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Abstract 

Since its first discussions in literature during late ‘90s, RF-MEMS technology (i.e. Radio Frequency 

MicroElectroMechanical-Systems) has been showing uncommon potential in the realisation of 

high-performance and widely reconfigurable RF passives for radio and telecommunication systems. 

Nevertheless, against the most confident forecasts sparkling around the successful exploitation of 

RF-MEMS technology in mass-market applications, with the mobile phone segment first in line, 

already commencing from the earliest years of the 2000s, the first design wins for MEMS-based RF 

passives have started to be announced just in late 2014. Beyond the disappointment of all the most 

flattering market forecasts and, on the other hand, the effective employment of RF-MEMS in niche 

applications (like in very specific space and defence scenarios), there were crucial aspects, not fully 

considered since the beginning, that impaired the success of such a technology in large-market and 

consumer applications. Quite unexpectedly, the context has changed rather significantly in recent 

years. The smartphones market segment started to generate a factual need for highly reconfigurable 

and high-performance RF passive networks, and this circumstance is increasing the momentum of 

RF-MEMS technology that was expected to take place more than one decade ago. On a broader 

landscape, the Internet of Things (IoT) and the even wider paradigm of the Internet of Everything 
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(IoE) seem to be potential fields of exploitation for high-performance and highly reconfigurable 

passive components in RF-MEMS technology. 

This work frames the current state of RF-MEMS market exploitation, analysing the main reasons 

impairing in past years the proper employment of Microsystem technology based RF passive 

components. Moreover, highlights on further expansion of RF-MEMS solutions in mobile and 

telecommunication systems will be briefly provided and discussed. 

 

Keywords 

MEMS; Radio Frequency passives (RF); RF-MEMS; Internet of Things (IoT); Internet of 

Everything (IoE); 5G 

 

1. Introduction on RF-MEMS technology 

MicroElectroMechanical-Systems for Radio Frequency applications, commonly known as 

RF-MEMS, have been investigated by the research community starting from the late ‘90s. 

Microsystem (MEMS) technologies, at that time already exploited with a certain maturity in sensors 

and actuators applications (Bernstein et al., 1993; Zengerle et al., 1992; Aratani et al., 1993), 

commenced to be ventured for prototyping RF passive components. At first, miniaturisation of 

microwave and millimetre-wave transmission lines and their implementation in micromachining 

technologies based on Silicon, emerged as a rather promising research field already at the beginning 

on ‘90s (McGrath et al., 1993), thanks to the outstanding performance figures in terms of low-loss 

and compactness, if compared to traditional solutions (Katehi et al., 1993). The possibility to 

integrate fixed RF signal manipulation functions, e.g. through the realisation of stubs (Weller and 

Katehi, 1995), appeared as an additional strength of Silicon-based waveguides. 

Subsequently, the exploitation of the mechanical deformability, typical of MEMS, within the just 

mentioned miniaturised waveguides, posed the bases for the inclusion of a crucial characteristic of 

passive RF components in Silicon-based technologies: tunability/reconfigurability. To this regard, it 
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must be recalled here that from the functional point of view, the multi-physical coupling through 

which the mechanical behaviour of movable RF-MEMS parts is controlled (and their characteristics 

reconfigured) can take place basically according to four different actuation principles: electrostatic 

(Liu C., 2011; Lee et al., 2004), electromagnetic (Cho et al., 2005), piezoelectric (Safari and 

Akdoğan, 2008; Kawakubo et al., 2005), and thermoelectric (Daneshmand et al., 2009; Iannacci et 

al., 2011a, 2010a). 

This is how reconfigurable transmission lines and, more appropriately, RF-MEMS, started to draw 

increasing attention in the research scenario (Brown, 1997). Shortly after, MEMS technology was 

demonstrated for the realisation of micro-switches (Goldsmith et al., 1998) and variable capacitors 

(varactors) (Feng et al., 1999), as well as tunable filters (Katehi et al., 1998), resonators (Katehi et 

al., 1998) and programmable phase shifters (Malczewski et al., 1999). Figure 1 shows the 

microphotograph of a typical varactor configuration realised in RF-MEMS technology (Goldsmith 

et al., 1998).  

 

 

Figure 1. Microphotograph of an RF-MEMS varactor in Coplanar Waveguide (CPW) configuration 

(Goldsmith et al., 1998). 

 

The varactor is framed in a Coplanar Waveguide (CPW) structure. A metal overpass (realising an 

air-gap) crosses the RF line, connecting the two RF ground planes. When no DC bias is imposed 
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between the suspended metal plate and the underlying fixed electrode (i.e. underpass), the shunt 

capacitance to ground is minimal. Differently, when the DC voltage drop between the two 

electrodes crosses the pull-in level, the suspended metal membrane collapses onto the underlying 

electrode, and the shunt capacitance to RF ground reaches its maximum value. In between the two 

ON/OFF configurations, the vertical position of the MEMS can be controlled in an analogue 

fashion, by driving the DC bias, thus enabling the continuous tuning of the capacitance, in a range 

of vertical displacement equal to the 33 % of the initial (OFF state) air-gap (Iannacci et al., 2010b). 

The remarkable characteristics in terms of low-loss, high-isolation, high quality factor (Q-factor), 

good linearity and, also importantly, tunability/reconfigurability, indicated since the early days 

RF-MEMS as a key enabling technology for next generations of radio platforms, spanning from 

handsets and mobile communications (Nguyen, 1998) to radar systems (Brown, 1998). Figure 2 

shows the schematic block diagram of an RF transceiver (transmitter/receiver), where all the circled 

components were envisaged to be replaced with MEMS/RF-MEMS implementations, thus enabling 

better performance of the whole system (Nguyen, 1998). 
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Figure 2. Schematic block diagram of an RF transceiver (transmitter/receiver). All the circled 

components were envisioned to be replaced with MEMS and RF-MEMS implementations, thus 

boosting the performance of the whole system (Nguyen, 1998). 

 

As visible in Figure 2, the variety of passives to be realised in RF-MEMS technology is quite broad, 

ranging from switches and varactors, to reconfigurable filters and LC-tanks. Given these premises, 

the research community has been driven through the years to put significant effort in demonstrating 

the outstanding performance achievable by means of thoughtful design of basic and complex 

passives in RF-MEMS technology. 

Starting from basic reconfigurable elements, i.e. ohmic (Patel and Rebeiz, 2010; Shalaby et al., 

2009) and capacitive (Mahameed and Rebeiz, 2010; Thakur et al., 2009; Martinez et al., 2007) 

micro-relays with superior characteristics, their proper replication and (cross-)interconnection 

enabled the realisation of high-performance and widely reconfigurable RF-MEMS passive 

networks (Iannacci, 2013). Thereafter, switching units ranging from Single Pole Double Throws 

(SPDTs) (Uno et al., 2009) to more complex Single Pole Multiple Throws (SPMTs) and switching 

matrices were successfully demonstrated in literature (Gong et al., 2011; Stehle et al., 2009). 

Figure 3 shows the Scanning Electron Microscopy (SEM) image of the 60 GHz switched lines 

proposed and discussed by Gong et al. (2011). 
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Figure 3. Scanning Electron Microscopy (SEM) image of the reconfigurable RF-MEMS switched 

line reported by Gong et al. (2011). 

 

The network is realised in CPW configuration. The RF input branch can be redirected on four 

output lines, by means of a star-like central multiple switching unit, relying on ohmic RF-MEMS 

switches, that implements a Single Pole Four Throw (SP4T). The network reconfigures the phase 

shift of the output RF signal with respect to the input one, depending on the length of the selected 

output branch. Reconfigurable RF power attenuators (Iannacci et al., 2010c) and 

splitter/couplers (Nishino et al., 2009; Ocera et al., 2007) can also be entirely implemented in 

RF-MEMS technology, as well as impedance matching tuners covering significant portions of the 

Smith chart and realising a wide number of different states (Iannacci et al., 2011b; Lu et al., 2005a; 

Domingue et al., 2010; Larcher et al., 2009). Figure 4 shows the microphotograph of the RF-MEMS 

reconfigurable power attenuator reported by Iannacci et al. (2010c). 

 

 

Figure 4. Microphotograph of the RF-MEMS reconfigurable power attenuator discussed by 

Iannacci et al. (2010c). 
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The device, based on a surface micromachining process and framed in a CPW configuration, 

exploits buried Polycrystalline Silicon (Poly-Si) resistors placed in series on the RF line to attenuate 

the RF signal flowing across the network. Ohmic contact electrostatically controlled MEMS 

switches, can selectively short each Poly-Si resistor when actuated (pulled-in), thus reconfiguring 

the load resistance and, in turn, the attenuation of the RF signal. The experimental testing of the 

device exhibited rather flat attenuation levels in the range from nearly-DC up to 30 GHz. 

Furthermore, RF-MEMS technology was proven to be a key enabling solution also in the realisation 

of reconfigurable phase shifters (Reinke et al., 2011; Vorobyov et al., 2011) and True Time Delay 

(TTD) lines (De Angelis et al., 2008; Van Caekenberghe and Vaha-Heikkila, 2008) for electronic 

antenna steering and radar systems, as well as in the micro-fabrication of tunable filters (Varadan, 

2002) for various RF applications (Entesari et al., 2007; Gil et al., 2007; Reines et al., 2010). 

The afore-mentioned examples leverage on surface micromachining manufacturing processes, which is 

proven to be a viable solution for the realisation of highly-reconfigurable RF-MEMS devices. Of course, 

there exist other technology platforms and solutions, like the so-called bulk micromachining. Since the 

detailed discussion of pros and cons of each solution steps beyond the purposes of this article, a few 

references reporting in-depth technology-related discussion are listed (Del Tin et al., 2007; Giacomozzi et 

al., 2011; Gao and Gong S, 2016). 

Despite the focus of this work is mainly aimed to RF-MEMS featuring switching elements, another 

category of devices that is worth to be mentioned is the one of the so-called Surface Acoustic Wave 

(SAW), Bulk Acoustic Wave (BAW) filters and (thin-)Film Bulk Acoustic Resonators (FBARs). 

The just listed classes of devices exploit forth and back transduction between electrical and 

mechanical (i.e. acoustic) domain, respectively, in order to realise very pronounced filtering 

functions, and are currently exploited quite frequently in commercial applications. The literature on 

this topic is wide, therefore just a valuable works are mentioned in this article (Piazza et al., 2007; 

Gong and Piazza, 2013, 2014; Gao et al., 2016). 
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2. Market exploitation of RF-MEMS: early vision and actual limiting factors 

Such a variety of high-performance RF passives stimulated the research and scientific community 

to picture strategies around market exploitations of RF-MEMS technology in modern wireless 

systems. To this end, the contribution of Nguyen, with focus on high Q-factor MEMS resonators, is 

certainly relevant (Nguyen, 2001, 2002). Based on his vision, RF-MEMS passives were bearing the 

potential for a twofold impact on radio transceivers (transmitters/receivers). First, lumped devices, 

like switches, resonators and varactors, were meant to substitute standard counterparts in RF 

circuits, enabling better performance of wireless devices (Nguyen, 2002, 2006), as previously 

shown in Figure 2. On a different level, RF-MEMS complex reconfigurable networks, like 

switching units, tunable filters, reconfigurable LC-tanks and so on, were supposed to make rethink 

the architecture of transceivers. This would had enabled not only better performance, but also wider 

reconfigurability of the same platform/terminal, extending services and compliance with different 

standards, as well as reducing hardware and power consumption (Nguyen, 1998, 2006, 2007, 2013). 

Nonetheless, despite the high-expectations triggered in the beginning by RF-MEMS, issues 

concerned to reliability, packaging and integration, impaired their breaking into large market 

applications. The just mentioned aspects are going to be briefly discussed in the following. 

MEMS are exposed to a wide range of malfunctioning and failure mechanisms (both reversible and 

irreversible) that are very common in material and mechanical engineering, but rather unknown in 

the community of electronic and RF engineers. Among them, the most important are fatigue, creep, 

plastic deformation, corrosion, fracture, stiction (i.e. the missed MEMS release after zeroing the 

biasing signal) and micro-welding (Iannacci, 2015). All this highlighted explicitly that RF-MEMS 

technology was demanding for significant further development before being adoptable in market 

applications (DeNatale and Mihailovich, 2003; Lisec et al., 2004; Melle et al., 2003; Rizk et al., 

2002). 

Also related to reliability, the issue of packaging and encapsulation emerged as a relevant aspect. 

MEMS need to be properly isolated from the surrounding environment, by being housed within a 
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protective (hermetic or semi-hermetic) housing (Jourdain et al., 2003; Park et al., 2002, 2003). In 

the RF-MEMS frame of reference, the application of a package increases the complexity at 

technology level and the manufacturing costs, as well. The latter ones were estimated to be as high 

as 80 % of the final product price (Cohn et al., 2002). Furthermore, the presence of a protective cap 

worsens the outstanding RF performance of MEMS passives, because of additional parasitic effects 

due to capacitive couplings, inductance and resistance of signal underpasses, etc. Therefore, the 

package must be carefully conceived and counted in as actual part of the device, thus making the 

design and modelling phases more challenging (Iannacci, 2013; Iannacci et al., 2006, 2008; 

Margomenos and Katehi, 2002, 2003). 

Finally, yet importantly, in several cases MEMS technology is incompatible with standard 

semiconductor platforms (e.g. Complementary Metal Oxide Semiconductor – CMOS). This 

happens, for instance, when metals like Gold are used for the MEMS structural parts, or when the 

thermal budget of the CMOS and MEMS part are significantly different.  In-package passive 

components need to be integrated with active electronics, e.g. through Surface Mount Technologies 

(SMTs), and ad-hoc circuitry must be developed and deployed, as well, in order to operate them, 

rising, also in this case, complexity and costs (De Silva and Hughes, 2003; Lu et al., 2005b; 

Pacheco et al., 2004; Th Rijks et al., 2003; Zhang et al., 2006; Ziegler et al., 2005). 

Bearing in mind the just depicted scenario, RF-MEMS started to be gazed across the scientific 

community as a technology suitable to demonstrate remarkable performance in research-related 

topics and very-limited niche applications (e.g. space and defence), but at the same time 

inappropriate for medium/large volume market applications, and, above all, consumer electronics, 

i.e. mobile phones. Despite the reasons of such a disappointment were attributed to all the additional 

efforts at reliability, packaging and integration level, necessary to spill out market products from 

RF-MEMS technology, there exists a more consistent underlying motivation that impaired their 

spread since the beginning. 
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In the first years of the 2000s, despite the technical soundness of the vision reported by Nguyen 

(2001, 2002, 2006, 2007, 2013), there was not a factual need for RF passives with better 

performance. In other words, the early approach to the commercial exploitation of RF-MEMS was 

mainly technology push based, rather than market driven (Martin, 1994; Iannacci, 2015). 

To conclude this section, a summary of advantages and disadvantages of RF-MEMS technology 

with respect to standard technologies (both CMOS/semiconductor and miniaturisation e.g. via 

micro-milling techniques) is reported in Table I. 

 
ADVANTAGES DISADVANTAGES 

Good linearity Fragile (need package) 

Large tuning range 
Large controlling voltages required 

(CMOS not compatible) 

High Q-factor Need ad-hoc electronics to be controlled 

Virtually no power consumption 
(for controlling the device) 

Technology often incompatible with standard CMOS 
process (i.e. need to be packaged/integrated) 

Good isolation 
 

Low-loss 
 

Small dimensions and reduced weight 
 

High-complexity achievable  
 

Table I. Summary of advantages and disadvantages of RF-MEMS technology versus standard 

technologies. 

 

In order to provide the reader with a more quantitative understanding of how RF-MEMS technology 

places with respect to other solutions, Table II reports the comparison between micromechanical 

and semiconductor-based switches (DeLisle, 2015). 

 

Switch type MEMS 
Solid state 

FET1 PIN2 Hybrid 

Frequency range DC to max frequency 
1-10 MHz to max 

frequency From kHz 

Insertion loss Low High Medium High 

Isolation Good across all 
frequencies 

Good at low-end 
frequencies 

Good at high-end frequencies 

Return loss Good 
Repeatability Good Excellent 
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Switching speed Slow Fast 
Settling time Slow Good <350 µs Excellent <50 µs Good <350 µs 
Rise/fall time ms µs ns µs 
ON to OFF 

switching time 
ms µs ns µs 

Power handling High Low 
Operating life Medium High 

ESD3 immunity High Low Medium Low 

Sensitive to Mechanical 
vibrations 

Temperature extreme and RF power extreme 

1Field Effect Transistor 
2P-type, Intrinsic, N-type semiconductor 
3Electrostatic Discharge 

 
Table II. Performance and characteristics comparison between MEMS and solid state switches 

(DeLisle, 2015). 

 

Following a similar approach, a comparison between RF-MEMS and semiconductor-based variable 

capacitors (varactors) is shown in Table III (Elshurafa and Salama, 2013). 

 
CMOS varactors MEMS varactors 

Leakage currents No significant leakages 
Typical Q-factor of 30-40, in a few cases up to 50-60 Typical Q-factor of 200-300 

Decreasing tuning range (Cmax/Cmin) due to continuous 
downscaling. Maximum ration of about 3 in the 

millimetre-wave range 
Tuning ranges typically spanning between 5 and 50 

Rather lossy in the millimetre-wave range Always low-loss 
 

Table III. Performance and characteristics comparison between MEMS and solid state variable 

capacitors (varactors) (Elshurafa and Salama, 2013). 

 

3. Market exploitation of RF-MEMS: current situation and perspectives 

In fact, the recent rapid diffusion of 4th Generation-Long Term Evolution (4G-LTE) smartphones 

enabled an unwanted degradation trend in voice signal and data transmission quality, due to the 

integration of the antenna with many other components (Allan, 2013) (see Figure 5). 
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Figure 5. Decreasing trend in communication quality stepping from one generation to another, as 

hopping from early mobile handsets in late ’90s to modern smartphones (Allan, 2013). 

 

Such an unprecedented context made room for exploitation of RF-MEMS characteristics, especially 

in terms of tunability. To this regard, employment of analogue impedance tuners between the 

smartphone antennas and the RF Front Ends (RFFEs), enables optimal adaptive matching. Thus, 

RF-MEMS implementation of impedance tuners is one of the first commercial uptakes of such a 

technology (Cavendish Kinetics, 2014). 

The emerging world of 5G appears to be a field of convergence for diverse demands and 

challenging requirements as rarely the research and industrial community witnessed before. After 

all, since the massive diffusion of mobile handsets roughly two decades ago, the trend to integration 

of more wireless services supported by the same device was relentless. And its pace, rather than 

linear, has been following an exponential law. To this regard, 5G systems are predicted to deliver 

up to 1000 times the capacity of current mobile networks (Baldemair et al., 2015). For instance, 

broadband wireless applications, like high-resolution video streaming and Tactile 

Internet (Moskvitch, 2015), will urge for data rates that could be 10-100 times wider compared to 

what 4G wireless networks are able to offer (Fettweis et al., 2014; (Osseiran et al., 2014). 

At higher level of abstraction, the Internet of Things (IoT) paradigm portrays an ongoing 

technology development path through which any object and environment belonging to our daily life 

experience, earns its own identity in the digital world, by means of the Internet (Econocom, 2016; 
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Uckelmann et al., 2011). Given the IoT frame of reference, 5G mobile systems are expected to 

accommodate a wider range of wireless connections, supporting emerging applications like 

Machine-To-Machine (M2M), and, in turn, all the more stringent requirements they bring, in terms 

of Quality of Service (QoS), concerning reliability, spectral and energy efficiency, and so on (Wu et 

al., 2011; Bhushan et al., 2014; Boccardi et al., 2014). To this regard, the scenario of smart 

connected cars for road safety, helps understand how critical delay and reliability constraints might 

be. In light of the just depicted scenario, it is straightforward that there will be no unique enabling 

technology capable of addressing all the challenging and often conflicting requirements of next 

generation 5G applications (Le et al., 2015). From a general point of view, innovation and 

re-engineering of network architecture and algorithms will be necessary. This, of course, will 

demand both for novel hardware and software solutions. More in details, just to mention some of 

the current limitations that will have to be overcome at architectural and implementation level, the 

currently in use Orthogonal Frequency Multiple Access (OFDM) waveform (exploited in 4G 

applications) will need to be replaced by more efficient solutions. Moreover, network 

diversification, employment of large-scale Multiple Input Multiple Output (MIMO) units and use of 

mmW spectrum to ensure Gigabit (Gb) communications, will have to be ventured (Le et al., 2015). 

Bearing in mind the previously discussed market pull scenario that started making RF-MEMS 

solutions successful (up to now for impedance matching tuners), it is envisaged that 5G 

communication protocols will demand for higher operation frequencies (e.g. well above 6 GHz) and 

large reconfigurability to cover different services, while reducing hardware redundancy and power 

consumption. In order to target these challenges, it is necessary to leverage on passives with 

boosted characteristics (low-loss, high-isolation, etc.), and RF-MEMS technology is indicated as 

one of the more promising candidates, both for what concerns 5G smartphones (i.e. RFFEs), and 

base stations (Lapedus, 2015). Of course, there will be important challenges to be addressed in 

terms of frequency operation. To this regard, the backhaul portion of the infrastructure closer to end 

users, is supposed to work at millimetre-wave frequency (60-70 GHz). This is the case of the 
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so-called 5G small cells, which will bring very-wide data rate access (up to the Gbps range) to 

individual users in confined areas. As discussed below in this paper, RF-MEMS devices featuring 

micro-relays operating at frequencies as high as 110 GHz and exhibiting good characteristics have 

already been demonstrated in literature. Further effort will have to be directed towards operation at 

higher frequencies for resonant classes of MEMS devices, as filters based on electromechanical 

transduction mechanisms. 

From a different perspective, regardless of the specific technology employed for the realisation of 

RF components, they always need to be packaged and integrated into more complex sub-systems 

and systems. If, on one side, the primary role of the package is to protect devices from potentially 

harmful (environmental) factors, like shocks, contaminations, moisture, dust particles, and so 

on (Jin et al., 2010), it has been realising, on the other hand, more and more functionalities (Kuang 

et al., 2010). As a matter of fact, the massive growth of RF systems for mobile communication 

taking place since years, has been driving miniaturisation, high-integration density and low-cost 

fabrication solutions. 

Nowadays, RF Systems on Chip (SoCs) employ hundreds of passive components and only few tens 

of Integrated Circuits (ICs) (STATS ChipPAC, 2017). Given that such components are often 

manufactured in diverse, incompatible and non-monolithic technologies, it is easy to understand 

that their successful integration can only take place through high-performance and high-density 

Wafer Level Packaging (WLP) solutions. Of course, designing and realising a package that ensures 

high-reliability (Iannacci, 2015), high-density integration and very-low impact on the performance 

of RF passive (MEMS and non-MEMS) components (Lahti et al., 2013; Iannacci et al., 2008) is a 

rather challenging task. This is the reason why, as mentioned above, the packaging/integration 

phase, in some cases can be more expensive than the realisation of the actual RF components to be 

packaged. 

 

4. Recent findings in the RF-MEMS state of the art research scenario 
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Since the first years of 2000, the literature on RF-MEMS started to be populated by a few research 

items reporting high-performance devices and networks working at frequency ranges as high as 

W-band (i.e. above 75 GHz). The study around the development of such components was mainly 

driven by the need of demonstrating and disseminating the outstanding characteristics achievable 

with RF-MEMS technology. For instance, high-isolation RF-MEMS switches (Rizk et al., 2001) 

and switch-based phase shifters (Stehle et al., 2008) were proven to exhibit high-performance in the 

range from 70 GHz up to 110 GHz. An interesting solution to improve isolation in the switch OFF 

state and reduce the losses in the switch ON state is reported by Baghchehsaraei et al., (2012). It is 

based on a waveguide switch, composed by laterally moving fingers able to short the electric field 

lines, therefore implementing the OFF state. The 3D schematic of the switch in both ON/OFF states 

is reported in Figure 6. 

 

 

Figure 6. 3D schematic of the waveguide RF-MEMS switch proposed by Baghchehsaraei et al., 

(2012), in both ON/OFF configurations. 

 

The tested samples exhibited losses better than 1 dB and isolation better than 20 dB in the 

frequency range from 62 GHz to 75 GHz. More recently, RF-MEMS started to be indicated as a key 

enabling technology for future 5G applications, both for what concerns basic elements (Iannacci et 
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al., 2016a, 2016b) and complex networks (Iannacci et al., 2016c; Iannacci and Tschoban, 2017). 

This suggests that the interest for high-frequency operating RF-MEMS devices is growing not only 

in research and niche activities, but in the consumer market segment, as well. 

 

5. Conclusions 

MicroElectroMechanical-Systems for Radio Frequency applications, i.e. RF-MEMS, after 

fluctuations about their potential employment as commercial products, are now indicated as a key 

enabling technology for the next generation of mobile communications. As a matter of fact, 5G 

communication protocols will demand for higher operation frequencies (e.g. well-above 6 GHz) and 

large reconfigurability to cover different services, while reducing the hardware redundancy and 

power consumption. In order to target these challenges, it is necessary to leverage on passives with 

boosted characteristics (low-loss, high-isolation, etc.), and RF-MEMS technology is indicated as 

one of the most promising candidates, both for what concerns 5G smartphones, i.e. RF Front Ends 

(RFFEs), as well as for base stations. On a broader landscape, the Internet of Things (IoT) and the 

even wider paradigm of the Internet of Everything (IoE) seem to be potential fields of exploitation 

for high-performance and highly reconfigurable passive components in RF-MEMS technology. 

This work framed the current state of RF-MEMS market exploitation, analysing the main reasons 

impairing in past years the proper employment of Microsystem technology based RF passive 

components. Moreover, highlights on further expansion of RF-MEMS solutions in mobile and 

telecommunication systems were provided and discussed. 
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