130 research outputs found

    Direct-sequence spread-spectrum modulation for utility packet transmission in underwater acoustic communication networks

    Get PDF
    This thesis investigates the feasibility and performance of using Direct-Sequence Spread-Spectrum (DSSS) modulation for utility-packet transmission in Seaweb underwater wireless acoustic communications networks. Seaweb networks require robust channel-tolerant utility packets having a low probability of detection (LPD) and allowing for multi-user access. MATLAB code simulated the DSSS transmitter and receiver structures and a modeled channel impulse response represented the underwater environment. The specific modulation scheme implemented is direct-sequence, differentially encoded binary phase-shift keying (DS-DBPSK) with quadrature spreading. Performance is examined using Monte Carlo simulation. Bit error rates and packet error rates for various signal-to-noise ratios and channel conditions are presented and the use of a RAKE receiver, forward error-correction coding and symbol interleaving are examined for improving system performance.Lieutenant Commanader, Canadian NavyApproved for public release; distribution is unlimited

    Performance Analysis of CDMA System Using Direct Sequence Spread Spectrum and Frequency Hopping Spread Spectrum Techniques

    Get PDF
    In digital communication system, selection of the most appropriate access method is a challenging task. To meet this challenge we have to be familiar with the technologies and system architectures on the CDMA digital cellular system. The demand for high speed mobile wireless communications is rapidly growing. DS-CDMA plays the best competitive role for achieving the high data capacity and spectral efficiency requirements for communication systems. This paper represents the performance analysis of CDMA using direct sequence and frequency hopping technique in a Fadin

    Ultra-low-cost and ultra-low-power, miniature acoustic modems using multipath tolerant spread-spectrum techniques

    Get PDF
    To enable long-term, large-scale, dense underwater sensor networks or Internet of Underwater Things (IoUT) this research investigates new novel waveforms and experimental prototypes for robust communications on ultra-low-cost and ultra-low-power, miniature acoustic modems. Spread-spectrum M-ary orthogonal signalling (MOS) is used with symbols constructed from subsequences of long pseudorandom codes. This decorrelates multipath signals, even when the time-spread spans many symbols, so they present as random noise. A highly cost-engineered and miniaturised prototype acoustic modem implementation was created, for the 24 kHz–32 kHz band, with low receive power consumption (12.5 mW) and transmit power of 3 km in lakes and >2 km in the sea including severe multipath. In lake testing of a 7-node, multi-hop, sensor network with TDA-MAC protocol, packet delivery was near 100% for all nodes. Trials of acoustic sensor nodes in the North Sea achieved 99.5% data delivery over a 3-month period and a wide range of sea conditions. Modulation and hardware have proven reliable in a variety of underwater environments. Competitive range and throughput with low cost and power are attractive for large-scale and long-term battery-operated networks. This research has delivered a viable and affordable communication technology for future IoUT applications

    Acoustic indoor localization employing code division multiple access

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2010Includes bibliographical references (leaves: 107-108)Text in English; Abstract: Turkish and Englishxvi, 160 69 leavesIndoor localization becomes a demand that comes into prominence day by day. Although extensively used outdoor location systems have been proposed, they can not operate in indoor applications. Hence new investigations have been carried on for accurate indoor localization in the last decade. In this thesis, a new indoor location system, that aims to locate an entity within an accuracy of about 2 cm using ordinary and inexpensive off-the-shelf devices, has been proposed and an implementation has been applied to evaluate the system performance. Therefore, time of arrival measurements of acoustic signals, which are binary phase shift keying modulated Gold code sequences using direct sequence spread spectrum technique, are done. Direct sequence-code division multiple access is applied to perform simultaneous accurate distance measurements and provides immunity to noise and interference. Two methods have been proposed for the location estimation. The first method takes the average of four location estimates obtained by trilateration technique. In the second method, only a single robust position estimate is obtained using three distances while the least reliable fourth distance measurement is not taken into account. The system performance is evaluated at positions from two height levels using two sets of variables determined by experimental results. The precision distributions in the work area and the precision versus accuracy plots depict the system performance for different sets of variables. The proposed system provides location estimates of better than 2 cm accuracy within 99% precision. Eventually, created graphical user interface provides a user friendly environment to adjust the parameters

    差分混沌移位键控在水声通信中的应用

    Get PDF
    水声信道作为目前已知最严酷、最复杂的无线通信信道之一,具有强多途干扰、时—频率双扩展、高噪、带宽窄等特征。水声信道的时变特性,使得估计与跟踪信道很困难,因此,研究无需信道估计与均衡的非相干稳健水声通信调制方法具有重要的意义。首先介绍了基于正交频分复用(OFDM)和扩频调制的水声调制技术的研究进展,然后,分析了差分混沌移位键控在水声信道下的可行性,提出了两种基于OFDM的多载波差分混沌移位键控方案,给出两个方案的调制解调器原理。在时—频双扩展信道和水声信道下,对两个方案进行了性能仿真和分析。性能结果表明所提出的方案在水声信道下具有良好的稳健性

    Multiuser Coding and Signal Processing in a Low Power Sensor Network

    Get PDF
    Backscatter communication system is a wireless communication system that is used by both academic community and industry circles in recent years. This communication system only requires ultra-low power usage and simple design of the sensors. This project is using backscatter communication system to transmit data with backscatter tags. The method we used is semi-passive backscatter communication. This project focuses on transmitting signals with multiple sensors so there is a problem about distinguishing the signal reflected by different nodes. We modulated the transmitting digital signal with Walsh function to solve the problem of separating the signals between different nodes. By using spread sequences we have interferences between different signals from each node and also from the bouncing and direct path signals. We want to estimate the channel between the sensors to suppress the effect of the interferences. In addition, to make the system more practical with multiple usages and applications, we made the receiver and the illuminator on a moving platform. With this dynamic system it is important to deal with the interference of bouncing signals by analyzing the Doppler shift of received signal. With these approaches the purpose of this project is having the reader of the sensor network to communicate with multiple nodes with backscatter communication. This system can be used on variety of applications such as environmental sensing, signal recording and data communicating with less power usage compared with traditional communication systems. Advisor: Andrew Harm

    Characterisation of long-range horizontal performance of underwater acoustic communication

    Get PDF
    Underwater acoustic communication is a rapidly progressing field of technology, largely due to recent advances in low cost and power efficient digital signal processors. Unfortunately, the unpredictable and time varying physical properties of the underwater acoustic channel reduce communication reliability over long ranges. This study sought to characterise the performance of horizontal underwater acoustic data communication in various scenarios with particular application to subsea monitoring and control systems.To fulfil the experimental needs, two custom-built high frequency ambient noise recorder and modem control units were developed to operate with commercial underwater acoustic modems. Additionally, an underwater acoustic communication simulator based on the Bellhop propagation model was developed for Matlab, capable of producing performance predictions in both spatial and temporal studies. A series of short-term trials were conducted to determine the limitations of modem performance over different ranges. These trials included shallow water studies off the coast of Perth, Western Australia (D < 30 m), and a French deep water trial (D ≤ 1000 m) which used stand-alone modems. Experimental findings were compared to predictions obtained using two-dimensional range-depth performance simulations.A long-term investigation of the environmental influences on modem reliability was carried out off the coast of Perth in approximately 100 m of water. This involved simultaneously collecting environmental and modem performance data for over 16 days. The signal to noise ratio remained high for the duration of the trial so modem performance fluctuations could be attributed to changes in channel propagation. Using multiple linear regression, the measured environmental parameters were correlated with the observed modem performance and their contributions to an overall fitting curve were calculated. It was determined that the sound speed profile, in addition to the sea surface roughness, contributed strongly to the fitting curve, with a weaker contribution from the measured signal to noise ratio. This result was confirmed by performing temporal simulations which incorporated more detailed time-dependant environmental parameters. By progressively adding more parameters to the simulator including ambient noise, wave height and the sound speed profile, simulations provided more accurate predictions of the observed performanceOverall, the horizontal performance of underwater acoustic communication was characterised in several scenarios from a series of experimental and numerical investigations. Additionally, the developed simulator was shown to be an effective and flexible tool for predicting the performance of an underwater acoustic communication system. The results and tools discussed in this thesis provide an extensive investigation into the factors influencing horizontal underwater acoustic communication. The analysis demonstrates that whilst underwater acoustic communication can be effective, it is not yet a viable alternative to cabled telemetry for long-range subsea monitoring and control applications, where reliability is crucial. Underwater acoustic communication would best be suited as a non-critical or backup method for continuous monitoring systems until channel prediction and equalisation techniques are further refined
    corecore