely lead to DUEs.

Compared to RB1 and PREV, high-fidelity timing errors rarely lead to

DUEs. This observation is related to previous results at the instruction level:

lower-significance bits are more likely to be flipped. On the other hand, since

RB1 flips each bit with equal likelihood, it tend to flip higher-significance bits

and causes more segmentation faults. LULESH is the only application in which

high-fidelity timing errors result in some DUEs. It turns out that most DUEs

are bus errors (i.e., unaligned memory accesses) instead of segmentation faults.
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Observation 3: timing errors result in low SDC ratio.

High-fidelity errors cause fewer SDCs compared with RB1 and PREV.

This is also related to the results at the instruction level. For instance, for

floating-point instructions, flipping lower-significance bits leads to changes in

the significand field, which has less impact compared to the exponent field.

SDC ratios are expected to be even smaller for weaker droops (e.g., droops

that decreases the voltage to 0.9V). Comparing the SDC ratios between RB1

and high-fidelity timing errors, the maximum difference occurs in FT where

the SDC ratio of RB1 is 10% and those of 0.78V and 0.85V are 3% and 0%,

respectively.

Observation 2 and observation 3 indicate that it is plausible to save

power by reducing guardbands if the user can tolerate some DUEs and SDCs.

However, such decisions must be made carefully as timing errors can occur

when the processor is in kernel mode as well. The evaluation of kernel mode

is beyond the scope of this research.

Observation 4: neither RB1 nor PREV is a good approximation for high-

fidelity timing errors.

Both RB1 and PREV result in pessimistic results compared with high-

fidelity timing errors. RB1 overestimates DUE ratio by at least 7% in all

cases and it overestimates SDC ratio by 5.7% and 3.6% for 0.85V and 0.78V,

respectively. PREV greatly overestimates both DUE ratio and SDC ratio in

all applications.
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Figure 5.12: Injection outcome distribution for sensitivity studies of droop mag-
nitude and error groups.

5.5.3 Sensitivity Studies

Figure 5.12 shows the sensitivity studies of injection outcome distribu-

tions to droop profiles and pipeline occupancy. The first observation is that

SDC ratio increases with droop magnitude because stronger droops are more

likely to flip higher-significance bits. Second, for the same droop magnitude,

three error groups (SL, ML, and SH) lead to similar distributions (error bars

are overlapped). This also means that for single-cycle droops (SL and SH),

injection outcomes depend only on droop magnitude. Note that MH leads

to higher SDC ratio than ML because it not only affects more instructions

but also affects them multiple times. The maximum difference of SDC ratio

between MH and the other three groups is 3.5% in MG with 0.78V. Therefore,

for evaluating the impact of multi-cycle droops on applications, more accurate

modeling for pipeline occupancy is needed.

Observation 5: for single-cycle droops, injection outcomes depend only on

droop magnitude, while for multi-cycle droops, injection outcomes depend on
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both droop magnitude and pipeline occupancy.

5.6 Summary

This chapter develops high-fidelity error models for voltage droops

along with an acceleration technique called injection-point overprovisioning

which speeds up evaluation by an order of magnitude. Injection results show

that voltage droops tend to flip multiple lower-significance bits at the instruc-

tion level and rarely lead to DUEs and SDCs at the application level. It is

shown that droop duration affects injection outcomes. For single-cycle droops,

injection outcomes depend only on droop magnitude. For multi-cycle droops,

injection outcomes depend on both droop magnitude and pipeline state. The

developed high-fidelity error models for voltage droops are valuable for the

research community because existing low-fidelity models, single-bit flips and

previous values, do not represent realistic voltage droops that affect arithmetic

units.
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Chapter 6

Effectiveness of Software-Based Error

Detectors on High-Fidelity Errors1

This chapter evaluates software-based error detectors using the high-

fidelity error models introduced in previous chapters. Section 6.1 motivates

the trend of detecting errors in the software stack. Two categories of software-

based detectors are evaluated: instruction duplication at the level of the com-

piler intermediate representation (IR) (Section 6.2) and application-level error

detection (Section 6.3).

6.1 Motivation

Although hardware-based fault detection techniques such as dual mod-

ular redundancy provide high coverage for SDCs, they are costly in terms of

area and power, such that they are only adopted by mission-critical systems.

As power constraints pose challenges for future systems, researchers have been

advocating software-based alternatives to harden systems against hardware er-

rors. Software detectors are attractive because they are shown to provide high

1Part of this chapter appears in [94]. The author of this dissertation is the main con-
tributor of the idea, implementation, and evaluation. The other coauthors in [94] assist
development of the idea and implementation.
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coverage for hardware errors and can be selectively employed to only protect

critical sections [95, 96, 58, 77, 97].

Furthermore, software-based detectors are both flexible and efficient.

In terms of flexibility, they are hardware-agnostic and can be enabled only

for target applications. In terms of efficiency, software detectors can focus on

critical parts of the applications to maximize error coverage given a fixed cost

of performance overhead.

Specifically, this research focuses on two types of software detectors:

instruction duplication and application-level error detection. The former de-

tects errors by inserting redundant instructions and checking instructions at

compile time [98, 95, 96, 97], while the latter detects errors with characteristics

at the application level [99, 100, 58, 101]. Unlike previous work that evaluates

these detectors using single-bit flips, this dissertation uses the high-fidelity

error models developed in this research.

6.2 Compiler IR-Level Instruction Duplication

Instruction duplication (Figure 6.1) is a technique that detects errors

by inserting redundant operations and checking instructions at compile time.

The naive method, known as full duplication, replicates and protects all in-

structions in the program but incurs significant performance overhead. On

the other hand, selective instruction duplication protects a subset of instruc-

tions to maximize error coverage at some reasonable performance overhead.

This approach works well because not all instructions in a program are equally
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Figure 6.1: An example of instruction duplication methods. (a) original dataflow
graph. (b) full instruction duplication. (c) selective instruction duplication.

vulnerable. In fact, only a small number of instructions in a program are re-

sponsible for the majority of SDCs. Hence, protecting these highly vulnerable

instructions with priority gives developers a reasonable trade-off between the

coverage and performance overhead.

6.2.1 LLVM IR-Level Instruction Duplication

Researchers have relied on compiler IR, such as LLVM IR, for resilience

studies and selective instruction duplication [13, 102, 59, 103, 104]. This is

because LLVM is platform-independent and is a well-supported open-source

tool.

Since errors originate in hardware and the IR is a high-level abstrac-

tion of a program, debates over the accuracy of IR-level injection and the

effectiveness of IR-level protection remain. Specifically, researchers have made

two assumptions when using IR for selective instruction duplication, which
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have yet to be validated: (1) IR-level injection is accurate enough to project

the vulnerability of its lower layer counterparts (i.e., the generated binary),

and (2) instruction duplication at the IR level captures high-fidelity hardware

errors. Although researchers have investigated the accuracy of IR-based fault

injection [8, 13, 105], they focused on the programs without protection and

did not use realistic errors in their evaluation.

6.2.2 Evaluation Methodology

The evaluation consists of the following parts: (1) the effectiveness

of IR-level selective instruction duplication at reducing SDCs resulting from

high-fidelity error models, (2) the effectiveness of full IR instruction duplica-

tion at mitigating SDCs, and (3) the impact of different error models on the

effectiveness of selective instruction duplication.

Implementation of selective instruction duplication: The implemen-

tation consists of four steps: (1) characterization, (2) selection, (3) duplication,

and (4) code generation. The characterization step identifies which IR instruc-

tions are responsible for SDCs. Since the instruction-level injector of Hamartia

is at the binary level (Section 3.1.4), LLFI [13], an LLVM IR-level injector, is

used instead. LLFI characterizes each IR instruction’s contribution to SDCs

using the RB1 error model.

Based on the characterization results, the selection step determines

which instructions to protect by solving a 0-1 knapsack problem, which is the
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same methodology used in [58, 97]. The output of this step is a list of IR

instructions to duplicate.

The duplication step transforms the IR by adding redundant operations

and checking instructions. The instructions provided by the selection step are

duplicated and a checker is placed right before their following branch, store,

function call, or function return.

The code generation step converts the transformed IR into a x86 binary

using LLVM’s code generation tools.

Error models: The focus here is errors due to particle strikes since instruc-

tion duplication assumes that the error affects only a single instruction.2 The

baseline is single-bit flips at the LLVM IR level, used in most prior studies on

IR-based selective instruction duplication [8, 59, 13, 104]. It is compared with

error models at the binary level in Hamartia. To summarize, the error models

include:

• Single-bit flip at the LLVM IR level (RB1-LLVM): randomly flips

a single bit in the destination register of a random dynamic LLVM IR

instruction.

• Single-bit flip at binary level (RB1-BIN): randomly flips a single

bit in the destination operand of a random dynamic instruction at the

2Recall that voltage droops are likely to affect multiple instructions including the in-
structions inserted for error detection.

89



binary level.

• RTL-level model (RTL): the high-fidelity error model for particle

strikes introduced in Chapter 4.

Metric: To quantify cost-effectiveness, the effectiveness of SDC reduction is

examined as the fraction of instructions being duplicated is increased. For each

benchmark and each error model, a protection curve is derived, a graphical

representation that helps researchers trade-off resilience and performance over-

head [58, 70]. The x-axis is the protection level (i.e., the fraction of dynamic

instructions duplicated). For instance, a protection level of 50% means that at

most half of the total dynamic instructions are duplicated for protection. The

y-axis is the SDC coverage, the reduction of SDC probability after protection

divided by the SDC probability before protection. For example, if the initial

SDC probability is 20% and the resultant SDC probability is 10% for some

protection level, then the SDC coverage at the protection level is 50%.

Benchmarks: This research evaluates the serial version of programs from

common benchmark suites (including Parboil [106], Rodinia [107], Parsec [108],

and SPEC [109]), an earthquake simulation application, hercules, from

Carnegie Mellon University [110], and the molecular dynamics application,

puremd, from Purdue University [111]. Table 6.1 summarizes the benchmarks

and their inputs. All programs are compiled using LLVM 3.4 with -O2.
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Table 6.1: Benchmarks and their input.

Suite/Author Input

bfs Parboil graph4096.txt
blackscholes Parsec 1 in 4.txt
cutcp Parboil watbox.sl40.pqr
hercules Carnegie Mellon University simple case.e
hotspot Rodinia 64 64 1 1 temp 64 power 64
libquantum SPEC 33 5
nw Rodinia 2048 10 1
puremd Purdue University geo ffield control
sad Parboil reference.bin frame.bin

6.2.3 Experimental Results

The effectiveness of IR-level selective instruction duplication: Fig-

ure 6.2 shows the protection curves measured under different error models.

The ground truth is the results under the RTL error model (red triangles).

The observation is that most SDCs can be detected by duplicating a fraction

of IR instructions in a program. In most cases, protecting 20% of instructions

is able to cover more than 50% of SDCs. Note that the knee of the protection

curves (i.e., the protection level after which the protection curve plateaus out)

varies across applications. Prior work has observed similar results [58, 70, 104].

Next, consider the curves of RTL (red triangles) and RB1-LLVM

(dashed curves). In each benchmark, IR-based evaluation usually leads to

pessimistic results at low protection levels but optimistic results at high pro-

tection levels. However, both curves follow similar trends across benchmarks.

The mean absolute difference between the two curves across benchmarks is
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Figure 6.2: Protection curves (x-axis: protection level; y-axis: SDC coverage).

9.32% (excluding the outlier, nw, which is explained below). These results in-

dicate that IR-based selective instruction duplication can approach reasonable

trade-offs between SDC coverage and performance overhead.

The exception is nw where the LLVM curve is consistently higher than

that of RTL. The difference is not statistically meaningful because the SDC

ratio even without any protection is already low (1.58%).

Observation 1: IR-based selective instruction duplication is able to provide

cost-effective protection to mitigate SDCs under high-fidelity errors.

The effectiveness of full duplication at mitigating SDCs: Table 6.2

shows that under RTL and RB1-BIN, there are a small number of errors that
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Table 6.2: SDC ratios under full IR-level instruction duplication.

bfs blackscholes cutcp hercules hotspot libquantum nw puremd sad gmean

RTL 0.21% 0.10% 0.38% 0.75% 0.33% 0.05% 0.92% 0.08% 1.52% 0.28%
RB1-BIN 0.13% 0.10% 0.71% 0.25% 0.62% 0.05% 0.46% 0.08% 0.84% 0.24%

escape full duplication of IR instructions and eventually lead to SDCs. On

average, the SDC ratios of RTL and RB1-BIN are 0.28% and 0.24%, respec-

tively. Since the duplication is at the IR level, injection using RB1-LLVM

leads to zero SDC. The reason why errors injected at lower layers escape IR

instruction duplication is because the code generation step inserts additional

instructions that are not visible at the IR level (e.g., instructions that set up

or tear down stack frames). Hence, they are not protected by IR duplication.

Observation 2: Only a small fraction (0.28%) of high-fidelity errors escape

full IR instruction duplication and lead to SDCs.

The impact of error models: As shown in Figure 6.2, the protection

curves measured using RTL (red triangles) and RB1-BIN (blue solid curves)

have very similar shapes. The mean absolute difference across benchmarks is

7.11% (5.55% if nw is excluded). The exceptions are nw and blackscholes

whose SDC ratios are low (around 1%) even without any protection. Notice

that for blackscholes when protection level is at 3%, there is a 27% difference

between the two curves. This is because the SDC ratios without protection

are 1.4% and 0.9% for RB1-BIN and RTL respectively. Although they are

close in terms of absolute values, their difference is large relatively.
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Observation 3: Protection curves measured by RTL and RB1-BIN are mostly

similar (5% mean absolute difference). Hence, RB1-BIN can also be used as a

fast proxy to evaluate the effectiveness of selective instruction duplication on

high-fidelity errors.

6.3 Application-Level Error Detection

Application-level error detection refers to an approach that detects

errors using application-specific characteristics. Unlike compiler-based tech-

niques, the implementations of application-level detectors usually require mod-

ification to the source code. This section evaluates two applications with

application-level detectors: CLAMR that contains a detector that checks in-

variants in the algorithm [101], and HeatDist that can be protected by value-

prediction [112, 113].

6.3.1 CLAMR

CLAMR is a cell-based adaptive mesh refinement mini-app for hydro-

dynamic simulation [101]. The developers design an application-level detector

that takes advantage of the conservation of mass. If the mass of the water

deviates beyond an allowable difference, the program raises an exception indi-

cating an error has been detected.

Evaluation: The goal is to understand the impact of different error models

on the final output of CLAMR. Two versions of CLAMR are evaluated: one
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Figure 6.3: Injection outcome distributions of CLAMR without protection and
CLAMR with the mass-conservation detector. Error models from left to right
are high-fidelity errors due to particle strikes, single-bit flip, and four high-
fidelity error models due to voltage droops (see Section 5.4).

with the mass-conservation detector and the other without it. In addition to

single-bit flips, high-fidelity errors due to particle strikes and errors due to

voltage droops are also evaluated.

Results: Figure 6.3 shows the outcome distributions of different error mod-

els. The first observation is that the mass-conservation detector can signifi-

cantly reduce the SDCs due to particle strikes (RTL) and single-bit flips (RB1).

For RTL, the SDC ratio reduces to 3.28% from 16.36%; as for RB1, the SDC

ratio reduces to 4.86% from 20.55%. Also, RB1 leads to distributions similar

to RTL regardless of the presence of the detector.

Observation 1: The mass-conservation detector can effectively capture SDCs

due to particle strikes.

However, the effectiveness of the detector at mitigating SDCs due to

95



voltage droops is limited. Voltage droops that corrupt only one instruction

(the SL models) lead to low SDC ratios whether a detector is present or not.

This is because voltage droops tend to flip the low-significance bits of the

output operand as found in Section 5.5. The mass-conservation detector is

only able to reduce the SDC ratios by about 2% for both 0.85V-SL and 0.78V-

SL. On the other hand, voltage droops that corrupt multiple instructions (the

MH models) result in higher SDC ratios. The mass-conservation detector

can reduce the SDC ratios by about 4% for both 0.85V-MH and 0.78V-MH.

The results indicate that other detectors are needed to address the impact of

voltage droops on CLAMR.

Observation 2: The effectiveness of the mass-conservation detector at cap-

turing SDCs due to voltage droops is limited, indicating the need of additional

detectors to handle voltage droops.

6.3.2 HeatDist

HeatDist computes the steady-state heat distribution with Laplace’s

equation using the Jacobi iterative method. The developers observe that in

general data of HPC applications change smoothly over time, and thus they

propose two types of prediction-based detectors. The first type predicts data

values using data from previous timestamps (temporal prediction [112]), and

the second type predicts values using neighboring data points in the data struc-

ture (spatial prediction [113]). If data deviate beyond an allowable difference

from the predicted value, the detector reports an error.
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Figure 6.4: Injection outcome distributions of HeatDist without protection,
with the detector using temporal prediction, and with the detector using spatial
prediction. Error models from left to right are high-fidelity errors due to particle
strikes, single-bit flip, and four high-fidelity error models due to voltage droops
(see Section 5.4).

Evaluation: The goal is to understand the impact of different error models

on HeatDist. Three versions of HeatDist are evaluated: one without protec-

tion, another with a detector based on temporal prediction, and the other with

a detector based on spatial prediction. Note that both prediction-based detec-

tors incur similar performance overhead for HeatDist. In addition to single-bit

flips, high-fidelity errors due to particle strikes and errors due to voltage droops

are evaluated.

Results: Figure 6.4 shows the outcome distributions of different error models

and the detailed SDC ratios are shown in Table 6.3. Both types of detectors

can effectively reduce SDCs due to particle-strike error models. For both RTL

and RB1, the SDC ratio reduces to about 1% with either detector. However,
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the detector using spatial prediction leads to higher DUE ratios. It turns out

that 97% of errors detected as DUEs by spatial prediction are false positives.3

In contrast, the detector using temporal prediction has a low false-positive

ratio (3%). As a result, temporal prediction should be used instead since both

prediction-based detectors incur similar performance overhead for HeatDist.

Observation 1: Although both prediction-based detectors can effectively cap-

ture SDCs due to particle strikes, the detector using temporal prediction is

more favorable due to its low false-positive ratio.

As for comparison between RB1 and RTL, it is observed that, without

detection, RB1 estimates higher SDC ratios compared with RTL (16% vs.

12%). With either detector, RB1 also estimates higher DUE ratios vs. RTL

(10% vs. 5% for temporal prediction and 20% vs. 14% for spatial prediction).

For HeatDist without detectors, RTL and RB1 estimate higher SDC

ratios than the high-fidelity voltage-droop error models (12− 16% vs. 0− 4%)

because voltage droops tend to flip the low-significance bits of the output

operand. Adding either type of detector removes all SDCs caused by voltage

droops that decrease voltage to 0.85V. However, stronger droops can still cause

SDCs even with a detector.

Observation 2: Prediction-based detectors can eliminate SDCs caused by

3False positives are errors reported as DUEs by the detector but their impact on the
application is insignificant and should be classified as Masked without detection. To count
the percentage of false positives, the detector does not terminate the application upon
detection.
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Table 6.3: SDC ratios of HeatDist without protection, with the detector using
temporal prediction, and with the detector using spatial prediction.

RTL RB1 0.85V-SL 0.78V-SL 0.85-MH 0.78-MH

HeatDist original 12.60% 16.60% 0.12% 1.34% 0.34% 3.79%
HeatDist temporal 1.00% 1.00% 0.00% 0.30% 0.00% 0.61%
HeatDist spatial 1.40% 1.40% 0.00% 0.19% 0.00% 0.14%

voltage droops of lower magnitude. Other detectors are needed to handle SDCs

caused by stronger droops.

6.4 Summary

This chapter evaluates software-based detectors using high-fidelity er-

ror models. Evaluation shows that IR-based selective instruction duplica-

tion is able to cost-effectively reduce SDCs resulting from particle strikes.

Application-level detectors, on the other hand, can effectively detect errors

caused by particle strikes but not voltage droops, indicating the need of ad-

ditional detectors to handle voltage droops. Single-bit flips remain a good

approximation of particle strikes even when applications are protected by

software-based detectors studied in this research.
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Chapter 7

Summary and Concluding Remarks

To summarize, the research objectives are: (1) increasing error model-

ing fidelity, (2) reducing the number of application runs while keeping sampling

quality equal, and (3) evaluating the effects of modeling fidelity on experimen-

tal results. This dissertation presents Hamartia, an open-source hardware

error analysis suite with high fidelity and low overhead. Hamartia increases

error modeling fidelity for particle strikes and voltage droops with hierarchi-

cal injection. Two novel acceleration techniques, nested Monte Carlo and

injection-point overprovisioning, are included in Hamartia to speed up error

injection by 1 − 2 orders of magnitude while keeping sampling quality equal.

This high-fidelity and low-overhead error injection methodology discovers new

insights in terms of the impact of errors on applications, the effectiveness of

detectors, and the effects of modeling fidelity on experimental results. Key

insights from evaluation include:

• For estimating injection outcome distributions, single-bit flips are a good

approximation of particle strikes.

• For estimating application output quality, high-fidelity error models are

required.
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• Existing low-fidelity error models (single-bit flips and previous values)

do not represent errors caused by voltage droops.

• Software-based detectors can effectively detect errors caused by particle

strikes but not voltage droops, indicating the need of additional detectors

for handling voltage droops.

7.1 Broad Applicability

Although this research focuses on applications in the high-performance

computing (HPC) domain, Hamartia opens a new chapter of resilience studies

in other domains as well. For instance, hardware errors pose reliability and

availability problems for data centers due to their massive scale [114, 115, 116].

Another applicable domain is automotive systems where multiple electronic

control units are expected to be consolidated into a single unit for lower costs.

The usage of advanced manufacturing technologies implies that systems would

be more sensitive to transient errors. As a result, the design ought to handle

hardware problems to guarantee functional safety [117, 118].

7.2 Hardware Errors Beyond This Research

As this research focuses on arithmetic errors, there exist hardware errors

not modeled in the current implementation of Hamartia. However, some can

be addressed by extending Hamartia, and the acceleration techniques proposed

in this dissertation are equally useful for evaluating other error types.
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Memory errors: These include errors in register files, caches, various buffers

at the micro-architectural level, and errors in DRAM. Although memory struc-

tures are usually protected by parity or ECC, some errors can still escape

detection and impact applications. In addition to memory array structures,

the peripheral circuits are also vulnerable. Errors from emerging non-volatile

memory should also be studied as well.

Uncore errors: These include errors in the cache controllers, interconnection

networks, memory controllers, and I/O controllers. Addressing these errors is

important as the uncore part of modern CPUs occupies a significant portion of

die area. Prior work studies the impact of particle strikes on the uncore of the

OpenSPARC T2 processor and designs hardware-based techniques to recover

failures in the cache controllers [119]. Resilient cache coherence protocols are

also proposed to address transient errors [120].

Hamartia can be extended to evaluate the impact of various errors on

applications, the effectiveness of detectors, and the effects of modeling fidelity

on experimental results. Some errors (e.g., DRAM errors) can be evaluated by

implementing new instruction-level error models in Hamartia, while some (e.g.,

errors in micro-architectural components) require a new interface in addition

to the original error context API. To address error masking, both nested Monte

Carlo and injection-point overprovisioning can be applied to reduce the number

of application runs while keeping sampling quality equal.
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