1,232 research outputs found

    Mobile Wound Assessment and 3D Modeling from a Single Image

    Get PDF
    The prevalence of camera-enabled mobile phones have made mobile wound assessment a viable treatment option for millions of previously difficult to reach patients. We have designed a complete mobile wound assessment platform to ameliorate the many challenges related to chronic wound care. Chronic wounds and infections are the most severe, costly and fatal types of wounds, placing them at the center of mobile wound assessment. Wound physicians assess thousands of single-view wound images from all over the world, and it may be difficult to determine the location of the wound on the body, for example, if the wound is taken at close range. In our solution, end-users capture an image of the wound by taking a picture with their mobile camera. The wound image is segmented and classified using modern convolution neural networks, and is stored securely in the cloud for remote tracking. We use an interactive semi-automated approach to allow users to specify the location of the wound on the body. To accomplish this we have created, to the best our knowledge, the first 3D human surface anatomy labeling system, based off the current NYU and Anatomy Mapper labeling systems. To interactively view wounds in 3D, we have presented an efficient projective texture mapping algorithm for texturing wounds onto a 3D human anatomy model. In so doing, we have demonstrated an approach to 3D wound reconstruction that works even for a single wound image

    Spatially Coherent Geometric Class Labeling of Images and Its Applications

    Get PDF
    Automatic scene analysis is an active research area and is useful in many applications such as robotics and automation, industrial manufacturing, architectural design and multimedia. 3D structural information is one of the most important cues for scene analysis. In this thesis, we present a geometric labeling method to automatically extract rough 3D information from a single 2D image. Our method partitions an image scene into five geometric regions through labeling every image pixel as one of the five geometric classes (namely, “bottom”, “left ”, “center”, “right”, and “top” ). We formulate the geometric labeling problem as an energy minimization problem and optimize the energy with a graph cut based algorithm. In our energy function, we address the spatial consistency of the geometric labels in the scene while preserving discontinuities along image intensity edges. We also incorporate ordering constraints in our energy function. Ordering constraints specify the possible relative positional labels for neighbor pixels. For example, a pixel labeled as the “left” can not be the right of a pixel labeled as the “right” and a pixel labeled as the “bottom” can not be above a pixel labeled as the “top”. Ordering constraints arise naturally in a real scene. We observed that when ordering constraints are used, the commonly used graph-cut based «-expansion is more likely to get stuck in local minima. To overcome this, we developed new graph-cut moves which we call order-preserving moves. Unlike «-expansion which works for two labels in each move, order-preserving moves act on all labels. Although the global minimum is still not guaranteed, we will show that optimization with order-preserving moves is shown to perform significantly better than «-expansion. Experimental results show that it is possible to significantly increase the percentage of reasonably good labeling by promoting spatial consistency and incorporating ordering constraints. It is also shown that the order-preserving moves performs significantly better than the commonly used «-expansion when ordering constraints are used as there is a significantly improvement in computational efficiency and optimality while the improvement in accuracy of pixel labeling is also modest. in We also demonstrate the usefulness of the extracted 3D structure information of a scene in applications such as novel view generation, virtual scene walk-through, semantic segmentation, scene synthesis, and scene text extraction. We also show how we can apply this order-preserving moves for certain simple shape priors in graph-cut segmentation. Our geometric labeling method has the following main contributions: (i) We develop a new class of graph-cut moves called order-preserving moves, which performs significantly better than «-expansion when ordering constraints are used. (ii) We formulate the problem in a global optimization framework where we address the spatial consistency of labels in a scene by formulating an energy function which encourages spatial consistency between neighboring pixels while preserving discontinuities along image intensity edges. (iii) We incorporate relative ordering information about the labels in our energy function. (iv) We show that our ordering constraints can also be used in other applications such as object part segmentation. (v) We also show how the proposed order-preserving moves can be used for certain simple shape priors in graph-cut segmentation

    Haptically assisted connection procedure for the reconstruction of dendritic spines

    Get PDF
    Dendritic spines are thin protrusions that cover the dendritic surface of numerous neurons in the brain and whose function seems to play a key role in neural circuits. The correct segmentation of those structures is difficult due to their small size and the resulting spines can appear incomplete. This paper presents a four-step procedure for the complete reconstruction of dendritic spines. The haptically driven procedure is intended to work as an image processing stage before the automatic segmentation step giving the final representation of the dendritic spines. The procedure is designed to allow both the navigation and the volume image editing to be carried out using a haptic device. A use case employing our procedure together with a commercial software package for the segmentation stage is illustrated. Finally, the haptic editing is evaluated in two experiments; the first experiment concerns the benefits of the force feedback and the second checks the suitability of the use of a haptic device as input. In both cases, the results shows that the procedure improves the editing accuracy

    Outlier Detection for Shape Model Fitting

    Get PDF
    Medical image analysis applications often benefit from having a statistical shape model in the background. Statistical shape models are generative models which can generate shapes from the same family and assign a likelihood to the generated shape. In an Analysis-by-synthesis approach to medical image analysis, the target shape to be segmented, registered or completed must first be reconstructed by the statistical shape model. Shape models accomplish this by either acting as regression models, used to obtain the reconstruction, or as regularizers, used to limit the space of possible reconstructions. However, the accuracy of these models is not guaranteed for targets that lie out of the modeled distribution of the statistical shape model. Targets with pathologies are an example of out-of-distribution data. The target shape to be reconstructed has deformations caused by pathologies that do not exist on the healthy data used to build the model. Added and missing regions may lead to false correspondences, which act as outliers and influence the reconstruction result. Robust fitting is necessary to decrease the influence of outliers on the fitting solution, but often comes at the cost of decreased accuracy in the inlier region. Robust techniques often presuppose knowledge of outlier characteristics to build a robust cost function or knowledge of the correct regressed function to filter the outliers. This thesis proposes strategies to obtain the outliers and reconstruction simultaneously without previous knowledge about either. The assumptions are that a statistical shape model that represents the healthy variations of the target organ is available, and that some landmarks on the model reference that annotate locations with correspondence to the target exist. The first strategy uses an EM-like algorithm to obtain the sampling posterior. This is a global reconstruction approach that requires classical noise assumptions on the outlier distribution. The second strategy uses Bayesian optimization to infer the closed-form predictive posterior distribution and estimate a label map of the outliers. The underlying regression model is a Gaussian Process Morphable Model (GPMM). To make the reconstruction obtained through Bayesian optimization robust, a novel acquisition function is proposed. The acquisition function uses the posterior and predictive posterior distributions to avoid choosing outliers as next query points. The algorithms give as outputs a label map and a a posterior distribution that can be used to choose the most likely reconstruction. To obtain the label map, the first strategy uses Bayesian classification to separate inliers and outliers, while the second strategy annotates all query points as inliers and unused model vertices as outliers. The proposed solutions are compared to the literature, evaluated through their sensitivity and breakdown points, and tested on publicly available datasets and in-house clinical examples. The thesis contributes to shape model fitting to pathological targets by showing that: - performing accurate inlier reconstruction and outlier detection is possible without case-specific manual thresholds or input label maps, through the use of outlier detection. - outlier detection makes the algorithms agnostic to pathology type i.e. the algorithms are suitable for both sparse and grouped outliers which appear as holes and bumps, the severity of which influences the results. - using the GPMM-based sequential Bayesian optimization approach, the closed-form predictive posterior distribution can be obtained despite the presence of outliers, because the Gaussian noise assumption is valid for the query points. - using sequential Bayesian optimization instead of traditional optimization for shape model fitting brings forth several advantages that had not been previously explored. Fitting can be driven by different reconstruction goals such as speed, location-dependent accuracy, or robustness. - defining pathologies as outliers opens the door for general pathology segmentation solutions for medical data. Segmentation algorithms do not need to be dependent on imaging modality, target pathology type, or training datasets for pathology labeling. The thesis highlights the importance of outlier-based definitions of pathologies in medical data that are independent of pathology type and imaging modality. Developing such standards would not only simplify the comparison of different pathology segmentation algorithms on unlabeled datsets, but also push forward standard algorithms that are able to deal with general pathologies instead of data-driven definitions of pathologies. This comes with theoretical as well as clinical advantages. Practical applications are shown on shape reconstruction and labeling tasks. Publicly-available challenge datasets are used, one for cranium implant reconstruction, one for kidney tumor detection, and one for liver shape reconstruction. Further clinical applications are shown on in-house examples of a femur and mandible with artifacts and missing parts. The results focus on shape modeling but can be extended in future work to include intensity information and inner volume pathologies

    Applications of Large Scale Foundation Models for Autonomous Driving

    Full text link
    Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. Recently powered by large language models (LLMs), chat systems, such as chatGPT and PaLM, emerge and rapidly become a promising direction to achieve artificial general intelligence (AGI) in natural language processing (NLP). There comes a natural thinking that we could employ these abilities to reformulate autonomous driving. By combining LLM with foundation models, it is possible to utilize the human knowledge, commonsense and reasoning to rebuild autonomous driving systems from the current long-tailed AI dilemma. In this paper, we investigate the techniques of foundation models and LLMs applied for autonomous driving, categorized as simulation, world model, data annotation and planning or E2E solutions etc.Comment: 23 pages. A survey pape
    • …
    corecore