861 research outputs found

    Evaluation of MEMS Structures with Directional Characteristics Based on FRAT and Lifting Wavelet

    Get PDF
    Steps and grooves, which have typical directional characteristic, are two main functional structures of MEMS (Micro-Electro-Mechanical Systems). This paper proposes a method for analysis and evaluation of MEMS steps and grooves based on finite radon transform (FRAT) and lifting wavelet. The method consists of three steps. Firstly, FRAT is adopted to detect the directional characteristic of a MEMS structure. Secondly, on the basis of the directional characteristic obtained, the profiles of the MEMS structure are analyzed by lifting wavelet. Finally, Histogram-fitting is employed for areal evaluation of a MEMS structure. Simulated and experimental results show that MEMS structures with directional characteristic can be extracted and evaluated by the method effectively

    Low Voltage Totally Free Flexible RF MEMS Switch With Anti-Stiction System

    Full text link
    This paper concerns a new design of RF MEMS switch combined with an innovative process which enable low actuation voltage (<5V) and avoid stiction. First, the structure described with principal design issues, the corresponding anti-stiction system is presented and FEM simulations are done. Then, a short description of the process flow based on two non polymer sacrificial layers. Finally, RF measurements are presented and preliminary experimental protocol and results of anti-stiction validation is detailed. Resulting RF performances are -30dB of isolation and -0.45dB of insertion loss at 10 GHz.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability

    Get PDF
    The design of highly wavelength tunable semiconductor laser structures is presented. The system is based on a one dimensional photonic crystal cavity consisting of two patterned, doubly-clamped nanobeams, otherwise known as a "zipper" cavity. Zipper cavities are highly dispersive with respect to the gap between nanobeams in which extremely strong radiation pressure forces exist. Schemes for controlling the zipper cavity wavelength both optically and electrically are presented. Tuning ranges as high as 75nm are achieved for a nominal design wavelength of 1.3micron. Sensitivity of the mechanically compliant laser structure to thermal noise is considered, and it is found that dynamic back-action of radiation pressure in the form of an optical or electrical spring can be used to stabilize the laser frequency. Fabrication of zipper cavity laser structures in GaAs material with embedded self-assembled InAs quantum dots is presented, along with measurements of photoluminescence spectroscopy of the zipper cavity modes.Comment: 20 pages, 8 figure

    Readout Method And Electronic Bandwidth Control For A Silicon In-plane Tuning Fork Gyroscope

    Get PDF
    Disclosed are methods and a sensor architecture that utilizes the residual quadrature error in a gyroscope to achieve and maintain perfect mode-matching, i.e., ~0 Hz split between the drive and sense mode frequencies, and to electronically control sensor bandwidth. In a reduced-to-practice embodiment, a 6 mW, 3V CMOS ASIC and control algorithm are interfaced to a mode-matched MEMS tuning fork gyroscope to implement an angular rate sensor with bias drift as low as 0.15°/hr and angle random walk of 0.003°/√hr, which is the lowest recorded to date for a silicon MEMS gyroscope. The system bandwidth can be configured between 0.1 Hz and 1 kHz.Georgia Tech Research Coporatio

    A closed-loop digitally controlled MEMS gyroscope with unconstrained Sigma-Delta force-feedback

    Get PDF
    In this paper, we describe the system architecture and prototype measurements of a MEMS gyroscope system with a resolution of 0.025 degrees/s/root Hz. The architecture makes extensive use of control loops, which are mostly in the digital domain. For the primary mode both the amplitude and the resonance frequency are tracked and controlled. The secondary mode readout is based on unconstrained Sigma Delta force-feedback, which does not require a compensation filter in the loop and thus allows more beneficial quantization noise shaping than prior designs of the same order. Due to the force-feedback, the gyroscope has ample dynamic range to correct the quadrature error in the digital domain. The largely digital setup also gives a lot of flexibility in characterization and testing, where system identification techniques have been used to characterize the sensors. This way, a parasitic direct electrical coupling between actuation and readout of the mass-spring systems was estimated and corrected in the digital domain. Special care is also given to the capacitive readout circuit, which operates in continuous time

    Novel Bonding technologies for wafer-level transparent packaging of MOEMS

    Get PDF
    Depending on the type of Micro-Electro-Mechanical System (MEMS), packaging costs are contributing up to 80% of the total device cost. Each MEMS device category, its function and operational environment will individually dictate the packaging requirement. Due to the lack of standardized testing procedures, the reliability of those MEMS packages sometimes can only be proven by taking into consideration its functionality over lifetime. Innovation with regards to cost reduction and standardization in the field of packaging is therefore of utmost importance to the speed of commercialisation of MEMS devices. Nowadays heavily driven by consumer applications the MEMS device market is forecasted to enjoy a compound annual growth rate (CAGR) above 13%, which is when compared to the IC device market, an outstanding growth rate. Nevertheless this forecasted value can drift upwards or downwards depending on the rate of innovation in the field of packaging. MEMS devices typically require a specific fabrication process where the device wafer is bonded to a second wafer which effectively encapsulates the MEMS structure. This method leaves the device free to move within a vacuum or an inert gas atmosphere.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Characterization and Modeling of an Electro-thermal MEMS Structure

    Get PDF
    Thermal functional circuits are an interesting and perspectivic group of the MEMS elements. A practical realization is called Quadratic Transfer Characteristic (QTC) element which driving principle is the Seebeck-effect. In this paper we present the analyses of a QTC element from different perspectives. To check the real behavior of the device, we measured a few, secondary properties of the structure which correspond to special behavior because these properties can not be easily derived from the main characteristics.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Modelling methodology of MEMS structures based on Cosserat theory

    Full text link
    Modelling MEMS involves a variety of software tools that deal with the analysis of complex geometrical structures and the assessment of various interactions among different energy domains and components. Moreover, the MEMS market is growing very fast, but surprisingly, there is a paucity of modelling and simulation methodology for precise performance verification of MEMS products in the nonlinear regime. For that reason, an efficient and rapid modelling approach is proposed that meets the linear and nonlinear dynamic behaviour of MEMS systems.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838
    corecore