7,780 research outputs found

    RF-MEMS for high-performance and widely reconfigurable passive components – A review with focus on future telecommunications, Internet of Things (IoT) and 5G applications

    Get PDF
    Abstract Since its first discussions in literature during late '90s, RF-MEMS technology (i.e. Radio Frequency MicroElectroMechanical-Systems) has been showing uncommon potential in the realisation of high-performance and widely reconfigurable RF passives for radio and telecommunication systems. Nevertheless, against the most confident forecasts sparkling around the successful exploitation of RF-MEMS technology in mass-market applications, with the mobile phone segment first in line, already commencing from the earliest years of the 2000s, the first design wins for MEMS-based RF passives have started to be announced just in late 2014. Beyond the disappointment of all the most flattering market forecasts and, on the other hand, the effective employment of RF-MEMS in niche applications (like in very specific space and defence scenarios), there were crucial aspects, not fully considered since the beginning, that impaired the success of such a technology in large-market and consumer applications. Quite unexpectedly, the context has changed rather significantly in recent years. The smartphones market segment started to generate a factual need for highly reconfigurable and high-performance RF passive networks, and this circumstance is increasing the momentum of RF-MEMS technology that was expected to take place more than one decade ago. On a broader landscape, the Internet of Things (IoT) and the even wider paradigm of the Internet of Everything (IoE) seem to be potential fields of exploitation for high-performance and highly reconfigurable passive components in RF-MEMS technology. This work frames the current state of RF-MEMS market exploitation, analysing the main reasons impairing in past years the proper employment of Microsystem technology based RF passive components. Moreover, highlights on further expansion of RF-MEMS solutions in mobile and telecommunication systems will be briefly provided and discussed

    RF-MEMS Technology for High-Performance Passives (Second Edition) - 5G applications and prospects for 6G

    Get PDF
    The focus of this book develops around hardware, and in particular on low-complexity components for Radio Frequency (RF) applications. To this end, microsystem (MEMS) technology for RF passive components, known as RF-MEMS, is employed, discussing its potentialities in the application frame of 5G. The approach adopted is practical, and a significant part of the content can be directly used by scientists involved in the field, to put their hand on actual design, optimization and development of innovative RF passive components in MEMS technology for 5G and beyond applications. This update (which includes a review of the main approaches to the modelling and simulations of MEMS and RF-MEMS devices) is timely and will find a wider readership as it crosses into the translational aspects of applied research in the subject. Key features • With over 50 pages of new content, the book will be 1/3 larger than the 1st edition. • New chapter on simulation and modelling techniques. • Practical approach to the design and development of RF-MEMS design concepts for 5G and upcoming 6G. • Includes case studies. • Video figures. • Includes a review of the business landscape

    Realization of micromachined-electromechanical devices for wireless communication applications

    Get PDF
    As the communication technology evolves day by day, the demands for low cost, low power, multifunctional and higher-speed data communication circuits are increasing enormously. All these essential requirements enforce significant challenges on the current technology and illustrate the need for new designs and advanced architectures. The challenges of reconfigurability, spectrum efficiency, security, miniaturization and cost minimization can only be met by ensuring that the transceiver/receiver is comprised of low-energy, low-cost, adaptive and high performance RF devices. With the potential to enable wide operational bandwidths, eliminate off-chip passive components, make interconnect losses negligible, and produce almost ideal switches and resonators in the context of a planar fabrication process compatible with existing IC processes, micromachining and Micro-Electro-Mechanical Systems (MEMS) has emerged to overcome the aforementioned problems of communication circuits. Up to date RF MEMS technology prove that on-chip switches with zero standby power consumption, low switching power and low actuation voltage; high quality inductors, capacitors and varactors; highly stable (quartz-like) oscillators and high performance filters operating in the tens of MHz to several GHz frequency range can be realized. The availability of such RF and microwave components will provide designers with the elements they have long hoped for to create novel and simple, but powerful, reconfigurable systems. In this thesis, realization of RF MEMS components such as capacitive switches, parallel plate variable capacitors, micromachined inductors and resonators for wireless communication applications are presented. The design and fabrication of each component are given in detail. The performance improvement of some blocks by integrating RF MEMS devices is demonstrated. Also the fabrication process problems limiting the performance parameters of RF MEMS components are addressed

    A Comparative Study Between a Micromechanical Cantilever Resonator and MEMS-based Passives for Band-pass Filtering Application

    Full text link
    Over the past few years, significant growth has been observed in using MEMS based passive components in the RF microelectronics domain, especially in transceiver components. This is due to some excellent properties of the MEMS devices like low loss, excellent isolation etc. in the microwave frequency domain where the on-chip passives normally tend to become leakier and degrades the transceiver performance. This paper presents a comparative analysis between MEMS-resonator based and MEMS-passives based band-pass filter configurations for RF applications, along with their design, simulation, fabrication and characterization. The filters were designed to have a center frequency of 455 kHz, meant for use as the intermediate frequency (IF) filter in superheterodyne receivers. The filter structures have been fabricated in PolyMUMPs process, a three-polysilicon layer surface micromachining process.Comment: 6 pages, 15 figure

    Wafer-Level Parylene Packaging With Integrated RF Electronics for Wireless Retinal Prostheses

    Get PDF
    This paper presents an embedded chip integration technology that incorporates silicon housings and flexible Parylene-based microelectromechanical systems (MEMS) devices. Accelerated-lifetime soak testing is performed in saline at elevated temperatures to study the packaging performance of Parylene C thin films. Experimental results show that the silicon chip under test is well protected by Parylene, and the lifetime of Parylenecoated metal at body temperature (37°C) is more than 60 years, indicating that Parylene C is an excellent structural and packaging material for biomedical applications. To demonstrate the proposed packaging technology, a flexible MEMS radio-frequency (RF) coil has been integrated with an RF identification (RFID) circuit die. The coil has an inductance of 16 μH with two layers of metal completely encapsulated in Parylene C, which is microfabricated using a Parylene–metal–Parylene thin-film technology. The chip is a commercially available read-only RFID chip with a typical operating frequency of 125 kHz. The functionality of the embedded chip has been tested using an RFID reader module in both air and saline, demonstrating successful power and data transmission through the MEMS coil

    Implantable RF-coiled chip packaging

    Get PDF
    In this paper, we present an embedded chip integration technology that utilizes silicon housings and flexible parylene radio frequency (RF) coils. As a demonstration of this technology, a flexible parylene RF coil has been integrated with an RF identification (RFID) chip. The coil has an inductance of 16 μH, with two layers of metal completely encapsulated in parylene-C. The functionality of the embedded chip is verified using an RFID reader module. Accelerated-lifetime soak testing has been performed in saline, and the results show that the silicon chip is well protected and the lifetime of our parylene-encapsulated RF coil at 37 °C is more than 20 years

    Generalized Parity-Time Symmetry Condition for Enhanced Sensor Telemetry

    Full text link
    Wireless sensors based on micro-machined tunable resonators are important in a variety of applications, ranging from medical diagnosis to industrial and environmental monitoring.The sensitivity of these devices is, however, often limited by their low quality (Q) factor.Here, we introduce the concept of isospectral party time reciprocal scaling (PTX) symmetry and show that it can be used to build a new family of radiofrequency wireless microsensors exhibiting ultrasensitive responses and ultrahigh resolution, which are well beyond the limitations of conventional passive sensors. We show theoretically, and demonstrate experimentally using microelectromechanical based wireless pressure sensors, that PTXsymmetric electronic systems share the same eigenfrequencies as their parity time (PT)-symmetric counterparts, but crucially have different circuit profiles and eigenmodes. This simplifies the electronic circuit design and enables further enhancements to the extrinsic Q factor of the sensors

    Investigation on LIGA-MEMS and on-chip CMOS capacitors for a VCO application

    Get PDF
    Modern communication systems require high performance radio frequency (RF) and microwave circuits and devices. This is becoming increasingly challenging to realize in the content of cost/size constraints. Integrated circuits (ICs) satisfy the cost/size requirement, but performance is often sacriÂŻced. For instance, high quality factor (Q factor) passive components are difficult to achieve in standard silicon-based IC processes.In recent years, microelectromechanical systems (MEMS) devices have been receiving increasing attention as a possible replacement for various on-chip passive elements, offering potential improvement in performance while maintaining high levels of integration. Variable capacitors (varactor) are common elements used in various applications. One of the MEMS variable capacitors that has been recently developed is built using deep X-ray lithography (as part of the LIGA process). This type of capacitor exhibits high quality factor at microwave frequencies.The complementary metal oxide semiconductor (CMOS) technology dominates the silicon IC process. CMOS becomes increasingly popular for RF applications due to its advantages in level of integration, cost and power consumption. This research demonstrates a CMOS voltage-controlled oscillator (VCO) design which is used to investigate methods, advantages and problems in integrating LIGA-MEMS devices to CMOS RF circuits, and to evaluate the performance of the LIGA-MEMS variable capacitor in comparison with the conventional on-chip CMOS varactor. The VCO was designed and fabricated using TSMC 0.18 micron CMOS technology. The core of the VCO, including transistors, resistors, and on-chip inductors was designed to connect to either an on-chip CMOS varactor or an off-chip LIGA-MEMS capacitor to oscillate between 2.6 GHz and 2.7 GHz. Oscillator phase noise analysis is used to compare the performance between the two capacitors. The fabricated VCO occupied an area of 1 mm^2.This initial attempt at VCO fabrication did not produce a functional VCO, so the performance of the capacitors with the fabricated VCO could not be tested. However, the simulation results show that with this LIGA-MEMS capacitor, a 6.4 dB of phase noise improvement at 300 kHz offset from the carrier is possible in a CMOS-based VCO design
    • …
    corecore