76 research outputs found

    Membrane Selection and ISFET Configuration Evaluation for Soil Nitrate Sensing

    Get PDF
    Successful implementation of site-specific crop management relies on accurate quantification of spatial variation of important factors. Data collection on a finer spatial resolution than is feasible with manual and/or laboratory methods is often required but cost prohibitive. Therefore, there is a need for the development of sensors to more accurately characterize within-field variability. The objective of this research was to investigate matrix membranes produced from different combinations of ligand and plasticizer materials using ion-selective electrode (ISE) technology, and to use selected membranes to develop a nitrate ion-selective field effect transistor (ISFET) which might be integrated with a flow injection analysis (FIA) system for real-time soil analysis. Several ion-selective membranes were tested, and all of the evaluated membranes proved to be viable candidates for the development of a nitrate ISFET. Membranes using methyltridodecylammonium chloride (MTDA) as the ligand showed a better response to nitrates at low concentrations while those using tetradodecylammonium nitrate (TDDA) ligand showed superior selectivity for the nitrate ion. A multi- ISFET nitrate sensor was successfully developed. The electrical responses of the ISFETs were consistent and predictable. While significant difficulty was found in preparing a multi-ISFET chip with all four sensors operational, once prepared, the multi-ISFET chips were reliable and performed through extensive tests without failure. The sensitivities of the nitrate ISFETs (38-46 mV/decade) were lower than the theoretical Nernst sensitivity. The nitrate ISFETs proved to be viable sensors for the development of a real-time soil nitrate analysis system, under the conditions of our tests

    Evaluation of Nitrate and Potassium Ion-Selective Membranes for Soil Macronutrient Sensing

    Get PDF
    On-the-go, real-time soil nutrient analysis would be useful in site-specific management of soil fertility. The rapid response and low sample volume associated with ion-selective field-effect transistors (ISFETs) make them good soil fertility sensor candidates. Ion-selective microelectrode technology requires an ion-selective membrane that responds selectively to one analyte in the presence of other ions in a solution. This article describes: (1) the evaluation of nitrate and potassium ion-selective membranes, and (2) the investigation of the interaction between the ion-selective membranes and soil extractants to identify membranes and extracting solutions that are compatible for use with a real-time ISFET sensor to measure nitrate and potassium ions in soil. The responses of the nitrate membranes with tetradodecylammonium nitrate (TDDA) or methlytridodecylammonium chloride (MTDA) and potassium membranes with valinomycin were affected by both membrane type and soil extractant. A TDDA-based nitrate membrane would be capable of detecting low concentrations in soils to about 10-5 mole/L NO3 -. The valinomycin-based potassium membranes showed satisfactory selectivity performance in measuring potassium in the presence of interfering cations such as Na+, Mg2+, Ca2+, Al3+, and Li+ as well as provided a consistent sensitivity when DI water, Kelowna, or Bray P1 solutions were used as base solutions. The TDDA-based nitrate membrane and the valinomycin-based potassium membrane, used in conjunction with Kelowna extractant, would allow determination of nitrate and potassium levels, respectively, for site-specific control of fertilizer application

    Real-time multi ISFET/FIA soil analysis system with automatic sample extraction

    Get PDF
    Successful implementation of site-specific crop management relies on accurate quantification of spatial variation of important factors. Therefore, there is a tremendous need for the development of sensing technologies that will allow automated collection of soil, crop and pest data, to more accurately characterize within-field variability. The objective of this work was to develop an integrated multi-sensor soil analysis system. Ion-selective field effect transistor (ISFET) technology was coupled with flow injection analysis (FIA) to produce a real-time soil analysis system. Testing of the ISFET/ FIA system for soil analysis was carried out in two stages: (1) using manually extracted samples, and (2) the soil to be analysed was placed in the automated soil extraction system, and the extracted solution fed directly into the FIA system. The sensor was successful in measuring soil nitrates in manually extracted soil solutions (r2\u3e0.9). The rapid response of the system allowed a sample to be analysed in 1.25 s, which is satisfactory for real-time soil sensing. Precision and accuracy of the system were highly dependent on maintaining precise, repetitive injection times and maintaining constant flow parameters during the calibration and testing cycle. The progress toward an automated soil extraction system was notable, but considerable effort will be necessary before commercialization can be realized. However, the concept of using ISFETs for the real-time analysis of soil nitrates is sound. The rapid response and low sample volumes required by the multi-sensor ISFET/FIA system make it a viable candidate for use in real-time soil nutrient sensing

    Evaluation of Phosphate Ion-Selective Membranes and Cobalt-Based Electrodes for Soil Nutrient Sensing

    Get PDF
    A real-time soil nutrient sensor would allow efficient collection of data with a fine spatial resolution to accurately characterize within-field variability for site-specific nutrient application. Ion-selective electrodes are promising candidates because they have rapid response, directly measure the analyte, and are small and portable. Our goal was to investigate the ability of three different phosphate ion-selective electrodes (two fabricated with organotin compound-based PVC membranes, and one fabricated from a cobalt rod) used in conjunction with Kelowna soil extractant to determine phosphorus over the typical range of soil concentrations. Electrodes using organotin compound-based PVC membranes containing bis(p-chlorobenzyl)tin dichloride as an ionophore exhibited sensitive responses to HPO42- over a range of 10-4 to 10-1 mol/L in Tris buffer at pH 7. They were nearly insensitive to phosphate when using Kelowna soil extractant as the base solution, perhaps because of the high concentration of fluoride (0.015 mol/L) in the Kelowna solution. In addition, the life of the membranes was less than 14 days. Electrodes using another tin-compound-based PVC membrane containing tributyltin chloride as an ionophore also provided unsatisfactory results, showing much less sensitivity to H2PO4- than previously reported. The cobalt rod-based electrodes exhibited sensitive responses to H2PO4- over a range from 10-5 to 10-1 mol/L total phosphate concentration with a detection limit of 10-5 mol/L in the Kelowna solution. This detection range would encompass the typical range of soil phosphorus concentrations measured in agricultural fields. The selectivity of the cobalt electrodes was satisfactory for measuring phosphates in the presence of each of six interfering ions, i.e., HCO3-, Cl -, Br -, NO3-, Ac -, and F -, with the electrodes being 47 to 1072 times more responsive to phosphate than to the tested interfering ions

    Rapid Nitrate Analysis of Soil Cores Using ISFETs

    Get PDF
    An intact core extraction procedure was tested that might be used in the field for real–time prediction of soil nitrates. An extraction solution was pushed through a soil core held between two filters, and an ion–selective field–effect transistor/flow injection analysis (ISFET/FIA) system was used to sense soil nitrates in real time. Laboratory tests were conducted using four soil types and two levels of nitrate concentration, soil moisture, core density, core length, core diameter, and extraction solution flow rate. The extraction solution flow was sampled at the exit face of the core and routed to the ISFET/FIA system. The ISFET output voltage was sampled at 100 Hz. Results of the test indicate that nitrate extraction of the soil cores was successful, and that data descriptors based on response curve peak and slope of the ISFET nitrate response curve might be used in tandem in a real–time prediction system

    Laboratory Evaluation of an Electro-Pneumatic Sampling Method for Real-Time Soil Sensing

    Get PDF
    An automated electro-pneumatic soil sampling method based on pressurized air for real-time soil analysis was developed and tested under laboratory conditions. Pressurized air was applied for 36 ms across a 2.5 cm diameter cylinder to cut a sample from a soil column and convey the sample along a delivery pipe into a container. An electro-pneumatic regulator valve was used to regulate the air pressure at 550, 690, and 830 kPa (80, 100, and 120 psi) using an analog electrical signal. A two-position solenoid valve controlled by a stand-alone microprocessor was used to control pulse duration. Laboratory tests were conducted to determine the effectiveness of positive high-pressure air as a cutting force for different soil conditions. The effects of air pressure level, soil moisture content, soil compaction, and soil type on the quantity of soil sample obtained were investigated. Moisture content and air pressure level were the most significant factors, while compaction was not significant (. = 0.05) in terms of mass of soil obtained. Laboratory test results proved that pressurized air was effective in cutting and transporting a soil sample in a short time period (36 ms) for all different soils studied in this experiment. The electro-pneumatic method was also capable of obtaining a consistent amount of soil sample with a coefficient of variation of less than 20% for any individual treatments in the experimental design. The electro-pneumatic soil sampling method is a viable candidate as a soil sampling system for on-the-go soil analysis

    Recent advances in chemical sensors for soil analysis: a review

    Get PDF
    The continuously rising interest in chemical sensors' applications in environmental monitoring, for soil analysis in particular, is owed to the sufficient sensitivity and selectivity of these analytical devices, their low costs, their simple measurement setups, and the possibility to perform online and in-field analyses with them. In this review the recent advances in chemical sensors for soil analysis are summarized. The working principles of chemical sensors involved in soil analysis; their benefits and drawbacks; and select applications of both the single selective sensors and multisensor systems for assessments of main plant nutrition components, pollutants, and other important soil parameters (pH, moisture content, salinity, exhaled gases, etc.) of the past two decades with a focus on the last 5 years (from 2017 to 2021) are overviewed

    ISFET Based Microsensors for Environmental Monitoring

    Get PDF
    The use of microsensors for in-field monitoring of environmental parameters is gaining interest due to their advantages over conventional sensors. Among them microsensors based on semiconductor technology offer additional advantages such as small size, robustness, low output impedance and rapid response. Besides, the technology used allows integration of circuitry and multiple sensors in the same substrate and accordingly they can be implemented in compact probes for particular applications e.g., in situ monitoring and/or on-line measurements. In the field of microsensors for environmental applications, Ion Selective Field Effect Transistors (ISFETs) have a special interest. They are particularly helpful for measuring pH and other ions in small volumes and they can be integrated in compact flow cells for continuous measurements. In this paper the technologies used to fabricate ISFETs and a review of the role of ISFETs in the environmental field are presented

    Development of a Proximal Soil Sensing System for the Continuous Management of Acid Soil

    Get PDF
    The notion that agriculturally productive land may be treated as a relatively homogeneous resource at thewithin-field scale is not sound. This assumption and the subsequent uniform application of planting material,chemicals and/or tillage effort may result in zones within a field being under- or over-treated. Arising fromthese are problems associated with the inefficient use of input resources, economically significant yield losses,excessive energy costs, gaseous or percolatory release of chemicals into the environment, unacceptable long-term retention of chemicals and a less-than-optimal growing environment. The environmental impact of cropproduction systems is substantial. In this millennium, three important issues for scientists and agrariancommunities to address are the need to efficiently manage agricultural land for sustainable production, the maintenance of soil and water resources and the environmental quality of agricultural land.Precision agriculture (PA) aims to identify soil and crop attribute variability, and manage it in an accurate and timely manner for near-optimal crop production. Unlike conventional agricultural management where an averaged whole-field analytical result is employed for decision-making, management in PA is based on site-specific soil and crop information. That is, resource application and agronomic practices are matched with variation in soil attributes and crop requirements across a field or management unit. Conceptually PA makes economic and environmental sense, optimising gross margins and minimising the environmental impact of crop production systems. Although the economic justification for PA can be readily calculated, concepts such as environmental containment and the safety of agrochemicals in soil are more difficult to estimate. However,it may be argued that if PA lessens the overall agrochemical load in agricultural and non-agricultural environments, then its value as a management system for agriculture increases substantially.Management using PA requires detailed information of the spatial and temporal variation in crop yield components, weeds, soil-borne pests and attributes of physical, chemical and biological soil fertility. However,detailed descriptions of fine scale variation in soil properties have always been difficult and costly to perform.Sensing and scanning technologies need to be developed to more efficiently and economically obtain accurate information on the extent and variability of soil attributes that affect crop growth and yield. The primary aim of this work is to conduct research towards the development of an 'on-the-go' proximal soil pH and lime requirement sensing system for real-time continuous management of acid soil. It is divided into four sections.Section one consists of two chapters; the first describes global and historical events that converged into the development of precision agriculture, while chapter two provides reviews of statistical and geostatistical techniques that are used for the quantification of soil spatial variability and of topics that are integral to the concept of precision agriculture. The review then focuses on technologies that are used for the complete enumeration of soil, namely remote and proximal sensing.Section two comprises three chapters that deal with sampling and mapping methods. Chapter three provides a general description of the environment in the experimental field. It provides descriptions of the field site,topography, soil condition at the time of sampling, and the spatial variability of surface soil chemical properties. It also described the methods of sampling and laboratory analyses. Chapter four discusses some of the implications of soil sampling on analytical results and presents a review that quantifies the accuracy,precision and cost of current laboratory techniques. The chapter also presents analytical results that show theloss of information in kriged maps of lime requirement resulting from decreases in sample size. The messageof chapter four is that the evolution of precision agriculture calls for the development of 'on-the-go' proximal soil sensing systems to characterise soil spatial variability rapidly, economically, accurately and in a timely manner. Chapter five suggests that for sparsely sampled data the choice of spatial modelling and mapping techniques is important for reliable results and accurate representations of field soil variability. It assesses a number of geostatistical methodologies that may be used to model and map non-stationary soil data, in this instance soil pH and organic carbon. Intrinsic random functions of order k produced the most accurate and parsimonious predictions of all of the methods tested.Section three consists of two chapters whose theme pertains to sustainable and efficient management of acid agricultural soil. Chapter six discusses soil acidity, its causes, consequences and current management practices.It also reports the global extent of soil acidity and that which occurs in Australia. The chapter closes by proposing a real-time continuous management system for the management of acid soil. Chapter seven reports results from experiments conducted towards the development of an 'on-the-go' proximal soil pH and lime requirement sensing system that may be used for the real-time continuous management of acid soil. Assessment of four potentiometric sensors showed that the pH Ion Sensitive Field Effect Transistor (ISFET)was most suitable for inclusion in the proposed sensing system. It is accurate and precise, drift and hysteresis are low, and most importantly it's response time is small. A design for the analytical system was presented based on flow injection analysis (FIA) and sequential injection analysis (SIA) concepts. Two different modes of operation were described. Kinetic experiments were conducted to characterise soil:0.01M CaCl2 pH(pHCaCl2) and soil:lime requirement buffer (pH buffer) reactions. Modelling of the pH buffer reactions described their sequential, biphasic nature. A statistical methodology was devised to predict pH buffer measurements using only initial reaction measurements at 0.5s, 1s, 2s and 3s measurements. The accuracy of the technique was 0.1pH buffer units and the bias was low. Finally, the chapter describes a framework for the development of a prototype soil pH and lime requirement sensing system and the creative design of the system.The final section relates to the management of acid soil by liming. Chapter eight describes the development of empirical deterministic models for rapid predictions of lime requirement. The response surface models are based on soil:lime incubations, pH buffer measurements and the selection of target pH values. These models are more accurate and more practical than more conventional techniques, and may be more suitably incorporated into the spatial decision-support system of the proposed real-time continuous system for the management of acid soil. Chapter nine presents a glasshouse liming experiment that was used to authenticate the lime requirement model derived in the previous chapter. It also presents soil property interactions and soil-plant relationships in acid and ameliorated soil, to compare the effects of no lime applications, single-rate and variable-rate liming. Chapter X presents a methodology for modelling crop yields in the presence of uncertainty. The local uncertainty about soil properties and the uncertainty about model parameters were accounted for by using indicator kriging and Latin Hypercube Sampling for the propagation of uncertainties through two regression functions; a yield response function and one that equates resultant pH after the application of lime. Under the assumptions and constraints of the analysis, single-rate liming was found to be the best management option

    DEVELOPMENT OF NOVEL SENSORS FOR ANIONS OF ENVIRONMENTAL INTEREST

    Get PDF
    A range of ion-selective electrodes (ISEs) for the determination of nitrate has been produced based upon rubbery membranes having covalently bound betaine salt sensor molecules. The best performing electrode contained N,N,N-triallyl leucine betaine (6.5 % m/m) covalently bound to polystyrene-block-polybutadiene-block-polystyrene (SBS) (43.5% m/m), with 2-nitrophenyIoctyl ether (2-NPOE) as solvent mediator (40 % m/m) and dicumyl peroxide (DCP) as free radical initiator (10% m/m). The Nemstian slope was -59.1 mV per decade over a linear range of 1 x 10'^-5 x 10"^ mol dm'^ nitrate, a limit of detection of 0.34 pmol dm'^ nitrate and a selectivity coefiBcient for nitrate against chloride ( ^ ° N 0 3 . , CI-) of 3.4 X IQ"^. The speed of response was less than 1 minute over the linear Nerastian range. The lifetime in the laboratory exceeded 5 months with no potentiometric drift over the linear Nemstian range. Temperafure dependency (0-25°C), pH range (2-12) and a selection of interfering anions (F', CI", B r , T, SCN, CIO4", HCO3", NO2", S04^ phthalate) were studied. A field evaluation by continuous immersion in both agricultural drainage weirs and a river were undertaken. The nitrate results obtained with the ISEs compared very favourably (R^=0.99) with those obtained with a segmented-flow instmment in a concentration range 0.47-16 ppm nitrate-N. The electrodes perfonned continuously for over 5 months in mnoff water from a field and over 2 months in river water. The ISEs did not require recalibration and no deterioration in performance or fouling of the membrane surface was observed. A preliminary investigation of a phosphate ionophore based upon a heterocyclic macrocycle was also undertaken. This work, based on previous literature, resulted in a dibasic phosphate electrode having a linear Nemstian range from 3 x lO"'' to 1 x 10"^ mol dm'^, a slope of -27 mV per activity decade and a Umit of detection of 1 x 10"^ mol dm"^ HP04^".Institute of Grassland and Environmental Research, North Wyke, Okehampto
    • …
    corecore