40 research outputs found

    Untersuchung von Methoden zur Früherkennung von Bränden in Wald- und Vegetationsgebieten

    Get PDF
    Dissertation of Chief Fire Officer Dipl.-Ing. M. Sc. Dirk Schneider for achieving the academic degree of Dr.-Ing. of the Faculty of Forestry, Geo and Hydro Sciences of the Technical University of Dresden with the title: “Early Detection of Fires in Areas of Forests and other Vegetation” Fires threaten and destroy extensive forest and vegetation areas every year, endangering people and its settlements, leading to significant pressures on the environment and destroying considerable high value resources. The expenditures in manpower, logistics and finance for safety in general and fire suppression in particular are considerable. To minimize these varied and extensive consequences of fires, early detection is desirable, making an effective firefighting strategy possible. This early detection is particularly of importance in remote, large-scale areas and territories not under observation by the population, especially if they are subject to an increased or high vulnerability. After investigating and considering the causes, that repeatedly lead to forest fires not only in the Federal Republic of Germany but worldwide, the author describes different traditional and modern methods for early detection of fires in areas of forests and other vegetation. Furthermore the author develops a performance item catalog, basing on practical and economic experience, by which not only novel early warning systems can be developed, but the systems and methods described in the present study also are assessed and compared. The comparison of various early warning systems is guided not only by means of technical features, but also from an economic perspective. Financial calculation methods, staff costs and the peculiarities in public administration are particularly noted. The author also shows the different parameters that influence the selection of an appropriate early warning system for the detection of forest and vegetation areas. It becomes clear that it is the scene of the incident with its specific parameters that determines the most useful early warning system.:Vorwort 3 Abstract 6 Inhaltsverzeichnis 7 1 Einleitung 12 2 Ziel- und Aufgabenstellung 17 3 Vorbetrachtungen und Stand des Wissens 18 3.1 Die Waldbrandsituation 18 3.2 Brandursachen in Wäldern und Vegetationsgebieten 21 3.3 Methoden der Waldbrandfrüherkennung 27 3.3.1 Herkömmliche Methoden der Waldbrandfrüherkennung 27 3.3.1.1 Notrufmeldung durch die Öffentlichkeit 27 3.3.1.2 Feuerwachtürme 29 3.3.1.3 Luftbeobachtung 35 3.3.1.3.1 Feuerwehrflugdienst Niedersachsen 39 3.3.1.3.2 Luftrettungsstaffel Bayern 44 3.3.1.3.3 Avialesookhrana 47 3.3.2 Moderne Systeme 50 3.3.2.1 Terrestrische Systeme 51 3.3.2.1.1 Firewatch 53 3.3.2.1.2 Firehawk Forestwatch 69 3.3.2.1.3 Integriertes Waldbrand-Beobachtungssystem (IPNAS) 72 3.3.2.1.4 FireALERT 76 3.3.2.1.5 Fire Wall 83 3.3.2.1.6 Radio-Akustisches-Sondierungssystem (RASS) 87 3.3.2.1.7 Mobile Biological Sensors (MBS) 93 3.3.2.1.8 Light Detection And Ranging (LIDAR) 101 3.3.2.1.9 Golden Eye 104 3.3.2.2 Aeronautische Systeme 108 3.3.2.2.1 National Infrared Operations Program (NIROPS) 108 3.3.2.2.2 Wildfire Airborne Sensor Program (WASP) 116 3.3.2.2.3 Unmanned Aerial Vehicles (UAV) 121 3.3.2.2.4 Luftschiffe 130 3.3.2.3 Orbitale Systeme 135 3.3.2.3.1 Nomos 137 3.3.2.3.2 Bispectral Infrared Detection (BIRD) 141 3.3.2.3.3 Moderate Resolution Imaging Spectroradiometer (MODIS) 146 3.3.2.3.4 Polar Operational Environmental Satellite Project (POES) 151 4 Material und Methoden 154 4.1 Material 155 4.1.1 Fachliteratur und Forschungsberichte 155 4.1.2 Fachberichte internationaler staatlicher Dienststellen 155 4.1.3 Technische Betriebsunterlagen von Herstellern 155 4.2 Methoden 156 4.2.1 Gespräche und Interviews 156 4.2.2 Praxisorientiertes Erfahrungs- und Anwenderwissen 156 4.2.3 Vergleich zur Bewertung der technischen Leistungsfähigkeit 157 4.2.4 Wirtschaftlichkeit 159 4.2.4.1 Wirtschaftlichkeit unter betriebs- und finanzwirtschaftlicher Betrachtung 160 4.2.4.1.1 Die Wirtschaftlichkeitsanalyse 161 4.2.4.1.1.1 Wirtschaftlichkeitsrechnung 161 4.2.4.1.1.1.1 Statische Verfahren 161 4.2.4.1.1.1.1.1 Kosten- und Gewinnvergleichsrechnung 162 4.2.4.1.1.1.1.2 Rentabilitätsvergleichsrechnung 162 4.2.4.1.1.1.1.3 Amortisationsvergleichsrechnung 162 4.2.4.1.1.1.2 Dynamische Verfahren 163 4.2.4.1.1.1.2.1 Kapitalwertmethode 163 4.2.4.1.1.1.2.2 Internal Rate of Return 164 4.2.4.1.1.1.2.3 Annuitätenmethode 164 4.2.4.1.1.2 Kosten-Nutzen-Analyse 165 4.2.4.1.1.3 Nutzwertanalyse 165 4.2.4.2 Wirtschaftlichkeit in der öffentlichen Verwaltung 166 4.2.4.3 Personalkosten 170 4.2.4.4 Kostenvergleich verschiedener Früherkennungssysteme 172 5 Entwicklung eines Leistungspositionskataloges 174 5.1 Funktionale Anforderungen 176 5.1.1 Melde- und Dispositionszeiten 176 5.1.1.1 Frühzeitige Branderkennung 176 5.1.1.2 Schnelle Meldewege 177 5.1.1.3 Automatisierte Ortsbestimmung 177 5.1.2 Einsatzbereitschaft 177 5.2 Nicht-Funktionale Anforderungen 178 5.2.1 Zuverlässigkeit 178 5.2.1.1 Geringe Fehlalarm- und Detektionsverlustrate 178 5.2.1.2 Wetterunabhängigkeit 179 5.2.1.3 Temperaturunabhängigkeit 179 5.2.1.4 UV-Beständigkeit 179 5.2.1.5 Elektromagnetische Verträglichkeit 179 5.2.1.6 Reduktion von Täuschungsalarmen 180 5.2.1.7 Zwei-Linien-Abhängigkeit 180 5.2.2 Leistungsvermögen 181 5.2.2.1 Automatisches Wirken 181 5.2.2.2 Einsatzinformationsprojektion 181 5.2.3 Benutzbarkeit 181 5.2.3.1 Bedienbarkeit 181 5.2.3.2 Intuitive Erfassbarkeit 182 5.2.4 Portierung und Übertragung 182 5.2.4.1 Leitstellenaufschaltung 182 5.2.4.2 Geoinformationssystem 182 5.2.4.3 Schnittstelle für Wetterinformationen 183 5.2.4.4 Kommunikationsredundanz 183 5.2.4.5 Kompatibilität 183 5.2.4.6 Ergonomie, Design und Ästhetik 183 5.3 Sicherheitsanforderungen 184 5.3.1 Umweltsicherheit 184 5.3.1.1 Gesundheitsschutz 184 5.3.1.2 Umweltverträglichkeit 184 5.3.2 Technische Betriebssicherheit 185 5.3.2.1 Systemstabilität 185 5.3.2.2 Unabhängigkeit von Dritten 185 5.3.2.3 Zwei-Wege-Energieversorgung 185 5.3.2.4 Umweltresistenz 186 5.4 Wirtschaftlichkeit 186 5.4.1 Wartung und Instandsetzung 186 5.4.2 Erweiterbarkeit 186 5.5 Der Leistungspositionskatalog 187 6 Ergebnisse 188 6.1 Die Notwendigkeit des Einsatzes von Früherkennungssystemen 189 6.2 Grundlegende Bewertung der Leistungsfähigkeit 190 6.2.1 Public Report (Notrufmeldung durch die Öffentlichkeit) 192 6.2.2 Feuerwachtürme 193 6.2.3 Luftbeobachtung 193 6.2.4 Unmanned Aerial Vehicles (UAV) 194 6.2.5 Luftschiffe 195 6.2.6 Terrestrische CCTV-Technik 196 6.2.7 Terrestrische OSS-Videotechnik 196 6.2.8 Erdgebundene Infrarotsysteme 197 6.2.9 Erdgebundene Temperatursensoren 197 6.2.10 Light Detection And Ranging (LIDAR) 198 6.2.11 Sonic Detection and Ranging (SODAR) und Radio-Akustische-Sondierungssysteme (RASS) 199 6.2.12 Mobile biologische Sensoren (MBS) 200 6.2.13 Satellitentechnologie 201 6.2.14 Zusammenfassung der grundlegenden Bewertung 201 6.3 Bewertung nach dem Leistungspositionskatalog 204 6.3.1 Erfüllung der funktionalen Anforderungen 205 6.3.2 Erfüllung der nicht-funktionalen Anforderungen 206 6.3.3 Erfüllung der Sicherheitsanforderungen 206 6.3.4 Betrachtung der Wirtschaftlichkeit 207 6.3.5 Public Report (Notrufmeldung durch die Öffentlichkeit) 207 6.3.6 Feuerwachturm 209 6.3.7 Luftbeobachtung 212 6.3.8 Unmanned Aerial Vehicles (UAV) 213 6.3.9 Luftschiffe 216 6.3.10 CCTV-Technik 218 6.3.11 OSS-Videotechnik 220 6.3.12 Erdgebundene Infrarotsysteme 222 6.3.13 Erdgebundene Temperatursysteme 224 6.3.14 Light Detection And Ranging (LIDAR) 226 6.3.15 Sonic Detection and Ranging (SODAR) und Radio-Akustische-Sondierungssysteme (RASS) 228 6.3.16 Mobile biologische Sensoren (MBS) 229 6.3.17 Satellitentechnologie 232 6.3.18 Zusammenfassung der Bewertung nach dem Leistungspositionskatalog 235 6.4 Bewertung anhand komplexer Kriterien 243 6.5 Die Vulnerabilität von Ökosystemen 244 6.6 Kostenvergleich ausgewählter Früherkennungssysteme 246 6.7 Bewertung der betriebs- und finanzwirtschaftlichen Methoden 257 6.8 Wirtschaftlichkeit und beeinflussende Nebenaspekte 258 6.9 Die Anwendung von Analysemethoden 261 7 Diskussion 263 7.1 Grundlagen und Methoden der Waldbrandfrüherkennung 263 7.2 Die Komplexität der Findung eines geeigneten Früherkennungssystems 276 7.3 Der Kostenvergleich von Früherkennungssystemen 276 7.4 Allgemeine Wirtschaftlichkeit 278 7.5 Technische Wirtschaftlichkeit 278 7.6 Finanz- und betriebswirtschaftliche Methoden 279 8 Schlussfolgerungen 280 8.1 Lehre zur Bedeutung von Wald- und Vegetationsgebieten 280 8.2 Prävention und Aufklärung 281 8.3 Schutzbedarf feuerunabhängiger Ökosysteme 282 8.4 Notwendigkeit des Einsatzes von Früherkennungssystemen 282 8.5 Der Einfluss der Empfindlichkeit eines Ökosystems 283 8.6 Technische Weiterentwicklung des Systems Feuerwachturm 284 8.7 Erfüllung funktionaler und nicht-funktionaler Anforderungen 285 8.8 Die Gewährleistung der Umweltsicherheit 286 8.9 Unzulässigkeit der Verwendung von Tieren als Früherkennungssystem 286 8.10 Die Wirtschaftlichkeit von Früherkennungssystemen 287 8.11 Die interdisziplinäre Nutzung zur Senkung von Kosten 288 8.12 Der Leistungspositionskatalog als Werkzeug 288 8.13 Orbitaler Systemverbund für den globalen Umweltschutz 289 8.14 Minimierung von Fehlalarmen durch Zwei-Linien-Abhängigkeit 290 8.15 Kombination unterschiedlicher Methoden zum Erhalt eines Idealsystems 291 8.16 Örtliche Bedingungen bestimmen das Früherkennungssystem 292 9 Zusammenfassung 293 10 Quellen- und Literaturverzeichnis (numerisch) 296 11 Quellen- und Literaturverzeichnis (alphabetisch) 338 Anhang I: Abkürzungsverzeichnis 344 Anhang II: Bilderverzeichnis 348 Anhang III: Tabellenverzeichnis 353 Anhang IV: Index 35

    Potentiale von Laserscannern zur Phänotypisierung von Pflanzen für den Einsatz im Hochdurchsatz-Screening

    Get PDF
    Die Züchtung hochertragreicher Pflanzen ist von essentieller Wichtigkeit für die Ernährung der Weltbevölkerung. Diese Züchtung geht einher mit einer genauen Analyse der Interaktion zwischen pflanzlichem Genom und Umwelteinflüssen, die gemeinsam den Phänotyp der Pflanze bilden. Phänotypisierung beschreibt den Vorgang der Vermessung, um die Größe von Pflanzen, Wachstum, Leistungsfähigkeit, Architektur und Zusammensetzung mit einer bestimmten Genauigkeit in verschiedenen Skalen mit verschiedenen Sensoren, vom Organ bis hin zum Bestand zu bestimmen. Ein neuer Sensor in diesem Feld ist der Laserscanner. Durch Laserscanning lässt sich die dreidimensionale Geometrie der Pflanzenoberfläche vermessen. Das Ergebnis ist eine punktweise Beschreibung der 3D-Koordinaten auf der Oberfläche. Im Rahmen dieser Arbeit wurde die Genauigkeit der Lasermessungen mit konventionellen Methoden zur Vermessung von Pflanzen verglichen. In verschiedenen Experimenten wurde die Anwendbarkeit des Sensors für die Verfolgung von Wachstum auf Pflanzen und Organebene gezeigt. Die Messung von Wachstum bedarf wiederholter Messungen in kurzen zeitlichen Abständen. Diese Messungen mit hohem Durchsatz erzeugen sehr große Datenmengen. Dabei ist die manuelle Auswertung zeit- und kostenintensiv. Durch Entwicklung einer Auswertemethode auf Grundlage von punktweisen Oberflächenmerkmalen und Support Vector Machines konnte die Segmentierung und Parametrisierung der Organe automatisiert werden. Dabei wurden verschiedene Auflösungen der Punktwolke getestet um eine sensorunabhängige Anwendbarkeit des Algorithmus zu gewährleisten. Das benutzte Lasertriangulations-verfahren beruht auf der Emittierung einer Laserlinie und der Aufnahme der Reflektion durch eine Kamera. Dies ermöglicht die Ableitung dreidimensionaler Informationen. Die Genauigkeit dieser Messung hängt unter anderem von der Interaktion des Laserstrahls mit dem pflanzlichen Gewebe ab. In verschiedenen Experimenten wurde die Interaktion mit Chlorophyll, das Eindringverhalten in die Epidermis, der Einfluss des physiologischen Stadiums, sowie die Interaktion mit Pflanzenkrankheiten (Mehltau) erörtert und quantifiziert. Das im Rahmen dieser Arbeit benutzte Lasermesssystem setzt sehr hohe Investitionskosten voraus. Daher wurden zwei alternative Low-Cost 3D-Messsysteme evaluiert. Diese Evaluierung erfolgte durch die Vermessung hochpräziser Testobjekte, sowie durch die Messung und Ableitung von phänotypischen Parametern an Getreide- und Rübenpflanzen. Es wurde deutlich, dass sich das investitionsintensive Messsystem je nach fokussiertem Parameter durch ein Low-Cost Systems ersetzen lässt. Diese Arbeit und die begleitenden Publikationen führen das Laserscanning als hochgenaues Werkzeug zur Ableitung phänotypischer Parameter bei Pflanzen ein. Die Anwendbarkeit als Ersatz zu konventionellen Messmethoden wurde gezeigt. Weiterhin wurden Methoden zur automatisierten Ableitung phänotypisch wichtiger Parameter entwickelt und evaluiert. Die Interaktion zwischen Laserstrahl und pflanzlicher Oberfläche wurde untersucht und quantifiziert. Abschließend wurden Low-Cost Systeme als Ersatz für das benutzte investitionsintensive Industriemesssystem untersucht. Laserscanning stellt ein effizientes, genaues und evaluiertes Messsystem dar, welches die Anforderungen zur Phänotypisierung von Pflanzen erfüllt und zur Bearbeitung phänotypischer Aufgaben benutzt werden kann.Potential of laserscanners for plant phenotyping for use in high-throughput screening Breeding of plants with high yield is essential for feeding future world population. Thus, breeding comes together with a detailed analysis of the interaction between plant genotype and environmental influences, which creates the plant phenotype. Phenotyping describes the act of measuring the plant to derive a measurement for size, growth, fitness, architecture and composition according to a specific accuracy at different scales with different sensors from the organ to the plot. A new sensor, the laserscanner, has been introduced in the field of plant phenotyping. Using laserscanning the three dimensional geometry of the plant surface can be measured. The result is a pointwise description of the 3D-coordinate of the surface. One part of this work is the comparison of the accuracy of the laserscanner with conventional measuring techniques. Applicability has been shown for tracking of growth on plant and organ level. Measuring of growth requires repeated measurements at short time intervals. This high throughput measuring generates huge amounts of data. Manual analysis is time intensive and costly. By developing an analysis method using pointwise surface features and support vector machines the process of segmentation and parameterization of plant organs could be automated. Different scan resolutions have been tested to proof a sensor independent usability. The technique of laser triangulation uses an emitted laser line and the recording of its reflection by a camera. This enables the derivation of three dimensional information (laser triangulation). The accuracy of this measurement is affected by the interaction between laser ray and plant tissue. Different experiments show and quantify the interaction with chlorophyll, the penetration of the laser into the epidermis layer, the influence of the physiological state of the plant as well as the interaction with plant diseases (mildew). The used laserscanning system requires high invocation cost. Therefore alternative low-cost methods have been evaluated. This evaluation was performed by measuring highly accurate test specimen, as well as measuring and derivation of phenotypic parameters from cereal and sugar beet plants. It was shown that an expensive measuring system could be replaced, depending on the focused parameter, by a low-cost system. This work and accompanying publications introduce the laserscanner as a highly accurate tool for the derivation of phenotypic parameters from plants. The applicability as a replacement for conventional measuring systems has been shown. Furthermore, methods for the automated derivation of phenotypic parameters have been developed and evaluated. The interaction between laser ray and plant tissue has been evaluated and quantified. Finally low-cost sensors have been analyzed as an alternative for the expensive industrial measuring system. Thus, laserscanning depicts an efficient, accurate and evaluated measuring system that meets the requirements of plant phenotyping to solve phenotypic tasks

    Bodenbiologische Bewertung von Boden-Dauerbeobachtungsflächen (BDF) anhand von Lumbriciden

    Get PDF
    BODENBIOLOGISCHE BEWERTUNG VON BODEN-DAUERBEOBACHTUNGSFLÄCHEN (BDF) ANHAND VON LUMBRICIDEN Bodenbiologische Bewertung von Boden-Dauerbeobachtungsflächen (BDF) anhand von Lumbriciden (Rights reserved) ( -

    Abschlussbericht fĂĽr die Jahre 1996 - 2007 mit Berichtsband fĂĽr die Jahre 2005 - 2007 [mit CD]

    Get PDF
    Sonderforschungsbereich 461 "Starkbeben : Von geowissenschaftlichen Grundlagen zu Ingenieurmaßnahmen" von Juli 1996 bis Dezember 2007 an der Universität Karlsruhe. Forschungsfeld des SFB 461 waren Starkbeben mit einem regionalen Fokus auf den Vrancea-Ereignissen in Rumänien, wo sie immer wieder starke Schäden verursachten. Diese Risiken und die Gewissheit, dass Rumänien und seine Städte wieder von einem Starkbeben betroffen werden, bildeten die Motivation der Arbeit, erkennend, dass Schadensminderung mit moderner Wissenschaft und Technik sowie mit konsequenter Implementierung des Wissens möglich und aussichtsreich ist

    Sonderforschungsbereich 528 - Textile Bewehrungen zur bautechnischen Verstärkung und Instandsetzung - Abschlussbericht: Sonderforschungsbereich 528 - Textile Bewehrungen zur bautechnischen Verstärkung und Instandsetzung - Abschlussbericht: gekürzte Fassung

    Get PDF
    Nach zwölf Jahren endete am 30.6.2011 die Förderung des Sonderforschungsbereiches 528 durch die Deutsche Forschungsgemeinschaft (DFG). Der Abschlussbericht fasst die zentralen Ergebnisse des Sonderforschungsbereiches auf dem Gebiet der Verstärkung und Instandsetzung mit textilbewehrtem Beton über die gesamte Laufzeit des SFBs zusammen. Dazu berichten die einzelnen Teilprojekte über ihre aktuellen Erkenntnisse aus der letzten Förderperiode

    Potentiale von Laserscannern zur Phänotypisierung von Pflanzen für den Einsatz im Hochdurchsatz-Screening

    Get PDF
    Die Züchtung hochertragreicher Pflanzen ist von essentieller Wichtigkeit für die Ernährung der Weltbevölkerung. Diese Züchtung geht einher mit einer genauen Analyse der Interaktion zwischen pflanzlichem Genom und Umwelteinflüssen, die gemeinsam den Phänotyp der Pflanze bilden. Phänotypisierung beschreibt den Vorgang der Vermessung, um die Größe von Pflanzen, Wachstum, Leistungsfähigkeit, Architektur und Zusammensetzung mit einer bestimmten Genauigkeit in verschiedenen Skalen mit verschiedenen Sensoren, vom Organ bis hin zum Bestand zu bestimmen. Ein neuer Sensor in diesem Feld ist der Laserscanner. Durch Laserscanning lässt sich die dreidimensionale Geometrie der Pflanzenoberfläche vermessen. Das Ergebnis ist eine punktweise Beschreibung der 3D-Koordinaten auf der Oberfläche. Im Rahmen dieser Arbeit wurde die Genauigkeit der Lasermessungen mit konventionellen Methoden zur Vermessung von Pflanzen verglichen. In verschiedenen Experimenten wurde die Anwendbarkeit des Sensors für die Verfolgung von Wachstum auf Pflanzen und Organebene gezeigt. Die Messung von Wachstum bedarf wiederholter Messungen in kurzen zeitlichen Abständen. Diese Messungen mit hohem Durchsatz erzeugen sehr große Datenmengen. Dabei ist die manuelle Auswertung zeit- und kostenintensiv. Durch Entwicklung einer Auswertemethode auf Grundlage von punktweisen Oberflächenmerkmalen und Support Vector Machines konnte die Segmentierung und Parametrisierung der Organe automatisiert werden. Dabei wurden verschiedene Auflösungen der Punktwolke getestet um eine sensorunabhängige Anwendbarkeit des Algorithmus zu gewährleisten. Das benutzte Lasertriangulations-verfahren beruht auf der Emittierung einer Laserlinie und der Aufnahme der Reflektion durch eine Kamera. Dies ermöglicht die Ableitung dreidimensionaler Informationen. Die Genauigkeit dieser Messung hängt unter anderem von der Interaktion des Laserstrahls mit dem pflanzlichen Gewebe ab. In verschiedenen Experimenten wurde die Interaktion mit Chlorophyll, das Eindringverhalten in die Epidermis, der Einfluss des physiologischen Stadiums, sowie die Interaktion mit Pflanzenkrankheiten (Mehltau) erörtert und quantifiziert. Das im Rahmen dieser Arbeit benutzte Lasermesssystem setzt sehr hohe Investitionskosten voraus. Daher wurden zwei alternative Low-Cost 3D-Messsysteme evaluiert. Diese Evaluierung erfolgte durch die Vermessung hochpräziser Testobjekte, sowie durch die Messung und Ableitung von phänotypischen Parametern an Getreide- und Rübenpflanzen. Es wurde deutlich, dass sich das investitionsintensive Messsystem je nach fokussiertem Parameter durch ein Low-Cost Systems ersetzen lässt. Diese Arbeit und die begleitenden Publikationen führen das Laserscanning als hochgenaues Werkzeug zur Ableitung phänotypischer Parameter bei Pflanzen ein. Die Anwendbarkeit als Ersatz zu konventionellen Messmethoden wurde gezeigt. Weiterhin wurden Methoden zur automatisierten Ableitung phänotypisch wichtiger Parameter entwickelt und evaluiert. Die Interaktion zwischen Laserstrahl und pflanzlicher Oberfläche wurde untersucht und quantifiziert. Abschließend wurden Low-Cost Systeme als Ersatz für das benutzte investitionsintensive Industriemesssystem untersucht. Laserscanning stellt ein effizientes, genaues und evaluiertes Messsystem dar, welches die Anforderungen zur Phänotypisierung von Pflanzen erfüllt und zur Bearbeitung phänotypischer Aufgaben benutzt werden kann.Potential of laserscanners for plant phenotyping for use in high-throughput screening Breeding of plants with high yield is essential for feeding future world population. Thus, breeding comes together with a detailed analysis of the interaction between plant genotype and environmental influences, which creates the plant phenotype. Phenotyping describes the act of measuring the plant to derive a measurement for size, growth, fitness, architecture and composition according to a specific accuracy at different scales with different sensors from the organ to the plot. A new sensor, the laserscanner, has been introduced in the field of plant phenotyping. Using laserscanning the three dimensional geometry of the plant surface can be measured. The result is a pointwise description of the 3D-coordinate of the surface. One part of this work is the comparison of the accuracy of the laserscanner with conventional measuring techniques. Applicability has been shown for tracking of growth on plant and organ level. Measuring of growth requires repeated measurements at short time intervals. This high throughput measuring generates huge amounts of data. Manual analysis is time intensive and costly. By developing an analysis method using pointwise surface features and support vector machines the process of segmentation and parameterization of plant organs could be automated. Different scan resolutions have been tested to proof a sensor independent usability. The technique of laser triangulation uses an emitted laser line and the recording of its reflection by a camera. This enables the derivation of three dimensional information (laser triangulation). The accuracy of this measurement is affected by the interaction between laser ray and plant tissue. Different experiments show and quantify the interaction with chlorophyll, the penetration of the laser into the epidermis layer, the influence of the physiological state of the plant as well as the interaction with plant diseases (mildew). The used laserscanning system requires high invocation cost. Therefore alternative low-cost methods have been evaluated. This evaluation was performed by measuring highly accurate test specimen, as well as measuring and derivation of phenotypic parameters from cereal and sugar beet plants. It was shown that an expensive measuring system could be replaced, depending on the focused parameter, by a low-cost system. This work and accompanying publications introduce the laserscanner as a highly accurate tool for the derivation of phenotypic parameters from plants. The applicability as a replacement for conventional measuring systems has been shown. Furthermore, methods for the automated derivation of phenotypic parameters have been developed and evaluated. The interaction between laser ray and plant tissue has been evaluated and quantified. Finally low-cost sensors have been analyzed as an alternative for the expensive industrial measuring system. Thus, laserscanning depicts an efficient, accurate and evaluated measuring system that meets the requirements of plant phenotyping to solve phenotypic tasks

    Subpixelgenaue Kantenortsbestimmung in digitalen Mehrkanalbildern, dargestellt am Beispiel von Sensoren mit Bayer Pattern Color Filter Array

    Get PDF
    In quality assurance the inspection of geometric features of objects is one the most common tasks. There is a great variety of measuring principles. One of these is the measurement by electro-optical sensors with corresponding image processing. Image processing, on the other hand, is used for many different tasks as well. Examples are object recognition, colour measurement, scene interpretation and many more. Measurement of geometric features is one of many applications, special optimizations are therefore rarely applied for this particular applications needs. In image processing in general, the development over the last years was towards colour images or even more than three channels, so called “multi channel images”. One of the results of the advanced popularity of colour image processing is, that today some types of three channel cameras are not more expensive than their single channel counterparts. Even though these cameras are being used in system for measurement of geometric features, the algorithms used do not take advantage of the additional channels information. There are a lot of special colour image processing algorithms existing today, but there are very little concepts that address the application of measurement of geometries. In this thesis new approaches are being discussed to use the information delivered by colour image sensors in a way that the measurement of geometries in the image will be improved. Four different aspects of the chain of image processing will be addressed in this work. Two of them are applicable for all kinds of multi channel images and two are dedicated to special properties of the single most common colour image sensor type, the senor with attached colour filter array (CFA) with an arrangement according to B.E. Bayer. The two general multi channel approaches are: – Extraction of object edge information by means of a new image filter where the information of all available channels is used – High precision edge probing for those new filtered edge images with the aim of subpixel accurate edge position determination The two CFA-Sensor related aspects are: – A new “Demosaicing” algorithm to reconstruct the three channel image from the sensors raw data with special importance to geometrically correct edge reproduction – Choice for object illumination source where the interaction of the emission spectra of the source and spectral sensitivity of the senor is optimized to the needs of the designated application The new approaches presented in this thesis deliver a contribution to image processing for measurement of geometric features with multi channel images, i.e. colour images. With them, better results, respectively lower measurement uncertainty, can be achieved. While they are applicable in their presented state, they do not stand as completed system. They are meant as a new way, a concept, to utilise multi channel image data to enhance current measuring machines. In addition these concepts open up prospects to further improvement.Für die Qualitätssicherung gehört die Messung geometrischer Merkmale an Bauteilen zu den am häufigsten geforderten Aufgaben. Es gibt eine Vielzahl verschiedener Messprinzipien dafür. Eines davon ist die Messung mittels bildauflösender optoelektronischer Sensoren und dazugehöriger Bildverarbeitung. Die Bildverarbeitung wird aber auch für viele andere Anwendungen genutzt. Es gibt sowohl Beispiele für maschinelles Sehen wie Objekterkennung oder Texturanalyse als auch Beispiele für die Verbesserung der Darstellung für den Menschen wie Optimierung auf bestimmte Ausgabegeräte oder Farbraumanpassungen. Die Bildverarbeitung wird relativ selten für die Messung geometrischer Größen angewendet, deshalb gibt es kaum spezialisierte Algorithmen, die auf die Anforderungen dieser Applikation zugeschnitten sind. Ein Trend der letzten Jahre in der Bildverarbeitung ist, dass verstärkt Farbkameras eingesetzt werden, wo früher nur Ein-Kanal-Kameras genutzt wurden. Einhergehend mit dieser Entwicklung ist der Preisverfall bei den Farbkameras. Es gibt inzwischen Farbkameras, die den gleichen Preis haben wie äquivalente Ein-Kanal-Kameras. Deshalb ist es üblich, auch für Aufgaben, in denen traditionell die Farbinformation nicht genutzt wird, Farbkameras einzusetzen, sei es nur, um dem Bediener ein angenehmeres Arbeiten zu ermöglichen. Obwohl auch bei Maschinen, die mittels Bildverarbeitung geometrische Größen messen sollen, Farb- bzw. Mehrkanalkameras genutzt werden, werden die Informationen der zusätzlichen Kanäle nicht für die Messaufgabe berücksichtigt. In dieser Arbeit werden neue Ansätze vorgestellt, um die Zusatzinformation von Mehrkanalsensoren so zu nutzen, dass bessere Ergebnisse bei der Messung geometrischer Größen erzielt werden. Vier verschiedene Aspekte der Kette der Bildverarbeitung werden dabei betrachtet. Zwei davon gelten für Mehrkanalbildverarbeitung im Allgemeinen und zwei weitere widmen sich speziell dem verbreitetsten Farbkameratyp: Ein-Chip-Sensoren mit vorgesetztem Farbfilterraster (CFA) mit Bayer-Anordnung. Die zwei allgemeinen Mehrkanal-Ansätze betreffen: – Gewinnung von Objektkanten-Informationen mittels eines neuen Bildfilters, wobei alle Kanäle berücksichtigt werden. – Kantenortsbestimmung mit Subpixelpräzision in diesen gefilterten Bildern. Die zwei Ansätze, die sich speziell mit Sensoren mit CFA beschäftigen sind: – Ein neues Verfahren zur Rekonstruktion des Farbbildes aus den Rohdaten des Sensors, sog. Demosaiking, mit vorteilhaften Eigenschaften für Geometriemessungen, d.h. ohne Verfälschung des Kantenortes. – Auswahl von geeigneten Lichtquellen unter Berücksichtigung des Zusammenwirkens der spektralen Emission der Quelle mit den spektralen Empfindlichkeiten des Sensors. Die neuen Ansätze, die mit dieser Arbeit vorgestellt werden, liefern einen Beitrag zur Messung geometrischer Größen bei Systemen, in denen Farbkameras verbaut werden. Mit den untersuchten Verfahren können bessere Ergebnisse bzw. geringere Messunsicherheiten erreicht werden. In der vorgestellten Form und den beispielhaften Implementierungen sind sie anwendbar. Sie sind aber nicht als abgeschlossenes System zu betrachten. Vielmehr soll diese Arbeit einen neuen Weg aufzeigen, Mehrkanalinformationen für Geometriemessungen bei aktuellen Messmaschinen zu nutzen, und als Anregung für weiterführende Arbeiten dienen

    Zusammenwirken von natĂĽrlicher und kĂĽnstlicher Intelligenz

    Get PDF

    Messen und Überwachen im Wasserbau und am Gewässer

    Get PDF
    corecore