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PREFACE

This thesis comprises three closely-related manuscripts on machine learning applied to

computer architecture design. These manuscripts are preceded by a general introduction

(Chapter 1) and background (Chapter 2) that unify the three works.

“A Survey of Machine Learning Applied to Computer Architecture Design” (thesis

Chapter 3) was published on arXiv and co-authored with Dr. Chen. This paper reviews

existing works that have applied machine learning to architecture design tasks, analyzes

the techniques used in these works, and highlights some topics for future research. This

material was also presented as an invited talk at the 2nd International Workshop on

AI-assisted Design for Architecture (AIDArc). Since the original arXiv publication,

this material has been expanded to serve as a basis for the book, AI for Computer

Architecture: Principles, Practice, and Prospects, published by Morgan & Claypool in

2020.

“A Deep Reinforcement Learning Framework for Architectural Exploration: A Router-

less NoC Case Study” (thesis Chapter 4) was presented at the 26th IEEE International

Symposium on High Performance Computer Architecture (2020) and was co-authored

with Dr. Chen along with Ting-Ru Lin and Dr. Massoud Pedram, both from the Uni-

versity of Southern California. This paper presents a novel deep reinforcement learning

framework for design space exploration and a detailed case study on network-on-chip

(NoC) design.

“Intelligent Resource Optimization for Edge Networks Using Machine Learning” (the-

sis Chapter 5) presents preliminary work on a promising application for machine-learning-

based resource management. This is an ongoing collaborative research project with Dr.

Chen and with Dr. Bin Li at Intel. We plan to expand upon this work and submit the

paper for conference publication in the near future.

Common background material, which now appears in Chapter 2, has been omitted

from the manuscript chapters.



Chapter 1: General Introduction

Advances in computer architecture design and computational capabilities have histori-

cally been closely associated with improvements in semiconductor processing capabilities,

particularly those defined by Moore’s law and Dennard scaling. Moore’s law posited that

the components integrated on a single silicon chip would double every two years. Simi-

larly, Dennard scaling suggested that power density of transistors would remain constant

as transistor size, voltage, and current decreased together over time. In the past, these

two laws have all but guaranteed advances in architectural designs and greater compu-

tational capabilities. More recently, however, we have witnessed these technology-based

advances break down, thus mandating dramatic shifts in computer architecture design

practices.

With the definitive end of Dennard scaling in the 2000s, improvements in clock fre-

quency have slowed dramatically. In response, computer architecture design has shifted

into the current multi-core era, which places heavy emphasis on parallel resource scal-

ing and parallel workload execution. Naturally, these increasingly parallel designs have

introduced a variety of complex design considerations beyond those in traditional single-

core architectures. In particular, networks-on-chip (NoCs) have emerged as a critical

factor in multi-core design due to the need for high-performance, yet efficient commu-

nication between cores and other resources, such as remote caches, memory controllers,

and accelerators. The multi-application aspect of this paradigm has also prompted com-

plex control strategies to maximize machine utilization while maintaining performance

guarantees, especially in latency-critical environments. Finally, with the gradual slowing

of Moore’s law in recent years, the demand for continued advancements in computa-

tional capabilities has placed increasing burden on architects to supplant Moore’s law

with architectural innovation. These growing demands have, in turn, motivated a new

paradigm in computer architecture design.

Concurrently, machine learning has transformed from a largely theoretical novelty

into a revolutionary factor that has enabled significant advances in many challenges

tasks. In particular, machine learning has facilitated breakthroughs in long-standing
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tasks such as image classification, where individual objects can now be recognized with

near-perfect accuracy [1]. Notably, the principles behind these breakthroughs are broadly

applicable. These machine learning models can leverage a generic framework in which

important information is derived from the data itself, rather than from painstakingly

crafted (and often extremely task-specific) routines developed by human experts. Con-

sequently, machine learning models can be applied to diverse tasks, including those that

are too difficult to represent using traditional programming methods or too complex for

humans to fully understand. These sophisticated, yet broadly applicable, learning capa-

bilities have therefore become a promising alternative for computer architecture design.

1.1 The Scope of Machine Learning in Architecture

Notable early works including the perceptron-based branch predictor [2] and reinforcement-

learning-based memory controllers [3] demonstrated the potential for AI-based methods

to surpass prior design techniques, even in well-studied components. Since then, machine

learning applications in architecture have quickly expanded to provide state-of-the-art

results in practically all major components.

The first manuscript in this thesis is the paper, “A Survey of Machine Learning

Applied to Computer Architecture Design,” which can be found on arXiv [4]. This

paper reviews the growing range of research papers that have applied machine learning

to computer architecture design problems, thereby serving as a resource for computer

architects to better understand the breadth of existing applications and identify areas

for future applications. Further analysis of techniques employed in these works provides

a guide for newer machine learning practitioners to adopt best-practice strategies when

beginning to apply machine learning in their own work.

1.2 Generalized Design Frameworks

Continued advancements in complex many-core designs necessitate sophisticated, yet

broadly applicable, strategies for design space exploration. Although conventional design

approaches involving heuristics have proven useful for many years, this paradigm has

been pushed to the limit and, in many tasks, cannot provide acceptable results due to

growing demands. Furthermore, tools built upon these principles are often limited in
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their application to a specific task, set of design criteria, or system configuration, etc.

These challenges have led to the adoption of deep reinforcement learning in computer

architecture design.

The second manuscript in this thesis is the paper, “A Deep Reinforcement Learn-

ing Framework for Architectural Exploration: A Routerless NoC Case Study,” which

was presented at the IEEE International Symposium on High Performance Computer

Architecture [5]. This paper introduces a deep reinforcement learning for computer ar-

chitecture design space exploration tasks. In this framework, efficient exploration is

realized using a Monte-Carlo tree search (MCTS) that generates training for a deep

neural network, which then guides MCTS towards promising subspaces in the overall de-

sign. Arbitrary design constraints are integrated directly into this search process, rather

than relegated to an after-the-fact design selection process. This integration results in

more precise control during search and more optimal designs. Additional functionality

provided by multi-threaded exploration further increases the consistency and speed at

which satisfactory designs can be generated. Practical application is demonstrated in

a NoC design case study in which the deep reinforcement learning framework is shown

to successfully explore a design space exceeding 10130 for 100-core chip multiprocessors

(CMPs), all while adhering to strict constraints.

1.3 Proactive Resource Management

Increasingly parallel CMP designs provide greatly improved computational resources on

a single device/machine, yet also pose a challenge in terms of resource management. In

the past, service providers for high-priority latency-sensitive applications (e.g., Google

Gmail and Microsoft Bing) have typically provided quality of service (QoS) guarantees

by provisioning computing resources for the peak load. This practice ensures satisfactory

performance at all times, but often leads to significant resource over-provisioning during

periods of lower demand. Service providers have therefore sought to improve machine

utilization (and lower total cost of ownership) by opportunistically co-scheduling best

effort applications and granting these applications any unused resources. Nevertheless,

naive co-scheduling can lead to significant contention between applications and adversely

impact QoS guarantees. These challenges require more sophisticated and dynamic re-

source management strategies.
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The third manuscript in this thesis is the paper, “Intelligence Resource Optimization

for Edge Networks Using Machine Learning,” which is an ongoing collaboration between

Oregon State University and Intel’s Network Platforms Group. This preliminary work

describes a proactive resource manager that integrates several machine learning tech-

niques. First, we describe how dynamic resource management, especially at fine-grained

intervals, can benefit from proactive QoS predictions made by supervised learning mod-

els. Second, we detail a deep reinforcement learning control approach that can integrate

proactive QoS predictions and eliminate the need for extended sampling periods found

in existing works.
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Chapter 2: General Background

The learning approach and the model are both fundamental considerations in applying

machine learning to any problem. In general, there are four main categories of learning

approaches: supervised learning, unsupervised learning, semi-supervised learning, and

reinforcement learning. These approaches can be differentiated by what data is used

and how that data is used to facilitate learning. Similarly, many appropriate models

may exist for a given problem, thus enabling significant diversity in application based

on the learning approach, hardware resources, available data, etc. In the following,

we introduce these learning approaches and several significant models for each learning

approach, focusing on approaches with proven applicability.

2.1 Supervised learning

In supervised learning, the model is trained using input features and output targets, with

the result being a model that can predict the output for new, unseen inputs. Common

supervised learning applications include regression (predicting a value such as processor

IPC) and classification (predicting a label such as the optimal core configuration for

application execution).

Supervised learning models can be generalized into four categories: decision trees,

Bayesian networks, support vector machines (SVMs), and artificial neural networks [6].

Decision trees use a tree structure where each node represents a feature and branches

represent a value (or range of values) for that feature. Inputs are therefore classified by

sequentially following branches based on the value of the feature being considered at a

given node. Bayesian networks instead embed conditional relationships into a graphical

structure; nodes represent random variables and edges represent conditional dependence

between these variables. A performance prediction model, for example, can condition

prediction for new applications on learned distributions for unobserved variables (i.e.,

underlying factors affecting performance) from other applications, as in [7]. SVMs are

generally known for their function rather than a particular graphical structure (as in
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decision tree and Bayesian networks). Specifically, SVMs learn the best dividing line (in

2-D) or hyperplane (in high dimensions) between examples, then uses examples along

this hyperplane to make new predictions. SVMs can also be extended to non-linear prob-

lems using kernel methods [8] as well as multi-class problems. Finally, artificial neural

networks (or simply neural networks) represent a broad category of models that are,

again, defined by their structure, which is reminiscent of neurons in the human brain;

layers of nodes/neurons are connected using links with learned weights, enabling partic-

ular nodes to respond to specific input features. Simple perceptron models contain just

one weight layer, directly converting the weighted sum of inputs into an output. More

complex DNNs include several (or many) layers of these weighted sums. Additional vari-

ants such as convolutional neural networks (CNNs) incorporate convolution operations

between some layers to capture spatial locality while recurrent neural networks re-use

the previous output to learn sequences and long-term patterns. All these supervised

learning models can be used in both classification and regression tasks, although there

are some distinct high-level differences. Variants of SVMs and neural networks tend

to perform better for high-dimension and continuous features and also when features

may be nonlinear [6]. These models, however, tend to require more data compared to

Bayesian networks and decision trees.

2.2 Unsupervised learning

Unsupervised learning uses just input data to extract information without human effort.

These models can therefore be useful, for example, in reducing data dimensionality by

finding appropriate alternative representations or clustering data into classes that may

not be obvious for humans.

Thus far, the primary two unsupervised learning models applied to architecture are

principal components analysis (PCA) and k-means clustering. PCA provides a method to

extract significant information from a dataset by determining linear feature combinations

with high variance [9]. As such, PCA can be applied as an initial step towards building a

model with reduced dimensionality, a highly desirable feature in most applications, albeit

at the cost of interpretability. K-means clustering is instead used to identify groups of

data with similar features. These groups may be further processed to generalize behavior

or simplify representations for large datasets.
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2.3 Semi-supervised learning

Semi-supervised learning represents a mix of supervised and unsupervised methods, with

some paired input/output data, and some unpaired input data. Using this approach,

learning can take advantage of limited labeled data and potentially significant unlabeled

data. We note that this approach has, thus far, not yet found application in architecture.

Nevertheless, one work on circuits analysis [10] presents a possible strategy that could

be adapted in future work.

2.4 Reinforcement Learning

2.4.1 General Formulation

In reinforcement learning, an agent is sequentially provided with input based on an envi-

ronment state and learns to perform actions that optimize a reward. For example, in the

context of memory controllers, the agent replaces traditional control logic. Input could

include pending reads and writes while actions could include standard memory controller

commands (row read, write, pre-charge, etc.). Throughput could then be optimized by

including it in the reward function. Given this setup, the agent will potentially, over

time, learn to choose control actions that maximize throughput.

Reinforcement learning models applied to architecture, as a whole, can be understood

using a representation based on states, actions, and rewards. The agent attempts to learn

a policy function π, which defines the action a to take at a given state s, based on a

received reward r [11]. A learned state-value function, following the policy, is then given

as

V π(s) = E[
∑
t≥0

γ t ∗ rt|s0 = s, π] (2.1)

where γ is a discount factor (≤ 1), which dictates how much the model should consider

future rewards. The cumulative rewards are then maximized by learning an optimal

policy π∗ that satisfies

π∗(s) = argmax
π

E[
∑
t≥0

γt ∗ rt|s0 = s, π]. (2.2)
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Various models may implement different approaches to learn this optimal policy, but

largely address the same problem of maximizing rewards. Q-learning is a noteworthy

example that models an action-value function by estimating the value of an individual

action, from a given state.

2.4.2 Deep Reinforcement Learning

Breakthroughs in deep learning have spurred researchers to rethink potential applica-

tions for deep neural networks (DNNs) in diverse domains. One result is deep reinforce-

ment learning, which synthesizes DNNs and reinforcement learning concepts to address

complex problems [12, 13, 14]. This synthesis mitigates data reliance without introduc-

ing convergence problems via efficient data-driven exploration based on DNN output.

Recently, these concepts have been applied to Go, a grid-based strategy game involv-

ing stone placement. In this model, a trained policy DNN learns optimal actions by

searching a Monte Carlo tree that records actions suggested by the DNN during training

[13, 14]. Deep reinforcement learning can outperform typical reinforcement learning by

generating a sequence of actions with better cumulative returns [12, 13, 14].
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Chapter 3: A Survey of Machine Learning Applied to

Computer Architecture Design

In the past decade, machine learning (ML) has rapidly become a revolutionary factor

in many fields, ranging from commercial applications, as in self-driving cars, to medical

applications, improving disease screening and diagnosis. In each of these applications,

an ML model is trained to make predictions or decisions without explicit programming

by discovering embedded patterns or relationships in the data. Notably, ML models can

perform well in tasks/applications where relationships are too complex to model using

analytical methods. These powerful learning capabilities continue to enable rapid devel-

opments in diverse fields. Concurrently, the exponential growth predicted by Moore’s

law has slowed, putting increasing burden on architects to supplant Moore’s law with

architectural advances. These opposing trends suggest opportunities for a paradigm shift

in which computer architecture enables ML and, simultaneously, ML improves computer

architecture, closing a positive-feedback loop with vast potential for both fields.

Traditionally, the relationship between computer architecture and ML has been rela-

tively imbalanced, focusing on architectural optimizations to accelerate ML algorithms.

In fact, the recent resurgence in AI research is, at least partly, attributed to improved

processing capabilities. These improvements are enhanced by hardware optimizations

exploiting available parallelism, data reuse, sparsity, etc. in existing ML algorithms. In

contrast, there has been relatively limited work applying ML to improve architectural

design, with branch prediction being one of a few mainstream examples. This nascent

work, although limited, presents an auspicious approach for architectural design.

This paper presents an overview of ML applied to architectural design and analysis.

As illustrated in Figure 3.1, this field has grown significantly in both success and popu-

larity, particularly in the past few years. These works establish the broad applicability

and future potential of ML-enabled architectural design; existing ML-based approaches,

ranging from DVFS with simple classification trees to design space exploration via deep

reinforcement learning, have already surpassed their respective state-of-the-art human

expert and heuristic based designs. ML-based design will likely continue to provide
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Figure 3.1: Publications on machine learning applied to architecture (for works examined
in Section 3.1)

breakthroughs as promising applications are explored.

The paper is organized as follows. Section 3.1 presents existing work on ML applied

to architecture. Section 3.2 then compares and contrasts implementation strategies in

existing work to highlight significant design considerations. Section 3.3 identifies possible

improvements and extensions to existing work as well as promising, new applications for

future work. Finally, Section 3.4 concludes.

3.1 Literature Review

This section reviews existing work that applies machine learning to architecture. Work

is organized by sub-system (when applicable) or primary objective. We focus on design

and optimization, but also introduce general performance prediction work.

3.1.1 System Simulation

Cycle-accurate simulators are commonly used in system performance prediction, but re-

quire several orders of magnitude more time than native execution. ML can offset this
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penalty through a trade-off between simulation time and accuracy. In general, ML can

reduce execution time by 2-3 orders of magnitude with relatively high accuracy (task de-

pendent, typically > 90%). Early work by Ipek et al. [15] modeled architectural design

spaces using an ANN ensemble (a group of ANN predictors). Models were trained on

approximately 1% of the design space, then predicted CMP performance with 4-5% error

for random points, albeit only in that specific configuration space. When combined with

SimPoints, predictions exhibit slightly higher error, but the simulated instruction count

is further reduced. Ozisikyilmaz et al. [16] additionally predicted SPEC performance

for future systems that may be poorly modeled by existing simulators. Evaluation was

limited to randomly-sampled data with relatively simple linear regression and neural

network models, but nevertheless demonstrated advantages for pruned neural networks

compared to standard single-layer models (as in [15]). Several other ML approaches

have also been tested. Eyerman et al. [17] proposed a mechanistic-empirical model for

processor CPI prediction. In this approach, they used a generic mechanistic model with

parameters inferred by a regression model. Their model is limited to single-core perfor-

mance prediction, but improves accuracy, ease of implementation (compared to purely

mechanistic models), and interpretability (compared to purely empirical models). Zheng

et al. [18, 19] explored cross-platform prediction from Intel/AMD to ARM processors

using linear regression. Their first approach [18] made predictions based on a local neigh-

borhood of examples around the target point to approximate non-linear behavior. They

later [19] emphasized phase-level prediction, assuming that phase-level behavior would

be approximately linear. Notably, average error for cycle count predictions is less than

1% using phase-level profiling. This approach is, however, restricted to a single target

architecture and requires source code for phase-level analysis, leaving significant opportu-

nities for future work. Finally, recent work by Agarwal et al. [20] introduced a method to

predict parallel execution speedup using single-threaded execution characteristics. They

trained separate models for each thread count using application-level performance coun-

ters. Although neural networks were omitted due to limited data, evaluation found that

Gaussian process regression still provided promising results, particularly for high thread

counts.
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3.1.2 GPUs

Design Space Exploration: GPU design space exploration has proven to be a partic-

ularly favorable application for ML due to a highly irregular design space; some kernels

exhibit relatively linear scaling while others exhibit very complex relationships between

configuration parameters, power, and performance [21, 22, 23]. Jia et al. [21] proposed

Stargazer, a regression-based framework based on natural cubic splines. Stargazer ran-

domly samples approximately 300 points from a target design space (933K points in

evaluation) for each application, then applies stepwise regression on these points. No-

tably, the framework achieves under 3.8% average performance prediction error. Wu et

al. [22] instead explicitly modeled scaling for compute units, core frequency, and memory

frequency. Scaling data from training kernels was processed using k-means clustering to

group kernels by scaling behavior. An ANN then classifies kernels into these clusters,

allowing new kernels to be classified and predictions made using cluster scaling fac-

tors. This approach, in contrast to Jia et al. [21], therefore requires just a few samples

for new applications. Jooya et al. [23], similar to Jia et al. [21], considered a per-

application performance/power prediction model, but additionally proposed a scheme

to predict per-application Pareto fronts. Many ANN-based predictors were trained and

the most accurate subset was used as an ensemble for prediction. Prediction accuracy

was later improved by sampling points within a threshold of the previously predicted

Pareto-optimal curve. Lin et al. [24] combined a performance predicting DNN with a

genetic search scheme to explore memory controller placement. The DNN was used as a

surrogate fitness function, obviating slow system simulations. The resulting placement

improves system performance by 19.3%.

Cross-Platform Prediction: Porting applications for execution on GPUs is a chal-

lenging task with potentially uncertain benefits over CPU execution. Work has therefore

examined methods to predict speedup or efficiency improvements using just CPU exe-

cution behavior. Baldini et al. [25] cast the problem as a classification task, training

a modified nearest-neighbor and a support vector machine (SVM) model to determine,

based on a threshold, whether GPU implementation would be beneficial. Using this

approach, they predicted near-optimal configurations 91% of the time. In contrast,

Ardalani et al. [26] trained a large ensemble of regression models to directly predict

GPU performance for the code segment. Although several code segments exhibit high
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error, the geometric mean of the absolute value of the relative error is still just 11.6%

and the model successfully identifies several code segments (both beneficial and non-

beneficial) that are incorrectly predicted by human experts. Later work by Ardalani et

al. [27] introduced a completely static-analysis-based framework using a random forest

model for binary classification. This approach eliminates both dynamic profiling and

human guidance, instead using features such as instruction mix, branch divergence esti-

mates, and kernel size to provide 94% accuracy for binary speedup classification (using

a speedup threshold of 3).

GPU Specific Prediction & Classification: O’Neal et al. [28] presented a

methodology for next-generation GPU performance prediction as cycles-per-frame (CPF)

for DirectX applications. They focused on Intel GPUs, profiling earlier-generation ar-

chitectures (e.g., Haswell GT2) to train next-generation predictors. They found that

different models (i.e., linear vs non-linear) can produce more accurate results depending

on the prediction target (Broadwell GT2/GT3 vs Skylake GT3), with the best perform-

ing models achieving less than 10% CPF prediction error. Recent work by Li et al. [29]

presented a re-evaluation of commonly accepted knowledge of GPU traffic patterns. They

used a CNN and t-distributed stochastic neighbor embedding on heatmap-transformed

traffic data, identifying eight unique patterns with 94% accuracy.

Scheduling: GPU processing-in-memory (PIM) architectures can benefit from high

memory bandwidth with reduced data movement energy. Despite this benefit, potential

limitations on PIM compute capabilities may introduce complex trade-offs between per-

formance and energy when scheduling execution on various resources. For this reason,

Pattnaik et al. [30] proposed an approach using a regression model to classify core affin-

ity, thus dividing the workload, and an additional regression model to predict execution

time, enabling dynamic task migration. Performance and energy efficiency are improved

by 42% and 27%, respectively, over a baseline GPU architecture. Further improvements

are possible by improving core affinity classification accuracy (compared to regression).

3.1.3 Memory Systems and Branch Prediction

Caches: Heuristic approaches for caching can incur performance penalties due to dra-

matic workload variance. ML approaches can learn these intricacies and offer superior

performance. Peled et al. [31] proposed a prefetcher exploiting semantic locality (data
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structures) using contextual bandits (a simple RL variant), correlating contextual in-

formation and candidate addresses for prefetching. Implementation uses a two-level

indexing method to dynamically control state information, allowing online feature se-

lection with some additional overhead. Zeng and Guo [32] proposed a long short-term

memory (LSTM) model (a recurrent neural network variant) for prefetching based on

local history and offset-delta tables. Evaluation showed that the LSTM model enables

accurate predictions over longer sequence and higher noise resistance than prior work.

Several concerns relating to overhead and warm-up time are addressed, with potential

solutions remaining for future work. Similarly, Braun et al. [33] extensively explored

LSTM prefetching accuracy under several common access patterns. Experiments con-

sidered the impact of lookback size (access history window) and LSTM model size for

several noise levels and independent access stream counts. Recent work by Bhatia et

al. [34] synthesized traditional prefetchers with a perceptron-based prefetch filter, allow-

ing aggressive predictions without degrading accuracy. Evaluation confirmed substantial

coverage and IPC benefits offered by the proposed scheme, with 9.7% IPC speedup over

the next best prefetcher when referenced to a no-prefetching four-core baseline. ML has

similarly been applied to data reuse policies. For example, Teran et al. [35] predicted

LLC reuse with a perceptron model. In this approach, input features are hashed to access

saturating weight tables that are incremented/decremented based on correct/incorrect

reuse prediction. These features are chosen empirically and shown to significantly im-

pact performance, thus presenting an option for further optimization. Wang et al. [36]

predicted reuse prior to cache entry, only storing data in the cache if there was predicted

reuse. They used decision trees as a low-cost alternative to ensemble models, achieving

60-80% reduction in writes. Additional research has explored the growing performance

bottleneck in translation lookaside buffers (TLBs). Margaritov et al. [37] proposed a

scheme for virtual address translation in TLBs based on learned indices [38]. Evaluation

showed nearly 100% accuracy for predicted indices, but practical implementation will

require dedicated hardware to reduce calculation overhead (and is left for future work).

Schedulers & Control: Controllers for memory and storage systems influence both

device performance and reliability, thus representing another strong application for ML

models compared with heuristics. Ipek et al. [3] first proposed an RL approach for

memory controllers to capture the balance between concurrency, delay, and several other

factors. The model predicted optimal actions (precharge, activate, row read/write), im-
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proving system performance by 15% (in a two-channel system) over prior work. Mukun-

dan and Martinez [39] later built upon Ipek’s work, generalizing the reward function to

optimize energy, fairness, etc. They also added power-up and power-down actions to

enable a further 8.6% improvement in performance and a significant improvement in en-

ergy efficiency. Related work optimizes communication energy between memory/storage

and other systems using ML. Manoj et al. [40] proposed a Q-learning method for dy-

namic voltage swing control in through-silicon-interposer transmission lines. Predictions

for power and bit error rate were quantized, then provided as input to the model to

determine a new voltage level. Although their approach requires significant quantization

to minimize overhead, they still achieved 15.1% energy savings compared to a static

voltage baseline. Wang and Ipek [41] reduce data movement energy through online

clustering and encoding. Several clusters are continuously updated at a bit-level using

majority voting for data in that cluster. The total number of transmitted 1s is then

minimized by XORing new data with the closest learned cluster center. Kang and Yoo

[42] applied Q-learning to manage garbage collection in SSDs by determining optimal

periods of inactivity. Key states are kept in the Q-table using LRU replacement, al-

lowing a vast state space and, ultimately, a 22% average tail latency reduction over

the baseline. Many states are, however, observed only once per workload, suggesting

potential benefits using deep Q-learning (DQL). Other work directly considered system

reliability. For example, Deng et al. [43] proposed a regression-based framework to dy-

namically optimize performance and lifetime in non-volatile memories. Their approach

used phase-based application statistics to manage several conflicting policies for write la-

tency, write cancellation, endurance, etc., guaranteeing a minimum lifetime with modest

performance/energy improvements. Xiao et al. [44] proposed a method for disk failure

prediction using an online random forest. They trained their model using a disk status

window to account for imprecision in recorded failure date, enabling accurate predictions

of soon-to-be faulty drives. Comparison against other random forest updating schemes

(e.g., updating once a month) highlighted accuracy benefits from consistent training that

may be extended to related domains.

Branch Prediction: Branch prediction is a noteworthy example of current ML ap-

plication in industry, with accuracy surpassing prior state-of-the-art non-ML predictors.

The perceptron-based branch predictor was first proposed by Jiménez and Lin [2] as a

promising high-accuracy alternative to two-level schemes using pattern history tables.
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Later research by St. Amant et al. introduced SNAP [45], a perceptron-based predictor

implemented using analog circuitry to enable an efficient and practically feasible design.

Perceptron weights and branch history were used to drive current-steering DACs that

perform the dot product as the sum of currents. Jiménez [46] further optimized this

design using a per-branch history table, dynamic coefficients for history importance,

and a dynamic learning threshold. The optimized design achieves 3.1% lower MKPI

than L-TAGE. Recent work with perceptron-based predictors by Garza et al. [47] ex-

plored bit-level prediction for indirect branches. Possible branch targets are evaluated

using their similarity (dot product) with the combined weights from eight feature ta-

bles incorporating local and global history, ultimately reducing MKPI by 5% compared

to ITTAGE. Currently, state-of-the-art conditional branch predictors (e.g., TAGE-SC-L

[48]) still hide significant IPC gains (14.0% for an Intel Skylake architecture) in just a

few hard-to-predict (H2P) conditional branches [49]. Tarsa et al. [49] consequently pro-

posed “CNN Helper” predictors that target specific H2Ps using simple two-layer CNNs.

Results indicate strong applicability across diverse workloads and present a promising

area for future work.

3.1.4 Networks-on-Chip

DVFS & Link Control: Modern computing systems exploit complex power control

schemes to enable increasingly parallel architectural designs. Heuristic schemes may

fail to exploit all energy-saving opportunities, particularly in dynamic network-on-chip

(NoC) workloads, leading to significant benefits through proactive ML-based control.

Savva et al. [50] implemented dynamic link control using several ANNs, each of which

monitors a NoC partition. These ANNs used just link utilization to learn a dynamic

threshold to enable/disable links. Despite energy savings, their approach can cause high

latency under dimension-ordered routing. DiTomaso et al. [51] relocated flit buffers

to the links and dynamically controlled both link direction and power-gating with per-

router classification trees. Using a simple three-level tree to limit overhead, overall NoC

power is reduced by 85% and latency is reduced by 14% compared to a concentrated

mesh. Winkle et al. [52] explored ML-based power scaling in photonic interconnects.

Even a simple linear regression model provided promising results, negligibly reducing

throughput (versus no power-gating) while reducing laser power consumption by 42%.
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Reza et al. [53] proposed a multi-level ANN control scheme that considered both power

and thermal constraints on task allocation, link allocation, and node DVFS. Individual

ANNs classified appropriate configurations for local NoC partitions while a global ANN

classified optimal overall resource allocation. This scheme identifies the global optimal

NoC configuration with high accuracy (88%), but uses complex ANNs that could impact

implementation. Clark et al. [54] proposed a router design for DVFS and evaluated

several regression-based control strategies. Variants predicted buffer utilization, change

in buffer utilization, or a combined energy and throughput metric. This work was ex-

panded by Fettes et al. [55], who introduced an RL control strategy. Both regression

and RL models enable beneficial tradeoffs, although the RL strategy is most flexible.

Admission & Flow Control: As with NoC DVFS, both admission and flow control

can benefit from proactive prediction. Early work by Boyan and Littman [56] introduced

Q-learning based routing in networks using delivery time estimates from neighboring

nodes, noting throughput advantages over traditional shortest path routing for high

traffic intensity. Several works have expanded upon Q-routing, observing application in

dynamically changing NoC topologies [57], improved capabilities in bufferless NoC fault-

tolerant routing [58], and high-performance congestion-aware non-minimal routing [59].

More recent works have instead focused on injection throttling and hotspot prevention.

For example, Daya et al. [60] proposed SCEPTER, a bufferless NoC using single-cycle

multi-hop paths. They controlled injection throttling using Q-learning to maximize

multi-hop performance and improve fairness by reducing contending flits. Future work

could reduce Q-table overhead which scales with NoC size in their implementation. Wang

et al. [61] instead used an ANN to predict optimal injection rates for a standard buffered

NoC. Additional preprocessing (to capture both spatial and temporal trends) and node

grouping enables high accuracy predictions (90.2%) and reduces execution time by 17.8%

compared to an unoptimized baseline. Soteriou et al. [62] similarly explored ANN-

based injection throttling to reduce NoC hotspots. The ANN was trained to predict

hotspots while recognizing the impact of proposed injection throttling and dynamic

routing, providing a holistic mitigation strategy. The model provides state-of-the-art

results for throughput and latency under synthetic traffic, but limited improvement

under real-world benchmarks, suggesting the potential for further optimization. Another

Q-learning approach, proposed by Yin et al. [63], used DQL to arbitrate NoC traffic.

They considered a wide range of features and rewards while noting that the proposed
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DQL algorithm is impractical due to overhead. Regardless, evaluation exhibited modest

throughput improvements over round-robin arbitration.

Topology & General Design: Several works also applied ML to higher-level NoC

topology design, involving trade-offs between power and performance, with some further

considering thermals. Das et al. [64] used a ML-based STAGE algorithm to efficiently

explore small-world inspired 3D NoC designs. In this approach, design alternates between

base/local search (adding/removing links in a hill-climbing approach) and meta search

(predicting beneficial starting points for local search using prior results). The same

model was used again by Das et al. [65] to balance link utilization and address TSV

reliability concerns. The STAGE algorithm was then enhanced by Joardar et al. [66] to

optimize a heterogeneous 3D NoC design. The models explores multi-objective trade-

offs between CPU latency, GPU throughput, and thermal/energy constraints. All three

works [64, 65, 66] still rely upon hill-climbing for optimization. Recent work by Lin et al.

[67] instead explored deep reinforcement learning in routerless NoC design. They used a

Monte Carlo tree search to efficiently explore the search space and a deep convolutional

neural network to approximate both the action and policy functions, thereby optimizing

loop configurations. Further, the proposed deep reinforcement learning framework can

strictly enforce design constraints that may be violated by prior heuristic or evolutionary

approaches. Rao et al. [68] investigated multi-objective NoC design optimization across

a broad SoC feature space (from bandwidth requirements to SoC area). ML models

were trained using data from thousands of SoC configurations to predict optimal NoC

designs based on performance, area, or both. Limited comparisons against human-expert

designs did not consider alternative techniques (e.g., AMOSA [69]), yet exhibited some

promising results, motivating research into effective features and models as well as further

comparisons against alternative techniques.

Performance Prediction: Existing NoC models based on queuing theory are gen-

erally accurate, but rely on assumptions of traffic distribution that may not hold for real

applications [70]. Qian et al. [70] emphasized how ML-based approaches can relax the

assumptions made by queueing theory models. They constructed a mechanistic-empirical

model based on a communication graph, using support vector regression (SVR) to relate

several features and queuing delays. Evaluation showed lower error (3% error vs 10% er-

ror) than an existing analytical approach. Sangaiah et al. [71] considered both NoC and

memory configuration for performance prediction and design space exploration. Follow-
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ing a standard approach, they sampled a small portion of the design space, then trained

a regression model to predict the resulting system CPI. Evaluation generally showed

high accuracy, but lower accuracy for high-traffic workloads (median error of 24%). Ad-

ditional design space exploration exhibited promising results, reducing the design space

from 2.4M points to less than 1000.

Reliability & Error Correction: Overhead introduced by error correction in NoCs

can be significant, especially when re-transmission is required. Several works have, there-

fore, explored ML-based control schemes. DiTomaso et al. [72] trained a decision tree to

predict NoC faults using a wide range of parameters including temperature, utilization,

and device wear-out. These predictions allow proactive encoding (on top of the baseline

cyclic redundancy check) for transmission that are likely to have errors. Wang et al. [73]

adopted a similar strategy for dynamic error mitigation, but used an RL-based control

policy to eliminate the need for labeled training examples. Their approach provides

an average of 46% dynamic power savings (17% better than the decision tree method

[72]) compared with a static CRC scheme. In both cases, ML-based proactive control

chose a more efficient scheme than CRC only. Wang et al. [74] subsequently proposed a

holistic framework for NoC design incorporating dynamic error mitigation, router power-

gating, and multi-function adaptive channel buffers (MFAC buffers). They emphasized

comprehensive benefits through synergistic integration/control of several architectural

innovations, thus achieving substantial improvements in latency (32%), energy-efficiency

(67%), and reliability (77% higher Mean Time to Failure) compared to a SECDED base-

line.

3.1.5 System-level Optimization

Energy Efficiency Optimization: Significant work has begun to consider systems in

which workload execution is constrained by total energy consumption rather than pro-

cessing resources. Control schemes incorporating ML have shown promise in optimizing

energy efficiency with minimal performance reduction, often enabling 60-80% reductions

in the energy-delay product compared to race-to-idle schemes. Won et al. [75] introduced

a hybrid ANN + PI (proportional-integral) controller scheme for uncore DVFS. They

initially trained the ANN offline, then refined predictions online using the PI controller.

This hybrid scheme was shown to reduce the energy-delay product by 27% compared
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to a PI controller alone, with less than 3% performance degradation compared to the

highest V/F level. Pan et al. [76] implemented a power management scheme using

a multi-level RL algorithm. Their method propagates individual core states up a tree

structure while aggregating Q-learning representations at each level. Global allocation

is made at the root, then decisions are propagated back down the tree, enabling efficient

per-core control. Bailey et al. [77] addressed power efficiency in heterogenous systems.

Similar to Wu et al. [22], they clustered kernels by their scaling behavior to train mul-

tiple linear regression models. Runtime prediction used two sample configurations, one

from CPU execution and one from GPU execution, to determine the optimal configu-

ration. Lo et al. [78] focused on energy-efficiency optimization for real-time interactive

workloads. They used linear regression to model execution time based on annotations

and code features, enabling stricter service level guarantees at the cost of applicability

when source code is unavailable. Mishra et al. [79] also addressed real-time workloads,

combining control theory and several ML-based models. Their framework was realized

by offloading learning to a server, allowing low overhead DVFS that reduces energy con-

sumption by 13% compared to the best prior approach. Related work by Mishra et al.

[7] applied a comparatively complex hierarchical Bayesian model to combine both offline

and online learning. In this approach, they accepted a high execution time penalty (0.8s)

in order to provide significantly more accurate predictions than online or offline training

alone. This approach therefore targeted longer executing workloads, but can provide

more than 24% energy savings over the next best approach. Bai et al. [80] implemented

a RL-based DVFS control policy adapted to a novel voltage regulator hierarchy using

off-chip switching regulators and on-chip linear regulators. Individual RL agents adapt

to a dynamically allocated power budget determined by a heuristic bidding approach.

The design was enhanced using adaptive Kanerva coding [81] to limit area/power over-

head and experience sharing to accelerate learning. Chen and Marculescu [82] (later

Chen et al. [83]) explored an alternative two-level strategy for RL-based DVFS. Similar

to Bai et al. [80], they used RL agents at a fine-grain core level to select a V/F level

based on an allocated share of the global power budget. They achieved further improve-

ment by allocating power budget using a performance-aware, albeit still heuristic-based,

variant that considers relative application performance requirements. Imes et al. [84]

explored single-application system energy optimization for a broader range of configura-

tions options including socket allocation, HyperThread usage, and processor DVFS. They
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identified several useful models, while noting that further work could optimize models

and parameters. Analysis also provided insight into the benefit from single-model multi-

resource optimization, particularly for neural networks. Finally, recent work by Tarsa et

al. [85] considered an ML framework for post-silicon CPU adaptations using firmware

updates to microcontroller-implemented models. Significant accommodations for sta-

tistical blindspots limit the rate of service-level-agreement violations while optimizing

performance per watt for both general-purpose and application-specific deployment.

Task Allocation and Resource Management: In addition to energy control, ML

offers an approach to allocate resources to tasks or tasks to resources by predicting the

impact of various configurations on long-term performance. Lu et al. [86] proposed a

thermal-aware Q-learning method for many-core task allocation. The agent considered

only current temperature (i.e., no application profiling or hardware counters), receiving

higher rewards for task assignments resulting in greater thermal headroom. Evaluation

indicated an average 4.3◦C reduction in peak temperature compared to a heuristic ap-

proach. Nemirovsky et al. [87] introduced a method for IPC prediction and task schedul-

ing on a heterogeneous architecture. They predicted IPC for all task arrangements using

ANNs, then selected the arrangement with the highest IPC. Evaluation highlighted sig-

nificant throughput gains (> 1.3x) using a deep (but high overhead) neural network,

indicating one possible application for pruning (discussed in Section 3.3.2). Recent work

has also explored multi-level scheduling in hybrid CPU-GPU clusters. Zhang et al. [88]

proposed a deep reinforcement learning (DRL) framework to divide video workloads,

first at the cluster level (selecting a worker node) and then at the node level (CPU vs

GPU). The two DRL models act separately, but still work together to optimize overall

throughput. Allocating resources to tasks is another possible approach. Early work by

Bitirgen et al. [89] considered a system with four cores and four concurrent applications.

In their approach, per-application ANN ensembles predicted IPC for 2,000 configura-

tions at each interval (500K cycles). IPC predictions were then aggregated to choose the

highest performing overall system configuration. Scaling concerns for per-application en-

sembles and exponentially increasing configuration spaces could be addressed in future

work. Recent research has also considered low-level co-optimization involving multiple

components/resources. For example, Jain et al. [90] explored concurrent optimization of

core DVFS, uncore DVFS, and dynamic LLC partitioning. These options are optimized

by individual agents (potentially limiting co-optimization opportunities) at a relatively
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large interval (1B instructions). Evaluation nevertheless indicated noteworthy reductions

in energy-delay-product through multi-resource optimization. Finally, work by Ding et

al. [91] established a somewhat contradictory trend between model accuracy and system

optimization goals based on improvements for data scarcity and model bias. Specifically,

they found that state-of-the-art models exhibit diminishing returns for accuracy and

instead benefit from domain knowledge (e.g., focus sampling on the optimal front).

Chip Layout: Work by Wu et al. [92] demonstrated uses for ML in chip layout,

deviating from the common applications including control, prediction, and design space

exploration. They used k-means to cluster flip-flops during physical layout, minimizing

clock wirelength at the expense of signal wirelength, noting that clock networks can

consume more than 40% of chip power. They included constraints on maximum flip-flop

displacement and cluster size, generating designs with 28.3% reduced displacement, 3.2%

reduced total wirelength, and 4.8% reduced total switching power compared to the prior

state-of-the-art approach.

Security: Malware detection, a traditionally software-based task, has been explored

using machine learning to enable reliable hardware-based in-execution detection. For

example, Ozsoy et al. [93] test both logistic regression (LR) and neural network classifiers

trained on low-level hardware counters. Optimization based on reduced precision and

feature selection provides high accuracy (100% malware detection and less than 16%

false positives) with minimal overhead (0.04% core power and 0.19% core logic area) for

the LR model.

3.1.6 ML-Enabled Approximate Computing

Approximate computing has many facets, including circuit level approximation (such as

reduced precision adders), control level approximation (relaxing timings, etc), and data

level approximation. Methods using ML generally fall within this last category, offering

a powerful function/loop approximation technique that commonly provides 2-3 times

application speedup and energy reduction with limited impact on output quality. Es-

maeilzadeh et al. [94] introduced NPU, a new approach to programmable approximation

using neural networks. They developed a framework to realize Parrot transformations

that translate annotated code segments into neural networks approximations. Tightly

integrating the NPU with the CPU allowed an average 2.3x speedup and 3.0x energy
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reduction in studied applications. This framework was later extended by Yazdanbakhsh

et al. [95] to implement neural approximation on GPUs. Neural approximation was in-

tegrated into the existing GPU pipeline, enabling component re-use and approximately

2.5x speedup and 2.5x reduced energy. Grigorian et al. [96] presented a different ap-

proach for a multi-stage neural accelerator. Inputs are first sent through a relatively low

accuracy/overhead neural accelerator, then checked for quality; acceptable results are

committed, while low quality approximations are forwarded to an additional, more pre-

cise, approximation stage. The problem with these works is that error is either constant

[94, 95] or requires several stages with potentially redundant approximation [96]. For

that reason, Mahajan et al. [97] introduced MITHRA, a co-designed hardware-software

control framework for neural approximation. MITHRA implements configurable output

quality loss with statistical guarantees. ML classifiers predict individual approximation

error, allowing comparison to a quality threshold. Recent work by Oliveira et al. [98]

also explored approximation using low-overhead classification trees. Even with software-

based execution, they achieved application speedup comparable to an NPU [94] hardware

implementation. Finally, ML has also been used to mitigate the impact of faults in ex-

isting approximate accelerators. Taher et al. [99] observed that faults tend to manifest

in a similar manner across many input test vectors. This observations enables effective

error compensation using a classification/regression model to correct output based on

predicted faults for a given input.

3.2 Analysis of Current Practice

This section examines varying techniques employed in existing work. These comparisons

emphasize potentially useful design practices and strategies for future work.

Work is divided into two categories that represent a natural division in design con-

straints and operating timescales and therefore correspond to differing design practices.

The first category, online ML application, encompasses work that directly applies ML

techniques at run-time, even if training is performed offline. Design complexity in this

work is therefore inherently limited by practical constraints such as power, area, and real-

time processing overhead. The second category, offline ML application, instead applies

ML to guide architectural implementation, involving tasks such as design and simula-

tion. Consequently, models for offline ML application can exploit higher complexity and
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higher overhead options at the cost of training/prediction time.

3.2.1 Online ML Application

Model Selection: Online ML applications primarily use either decision trees or ANNs,

in the case of supervised learning models, and either Q-learning or deep Q-learning, in

the case of RL models. Note that tasks for these learning approaches are not necessarily

disjoint, particularly for control. Fettes et al. [55] cast DVFS as both a supervised

learning regression task and as a reinforcement learning task. The supervised learning

approach predicted buffer utilization or change in buffer utilization to determine an

appropriate DVFS mode. In contrast, the RL approach directly used DVFS modes as

the action space. Both models can perform well, but the RL model is more universally

applicable since the energy/throughput trade-off can be tailored to application needs

and does not require threshold tuning. This certainly does not mean that RL is a one-

model-fits-all solution. Supervised learning models find strong application in function

approximation [94, 95, 96, 98] and branch prediction tasks [45, 46], which are far less

suitable (if not impossible) to approach using RL since these tasks cannot be represented

well as a sequence of actions.

Implementation & Overhead: Implementation of online ML applications high-

light limitations in data availability, storage space for models, etc., indicating the need

for an efficient, and generally low complexity, model. These limitations will likely become

more important to consider as more research moves towards real-world implementation.

Several NoC-based works [50, 60, 75] have applied different methods for global data

collection to support ML models. Daya et al. [60] implemented self-learning injection

throttling using a separate bufferless starvation network that carries a starvation flag, en-

coded as a one-hot N-bit vector for a network with N nodes. These starvation vectors are

propagated to all nodes, allowing individual node-based Q-learning agents to determine

appropriate injection throttling. Soteriou et al. [62] similarly used a dedicated networks

to collect buffer utilization and VC occupancy statistics. The ANN-based DVFS control

proposed by Won et al. [75] eschewed an additional status/data network by encoding

data into unused bits in standard packet headers. Data is opportunistically collected

by a central control unit as packets pass through its router. This method introduces

potential concerns about data staleness, but prior work [100] observed nearly identical



26

performance to omniscient data collection for sufficiently large (50K cycle) control win-

dows. Smaller time windows can be accommodated by sending dedicated packets, as

done by Savva et al. [50].

Implementation can also consider the use of either hardware or software models.

Implementation using dedicated hardware will usually experience lower execution time

overhead, but there are other considerations. Esmaeilzadeh et al. [94] implemented a

neural processor (NPU) for function approximation using a dedicated hardware module.

They also considered a software implementation, but observed a prohibitive increase in

instruction count for software execution compared to a baseline x86 function. Later work

by Oliveira et al. [98] found that function approximation using a simple classification

tree can achieve comparable results to NPU [94] for application speedup and error rate

in several applications (albeit somewhat worse on average). Their purely software imple-

mentation highlights a trade-off between area/power and accuracy/performance. Won et

al. [75] observed a similar trade-off, choosing to implement an ANN in software using an

on-die microcontroller rather than dedicated hardware. This implementation consumes

several orders of magnitude more cycles (15K cycles for inference), but requires 50mW

less average power than a hardware implementation.

Approaches for hardware implementation may also vary based on the task. A “stan-

dard” ANN implementation is observed in work by Savva et al. [50]. They incorporated

a finite state machine for control, an array of multiply-accumulate (MAC) units for cal-

culation, a register array to load and store results, and a lookup-table-based activation

function. Both MAC array width and calculation precision can be adjusted to balance

power/area and accuracy/speed. In contrast, St. Amant et al. [45] implemented a per-

ceptron branch predictor using a mixed signal design. They realized dot products in

analog circuitry, leveraging transistor sizing and current summing to achieve a feasible

overhead. Variance also exists in hardware for RL models. The “standard” Q-learning

implementation requires a lookup table to store state-action values. Ipek et al. [3] as

well as Mukundan and Martinez [39] instead used CMAC [101], replacing a potentially

extensive Q-learning table with multiple coarse-grain overlapping tables. This approach

also included hashing, using hashed state attributes to index the CMAC tables. Taken

together, these two methods balance generalization and overhead, although may in-

troduce collisions/interference depending on the task. Further pipelining the hashing,

CMAC table lookup, and calculation allows more possible action-values to be evaluated
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per cycle.

Optimization: Online ML applications with online training benefit from adaptivity

to run-time workload characteristics. Despite these benefits, low model accuracy can

negatively impact system performance, most notably at the start of execution or during

periods of high variance in workload characteristics. Adaptations to control and learning

can be considered to avoid these detrimental impacts. Some RL-based work [31] consid-

ered mitigating the impact of poor actions during exploration by introducing “shadow”

operations. These operations are low confidence actions suggested by the model that are

still used in model updates but not executed by the system. Consequently, the model

gains feedback on the goodness of the action without negatively impacting the system.

In a supervised learning based control task, Won et al. [75] trained an ANN online using

control actions made by a PI controller, which exhibits far less start-up delay. Follow-

ing training, control decisions are made using a hybrid combination based on error and

consistency, allowing complementary control. In the simplest case, checking the perfor-

mance of a default configuration, as in [43], provides a guarantee that the ML model will

not perform worse than the default, but can perform better.

In most works, ML models replace existing approaches (commonly a heuristic). Nev-

ertheless, several recent works [34, 49] have demonstrated significant advantages by com-

bining both traditional (non-ML) and ML approaches. These improvements are derived

from the orthogonal prediction/decision-making capabilities of the two approaches, thus

enabling synergistic performance improvements. This method can also enable lower-cost

ML application by focusing on particular shortcomings in traditional approaches. Both

recent works [34, 49] consider just branch prediction, thus significant opportunities exist

to explore this potential co-design paradigm.

3.2.2 Offline ML Applications

Model/Feature Selection: Offline ML applications generally exhibit substantial model/feature

diversity since the model itself is not tied to a particular architecture. Model and feature

selection therefore focuses more on maximizing model accuracy while minimizing over-

all learning/prediction time. Design space exploration, in particular, can be approached

using either iterative search methods for direct optimization or supervised learning meth-

ods to select optimal points based on the predicted optimality of a design. Several works
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[64, 65, 66] used an iterative STAGE [102] algorithm that optimizes local search for

3D NoC links by learning an evaluation function to predict local search results from a

given starting point. Recent work has instead applied deep reinforcement learning [67]

to routerless NoC design. The proposed Monte Carlo tree search, along with actions

suggested by a convolutional neural network, provide a highly efficient search process.

Parallel threads are also utilized to scale design space exploration with increasing compu-

tational resources. System-level design space exploration has favored more standard su-

pervised learning approaches [23, 68, 71]. Specific model choices vary, with linear [23, 68]

and non-linear [71] regression models, as well as random forests and neural networks [68]

finding implementation. As in online ML applications, discussed in Section 3.2.1, some

tasks are naturally limited to supervised learning methods. Cross-architecture prediction

is an exemplar [18, 19, 21, 25, 26].

Optimization: The usefulness of an ML model in offline ML applications is largely

determined by overhead relative to traditional design approaches. Optimization therefore

primarily focuses on improving data efficiency and overall model accuracy.

Ensemble methods have been proposed in online ML applications [43], but primarily

find application in offline ML applications as ensembles can be made arbitrarily large

(relative to available computation resources). Several optimizations have been suggested

to improve efficiency. Jooya et al. [23] trained many neural networks using slightly

different configurations and generated an ensemble using a subset of the models that

generalized well and were most insensitive to input noise. They further introduced

outlier detection by filtering predictions whose performance and/or power predictions

differ greatly from the closest configuration in training data. Ardalani et al. [26] instead

kept all 100 models that they trained, noting that models may be very strong predictors

in one application but weak predictors in another. They remedied this dilemma by

selecting only the 60 closest individual predictions to the median prediction.

Sampling method optimization, while not unique to architecture tasks, are neverthe-

less important to consider in improving model accuracy. Sangaiah et al. [71] considered

potential systematic biases in their uncore performance prediction model. Specifically,

they observed that uniform random sampling may not adequately capture performance

relationships in a non-uniform configuration space (as in cache configurations using

powers of two for sizing). They therefore used a low-discrepancy sampling technique,

SOBOL [103], to remove this systematic bias and prevent performance over-prediction
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for low-end configurations.

3.2.3 Domain Knowledge & Model Interpretation

The powerful relationship learning capabilities offered by ML algorithms enable black-

box implementation in many tasks (i.e., without consideration for task-specific charac-

teristics), but may fail to capitalize on additional domain knowledge that could improve

interpretability or overall model performance. Additionally, in some applications, do-

main knowledge can help identify aberrant behavior and, again, improve overall model

usefulness. These themes are highlighted in several specific works, but can be generally

applicable for ML applied to architecture.

One approach uses mechanistic-empirical models, synthesizing a domain knowledge

based mechanistic framework with empirical ML based learning for specific parameters.

These models simplify implementation compared to purely mechanistic models [17], can

avoid incorrect assumptions made in purely mechanistic models [70], and can offer higher

accuracy than purely empirical models by avoiding overfitting [17]. Eyerman et al. [17]

also demonstrated how these models can be used to construct CPI stacks, allowing

meaningful alternative design comparisons.

Deng et al. [43], in their work predicting optimal NVM write strategies, presented a

case for tuning ML models based on task specific domain knowledge. Following initial

analysis, they discovered how a single configuration parameter (wear quota) can result in

higher complexity and sub-optimal prediction accuracy for IPC and system energy, even

with quadratic regression and gradient boosting models. Excluding wear quota from

the configuration space, then later applying it to the predicted optimal configuration,

provided a 2-6% improvement in prediction accuracy. Ardalani et al. [26] similarly

examined inherent imperfections in their learning model for cross-platform performance

prediction. Some predictions can be easy for learning models and hard for humans,

representing an ideal scenario for ML application; the converse can also be true. In both

cases, ML application is strengthened by considering task characteristics.
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3.3 Future Work

This section synthesizes observations and analysis from Section 3.1 and Section 3.2 to

identify opportunities and detail the need for future work. These opportunities may

come at the model level, exploiting improved implementation strategies and learning

capabilities, or at the application level, addressing the need for generalized tools or

exploring altogether new areas.

3.3.1 Investigating Models & Algorithms

Existing works generally apply ML at a single time-scale or level of abstraction. These

limitations motivate investigation into models and algorithms that capture the hierarchi-

cal nature of architecture, both in terms of system design and execution characteristics.

Perform Phase-level Prediction: Application analysis using basic blocks [104]

has long been a useful method for simulation, made possible by identifying unique and

representative phases in program execution. Phase-level prediction offers analogous ben-

efits for ML applied to architecture. A few recent works, in particular, have demonstrated

promising results, with high accuracy for both performance prediction [19] as well as en-

ergy and reliability (lifetime) [43]. In general, most work [7, 23, 71] has not yet adopted

phase-level prediction techniques (or does not explicitly mention their methodology).

Specifically, future work could explore predictions for control and system reconfiguration

based on phase-level behavior, rather than either static windows [89] or application-level

behavior [79, 105].

Exploit Nanosecond Scale: Coarse-grain ML, used in many DVFS control schemes,

provides significant benefits over standard control-theory based schemes, yet fine grain

control can provide even greater efficiency. Specifically, analysis by Bai et al. [80] indi-

cated very rapid changes in energy consumption, on the order of 1K instructions for some

applications. Exploiting these brief intervals requires careful consideration for both the

model and the algorithm. Future work may optimize existing algorithms such as experi-

ence sharing [106] and hybrid/tandem control [75], or consider approaches more suited for

novel models (e.g., hierarchical models). These approaches could also enable additional

nanosecond-scale co-optimization opportunities, such as dynamic LLC partitioning, to

extract further efficiency gains.
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Apply Hierarchical & Multi-agent Models: Application execution in computer

systems naturally follows a hierarchical structure in which, at the top level, tasks are al-

located to cores, then cores are assigned dynamic power and resource budgets (e.g., LLC

space), and finally, at the bottom level, data/control packets are sent between cores and

memory. Consequently, a single machine learning model may struggle to learn appropri-

ate design/control strategies. Furthermore, in the case of reinforcement learning models,

it can be exceedingly difficult to accurately assign credits to specific low-level actions

based on their impact on overall execution time, energy efficiency, etc. One promising

approach in recent work is hierarchical models [107]. Hierarchical reinforcement learning

models enable goal-directed learning that is particularly beneficial in environments with

sparse feedback (e.g., task allocation). Applying hierarchical learning to architecture

could therefore enable more effective multi-level design and control. Multi-agent models

are another promising area in machine learning research. These models tend to focus on

problems in which reinforcement learning agents have only partial observability of their

environment. Although partial-observability may not be a primary concern in individual

computer systems, recent work [108] has applied this concept to internet packet rout-

ing and demonstrated convergence benefits via improved cooperation between individual

agents.

3.3.2 Enhancing Implementation Strategies

Increasingly complex models require effective strategies and techniques to reduce over-

head and enable practical implementation. Model pruning and weight quantization, as

discussed below, are two particularly effective techniques with proven benefits in accel-

erators, while many other promising approaches are also being explored [109].

Explore Model Pruning: Model complexity can be a limiting factor in online ML

applications. A standard Q-learning approach requires a potentially extensive table to

store action-values. Neural network based approaches for both RL (in Deep Q-Networks)

and supervised learning require network weight storage and additional processing capa-

bilities. Neural networks, in particular, are therefore generally constrained to a few layers

in existing work, with many using just one hidden layer [50, 75, 89, 97] and some using

one or two hidden layers [94, 95].

Recent research on neural networks has demonstrated promising methods to reduce
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model complexity through pruning [110, 111]. The general intuition is that many connec-

tions are unnecessary and can therefore be pruned. Iteratively pruning a high-complexity

network, then re-training from scratch on the sparse architecture achieves good results,

with some work demonstrating very high sparsity (>90%) and little accuracy penalty

[111].

Pruning applied to neural networks, either in deep Q-learning or supervised learning

regression/classification, offers a method to train complex models for high accuracy,

then prune for feasible implementation. Deep Q-learning application has, thus far, been

limited to two works [55, 63], one of which is currently impractical to implement [63].

Future work may instead consider pruned deep Q-networks as a useful alternative to

standard Q-learning approaches. Pruning also provides a substantial opportunity for

future work on performance prediction (as in DVFS control) and function approximation

(as in ML-enabled approximate computing). System-level approximation (discussed in

Section 3.3.4) may particularly benefit from pruning high complexity models.

Explore Quantization: Existing work primarily applies quantization to state values

in Q-learning to enable practical Q-table implementation. Similarly, neural networks

benefit from potential reduction in execution time, power, and area by reducing multiply-

accumulator precision. Recent works, however, suggest a new spectrum of opportunities

for alternative hardware implementations based on reduced precision models.

Binary neural networks, for example, quantize weights to be either +1 or -1, enabling

computation based on bit-wise operations rather than arithmetic operations [112]. An

additional approach considered quantizing neural network weights into finite (but non-

binary) subsets in order to replace multiply operations with lookup-table accesses [113],

allowing higher precision and lower execution time, albeit with potentially higher area

cost. Future work on ML application can exploit similar hardware implementations while

exploring optimal quantization levels for various tasks and control schemes.

3.3.3 Developing Generalized Tools

Existing machine learning tools (e.g., scikit-learn [114]) have proven useful for rela-

tively simple ML applications. Nevertheless, complex design and simulation tasks require

more sophisticated tools to enable rapid task-specific optimizations using general-purpose

frameworks.
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Enable Broad Application & Optimization: Purpose-built architectural tools,

similar to heuristic design strategies, can be useful in enabling design, exploration, and

simulation that satisfies a common use case. These approaches may still be limited in

their application to a specific problem, optimization criteria, system configuration, etc.

Given the fast-paced nature of architectural research (and machine learning research),

there is a need to develop more generalized tools and easily modifiable frameworks to

address broader applications and optimization options.

ML-based design tools are especially promising, with recent works demonstrating suc-

cessful application to immense design spaces (e.g., exceeding 1012 in [67]). Opportunities

for new design tools are not, however, limited to specific architectural components. Chip

layout is a notable example in which even simple clustering algorithms can dramatically

outperform existing heuristic approaches [92]. Future work can also continue to develop

more broadly applicable tools for performance and power prediction. In particular, re-

cent work on cross-platform performance prediction [27] suggests the possibility for high

prediction accuracy with purely static features, thus representing another potential area

for additional research.

Enable Widespread Usage: Generalized tools enable additional benefit by facili-

tating rapid design and evaluation. Using a machine learning approach, one might simply

modify training data (in a supervised learning setting) or action/reward representation

(in a reinforcement learning setting) rather than exploring models, data representation

strategies, search approaches, etc., possibly without a priori machine learning experi-

ence. For example, recent work [67] envisioned reuse of a deep reinforcement learning

framework for diverse NoC-related design tasks involving interposers, chiplets, and ac-

celerators. While the framework might not be compatible with all work, especially in

novel areas, it may provide a better foundation for machine learning application to ar-

chitectures, especially for individuals with limited machine learning background.

3.3.4 Embracing Novel Applications

Opportunities abound for future work to apply ML to both existing and emerging archi-

tectures, replace heuristic approaches to enable long-term scaling, and advance capabil-

ities for automated design.

Explore Emerging Technologies: Several proposals [36, 42, 43, 44] establish how
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ML can be used to optimize both standard (energy, performance) and non-standard

(lifetime, tail-latency) criteria. These non-standard criteria are shown to be particularly

problematic in emerging technologies as these technologies cannot easily find widespread

implementation without some reliability guarantees. Applying ML to optimize both

standard and non-standard criteria therefore provides a method for future work to in-

telligently balance control strategies dynamically, rather than relying upon a heuristic

approach.

Explore Emerging Architectures: ML application to emerging architectures

presents a similar benefit by enabling rapid development, even with limited best-practice

knowledge, which may take time to develop. Work in long-standing design areas, such

as task allocation and branch prediction, may incorporate best-practice domain knowl-

edge to guide approaches, whether applying ML or some other traditional method. Best

practices for emerging architectures may not be immediately obvious. For example, ML

application to 2D photonic NoCs [52], 2.5D processing-in-memory designs [30], and 3D

NoCs [64, 65, 66] have all shown strong performance over existing approaches. Future

work can explore ML application to novel concerns such as connectivity and reconfig-

urability in interposers and domain-specific accelerators.

Expand System-Level Approximate Computing: As discussed in Section 3.1.6,

ML applications for approximate computing have been mostly limited to function ap-

proximation. However, there are many other facets of approximate computing that have

already been implemented in non-ML works, which can be reap additional benefits by

utilizing ML. For example, APPROX-NoC [115] reduces network traffic using approxi-

mated and encoded data. Another work explored a multi-faceted approximation scheme

for a smart camera system [116] using approximate DRAM (lower refresh rate), ap-

proximate algorithms (loop skipping) and approximate data (lower sensor resolution).

Existing compiler-based work [117] for system-wide approximation enhances prior capa-

bilities to determine approximable code, but relies upon heuristic searches with represen-

tative inputs. Consequently, this method does not provide statistical guarantees, such

as those in MITHRA [97]. Future work may explore searches based on deep reinforce-

ment learning (or perhaps hierarchical reinforcement learning) to incorporate existing

approximation techniques into a scalable framework for high-dimensional approximation

and co-optimization.

Implement System-Wide, Component-Level Optimization: Recent work has
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begun to explore broader ML-based design and optimization strategies. MLNoC [68]

explores a wide SoC feature space for NoC design optimization. Core and uncore DVFS

are combined in Machine Learned Machines [90], along with LLC dynamic cache par-

titioning to explore co-optimization potential at run-time. Related DNN accelerator

research [118] proposed co-optimization of hardware-based (e.g., bitwidth) and neural

network parameters (e.g., L2 regularization). These works motivate consideration for

system-wide, component-level ML application.

Existing system-level optimization schemes (e.g., [84, 87, 105]) consider configuration

opportunities at just a single and very high level of abstraction (e.g., task allocation or

big.LITTLE core configurations). Although these works may include low-level features

such as NoC utilization and DRAM bandwidth in their ML models, they do not account

for the impact of component-level optimization techniques such as NoC packet routing,

cache prefetching, etc. We instead envision an ML-based system-wide, component-level

framework for run-time optimization. In this framework, control decisions would involve

a larger hierarchy of both component-level (or lower) features and control options as

well as higher-level decisions, allowing a more comprehensive and precise perspective for

run-time optimization.

Advance Automated Design: While fully automated design might be the ulti-

mate objective, increasingly automated design is nevertheless an important milestone

for future work. Specifically, as more tasks are automated, there is greater potential to

enable a positive-feedback loop between machine learning and architecture, providing

immense practical benefits for both fields. There are, of course, a number of intervening

challenges that must be solved, each of which represents a substantial area for future

work.

One challenge involves modeling the hierarchical structure of architectural compo-

nents. This model would likely benefit from integrating pertinent characteristics across

the system stack, from process technology to full-system behavior, thus generating a

highly accurate representation for real-world systems. Another research direction could

explore methods for machine learning models to identify potential design aspects for

improvement. Ideally, this model could explore not just reconfiguration of pre-existing

options (as in [119]), but also generate novel configuration options. Integrating these and

potentially other capabilities may provide a framework to advance automated design.
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3.4 Conclusion

Machine learning has rapidly become a powerful tool in architecture, with established

applicability to design, optimization, simulation, and more. Notably, ML has already

been successfully applied to many components, including the core, cache, NoC, and mem-

ory, with performance often surpassing prior state-of-the-art analytical, heuristic, and

human-expert strategies. Widespread application is further facilitated by diverse train-

ing methods and learning models, allowing effective trade-offs between performance and

overhead based on task requirements. These advancements are likely just the beginning

of a revolutionary shift in architecture.

Optimization opportunities at the model level involving pruning and quantization

offer broad benefits by enabling more practical implementation. Similarly, opportuni-

ties abound to extend existing work using ever-more-powerful ML models, enabling finer

granularity, system-wide implementation. Finally, ML may be applied to entirely new

aspects of architecture, learning hierarchical or abstract representations to characterize

full system behavior based on both high and low level details. These extensive oppor-

tunities, along with yet to be envisioned possibilities, may eventually close the loop on

highly (or even fully) automated architectural design.
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Chapter 4: A Deep Reinforcement Learning Framework for

Architectural Exploration: A Routerless NoC Case Study

4.1 Introduction

Improvements in computational capabilities are increasingly reliant upon advancements

in many-core chip designs. These designs emphasize parallel resource scaling and con-

sequently introduce many considerations beyond those in single core processors. As a

result, traditional design strategies may not scale efficiently with this increasing paral-

lelism. Early machine learning approaches, such as simple regression and neural net-

works, have been proposed as an alternative design strategy. More recent machine learn-

ing developments leverage deep reinforcement learning to provide improved design space

exploration. This capability is particularly promising in broad design spaces, such as

network-on-chip (NoC) designs.

NoCs provide a basis for communication in many-core chips that is vital for system

performance [120]. NoC design involves many trade-offs between latency, throughput,

wiring resources, and other overhead. Exhaustive design space exploration, however, is

often infeasible in NoCs and architecture in general due to immense design spaces. Thus,

intelligent exploration approaches would greatly improve NoC designs.

Applications include recently proposed routerless NoCs [121, 122]. Conventional

router-based NoCs incur significant power and area overhead due to complex router

structures. Routerless NoCs eliminate these costly routers by effectively using wiring

resources while achieving comparable scaling to router-based NoCs. Prior research has

demonstrated up to 9.5x reduction in power and 7x reduction in area compared with

mesh [122], establishing routerless NoCs as a promising alternative for NoC designs.

Like many novel concepts and approaches in architecture, substantial ongoing research

is needed to explore the full potential of the routerless NoC design paradigm and help

advance the field. Design challenges for routerless NoCs include efficiently exploring

the huge design space (easily exceeding 1012) while ensuring connectivity and wiring

resource constraints. This makes routerless NoCs an ideal case study for intelligent
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design exploration.

Prior routerless NoC design has followed two approaches. The first, isolated multi-

ring (IMR) [121], uses an evolutionary approach (genetic algorithm) for loop design based

on random mutation/exploration. The second approach (REC) [122] recursively adds

loops strictly based on the NoC size, severely restricting broad applicability. Briefly, nei-

ther approach guarantees efficient generation of fully-connected routerless NoC designs

under various constraints.

In this paper, we propose a novel deep reinforcement learning framework for design

space exploration, and demonstrate a specific implementation using routerless NoC de-

sign as our case study. Efficient design space exploration is realized using a Monte-Carlo

tree search (MCTS) that generates training data to a deep neural network which, in turn,

guides the search in MCTS. Together, the framework self-learns loop placement strate-

gies obeying design constraints. Evaluation shows that the proposed deep reinforcement

learning design (DRL) achieves a 3.25x increase in throughput, 1.6x reduction in packet

latency, and 5x reduction in power compared with a conventional mesh. Compared with

REC, the state-of-the-art routerless NoC, DRL achieves a 1.47x increase in throughput,

1.18x reduction in packet latency, 1.14x reduction in average hop count, and 6.3% lower

power consumption. When scaling from a 4x4 to a 10x10 NoC under synthetic work-

loads, the throughput drop is also reduced dramatically from 31.6% in REC to only 4.7%

in DRL.

Key contributions of this paper include:

• Fundamental issues are identified in applying deep reinforcement learning to router-

less NoC designs;

• An innovative deep reinforcement learning framework is proposed and implemen-

tation is presented for routerless NoC design with various design constraints;

• Cycle-accurate architecture-level simulations and circuit-level implementation are

conducted to evaluate the design in detail;

• Broad applicability of the proposed framework with several possible examples is

discussed.

The rest of the paper is organized as follows: Section 4.2 provides background on NoC

architecture and design space complexity; Section 4.3 describes issues in prior router-

less NoC design approaches and the need for a better method; Section 4.4 details the
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proposed deep reinforcement learning framework; Section 4.5 illustrates our evaluation

methodology; Section 4.6 provides simulation results; and Section 4.7 concludes.

4.2 Background

4.2.1 NoC Architecture

Single-ring NoCs: Nodes in a single-ring NoC communicate using one ring connecting

all nodes.1 Packets are injected at a source node and forwarded along the ring to a

destination node. An example single-ring NoC is seen in Figure 4.1(a). Single-ring

designs are simple, but have low bandwidth, severely restricting their applicability in

large-scale designs. Specifically, network saturation is rapidly reached as more nodes are

added due to frequent end-to-end control packets [123]. Consequently, most single-ring

designs only scale to a modest number of processors [124].

Router-based NoCs: NoC routers generally consist of input buffers, routing and

arbitration logic, and a crossbar connecting input buffers to output links. These routers

enable a decentralized communication system in which routers check resource availability

before packets are sent between nodes [122]. Mesh (or mesh-based architectures) have

become the de facto choice due to their scalability and relatively high bandwidth [121].

The basic design, shown in Figure 4.1(b), features a grid of nodes with a router at

every node. These routers can incur 11% chip area overhead [125] and, depending upon

frequency and activity, up to 28% chip power [126, 127] overhead, although some recent

work [128, 129] has shown much smaller overhead using narrow links and shallow/few

buffers with high latency cost; this indirectly shows that routers are the main cost in

existing NoCs. Hierarchical-ring, illustrated in Figure 4.1(c), instead uses several local

rings connected by the dotted global ring. Routers are only needed for nodes intersected

by the global ring as they are responsible for packet transfer between ring groups [130].

Extensive research has explored router-based NoC optimization [126, 131, 132], but these

solutions only slightly reduce power and area overhead [121].

Routerless NoCs: Significant overhead associated with router-based topologies has

motivated routerless NoC designs. Early proposals [131] used bus-based networks in a

hierarchical approach by dividing the chip into multiple segments, each with a local

1Note that rings and loops are used interchangeably in this paper.
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broadcast bus. Segments are connected by a central bus with low-cost switching ele-

ments. These bus-based networks inevitably experience contention on local buses and

at connections with the central bus, resulting in poor performance under heavy traffic.

Recently, isolated multi-ring (IMR) NoCs have been proposed that exploit additional

interconnect wiring resources in modern semiconductor processes [121]. Nodes are con-

nected via at least one ring and packets are forwarded from source to destination without

switching rings. IMR improves over mesh-based designs in terms of power, area, and

latency, but requires significant buffer resources: each node has a dedicated input buffer

for each ring passing through its interface, thus a single node may require many packet-

sized buffers [121, 122]. Recent routerless NoC design (REC) [122] has mostly eliminated

these costly buffers by adopting shared packet-size buffers among loops. REC uses just

a single flit-sized buffer for each loop, along with several shared extension buffers to

provide effectively the same functionality as dedicated buffers [122].

Both IMR and REC designs differ from prior approaches in that no routing is per-

formed during traversal, so packets in one loop cannot be forwarded to another loop

[121, 122]. Both designs must therefore satisfy two requirements: every pair of nodes

must be connected by at least one loop and all routing must be done at the source node.

Figure 4.2 delineates these requirements and highlights differences between router-based

and routerless NoC designs. Figure 4.2(a) depicts an incomplete 4x4 ring-based NoC

with three loops. These loops are unidirectional so arrows indicate the direction of

packet transfer for each ring. Node F is isolated and cannot communicate with other

nodes since no ring passes through its interface. Figure 4.2(b) depicts the NoC with

an additional loop through node F . If routers are used, such as at node A, this ring

would complete the NoC, as all nodes can communicate with ring switching. Packets

from node K, for example, can be transferred to node P using path 3, which combines

paths1 and path2. In a routerless design, however, there are still many nodes that cannot

communicate as packets must travel along a single ring from source to destination. That

is, packets from node K cannot communicate with node P because path1 and path2 are

isolated from each other. Figure 4.2(c) depicts an example 4x4 REC routerless NoC[122].

Loop placement for larger networks is increasingly challenging.

Routerless NoCs can be built with simple hardware interfaces by eliminating cross-

bars and VC allocation logic. As a result, current state-of-the-art routerless NoCs have

achieved 9.5x power reduction, 7.2x area reduction, and 2.5x reduction in zero-load
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Figure 4.2: A 4x4 NoC with rings. (a) A NoC with one isolated node. (b) A NoC
without isolated nodes. (c) A 4x4 routerless NoC with rings.

packet latency compared with conventional mesh topologies [122]. Packet latency, in

particular, is greatly improved by single-cycle delays per hop, compared with standard

mesh, which usually requires two cycles for the router alone. Hop count in routerless

designs can asymptotically approach the optimal mesh hop count using additional loops

at the cost of power and area. Wiring resources, however, are finite, meaning that one

must restrict the total number of overlapping rings at each node (referred to as node

overlapping) to maintain physical realizability. In Figure 4.2 (b), node overlapping at

node A, for example, is three, whereas node overlapping at node F is one. Wiring

resource restriction is one of the main reasons that make routerless NoC design substan-
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tially more challenging. As discussed in Section 3, existing methods either do not satisfy

or do not enforce these potential constraints. We therefore explore potential applications

and advantages of machine learning.

4.2.2 Design Space Complexity

Design space complexity in routerless NoCs poses a significant challenge requiring effi-

cient exploration. A small 4x4 NoC using 10 loops chosen from all 36 possible rectangular

loops has
(
36
10

)
≈ 108 total designs. This design space increases rapidly with NoC size;

an 8x8 NoC with 50 loops chosen from 784 possible rectangular loops has
(
784
50

)
≈ 1079

designs. It can be shown that the complexity of routerless NoC designs exceeds the game

of Go. Similar to AlphaGo, deep reinforcement learning is needed here and can address

this complexity by approximating actions and their benefits, allowing search to focus on

high-performing configurations.

4.3 Motivation

4.3.1 Design Space Exploration

Deep reinforcement learning provides a powerful foundation for design space exploration

using continuously refined domain knowledge. This capability is advantageous since prior

methods for routerless NoC designs have limited design space exploration capabilities.

Specifically, the evolutionary approach [121] evaluates generations of individuals and off-

spring. Selection uses an objective function while evolution relies on random mutation,

leading to an unreliable search since past experiences are ignored. Consequently, explo-

ration can be misled and generate configurations with high average hop count and long

loops (48 hops) in an 8x8 NoC [122]. The recursive layering approach (REC) overcomes

these reliability problems but strictly limits design flexibility. Latency improves as the

generated loops pass through fewer nodes on average[122], but hop count still suffers in

comparison to router-based NoCs as it is restricted by the total number of loops. For an

8x8 NoC, the average hop count is 5.33 in mesh and 8.32 in the state-of-the-art recursive

layering design, a 1.5x increase [122].

Both approaches are also limited by their inability to enforce design constraints, such
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as node overlapping. In IMR, ring selection is based solely on inter-core-distance and ring

lengths [121] so node overlapping may vary significantly based on random ring mutation.

Constraints could be built into the fitness function, but these constraints are likely to

be violated to achieve better performance. Alternatively, in REC, loop configuration for

each network size is strictly defined. A 4x4 NoC must use exactly the loop structure

shown in Figure 4.2 (c) so node overlapping cannot be changed without modifying the

algorithm itself. These constraints must be considered during loop placement since an

optimal design will approach these constraints to allow many paths for packet transfer.

4.3.2 Reinforcement Learning Challenges

Several challenges apply to deep reinforcement learning in any domain. To be more

concrete, we discuss these considerations in the context of routerless NoC designs.

Specification of States and Action: State specification must include all informa-

tion for the agent to determine optimal loop placement and should be compatible with

DNN input/output structure. An agent that attempts to minimize average hop count,

for example, needs information about the current hop count. Additionally, information

quality can impact learning efficiency since inadequate information may require addi-

tional inference. Both state representation and action specification should be a constant

size throughout the design process because the DNN structure is invariable.

Quantification of Returns: Return values heavily influence NoC performance so

they need to encourage beneficial actions and discourage undesired actions. For example,

returns favoring large loops will likely generate a NoC with large loops. Routerless NoCs,

however, benefit from diverse loop sizes; large loops help ensure high connectivity while

smaller loops may lower hop counts. It is difficult to achieve this balance since the

NoC will remain incomplete (not fully connected) after most actions. Furthermore, an

agent may violate design constraints if the return values do not appropriately deter these

actions. Returns should be conservative to discourage useless or illegal loop additions.

Functions for Learning: Optimal loop configuration strategies are approximated

by learned functions, but these functions are notoriously difficult to learn due to high

data requirements. This phenomenon is observed in AlphaGo [13] where the policy

function successfully chooses from 192 possible moves at each of several hundred steps,

but requires more than 30 million data samples. An effective approach must consider
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this difficulty, which can be potentially addressed with optimized data efficiency and

parallelization across threads, as discussed later in our approach.

Guided Design Space Search: An ideal routerless NoC would maximize perfor-

mance while minimizing loop count based on constraints. Similar hop count improvement

can be achieved using either several loops or a single loop. Intuitively, the single loop

is preferred to reduce NoC resources, especially under strict overlapping constraints.

This implies benefits from ignoring/trimming exploration branches that add loops with

suboptimal performance improvement.

4.4 Proposed Scheme

4.4.1 Overview

The proposed deep reinforcement learning framework is depicted in Figure 4.3. Frame-

work execution begins by initializing the Monte Carlo Tree Search (MCTS) with an

empty tree and a neural network without a priori training. The whole process consists

of many exploration cycles. Each cycle begins with a blank design (e.g., a completely

disconnected NoC). Actions are continuously taken to modify this design. The DNN

(dashed “DNN” box) selects a good initial action, which directs the search to a partic-

ular region in the design space; several actions are taken by following MCTS (dashed

“MCTS” box) in that region. The MCTS starts from the current design (a MCTS node),

and tree traversal selects actions using either greedy exploration or an “optimal” action

until a leaf (one of many explored designs) is reached. Additional actions can be taken,

if necessary, to complete the design. Finally, an overall reward is calculated (“Evalu-

ation Metrics”) and combined with information on state, action, and value estimates

to train the neural network and update the search tree (the dotted “Learning” lines).

The exploration cycle repeats to optimize the design. Once the search completes, full

system simulations are used to verify and evaluate the design. In the framework, the

DNN generates coarse designs while MCTS efficiently refines these designs based on prior

knowledge to continuously generate more optimal configurations. Unlike traditional su-

pervised learning, the framework does not require a training dataset; instead, the DNN

and MCTS gradually train themselves from past exploration cycles.

Framework execution in the specific case of routerless NoCs is as follows: each cycle
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Figure 4.3: Deep reinforcement learning framework.

begins with a completely disconnected routerless NoC; the DNN suggests an initial loop

addition; following this initial action, one or more loops are added (“Sequential Action”)

by the MCTS; rewards are provided for each added loop; the DNN and MCTS contin-

uously add loops until no more loops can be added without violating constraints; the

completed routerless NoC configuration is evaluated by comparing average hop count to

that of mesh to generate a cumulative reward; overall rewards, along with information

on state, action, and value estimates, are used to train the neural network and update

the search tree; finally, these optimized routerless NoC configurations are tested.

The actions, rewards, and state representations in the proposed framework can be

generalized for design space exploration in router-based NoCs and in other NoC-related

research. Several generalized framework examples are discussed in Section 4.6.8. The

remainder of this section addresses the application of the framework to routerless NoC

design as a way to present low-level design and implementation details. Other routerless

NoC implementation details including deadlock, livelock, and starvation are addressed

in previous work [121, 122] so are omitted here.

4.4.2 Routerless NoCs Representation

Representation of Routerless NoCs (States): State representation in our frame-

work uses a hop count matrix to encode current NoC state as shown in Figure 4.4. A

2x2 routerless NoC with a single clockwise loop is considered for simplicity. The overall
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state representation is a 4x4 matrix composed of four 2x2 submatrices, each representing

hop count from a specific node to every node in the network. For example, in the upper

left submatrix, the zero in the upper left square corresponds to distance from the node

to itself. Moving clockwise with loop direction, the next node is one hop away, then two,

and three hops for nodes further along the loop. All other submatrices are generated

using the same procedure. This hop count matrix encodes current loop placement in-

formation using a fixed size representation to accommodate fixed DNN layer sizes. In

general, the input state for an N×N NoC is an N2×N2 hop count matrix. Connectivity

is also implicitly represented in this hop count matrix by using a default value of 5 ∗N
for unconnected nodes.

Representation of Loop Additions (Actions): Actions are defined as adding a

loop to an N × N NoC. We restrict loops to rectangles to minimize the longest path.

With this restriction, the longest path will be between diagonal nodes at the corners of

the NoC, as in REC [122]. Actions are encoded as (x1, y1, x2, y2, dir) where x1, y1, x2

and y2 represent coordinates for diagonal nodes (x1, y1) and (x2, y2) and dir indicates

packet flow direction within a loop. Here, dir = 1 represents clockwise circulation for

packets and dir = 0 represents counterclockwise circulation. For example, the loop in

Figure 4.4 represents the action (0, 0, 1, 1, 1). We enforce rectangular loops by checking

that x1 6= x2 and y1 6= y2.

4.4.3 Returns After Loop Addition

The reward function encourages exploration by rewarding zero for all valid actions, while

penalizing repetitive, invalid, or illegal actions using a negative reward. A repetitive
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action refers to adding a duplicate loop, receiving a −1 penalty. An invalid action

refers to adding a non-rectangular loop, receiving a −1 penalty. Finally, illegal actions

involve additions that violate the node overlapping constraint, resulting in a severe −5 ∗
N penalty. The agent receives a final return to characterize overall performance by

subtracting average hop count in the generated NoC from average mesh hop count.

Minimal average hop count is therefore found by minimizing the magnitude of cumulative

returns.

4.4.4 Deep Neural Network

Residual Neural Networks: Sufficient network depth is essential and, in fact, leading

results have used at least ten DNN layers [13, 14, 133]. High network depth, however, can

cause overfitting for many standard DNN topologies. Residual networks offer a solution

by introducing additional shortcut connections between layers that allow robust learning

even with network depths of 100 or more layers. A building block for residual networks

is shown in Figure 4.5(a). Here, the input is X and the output, after two weight layers,

is F (X). Notice that both F (X) and X (via the shortcut connection) are used as input

to the activation function. This shortcut connection provides a reference for learning

optimal weights and mitigates the vanishing gradient problem during back propagation

[133]. Figure 4.5(b) depicts a residual box (Res) consisting of two convolutional (conv)

layers. Here, the numbers 3x3 and 16 indicate a 3x3x16 convolution kernel.

DNN architecture: The proposed DNN uses the two-headed architecture shown

in Figure 4.5(c), which learns both the policy function and the value function. This

structure has been proven to reduce the amount of data required to learn the optimal

policy function [14]. We use convolutional layers because loop placement analysis is

similar to spatial analysis in image segmentation, which performs well on convolutional

neural networks. Batch normalization is used after convolutional layers to normalize the

value distribution and max pooling (denoted “pool”) is used after specific layers to select

the most significant features. Finally, both policy and value estimates are produced at the

output as the two separate heads. The policy, discussed in section 4.4.2, has two parts:

the four dimensions, x1, y1, x2, y2, which are generated by a softmax function following

a ReLU and dir, which is generated separately using a tanh function. Tanh output

between -1 and 1 is converted to a direction using dir > 0 as clockwise and dir ≤ 0 as
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counterclockwise. Referring to Figure 4.5(c), the softmax input after ReLU is {aij} where

i = 1, 2, 3, 4 and j = 1, ..., N . Dimensions x1 and y1 are maxj(exp(a1j)/
∑

j exp(a1j))

and maxj(exp(a2j)/
∑

j exp(a2j)). The same idea applies to x2 and y2. The value head

uses a single convolutional layer followed by a fully connected layer, without an activation

function, to predict cumulative returns.

Gradients for DNN Training: In this subsection we derive parameter gradients

for the proposed DNN architecture.2 We define τ as the search process for a routerless

NoC in which an agent receives a sequence of returns {rt} after taking actions {at}
from each state {st}. This process τ can be described a sequence of states, actions, and

returns:

τ = (s0, a0, r0, s1, a1, r1, s2, ...). (4.1)

A given sequence of loops is added to the routerless NoC based on τ ∼ p(τ ; θ). We

2Although not essential for understanding the work, this subsection provides theoretical support and
increases reproducibility.
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can then write the expected cumulative returns for one sequence as

Eτ∼p(τ ;θ)[r(τ)] =

∫
τ
r(τ)p(τ ; θ)dτ (4.2)

p(τ ; θ) = p(s0)
∏
t≥0

π(at; st, θ)P (st+1; st, at), (4.3)

where r(τ) is a return and θ is DNN weights/parameters we want to optimize. Following

the definition of π in section 2.2, π(a0; s0, θ) is the probability of taking action a0 given

state s0 and parameter θ. We then differentiate the expected cumulative returns for

parameter gradients

∇Eτ∼p(τ ;θ)[r(τ)] = ∇θ
∫
τ
r(τ)p(τ ; θ)dτ (4.4)

=

∫
τ
(r(τ)∇θ log p(τ ; θ))p(τ ; θ)dτ (4.5)

= Eτθ∼p(τ ;θ)[r(τ)∇θ log p(τ ; θ)]. (4.6)

Notice that transition probability P (st+1,rt ; st, at) is independent of θ so we can rewrite

Equation 4.6 as

Eτθ∼p(τ ;θ)[r(τ)∇θ log p(τ ; θ)] (4.7)

= Eτθ∼p(τ ;θ)[r(τ)∇θΣ log π(at; st, θ)] (4.8)

≈
∑
t≥0

r(τ)∇θ log π(at; st, θ). (4.9)

The gradient in equation 4.9 is proportional to raw returns (a constant value based on

the past search trajectory). We therefore substitute r(τ) with At as

∇θEτ∼p(τ ;θ)[r(τ)] ≈
∑
t≥0

At∇θ log π(at; st, θ) (4.10)

At =
∑
t′>t

γ t′−trt′ − V (st; θ), (4.11)

where the first term in Equation 4.11 represents the returns from the future trajectory

at time t. We also subtract V (st; θ) to reduce the variance when replacing a constant
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with a prediction. This approach is known as advantage actor-critic learning where the

actor and the critic represent the policy function and value function, respectively [11].

In a two-headed DNN, θ consists of θπ and θv for the policy function and the value

function, respectively. Gradients for these two sets of parameters are directly obtained

by representing Equation 4.10 as time intervals, rather than as a summation over time.

These gradients are then given as

dθπ = (
∑
t′>t

γ t′−trt′ − V (st; θv))∇θπ log π(at; st, θπ) (4.12)

dθv = ∇θv(
∑
t′>t

γ t′−trt′ − V (st; θv))
2. (4.13)

The whole training procedure repeats the following equations

θπ = θπ + γ ∗ dθπ (4.14)

θv = θv + c ∗ γ ∗ θv, (4.15)

where γ is a learning rate and c is a constant.

4.4.5 Routerless NoC Design Exploration

An efficient approach for design space exploration is essential for routerless NoC design

due to the immense design space. Deep reinforcement learning approaches are therefore

well-suited for this challenge as they can leverage recorded states while learning. Some

work uses experience replay, which guides actions using random samples. These random

samples are useful throughout the entire learning process, so improve collected state

efficiency [12], but break the correlation between states. Another approach is the Monte

Carlo tree search (MCTS), which is more closely correlated to human learning behavior

based on experience. MCTS stores previously seen routerless NoC configurations as

nodes in a tree structure. Each node is then labeled with the expected returns for

exploration starting from that node. As a result, MCTS can provide additional insight

during state exploration and help narrow the scope of exploration to a few promising

branches [13] to efficiently learn optimal loop placement.

In our implementation, each node s in the tree represents a previously seen routerless
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NoC and each edge represents an additional loop. Additionally, each node s stores a set

of statistics: V (snext), P (ai; s), and N(ai; s). V (snext) is the mean cumulative return

from snext and is used to approximate the value function V π(snext). P (ai; s) is the prior

probability of taking action ai based on π(a = ai; s). Lastly, N(ai; s) is the visit count,

representing the number of times ai was selected at s. Exploration starts from state s,

then selects the best action a∗ based on expected exploration returns given by

a∗ = argmax
ai

(U(s, ai) + V (snext)) (4.16)

U(s, ai) = c ∗ P (ai; s)

√∑
j N(aj ; s)

1 +N(ai; s)
, (4.17)

where U(s, ai) is the upper confidence bound and c is a constant [134]. The first term

in Equation 4.16 encourages broad exploration while the second emphasizes fine-grained

exploitation. At the start, N(ai; s) and V (snext) are similar for most routerless NoCs so

exploration is guided by P (ai; s) = π(a = ai; s). Reliance upon DNN policy decreases

with time due to an increasing N(ai; s), which causes the search to asymptotically prefer

actions/branches with high mean returns [14]. Search is augmented by an ε-greedy factor

where the best action is ignored with probability ε to further balance exploration and

exploitation.

There are three phases to the MCTS algorithm shown in Figure 4.6: search, ex-

pansion+evaluation, and backup. (1) Search: an agent selects the optimal action (loop

placement) by either following Equation 4.16 with probability 1 − ε or using a greedy

search with probability ε. Algorithm 1 details the greedy search that evaluates the benefit
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from adding various loops and selects the loop with the highest benefit. CheckCount()

returns the total number of nodes that can communicate after adding a loop with diago-

nal nodes at (x1, y1) and (x2, y2). Next, the Imprv() function returns the preferred loop

direction based on the average hop count improvement. The tree is traversed until reach-

ing a leaf node (NoC configuration) without any children (further developed NoCs). (2)

Expansion+evaluation: the leaf state is evaluated using the DNN to determine an action

for rollout/expansion. Here, π(a = ai; s) is copied, then later used to update P (ai; s) in

Equation 4.17. A new edge is then created between s and snext where snext represents the

routerless NoC after adding the loop to s. (3) Backup: After the final cumulative returns

are calculated, statistics for the traversed edges are propagated backwards through the

tree. Specifically, V (snext), P (ai; s), and N(s, ai) are all updated.

Algorithm 1 Greedy Search

1: Initialization: bestLoop = [0, 0, 0, 0], bestCount = 0, bestImprv = 0, and dir = 0
2: for x1 = 1;+1;N do
3: for y1 = 1:+1;N do
4: for x2 = x1+1:+1;N do
5: for y2 = y1+1:+1;N do
6: count = CheckCount(x1, y1, x2, y2)
7: if count > bestCount then
8: bestCount = count
9: bestLoop = [x1, y1, x2, y2]

10: bestImpv, dir = Imprv(x1, y1, x2, y2)
11: else if return == bestCount then
12: imprv’, dre’ = Imprv(x1, y1, x2, y2)
13: if imprv’ > bestImprv then
14: bestLoop = [x1, y1, x2, y2]
15: bestImprv = imprv’
16: dir = dir’
17: end if
18: end if
19: end for
20: end for
21: end for
22: end for
23: return bestRing, dir
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4.4.6 Multi-threaded Learning

The framework incorporates a multi-threaded approach, in which many threads indepen-

dently explore the design space while collaboratively updating global parameters [135].

Figure 4.7 depicts the proposed framework with multi-threaded exploration. At the

start, thread 0 creates a parent DNN with initial weights/parameters θ, then creates

many child threads (1 to n) that create their own child DNNs, each of which acts as an

individual learning agent. The parent thread sends DNN parameters to child threads and

receives parameter gradients from child threads. Convergence is stabilized by averaging

both large gradients and small gradients during training [135]. The parent thread addi-

tionally maintains a search tree that records past child thread actions for each MCTS

query. While not needed for correctness, the multi-threaded approach facilitates more

efficient exploration as shown in evaluation and is very useful in practice.

Thread 1 (T1)

Thread n (Tn)

Parent
Child

MCTS

Θ: Parameters

dΘ: Gradients

Query Queue 

Query

Response

Thread 0 (T0)

Agent Environment

NoC

Child

Agent Environment

NoCT6T1T3T2

T5

Figure 4.7: Multi-threaded framework.

4.5 Methodology

We evaluate the proposed deep reinforcement learning (DRL) routerless design against

the previous state-of-the-art routerless design (REC) [122] and several mesh configura-

tions. All simulations use Gem5 with Garnet2.0 for cycle-accurate simulation [136]. For

synthetic workloads, we test uniform random, tornado, bit complement, bit rotation,
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shuffle, and transpose traffic patterns. Performance statistics are collected for 100,000

cycles across a range of injection rates, starting from 0.005 flits/node/cycle and incre-

mented by 0.005 flits/node/cycle until the network saturates. Results for PARSEC are

collected after benchmarks are run to completion with either sim-large or sim-medium

input sizes.3 Power and area estimations are based on Verilog post-synthesis simulation,

following a similar VLSI design flow as in REC that synthesizes the Verilog implemen-

tation in Synopsys Design Compiler and conducts place & route in Cadence Encounter

under 15nm NanGate FreePDK15 Open Cell Library [137].

We regard node overlapping as a more appropriate measure than link overlapping

(i.e., the number of links between adjacent nodes) for manufacturing constraints. REC

can only generate NoCs with a single node overlapping value for a given NoC size, whereas

DRL designs are possible with many values. Comparisons between REC and DRL there-

fore consider both equal overlapping (demonstrating improved loop placement for DRL)

and unequal overlapping (demonstrating improved design capabilities for DRL).

For synthetic and PARSEC workloads, REC and DRL variants use identical config-

urations for all other parameters, matching prior testing [122] for comparable results.

Results nevertheless differ slightly due to differences between Gem5 and Synfull [138],

used in REC testing. In REC and DRL, each input link is attached to a flit-sized buffer

with 128-bit link width. Packet injection and forwarding can each finish in a single cycle

up to 4.3 GHz. For mesh simulations, we use a standard two-cycle router delay in our

baseline (Mesh-2). We additionally test an optimized one-cycle delay router (Mesh-1)

and, in PARSEC workloads, an “ideal” router with zero router delay (Mesh-0) leaving

only link/contention delays. These mesh configurations use 256-bit links, 2 VCs per

link, and 4-flit input buffer. 128-bit links were considered, but exhibited a sub-optimal

trade-off between power/area and performance (so would not provide a strong compar-

ison against DRL). Packets are categorized into control and data packets, with 8 bytes

and 72 bytes, respectively. The number of flits per packet is then given as packet size

divided by link width. Therefore, in REC and DRL simulations, control packets are 1

flit and data packets are 5 flits. Similarly, in mesh simulations, control packets are 1 flit

while data packets are 3 flits. For PARSEC workloads, L1D and L1I caches are set to 32

KB with 4-way associativity and the L2 cache is set to 128 KB with 8-way associativity.

3Several workloads exhibit compatibility issues with our branch of Gem5, but we include all workloads
that execute successfully.
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Table 4.1: Hyperparameter Exploration

Epsilon (ε) 0.05 0.10 0.20 0.30
# Valid designs 25 27 11 2
Min Hop Count 5.59 5.60 5.61 5.53

SD for Hop Count 0.140 0.065 0.050 0.040

Link delay is set to one cycle per hop for all tests.

4.6 Results & Analysis

4.6.1 Design Space Exploration

Exploration starts without a priori experience or training data. Over time, as the

search tree is constructed, the agent explores more useful loop configurations, which

provide increased performance. Configurations satisfying design criteria can be found

in seconds and minutes for 4x4 and 10x10 NoCs, respectively. Figure 4.8 illustrates a

4x4 DRL design. Different from REC [122], the generated topology replaces one inner

loop with a larger loop and explores different loop directions. The resulting topology is

completely symmetric and far more regular than IMR. We observe similar structure for

larger topologies, but omit these due to space constraints.

Multi-threaded exploration efficacy is verified by comparing designs generated using

either single or multi-threaded search. For a 10x10 NoC, after a 10 hour period, single-

threaded search found 6 valid designs, whereas multi-threaded search found 49 valid

designs. Moreover, multi-threaded search generates designs with 44% lower standard

deviation (SD) for hop count (decreasing from 0.027 to 0.015). This demonstrates the

benefits of multi-threaded search to efficiently achieve more consistent results.

We further evaluate changes in the hyperparameter ε, which balances search explo-

ration and exploitation. Results after a five hour period using 8x8 NoCs are summarized

in Table 4.1. High values for ε can quickly generate more optimal configurations, but may

frequently explore invalid actions and thus suffer under strict constraints. We therefore

select the best value for ε in subsequent evaluations based on the time allocated to explo-

ration as well as the rigor of constraints. In most cases, ε = 0.1 generates high-performing

designs given adequate time.
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Figure 4.8: A 4x4 NoC topology generated by DRL.

4.6.2 Framework Capabilities

The proposed DRL framework can automatically generate NoC designs under various

constraints so can be adapted to available design resources for any NoC size. In con-

trast, REC generates only a single design for each NoC size and, consequently, cannot

be adapted to design goals, thus severely restricting real-world applicability. In the fol-

lowing, we exemplify the broad design capabilities of the DRL framework, none of which

are possible with REC.

Generate feasible designs for larger NoCs: REC design does not work if node

overlapping is less than 2 ∗ (N − 1). Conversely, the proposed DRL framework can

generate NoCs with smaller node overlapping across many sizes. For example, with a

fixed node overlapping of 18, REC cannot generate NoCs larger than 10x10. Our DRL

framework, however, has successfully generated configurations for 12x12, 14x14, 16x16

and 18x18 routerless NoCs. Note that 18x18 is the theoretical max routerless NoC size

that can be fully connected with a node overlapping of 18. In a 20x20 NoC, there must

be at least 19 rectangular loops passing through the bottom left node to connect to

all other columns. As summarized in Table 4.2, the average hop count of DRL designs

is still close to N , even when N approaches the node overlapping limit, showing the

effectiveness of the DRL framework.

Utilize additional wiring resources: DRL is able to exploit additional wiring

resources, when available, to improve performance, whereas REC cannot use any wires

beyond 2 ∗ (N − 1). Table 4.3 and Table 4.4 illustrate the hop count advantage of DRL

over REC with various node overlappings. For example, a 10x10 DRL NoC with a

node overlapping of 20 achieves a 20.4% reduction in hop count compared with the only

possible REC 10x10 NoC.

Facilitate routerless NoC implementation in industry: Routerless NoCs offer
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Table 4.2: DRL supports larger NoCs with 18 overlapping.

NoC Size 10x10 12x12 14x14 16x16 18x18
REC Hop Count 9.64 N/A N/A N/A N/A
DRL Hop Count 7.94 12.25 15.11 18.03 21.01

Table 4.3: DRL utilizes additional wiring resources; 8x8.

Topology REC DRL DRL DRL DRL
Node overlapping 14 14 16 18 20

Hop count 7.33 6.22 5.94 5.82 5.80
Improve over REC N/A 15.14% 18.96% 20.60% 20.87%

Table 4.4: DRL utilizes additional wiring resources; 10x10.

Topology REC DRL DRL DRL DRL
Node overlapping 18 18 20 22 24

Hop count 9.64 7.94 7.67 7.59 7.55
Improve over REC N/A 17.64% 20.44% 21.27% 21.68%

a promising approach to achieve multi-fold savings in hardware cost compared with

router-based NoCs, but the strict wiring requirements in the previous REC designs may

hinder adoption in industry. The proposed DRL framework provides high flexibility to

explore many combinations of NoC sizes and constraints that are not possible with REC.

This flexibility can greatly aid future NoC research and implementation in industry by

adapting to other constraints, such as maximum loop length or maximum hop count,

which can also be integrated into the reward function.

4.6.3 Synthetic Workloads

Performance evaluations in this and next subsections use a node overlapping constraint

of 2 ∗ (N − 1) for both REC and DRL because that is the only possible constraint for

REC. Alternative DRL configurations, such as those shown in Tables 4.2 to 4.4, can

nevertheless provide additional benefits while satisfying various design goals.

Packet Latency: Figure 4.9 plots the average packet latency of four synthetic

workloads for a 10x10 NoC. Tornado and shuffle are not shown as their trends are similar

to bit rotation. Zero-load packet latency for DRL is the lowest in all workloads. For

example, with uniform random traffic, zero-load packet latency is 9.89, 11.67, 19.24, and
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Figure 4.9: Average packet latency for synthetic workloads in 10x10 NoC.
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Figure 4.11: Average hop count for PARSEC workloads.

26.85 cycles for DRL, REC, Mesh-1, and Mesh-2, respectively, corresponding to a 15.2%,

48.6%, and 63.2% latency reduction by DRL. Across all workloads, DRL reduces zero-

load packet latency by 1.07x, 1.48x and 1.62x compared with REC, Mesh-1, and Mesh-2,

respectively. This improvement for both REC and DRL over mesh configurations results

from reduced per hop latency (one cycle). DRL improves over REC due to additional
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connectivity and better loop placement. For example, in a 10x10 NoC, DRL provides

four additional paths.

Throughput: DRL provides substantial throughput improvements for all traffic

patterns. For uniform traffic, throughput is approximately 0.1, 0.125, 0.195, and 0.305

for Mesh-2, Mesh-1, REC, and DRL, respectively. Notably, in transpose, DRL improves

throughput by 208.3% and 146.7% compared with Mesh-2 and Mesh-1. Even in bit

complement where mesh configurations perform similarly to REC, DRL still provides a

42.8% improvement over Mesh-1. Overall, DRL improves throughput by 3.25x, 2.51x,

and 1.47x compared with Mesh-2, Mesh-1, and REC, respectively. Again, additional

loops with greater connectivity in DRL allow a greater throughput compared with REC.

Furthermore, improved path diversity provided by these additional loops allows much

higher throughput compared with mesh configurations.

4.6.4 PARSEC Workloads

We compare real-world performance of REC, DRL, and three mesh configurations for

4x4 and 8x8 NoCs on a set of PARSEC benchmarks. We generate Mesh-0 results by

artificially reducing packet latency by the hop count for every recorded flit since such a

configuration is difficult to simulate otherwise. As a result, performance is slightly worse

than an “ideal” zero-cycle-router mesh.

Packet Latency: As shown in Figure 4.10, for the 4x4 network, variations in loop

configuration are relatively small, being heavily influenced by full-connectivity require-

ments. Nevertheless, in the 4x4 NoC, DRL improves performance over REC in all but

two applications where performance is similar. For example, DRL reduces packet latency

by 4.7% in fluidanimate compared with REC. Improvements over mesh configurations

for fluidanimate are greater with a 68.5%, 60.4%, and 54.9% improvement compared

with Mesh-2, Mesh-1, and Mesh-0. On average, DRL reduces packet latency by 70.7%,

62.8%, 56.1%, and 2.6% compared with Mesh-2, Mesh-1, Mesh-0, and REC, respectively.

DRL improvements are more substantial in 8x8 NoCs as DRL can explore a larger

design space. For example, in fluidanimate, average packet latency is 21.7, 16.4, 12.9,

11.8, and 9.7 in Mesh-2, Mesh-1, Mesh-0, REC, and DRL, respectively. This corresponds

to a 55.6%, 41.0%, 25.3%, and 18.2% improvement for DRL compared with Mesh-2,

Mesh-1, Mesh-0, and REC. On average, DRL reduces packet latency by 60.0%, 46.2%,



61

Table 4.5: 8x8 PARSEC workload execution time (ms)

Workload NoC Type
Mesh-2 Mesh-1 REC DRL

Blackscholes 4.4 4.2 4.0 4.0
Bodytrack 5.4 5.3 5.1 5.1
Canneal 7.1 6.4 6.1 6.0
Facesim 626.0 587.0 515.2 512.3

Fluidanimate 35.3 29.2 25.2 24.4
Streamcluster 11.0 11.0 11.0 11.0

27.7%, and 13.5% compared with Mesh-2, Mesh-1, Mesh-0, and REC, respectively.

Hop Count: Figure 4.11 compares the average hop count for REC, DRL, and

Mesh-2 for 4x4 and 8x8 NoCs. Only Mesh-2 is considered as differences in hop count

are negligible between mesh configurations (they mainly differ in per-hop delay). For

4x4 networks, REC and DRL loop configurations are relatively similar so improvements

are limited, but DRL still provides some improvement in all workloads compared with

REC. In streamcluster, average hop count is 1.79, 2.48, and 2.34 for mesh, REC, and

DRL, respectively. On average, DRL hop count is 22.4% higher than mesh and 3.8%

less than REC. For larger network sizes, we again observe the benefit from increased

flexibility in loop configuration that DRL exploits. This optimization allows more loops

to be generated, decreasing average hop count compared with REC by a minimum of

12.7% for bodytrack and a maximum of 14.3% in fluidanimate. On average, hop count

for DRL is 13.7% less than REC and 35.7% higher than mesh.

Execution Time: Execution times for 8x8 PARSEC workloads are given in Table

4.5. Reductions in hop count and packet latency may not necessarily translate to re-

duced execution time as applications may be insensitive to NoC performance (notably

streamcluster). Nevertheless, in fluidanimate, a NoC sensitive workload, DRL reduces

execution time by 30.7%, 16.4%, and 3.17% compared with Mesh-2, Mesh-1, and REC,

respectively. Overall, DRL provides the smallest execution time for every workload.

Note that NoC traffic for PARSEC workloads is known to be light, so the significant

throughput advantage of DRL over mesh and REC (Figure 4.9) is not fully reflected

here. Additionally, as mentioned earlier, this evaluation restricts DRL to use the only

overlapping value that works for REC. Larger benefits can be achieved with other DRL

configurations, as shown next.
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Figure 4.13: Power consumption for PARSEC workloads.

4.6.5 Power

The proposed DRL framework can generate diverse NoCs based on different objectives.

Figure 4.12 demonstrates this capability as a tradeoff between power and performance

(average hop count) for 8x8 NoCs. Each point represents one possible design and is

labeled with the allowed node overlapping; REC therefore represents just a single design

point. DRL with a node overlapping of 10 exhibits 1% lower hop count than REC while

reducing power consumption by 15.9% due to reduced hardware complexity. Addition-
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Figure 4.14: Area comparison (after P&R).

ally, DRL with a node overlapping of 16 reduces the average hop count by 18.9% with

nearly equal power consumption (within 0.2%) due to more efficient loop placement.

Overall, DRL is more flexible and efficient than the fixed REC scheme.

We additionally compare the power consumption of mesh (Mesh-2), REC, and DRL

(both with the same node overlapping of 14) across PARSEC workloads. Results are

generated after place & route in Cadence Encounter under 15nm technology node [137].

Global activity factor is estimated from link utilization statistics in Gem5 simulations.

A clock frequency of 2.0 GHz is used, comparable to commercial many-core processors.

As seen in Figure 4.13, static power for REC and DRL is 0.23mW, considerably lower

than the 1.23mW of mesh. Dynamic power is the lowest for DRL due to improved loop

configuration, leading to lower hop count and therefore lower dynamic power than REC

in all workloads. DRL also provides significant savings over mesh due to reduced routing

logic and fewer buffers. On average, dynamic power for DRL is 80.8% and 11.7% less

than mesh and REC, respectively.

4.6.6 Area

Node area in routerless NoCs is determined by the node overlapping cap. In practice, to

reduce design and verification effort, the same node interface can be reused if the node

overlapping cap is the same. Figure 4.14 therefore compares the node area for 8x8 mesh

(Mesh-2), REC/DRL with an overlapping of 14 (equal area due to equal overlapping),
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and DRL with an overlapping of 10. DRL (10) is selected for comparison here because it

has very similar hop count to REC, as shown in Figure 4.12. As can be seen, DRL (10)

has the smallest area at 5,860 µm2 due to an efficient design, while providing equivalent

performance to REC. Both REC and DRL with an overlapping of 14 have a slightly

increased area at 7,981 µm2. Finally, mesh area is much higher at 45,278 µm2. This

difference is mainly attributed to routerless NoCs eliminating both crossbars and virtual

channels. Note that results for REC and DRL already include the small look-up table

at source. This table is needed to identify which loop to use for each destination (if

multiple loops are connected), but each entry has only a few bits [122]. Area for the

table and related circuitry is 443 µm2, equivalent to only 0.9% of the mesh router (power

is 0.028mW or 1.13% of mesh). We also evaluated the additional repeaters necessary to

support DRL. Total repeater area is 0.159 mm2 for DRL (14), so overhead compared

with REC represents just 1.1% of mesh.

4.6.7 Discussion

Comparison with IMR: Evaluation by Alazemi et al. [122] showed that REC is

superior to IMR in all aspects. In synthetic testing, REC achieves an average 1.25x

reduction in zero-load packet latency and a 1.61x improvement in throughput over IMR.

Similarly, in real benchmarks, REC achieves a 41.2% reduction in average latency. Both

static and dynamic power are also significantly lower in REC due to reduced buffer

requirements and more efficient wire utilization. Finally, REC area is just 6,083 µm2

while IMR area is 20,930 µm2, corresponding to a 2.4x increase. Comparisons between

REC and DRL were therefore the primary focus in previous subsections since REC better

represents the current state-of-the-art in routerless NoCs. The large gap between IMR

and REC also illustrates that traditional design space search (e.g., genetic algorithm in

IMR) is far from sufficient, which calls for more intelligent search strategies.

Reliability: Reliability concerns for routerless NoC stem from the limited path

diversity since wiring constraints restrict the total number of loops. For a given node

overlapping, DRL designs provide more loops and thus more paths between nodes as

more nodes approach the node overlapping cap. In the 8x8 NoC, there are, on average,

2.77 paths between any two nodes in REC. This increases to 3.79 paths, on average,

between any two nodes in DRL (using equal overlapping). DRL can therefore tolerate
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Figure 4.15: Synthetic Scaling for NoC Configurations.

more link failures before the NoC fails.

Scalability: DRL scales well compared with both REC and mesh configurations.

For PARSEC workloads, shown in Figure 4.10, DRL exhibits 2.6% lower packet latency

than REC for a 4x4 NoC, improving to a 13.5% reduction for an 8x8 NoC. Average hop

count, shown in Figure 4.11, exhibits a similar trend. DRL improves average hop count

by 3.8% in a 4x4 NoC and 13.7% in an 8x8 NoC. Scaling improvements are more evident

in synthetic workloads. Figure 4.15, for example, shows scaling results for 4x4 to 10x10

NoC sizes with uniform random workloads. Note that the same axis values are used for

all NoC sizes to emphasize scaling performance. Whereas REC throughput decreases

from 0.285 flits/node/cycle to 0.195 flits/node/cycle, corresponding to a 31.6% decrease,

the throughput for DRL only changes slightly from 0.32 to 0.305 flits/node/cycle, corre-

sponding to a 4.7% reduction. This shows a significant improvement in scalability from

REC to DRL. Increasing the NoC size also allows more flexibility in loop exploration,

and thus more effective use of wiring resources for a given node overlapping constraint.

Additionally, loop design for N ×M NoCs using DRL is straightforward to implement,

only requiring modifications to the DNN for dimension sizes.
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4.6.8 Broad Applicability

Routerless NoC design represents just one possible application for the framework pre-

sented in this paper. This framework, with modifications to state/action representations,

could also be applied to router-based NoC designs. Specifically, one related application

is in 3-D NoCs where higher dimensionality encourages novel design techniques. Prior

work has explored small-world router-based designs [64, 139] using a relatively limited

learning-based approach. The design space exploration would be more effective using our

framework. Specifically, state representation using hop count remains compatible with

the current DNN structure by concatenating matrices for each 2D layer. Actions can

involve adding links between nodes in the same layer (intra-layer links) or different layers

(inter-layer links). One DNN can be used for each action type to achieve an efficient

deep reinforcement learning process with a smaller design space. A significant advantage

of our framework is that strict constraints can be enforced on link addition, such as 3-D

distance, to meet timing/manufacturing capabilities.

The proposed framework can also be generalized for other NoC-related research prob-

lems. While detailed exploration is beyond the scope of this paper, we briefly mention a

few promising examples that can benefit from our framework. Future work may exploit

underutilized wiring resources in silicon interposers [140, 141] and explore better ways

to connect CPU cores and stacked memories. The framework could similarly be used

to improve the latency and throughput of chiplet networks [142, 143] by exploring novel

interconnects structures that are non-intuitive and hard for human to conceive. NoCs

for domain-specific accelerators (e.g., TPU [144], Eyeriss [145], and others) are another

possible application. Due to their data-intensive nature, accelerators can benefit from

high-performance [146] and possibly reconfigurable [147] NoCs, where the framework can

explore connectivity among processing elements (PEs) and between PEs and memory.

4.7 Conclusion

Design space exploration using deep reinforcement learning promises broad application

to architectural design. Current routerless NoC designs, in particular, have been limited

by their ability to search design space, making routerless NoCs an ideal case study

to demonstrate our innovative framework. The proposed framework integrates deep
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learning and Monte Carlo search tree with multi-threaded learning to efficiently explore

large design space under constraints. Full system simulations shows that, compared

with state-of-the-art routerless NoC, our proposed deep reinforcement learning NoC can

achieve a 1.47x increase in throughput, 1.18X reduction in packet latency, 1.14x reduction

in average hop count, and 6.3% lower power consumption. The proposed framework has

broad applicability to diverse NoC design problems and enables intelligent design space

exploration in future work.
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Chapter 5: Intelligent Resource Optimization for Edge Networks

Using Machine Learning

5.1 Introduction

High-priority (HP) latency-sensitive applications at the network edge, such as packet

processing and machine learning inference, typically require resource provisioning for

the peak load. This practice ensures satisfactory performance at all times, but results

in over-provisioning during periods of low load. Service providers (SPs) have sought to

ameliorate these adverse effects by opportunistically co-scheduling best effort (BE) appli-

cations, thereby enabling higher average resource utilization and, subsequently, reducing

total cost of ownership (TCO)1. Naive co-scheduling can, however, introduce resource

contention between HP and BE applications that may compromise QoS (e.g., drop rate

or throughput) and lead to service level agreement violations.

Prior work has demonstrated practical co-scheduling by strictly managing the re-

sources for each application, thus limiting contention. One approach involves static

allocation, in which case the HP application is granted sufficient resources to handle

peak load, while remaining resources are given to the BE application. In practice, this

scheme proves highly inefficient since average load can deviate significantly from peak

load. Further improvement is possible through extensive profiling, thereby enabling allo-

cation that follows historic load curves on a time-of-day basis. Nevertheless, transient yet

significant deviations from historic load averages can still compromise QoS guarantees.

Overall, these static allocation methods leave much to be desired.

More recent work has explored dynamic resource allocation as a more effective and

adaptable solution. Dynamic resource allocation requires dynamic feedback, usually in

the form of QoS measurements (e.g., request latency), to find acceptable resource con-

figurations and to determine when re-allocation is necessary due to changing workload

demands. In particular, this feedback is assumed to be both highly accurate and fre-

1Industry practice observed across the spectrum of providers, including clouds running Google Gmail,
Microsoft Bing, and AliCloud AliExpress.



70

quently updated, with many works assuming a one second sampling period. We find,

however, that this one second interval is extremely inadequate for some operating en-

vironments, especially in packet processing workloads where natural fluctuations in re-

source demands can introduce an order of magnitude variations in QoS metrics. The

search-based allocation methods adopted by most prior works further exacerbate this

problem since they can require 20-40 samples [148], resulting in unacceptably long pe-

riods of QoS violations. Moreover, these works must undergo an extended re-sampling

period every time the workload changes. This fundamental reliance upon QoS samples,

and consequently reactive approach to dynamic resource allocation, necessitates a more

intelligent resource allocation strategy that can predict appropriate configurations and

guarantee high utilization without sacrificing QoS. Specifically, we investigate machine

learning as a tool for dynamic resource allocation to provide proactive QoS guarantees.

Here, we propose a novel machine learning framework for dynamic resource allocation.

Proactive QoS predictions are provided by several machine learning predictors, each of

which is trained on a variety of best-effort workloads to accurately predict the effects

of diverse resource contention behaviors. These QoS predictions, along with additional

workload performance indicators, are passed to a reinforcement learning model that

intelligently allocates resources to meet QoS goals. Together, these components enable

rapid resource adjustments that safely exploit periods of low workload demands while

minimizing QoS violations.

5.2 Practical Co-scheduling Opportunities

5.2.1 Resource Management Options

In general, prior works are limited in scope and allocate just one or two resources, most

commonly the number of cores and core frequency. Average resource utilization can

improve dramatically [149, 150] compared with static allocation, yet remains far from

optimal since co-scheduling may benefit from dynamic allocation of resources that were

not considered. As an example, consider a data-intensive BE application. If the only

resource management options are core allocation and core frequency, then it may be

difficult (or even impossible) to adequately control memory bandwidth contention. Fur-

thermore, prior work primarily adopts search-based methods that require many samples
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(20-40), so stop searching once an “acceptable,” not necessarily optimal, allocation is

found. These methods can also fail to identify acceptable allocations when configuration

complexity increases.

Increasing adoption of workload co-scheduling in industry applications has led to

the development of several powerful, new tools for fine-grained resource management.

Intel® Resource Director Technology (RDT) is an exemplar that enables monitoring

and management of cache and memory bandwidth on a per-thread basis. Fine-grained

management of these resources, along with conventional resources (e.g., core allocation

and core frequency), provides a comprehensive platform for workload co-scheduling, even

with workloads that heavily contend for resources.

5.2.2 Workload Characterization

We begin by characterizing the resource scaling and contention behavior for a number

of workloads. In particular, our selected HP workload is the virtual Broadband Network

Gateway (vBNG), which represents a critical packet-processing workload at the network

edge. We test a variety of BE workloads from several standard benchmarks (PARSEC

and SPEC CPU) along with several broadly representative workloads (machine learning

and java server). Platform and workload configuration is provided in Table 5.2. For

the vBNG workload, performance is measured in terms of dropped packets per second.

For the purposes of this discussion, we consider an acceptable fraction of dropped traffic

to be on the order of 10−5. For all other workloads, performance is measured as either

execution time or a workload-specific metric.

First, we consider the isolated performance of the HP workload and observe its

behavior as we scale cache and memory bandwidth resources. The results are shown

in Figure 5.1-5.3. At high loads (i.e., high traffic injection rates), packet loss can vary

significantly with resource allocation. Specifically, at an injection rate of 150 Gbps, the

fraction of dropped traffic ranges from 10−1 to just higher than than 10−5. At a lower

load (e.g., an injection rate of 75 Gbps), a packet loss ratio of 10−6 can be achieved with

practically all resource configurations. Overall, until injection rate exceeds 140-150 Gbps,

the ratio of dropped traffic can be made acceptable with proper resource management,

thus motivating workload co-scheduling.
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Memory Bandwidth Alloca�on
10 20 30 40 50 60 90 100

Cache 2 4962953 252528 13859 3873 4525 3321 3236 3037
Alloca�on 3 4818207 93710 9196 1730 1511 1347 1376 1407

4 4668729 60662 5771 958 1051 794 763 804
5 4555254 50661 4738 551 692 588 601 591
6 4477018 42260 2950 570 488 483 470 496
7 4472753 39026 2642 474 440 401 384 454
8 4459026 35471 2221 486 412 518 426 425
9 4281783 33879 2525 472 567 459 457 444

Figure 5.1: Isolated vBNG performance (packet drop rate) at 150 Gbps injection rate.

Memory Bandwidth Alloca�on
10 20 30 40 50 60 90 100

Cache 2 23834 243 71 52 57 55 36 66
Alloca�on 3 15174 249 65 73 39 39 35 37

4 16891 216 68 53 65 51 39 53
5 13866 188 50 54 46 48 47 45
6 13646 186 79 84 36 44 47 40
7 13777 216 181 71 45 28 66 57
8 13284 195 116 57 69 45 77 32
9 13588 284 102 44 48 57 46 48

Figure 5.2: Isolated vBNG performance (packet drop rate) at 113 Gbps injection rate.

Memory Bandwidth Alloca�on
10 20 30 40 50 60 90 100

Cache 2 90 17 1 1 7 1 3 9
Alloca�on 3 181 13 4 5 0 0 1 0

4 86 12 4 5 1 7 10 3
5 83 10 0 1 3 4 3 6
6 80 14 3 4 11 3 2 3
7 102 19 4 2 12 5 5 6
8 102 15 2 10 5 4 1 0
9 121 16 5 4 0 4 3 4

Figure 5.3: Isolated vBNG performance (packet drop rate) at 75 Gbps injection rate.

Memory Bandwidth Alloca�on
10 20 30 40 50 60 90 100

Cache 1 15.96 11.53 9.35 7.62 7.46 7.39 7.31 7.30
Alloca�on 2 15.92 11.54 9.40 7.65 7.49 7.39 7.33 7.29

3 15.91 11.56 9.39 7.66 7.48 7.43 7.37 7.31
4 15.91 11.51 9.36 7.65 7.47 7.37 7.32 7.28
5 15.90 11.53 9.42 7.69 7.47 7.38 7.34 7.31
6 15.88 11.51 9.36 7.61 7.45 7.36 7.33 7.26
7 15.88 11.54 9.37 7.64 7.48 7.37 7.31 7.27
8 15.87 11.52 9.32 7.67 7.46 7.37 7.29 7.25
9 15.87 11.52 9.32 7.68 7.45 7.35 7.27 7.26

Figure 5.4: Isolated bwaves (BE) execution time.
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Memory Bandwidth Alloca�on
10 20 30 40 50 60 90 100

Cache 1 6.18 5.98 5.91 5.88 5.87 5.89 5.87 5.86
Alloca�on 2 5.92 5.66 5.59 5.57 5.58 5.55 5.55 5.57

3 5.82 5.58 5.52 5.48 5.46 5.46 5.47 5.44
4 5.77 5.48 5.41 5.37 5.42 5.40 5.38 5.35
5 5.73 5.43 5.36 5.33 5.31 5.32 5.30 5.30
6 5.65 5.40 5.31 5.26 5.26 5.25 5.25 5.25
7 5.62 5.33 5.26 5.21 5.21 5.21 5.24 5.21
8 5.58 5.30 5.22 5.19 5.18 5.18 5.17 5.16
9 5.57 5.28 5.34 5.15 5.13 5.14 5.13 5.13

Figure 5.5: Isolated omnetpp (BE) execution time.

Memory Bandwidth Alloca�on
10 20 30 40 50 60 90 100

Cache 1 27.57 25.69 24.81 23.33 23.25 22.53 22.76 22.79
Alloca�on 2 26.18 24.07 23.44 21.70 21.81 21.54 21.46 20.93

3 25.03 22.77 22.42 20.89 20.76 20.37 20.49 20.16
4 24.13 22.46 21.27 20.20 19.67 19.74 19.20 19.48
5 23.28 21.49 20.72 19.53 19.23 19.22 18.80 18.98
6 22.86 21.20 20.42 19.09 18.87 18.79 18.67 18.53
7 22.74 20.85 20.16 19.00 18.79 18.56 18.41 18.40
8 22.78 20.87 20.08 18.95 18.88 18.34 18.40 18.37
9 22.64 20.80 20.08 18.96 18.62 18.52 18.44 18.13

Figure 5.6: Isolated cactusADM (BE) execution time.

Next, we study the isolated performance of many BE workloads, again observing

behavior as cache and memory bandwidth resources are scaled. As shown in Figures

5.4-5.6, these workloads exhibit diverse scaling behaviors. In particular, Bwaves (shown

in Figure 5.4) from SPEC CPU2006 scales heavily with memory bandwidth yet is al-

most entirely unaffected by changes in cache allocation. This exclusive dependence on

memory bandwidth could present a significant challenge for some prior works since cache

restrictions alone would almost certainly be insufficient when managing contention. In

contrast, some workloads such as Omnetpp (shown in Figure 5.5) from SPEC CPU2017

primarily scale with cache allocation and are only affected by memory bandwidth allo-

cation when it is restricted to the lowest possible value(s). Naturally, many workloads

scale with both cache and memory bandwidth allocation. CactusADM (shown in Fig-

ure 5.6) from SPEC CPU2006 is one such example that scales almost identically with

both resources. In practically all of these BE workloads, we also observe that changes

in performance occur most rapidly at lower resource values (e.g., 10/20/30% memory
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vBNG Drop Rate
BE Memory Bandwidth Alloca�on

10 20 30 40 50 60 90 100
HP 2 1244 5580 11924 16041 16596 16371 15943 15471

Cache 3 162 254 363 579 609 658 629 626
Alloca�on 4 71 69 105 171 167 198 178 147

5 32 71 118 146 215 170 152 162
6 44 38 71 78 59 61 103 112
7 48 54 70 67 99 101 93 141
8 48 55 71 108 85 119 106 109

BE Bops (Business Opera�ons per second)
BE Memory Bandwidth Alloca�on

10 20 30 40 50 60 90 100
HP 2 291356 367039 394475 404315 406538 406086 406447 406650

Cache 3 288940 359865 383305 393066 392931 393102 393038 393010
Alloca�on 4 288138 351409 370666 377765 378000 377517 377996 377304

5 286846 351149 370068 377681 378515 378168 378280 378176
6 279033 341335 358336 366375 365402 365538 365261 365712
7 276732 331554 345014 350740 351079 350928 351205 351288
8 273103 322921 335527 340663 340968 341645 340893 341525

Figure 5.7: Co-scheduled behavior of vBNG and jbb2005. The upper table shows the
vBNG packet drop rate while the bottom table shows performance for jbb2005. HP
memory bandwidth allocation is set to 100%. BE cache allocation is given all system
ways not used by the HP workload.

bandwidth allocation and 2,3,4 cache ways) where these additional resources are actively

utilized by the workload. Consequently, these “critical” regions of resource allocation

tend to be important when co-scheduling.

Finally, we examine performance when co-scheduling HP and BE workloads. For

these experiments, HP memory bandwidth allocation is set to a constant 100% while

HP/BE cache and BE memory bandwidth allocation are changed, thus focusing on

contention caused by increased BE resources. HP load is also held constant at 70%.

Figure 5.7 presents results when co-scheduling the vBNG workload with SPEC jbb2005.

Interestingly, jbb2005 introduces among the lowest contention of all tested workloads,

resulting in a broad range of acceptable resource configurations (achieving a drop rate

fraction less than 10−5). We do, however, observe a QoS “cliff” where drop rate changes

substantially between adjacent resource configurations. Here, we observe a cliff between
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vBNG Drop Rate
BE Memory Bandwidth Alloca�on

10 20 30 40 50 60 90 100
HP 2 5915 42101 124316 225432 234465 242444 244552 254105

Cache 3 1006 7318 50542 113877 117531 121823 122083 127790
Alloca�on 4 400 2027 41109 94383 96484 98450 104376 105619

5 286 778 31133 81326 81664 85690 86628 88950
6 175 461 36671 91429 92744 95479 97545 101489
7 162 339 37282 88238 86548 89984 91678 92793
8 153 290 39549 94045 99562 100755 104417 100653

BE Steps/sec
BE Memory Bandwidth Alloca�on

10 20 30 40 50 60 90 100
HP 2 1.89 2.43 2.79 3.14 3.17 3.17 3.21 3.19

Cache 3 1.89 2.44 2.79 3.15 3.18 3.20 3.24 3.21
Alloca�on 4 1.87 2.42 2.77 3.08 3.11 3.12 3.14 3.17

5 1.87 2.42 2.78 3.11 3.13 3.17 3.20 3.20
6 1.89 2.41 2.78 3.10 3.16 3.17 3.19 3.20
7 1.86 2.40 2.76 3.05 3.08 3.08 3.08 3.11
8 1.86 2.38 2.73 3.02 3.04 3.06 3.09 3.07

Figure 5.8: Co-scheduled behavior of vBNG and Resnet50. The upper table shows the
vBNG packet drop rate while the bottom table shows performance for Resnet50. HP
memory bandwidth allocation is set to 100%. BE cache allocation is given all system
ways not used by the HP workload.

two and three cache ways. Other BE workloads introduce substantially greater con-

tention. As shown in Figure 5.8, resources for a machine learning workload (specifically,

training a Resnet50 model) must be highly restricted in order to meet desired QoS lev-

els. In this case, providing more than a few cache ways or more than 10% memory

bandwidth allocation for the BE workload leads to unstable HP performance. QoS cliffs

for the HP application also extend far into the range of configuration options. The

potential complexity in co-scheduling BE workloads alongside our HP vBNG workload

requires an intelligent approach that can avoid QoS violations while still maximizing BE

performance.
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5.3 Proactive Control Framework

5.3.1 Overview

The proposed resource control framework adopts a novel approach to directly predict

workload QoS, rather than waiting for measurements. In doing so, we address a funda-

mental limitation in prior work and enable stronger QoS guarantees in more stringent

operating environments.

The overall resource allocation procedure in illustrated in Figure 5.9. First, the

telemetry module collects runtime information (e.g., general-purpose performance coun-

ters) for all workloads via the Linux perf tool. We provide a detailed discussions of

these performance counters in Section 5.3.2. This information is then passed to the

QoS prediction model, which predicts the QoS value (e.g., packet drop rate) that will

be achieved by each HP workload, assuming no change in resource allocation. These

QoS predictions, along with all runtime information, are provided to a reinforcement-

learning-based controller, which decides an appropriate resource allocation for the next

interval. In general, resource allocation can be performed between any number of HP

and BE workloads provided that there are sufficient resources to meet QoS goals for all

HP workload.

Best Effort 
Workload(s)

High Priority 
Workload(s)

Telemetry Monitoring & 
QoS Predic�on

Dynamic Resource 
Alloca�on Controller

Figure 5.9: Resource control framework.

5.3.2 QoS Prediction

Transient, yet significant, fluctuations in workload demands make direct QoS measure-

ments an unreliable source of information in some operating environments. Further,

any attempts to stabilize measurements by averaging over longer periods may lead to
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unacceptably long periods of QoS violations. We address these problem by predicting,

rather than measuring, the worst-case QoS value (e.g., packet drop rate) that will be

achieved by all high priority workloads. In doing so, resource allocation can take into

consideration any expected performance fluctuations and thereby avoid many potential

QoS violations.

Predictor Setup: In our framework, QoS prediction is cast as a supervised learn-

ing regression task. Input consists of several hardware performance counters while the

prediction target is the QoS value. This data is gathered across a broad range of co-

scheduling configurations (i.e., BE workloads) and resource configurations, with the tar-

get value being the worst-case QoS value that is measured during each sampling period.

In particular, we found that approximately 100 individual QoS measurements are re-

quired to achieve satisfactory statistical guarantees. For comparison, prior work using

online sampling would require approximately 100 second sampling intervals (assuming

one measurement per second as allowed by our QoS measurement tool2) to achieve

similar QoS guarantees, rendering an online approach undesirable for many real-world

applications.

We found that highly-accurate QoS prediction can be a difficult task when gener-

alizing across a wide variety of co-scheduled applications. In particular, the contention

caused by individual workloads can vary significantly with their resource allocation due

to changes in execution bottlenecks. These differences become particularly apparent

when HP workload intensity is concurrently varied across a wide range. We address

these issues via a two-level QoS prediction setup. Hardware performance readings are

first passed to a supervised learning classifier that determines whether the QoS level will

be above or below a desired threshold. This prediction is then used to select between

two possible supervised learning regressor (that provide the actual QoS prediction). One

regressor is trained on the “critical” range of QoS values in which the framework will ide-

ally operate (e.g., zero up to the threshold value). A second regressor is instead trained

on the full range of QoS values. In doing so, the regressor trained on the smaller range

can focus on contention behaviors that are most likely to occur during typical framework

execution, while the full-range regressor can still predict the impact of coarse-grained

contention behaviors during periods of rapid fluctuations in workload demands.

2For our HP vBNG workload, we use the collectd [151] dpdk telemetry plugin, which has a minimum
update frequency of 1 Hz.



78

Table 5.1: Selected Features

Feature Description

Fixed
Performance
Counters

inst retired.any Counts retired instructions
cpu clk unhalted.thread Counts cycles when the core is not

halted

General
Performance
Counters

frontend retired.latency ge 2 Counts retired instructions follow-
ing a period of ≥ 2 cycles with no
uops delivered by the frontend

l1d pend miss.fb full Counts cases when a fill buffer entry
was requested, but unavailable

offcore requests.all requests Counts off-core memory transac-
tions

offcore requests buffer.sq full Counts cases when the off-core re-
quests buffer was full

Feature Selection: Hardware performance counters for all these predictors are se-

lected via a combination of automated analysis and human-expert domain knowledge.

This procedure is meant to guide feature selection towards performance counters that

are both informative and easily explainable, thus more likely to generalize to new ap-

plications. An initial list of approximately 1000 potential counters is first reduced by

eliminating counters with low variance. Next, we perform a series of permutation tests.

In each test, all feature columns are copied and then the individual values within each

column are randomly shuffled. The importance of the original feature columns are then

compared against the importance of their randomly shuffled equivalents to provide a

robust estimate of true feature importance, even in the presence of pairwise (or higher

order) relationships between features. At this point, a small number of features are elim-

inated based on human-expert knowledge. Finally, the remaining features are reduced

to the desired number via recursive feature elimination on a random forest model.3 The

resulting set of hardware performance counters (shown in Table 5.1) maintains strong

prediction accuracy (equivalent to any larger set of counters) while maintaining low

overhead.

3We find that performance counter multiplexing (required when more than four general purpose
counters are measured per thread) can introduce substantial overhead for some HP applications. As
such, we strictly limit our list to meet this criteria.
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5.3.3 Dynamic Resource Allocation Controller

Most prior works strictly avoid offline training for resource controllers to allow for imme-

diate adaptation to new operating environments. Although this approach can be bene-

ficial in some circumstances, it remains fundamentally incompatible when QoS samples

alone are not enough to avoid transient QoS violations and offline QoS predictor training

is required. Consequently, we adopt a reinforcement-learning-based resource controller

in our framework in order to exploit the benefits from offline learning. Whereas purely

online approaches must re-sample configurations when workload demands change (com-

monly introducing QoS violations), the trained reinforcement learning model can directly

select appropriate resource configurations and can therefore be applied to applications

where faster resource re-configuration becomes necessary.

Model Architecture: The reinforcement-learning-based resource controller in our

framework uses a branching dueling Q-network (BDQ) architecture (depicted in Figure

5.10). This architecture features a shared network module, followed by distinct action

branches, one for each control knob (e.g., cache, memory bandwidth, etc.). Splitting

these action dimensions allows the number of network outputs to grow linearly, rather

than combinatorially, with respect to the action space, thus simplifying control com-

plexity significantly when allocating more than a few distinct resources. The proposed

reinforcement learning resource controller integrates several additional techniques (tar-

get network, prioritized replay buffer, and a cyclic learning rate) to improve training

stability and shorten overall training time.

State Shared 
Representa�on

Ac�on Dimension 1

Ac�on Dimension N

Figure 5.10: Branching dueling Q-network (BDQ) model architecture.

State/Action/Reward Representation: Input to the reinforcement learning re-

source controller includes IPC (calculated from the fixed performance counters in Table

5.1), the general-purpose performance counters in Table 5.1, and the predicted QoS
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from selected regressor model. IPC and the general-purpose counters act as indicators

for architectural pressures, essentially indicating whether key execution processes (e.g.,

prefetching), are performing as expected or are likely to begin affecting the QoS. Sim-

ilarly, the predicted QoS provides both “worst-case” QoS estimate and a higher-level

perspective on architecture pressures.

HP resource allocation is selected directly by the reinforcement learning model while

BE resource allocation is derived from HP resource allocation. This distinction allows the

resource controller to be trained for a more general-purpose operating environment where

BE workloads may change frequently, contrasting with prior work (e.g., Twig [152]) that

consider only a fixed setup with only HP workloads. Cache allocation is straightforward

since LLC ways can be strictly disjoint for each application, thus all cache ways not

selected for the HP workload are given to the BE workload(s). Memory bandwidth

allocation, on the other hand, is not a strictly divided resource; Intel® Resource Director

Technology currently implements memory bandwidth control separately for each class of

service (i.e., workload in this paper). Regardless, we can still allocate memory bandwidth

as if it were strictly divided by selecting from an extended range (e.g., 0-200%) with

the reinforcement learning controller. Values in the range of 0-100% limit HP memory

bandwidth while leaving BE memory bandwidth unlimited. Conversely, values in the

range of 100-200% limit BE memory bandwidth while leaving HP memory bandwidth

unlimited. A shorter range (e.g., 0-120%) could allow an overlap region where both

workloads are moderately limited.

Reward setup is given in Equations 5.1 - 5.3. Constants (written in all caps) allow

for user defined resource and QoS targets.4 Note that, unlike prior work, rewards are

based on the predicted not the sampled QoS. In almost all cases, the predicted maxi-

mum QoS will be closer to the true maximum QoS than the current reading, even with

prediction error. As such, rewards based on current samples are far more likely to grant

positive rewards for improper resource allocations that would allow transient QoS vio-

lations. Further, rewards given by current samples may be inconsistent due to natural

fluctuations, thus hindering learning. With this setup, positive rewards are given when

the predicted QoS is less than the target while negative penalties are given when the

4We select a minimum and maximum of 2 and 9 cache ways, respectively, for each application.
Minimum and maximum values for memory bandwidth allocation (MBA) are set to 10% and 100%.
Both the desired QoS buffer and target QoS are application specific.
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predicted QoS is greater than the target. Positive rewards involve a separate component

for cache and memory, both of which encourage HP workload to use fewer resources

while still meeting QoS targets. Negative penalties are based strictly on the difference

between the predicted and desired QoS.

r =


cache reward+memory reward

2
if predicted qos ≤ TARGET QOS

−min[
1

2
∗ (

predicted qos

TARGET QOS
− 1), 1 ] if predicted qos > TARGET QOS

(5.1)

cache reward =
MIN CACHE

chosen cache
− MIN CACHE

MAX CACHE
(5.2)

memory reward =
MIN MBA

chosen memory
− MIN MBA

MAX MBA
(5.3)

5.4 Initial Results

5.4.1 Setup

Platform and workload setup is specified in Table 5.2. Cores used for these experiments

are isolated to ensure that there is no interference from the OS. Resource controllers are

pinned to additional isolated cores to ensure consistent results and limit interference with

the HP and BE workloads. All cores are set to 2.7 GHz (base frequency) and boosting

is disabled. HP vBNG workload demand (i.e., network packet injection rate) in all tests

Table 5.2: Platform & Workload Configuration

Item Description

Evaluation Platform
Intel Xeon Platinum 8280 (38.5MB LLC, 11 ways)

All workloads pinned to socket 1

Workload Setup

SPEC CPU2006 12 copies, 12 threads, test/train input sizes
SPEC CPU2017 12 copies, 12 threads, test/train input sizes
SPEC jbb2005 24 warehouses, 24 threads

PARSEC 16 threads, native input size
Resnet50 (train) 24 threads, CIFAR-10 dataset
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follows realistic traffic profiles gathered from real-world operating environments.

5.4.2 Evaluation

For initial testing, we evaluate performance when co-scheduling one HP workload (vBNG)

and one BE workload (SPEC jbb2005). HP workload demand follows the curve shown

in Figure 5.11a. During the initial period of lower demand (reading 1-60), the proposed

framework appropriately identifies 2 cache ways and 20% memory bandwidth (shown in

Figure 5.11b) as sufficient to meet the target QoS, with the measured QoS (shown in

Figure 5.11c) fluctuating around 0-50 packets dropped per second. As demand increases,
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the controller determines that 2 cache ways is no longer sufficient and begins allocating

roughly five cache ways, along with higher memory bandwidth, to the HP vBNG work-

load. Several substantial spikes in the drop rate are observed, with one approaching 200

packets per second, but still well under the specified drop rate target of 10−5 (approxi-

mately 300 packets per second). Finally, after demand peaks and begins to decrease, the

controller likewise decreases resource allocation for the HP vBNG workload. We addi-

tionally plot the drop rate when statically allocation the maximum amount of resource

selected by the reinforcement learning model (Figure 5.11d). During periods of lower

demand, these additional resources can provide marginal benefits in terms of lower and

more stable drop rate, but provide no practical benefits since two cache ways and 20%

memory bandwidth were already sufficient to prevent QoS violations.

5.5 Conclusion

Co-scheduling of high-priority and best-effort workloads, enabled by dynamic resource

allocation, has become a widely adopted technique to improve machine utilization and

reduce total cost of ownership. Existing approaches based on QoS sampling provide

acceptable guarantees when workload demand is stable, yet fail to address transient QoS

violations that may become critical when targeting stricter QoS guarantees. Our pro-

posed framework solves these problems by directly predicting the worst-case QoS level

that may occur. These QoS predictions are combined with an intelligent reinforcement-

learning-based resource controller to enable proactive, rather than reactive, resource

allocation that mitigates transient QoS violations. Evaluation shows that the proposed

framework successfully minimizes resource allocation for the HP workload while provid-

ing equivalent QoS guarantees as a static allocation scheme based on oracle knowledge.
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Chapter 6: General Conclusion

Increasing complexity in modern computing systems, combined with the slowing of

technology-based advances, has prompted a new, machine-learning-based paradigm for

computer architecture design.

In Chapter 3, we observed how a growing number of works are applying machine

learning to practically all major components, including the core, cache/memory, NoC,

and GPUs. Notably, these applications often provide state-of-the-art results, surpass-

ing long-standing design strategies based solely on human-expert knowledge, exhaustive

search, and heuristic approximations. Next, Chapter 4 highlighted the immense poten-

tial for design space exploration via deep reinforcement learning. In particular, the NoC

design case study highlighted how a design space exceeding 10392 can be successfully nav-

igated, even under strict design constraints. Finally, Chapter 5 introduced an innovative

strategy for machine-learning-based resource management under strict QoS guarantees.

The proposed framework, based on proactive QoS prediction, demonstrated how ma-

chine learning can effectively mitigate contention between applications, thereby enabling

new opportunities for performance optimization and/or power saving. Taken together,

these works present a promising future for machine-learning-based architectural design.
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