4,200 research outputs found

    A Case for Time Slotted Channel Hopping for ICN in the IoT

    Full text link
    Recent proposals to simplify the operation of the IoT include the use of Information Centric Networking (ICN) paradigms. While this is promising, several challenges remain. In this paper, our core contributions (a) leverage ICN communication patterns to dynamically optimize the use of TSCH (Time Slotted Channel Hopping), a wireless link layer technology increasingly popular in the IoT, and (b) make IoT-style routing adaptive to names, resources, and traffic patterns throughout the network--both without cross-layering. Through a series of experiments on the FIT IoT-LAB interconnecting typical IoT hardware, we find that our approach is fully robust against wireless interference, and almost halves the energy consumed for transmission when compared to CSMA. Most importantly, our adaptive scheduling prevents the time-slotted MAC layer from sacrificing throughput and delay

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Wireless Sensor Network MAC Energy -- efficiency Protocols: A Survey

    Full text link
    Energy Efficiency in wireless sensor networks is an important topic in which the nodes rely on battery power, and efficient energy usage is a key issue for sensitive applications that require long working times. This stimulates many scientists at all levels of communication protocols Medium Access Control (MAC) who control the use of the wireless transmitter and receiver unit to create new protocols. Many protocols were suggested that primarily take energy efficiency as the primary objective of sustaining the function of the network for as long as possible into account with different objectives for wireless sensor networks. This paper will look at some of these energy efficiency protocols.Comment: 5 pages. 2020 21st International Arab Conference on Information Technology (ACIT

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Implementation and evaluation of the sensornet protocol for Contiki

    Get PDF
    Sensornet Protocol (SP) is a link abstraction layer between the network layer and the link layer for sensor networks. SP was proposed as the core of a future-oriented sensor node architecture that allows flexible and optimized combination between multiple coexisting protocols. This thesis implements the SP sensornet protocol on the Contiki operating system in order to: evaluate the effectiveness of the original SP services; explore further requirements and implementation trade-offs uncovered by the original proposal. We analyze the original SP design and the TinyOS implementation of SP to design the Contiki port. We implement the data sending and receiving part of SP using Contiki processes, and the neighbor management part as a group of global routines. The evaluation consists of a single-hop traffic throughput test and a multihop convergecast test. Both tests are conducted using both simulation and experimentation. We conclude from the evaluation results that SP's link-level abstraction effectively improves modularity in protocol construction without sacrificing performance, and our SP implementation on Contiki lays a good foundation for future protocol innovations in wireless sensor networks

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities
    • …
    corecore