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ABSTRACT

DEEP NEURAL NETWORKS FOR 3D PROCESSING
AND HIGH-DIMENSIONAL FILTERING

MAY 2020

HANG SU, B.Sc., PEKING UNIVERSITY

Sc.M., BROWN UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Erik Learned-Miller

Deep neural networks (DNN) have seen tremendous success in the past few years,

advancing state of the art in many AI areas by significant margins. Part of the success

can be attributed to the wide adoption of convolutional filters. These filters can

effectively capture the invariance in data, leading to faster training and more compact

representations, and at the same can leverage efficient parallel implementations on

modern hardware. Since convolution operates on regularly structured grids, it is a

particularly good fit for texts and images where there are inherent rigid 1D or 2D

structures. However, extending DNNs to 3D or higher-dimensional spaces is non-

trivial, because data in such spaces often lack regular structure, and the curse of

dimensionality can also adversely impact performance in multiple ways.

In this dissertation, we present several new types of neural network operations and

architectures for data in 3D and higher-dimensional spaces and demonstrate how we

can mitigate these issues while retaining the favorable properties of 2D convolutions.
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First, we investigate view-based representations for 3D shape recognition. We show

that a collection of 2D views can be highly informative, and we can adapt standard 2D

DNNs with a simple pooling strategy to recognize objects based on their appearances

from multiple viewing angles with unprecedented accuracies. Our next study makes a

connection between 3D point cloud processing and sparse high-dimensional filtering.

The resulting representation is highly efficient and flexible, and enables native 3D

operations as well as joint 2D-3D reasoning. Finally, we show that high-dimensional

filtering is also a powerful tool for content-adaptive image filtering. We demonstrate

its utility in computer vision applications where preserving sharp details in output is

critical, including joint upsampling and semantic segmentation.
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CHAPTER 1

INTRODUCTION

Just like the human visual system, computer vision systems acquire visual inputs,

process them, and perform reasoning for various kinds of tasks. Inputs to such systems

are predominantly 2-dimensional (2D) signals because they are much easier to come by

with all sorts of traditional imaging sensors. Consequently, a fundamental challenge of

computer vision has been to draw inferences about the three-dimensional (3D) world

given only 2D signals. For example, a quintessential computer vision task, object

recognition, is typically formulated as classifying 2D images that depict objects from

certain viewpoints. As a result, designing powerful 2D image features have become

an important and very active research direction in computer vision, with earlier work

focusing on handcrafted feature descriptors, such as SIFT [81] and HOG [27], and

more recent approaches using neural networks [71].

What if one has access to the 3D models of the objects of interest? With the 3D

models, one can extract 3D features, such as surface curvature or voxel occupancy,

instead of relying purely on 2D image features. Another source of complications is

that 3D data can come in different forms (Figure 1.1), e.g . polygon meshes, voxels,

point clouds, 2D renderings, depth maps, and it is sometimes advantageous to convert

one representation to another for performance or convenience reasons.

The interests in building recognition models directly from 3D representations have

recently emerged due to several reasons:

1. Applications. Advances in 3D imaging sensors have brought costs down and

made the technology practical for real-world applications. A few notable exam-
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Figure 1.1: Various types of 3D data representations. From left to right: polygon
mesh, voxels, point cloud, 2D rendering, depth map.

ples include Microsoft Kinect for motion sensing in gaming and LiDAR sensors

used in autonomous vehicles.

2. Data. The introduction of large-scale 3D shape repositories, such as 3D Ware-

house 1 and TurboSquid 2, as well as academic datasets, such as ModelNet [137]

and ScanNet [25], provides means for proper benchmarking and sufficient data

for training more complicated machine learning models than before.

3. Computational cost. The higher dimensionality usually leads to a larger

memory footprint and higher computational cost, especially when the recogni-

tion task demands a high resolution in the 3D representations. It is only with

the rapid developments in computer hardware such as graphics processing units

(GPUs) that 3D recognition approaches start to become feasible.

While a large corpus of shape descriptors has been developed for drawing in-

ferences about 3D objects in both the computer vision and graphics literature (see

Section 2.2 for a literature review), they are mostly hand-engineered and often do

not generalize well beyond their original domains. In this dissertation, we focus on

3D representation learning using deep neural networks (DNNs) and demonstrate that

1https://3dwarehouse.sketchup.com/

2https://www.turbosquid.com/
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DNNs’ advantages over traditional approaches in 2D computer vision tasks can also

be carried over to the 3D domain.

1.1 Deep Neural Networks

DNNs are powerful machine learning models and have seen widespread success in

recent years. In many artificial intelligence (AI) areas, including computer vision and

natural language processing, it is rare nowadays to see tasks where the best solutions

do not involve DNNs. However, existing DNN architectures do have limitations when

dealing with data that are not well-structured like images or text. In this dissertation,

we explore a few such cases around 3D and high-dimensional data, and aim to design

new types of neural network operations and architectures to mitigate the issues while

retaining the strong performance of DNNs.

A large part of the recent success of DNNs can be attributed to the wide adoption

of convolutional operations. Neural networks with such operations are also called con-

volutional neural networks (CNN). Convolutional filters operate in a sliding-window

fashion and can therefore effectively capture the invariance in data, leading to a more

efficient use of training data and more compact representations. Another strength

of CNNs, due to the prevalent usages in many applications, is that extremely effi-

cient implementations are now available on all sorts of modern hardware making any

inventions in this area quickly accessible to a wide audience.

Since convolution operates on regularly structured grids, it is a particularly good

fit for texts and images where there are inherent 1D or 2D structures. However, ex-

tending CNNs to 3D or higher-dimensional spaces is non-trivial, because data in such

spaces often lack regular structure and the curse of dimensionality can also adversely

impact performance in many ways. Although raw 3D data are predominantly in the

forms of polygon meshes and point clouds (Figure 1.1), many existing techniques first

pre-process and project them onto a regular 3D grid through voxelization. In this
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dissertation, we aim to explore a few different directions, where we utilize multi-view

2D projections (Chapter 3) or directly operate on 3D point clouds (Chapter 4).

1.2 Multi-View Representations

Various kinds of 3D features such as surface curvature or voxel occupancy become

available when one has access to 3D models of the objects of interest. While intu-

itively, it seems logical then to build 3D shape classifiers utilizing those 3D features,

in this dissertation we present a seemingly counter-intuitive result – that by building

classifiers of 3D shapes from 2D-view renderings of those shapes, we can actually

dramatically outperform earlier work that builds classifiers directly on the 3D repre-

sentations. In particular, a CNN trained on a fixed set of rendered views of a 3D

shape and only provided with a single view at test time can already increase cate-

gory recognition accuracy by a significant margin over the best earlier models [137]

trained on 3D representations. We also show that when more views are available, the

recognition performance can further increase.

Such a dramatic result gives additional ammunition to the classical argument

that collections of 2D views implicitly contain rich information about 3D structure.

Besides, not only do they contain this information about 3D structure, but at least

according to our experiments, the 2D views appear to be a better representation than

the 3D structure itself for certain recognition tasks. The implications are potentially

remarkable, given the long history of the debate about how 3D information should

be represented in computer vision.

One reason for this result is the relative efficiency of the 2D versus the 3D rep-

resentations. In particular, while a full resolution 3D representation contains all of

the information about an object, in order to use a voxel-based representation in a

deep network that can be trained with available samples and in a reasonable amount

of time, it would appear that the resolution needs to be significantly reduced. For
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example, 3D ShapeNets [137] use a coarse representation for shapes, i.e. a 30×30×30

grid of binary voxels. In contrast, a single projection of the 3D model of the same

input size corresponds to an image of 164×164 pixels (smaller if multiple projections

are used). Overall, there is an inherent trade-off between increasing the amount of

explicit geometric information (what 3D models are good for) and increasing spatial

resolution in appearance (where 2D models are better).

Another advantage of using 2D representations is that we can leverage (i) powerful

CNN architectures that have been designed for 2D computer vision tasks and (ii)

massive image databases (such as ImageNet [29]) to pre-train the CNNs before they

are adapted to 3D tasks. Because images are ubiquitous and large labeled datasets are

abundant, we can learn a good deal about generic features for 2D image recognition

and then fine-tune to specifics about projections of 3D shapes. While it is possible

that some day as much 3D training data will be available, for the time being there is

still a significant advantage of 2D representations in this aspect.

Knowing that the simple strategy of classifying views independently already works

remarkably well, it seems obvious that using multiple views at the same time should

further improve recognition accuracy. A remaining question, though, is how to com-

pile the information from multiple views. The Multi-View CNN architecture we

propose in Chapter 3 is an attempt in this direction, offering a simple strategy to

compile the information with a single pooling operation. We observe state-of-the-art

performance with the resulting descriptors on tasks including 3D object classification,

3D object retrieval using 3D objects, and 3D object retrieval using sketches.

It is worth noting the connection between multi-view representations and the

“jittering” process in data augmentation where transformed copies of the data are

added during training time to improve invariances to transformations such as rotation

or translation. In the context of 3D object recognition, the views can be regarded

as jittered copies, and the traditional data augmentation approach aims to make
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the resulting model view-invariant. A Multi-View CNN instead learns to combine

the views, and can choose to focus on the more informative views of the object for

prediction while ignoring less informative ones. Similar ideas can also be applied

to standard image classification tasks as an alternative strategy for traditional data

augmentation.

1.3 Representation Learning for Point Clouds

While multi-view representations can be viable choices when high-quality pro-

jected views are easy to obtain (e.g . rendering views for polygon meshes), they are

not well-suited to point clouds. Data obtained with modern 3D sensors such as Li-

DAR scanners is predominantly in the form of point clouds. Consequent, processing

and analysis of point clouds have an important role in applications such as robotic

manipulation and autonomous driving where such sensors are widely deployed.

These properties of point clouds make it difficult to use traditional CNN operations

and architectures for point cloud processing and analysis. As a result, previous ap-

proaches that directly operate on point clouds are dominated by hand-crafted features.

A straightforward strategy to use CNNs on point clouds is by first pre-processing a

given point cloud into a form that is amenable to standard spatial convolutions. This

route leads to two major options, each with notable drawbacks:

• Using 2D view projections, including multi-view representations, to

reduce the task to image-based recognition. While we propose this as a

practical approach for polygon meshes, a few drawbacks limit its effectiveness

on points clouds. Unlike polygon meshes, point clouds can be very sparse when

rendered in 2D views. The resulting 2D projections have very different appear-

ances and statistics compared to natural images, so the benefit of pre-training

on large-scale image datasets such as ImageNet is potentially much less. An-

other consideration is computational efficiency. Point cloud is a very compact
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data format, and typically an object is represented by a point cloud of a couple

of thousand points and often much fewer (e.g . distant objects in LiDAR scans).

Directly working with the raw points could thus offer better efficiency and a

smaller model footprint compared to multi-view presentations.

• Converting point clouds into voxel representations. One can easily ap-

ply 3D convolutions and extend existing image recognition architecture to data

defined on dense voxel grids. Apart from the trade-off between resolution and

computational efficiency discussed earlier in Section 1.2, there are further con-

cerns in this strategy regarding data that originally come in the form of point

clouds. Point clouds typically have very unbalanced density distribution spa-

tially. Putting point clouds onto a dense discrete voxel grid means regions with

different densities, including sparse areas and even void spaces, all require stor-

age and computation. This not only fails to take the opportunity to leverage

the sparsity property for computational benefits, but also throws away useful

information encoded in point density. The discretization process also largely

discards the precise point locations of the point clouds, which can be an impor-

tant source of information, especially for tasks requiring fine details.

Recently, a few network architectures [95, 96, 145] have been developed to directly

operate on point clouds. One of the main drawbacks of these architectures is that

they do not allow a flexible specification of the extent of spatial connectivity across

points (i.e. filtering neighborhood). Both [95] and [96] use max-pooling to aggregate

information across points either globally [95] or in a hierarchical manner [96]. This

pooling aggregation may lose valuable surface information because the spatial layouts

of points are not explicitly considered.

It is desirable to capture spatial relationships in point clouds through more general

convolutional operations while being able to specify filter extents in a flexible manner.

With this motivation, we develop SPLATNet (Figure 1.2) described in Chapter 4, a
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SPLATNet3D

SPLATNet2D-3D

...

Input point cloud

Input images

3D predictions

2D & 3D predictions

...

Figure 1.2: From point clouds and images to semantics. SPLATNet3D directly takes
point cloud as input and predicts labels for each point. SPLATNet2D-3D, on the other
hand, jointly processes both point cloud and the corresponding multi-view images for
better 2D and 3D predictions.

new type of neural network architecture for point cloud processing. Some recent work

concurrent to this dissertation brings ideas in a similar direction. A more detailed

discussion of some of these research work is provided in Chapter 2.

Borrowing ideas from the existing techniques of sparse high-dimensional filtering,

the network directly operates on a collection of points represented as a sparse set

of samples in a high-dimensional lattice. Näıvely applying convolutions on this lat-

tice scales poorly, both in terms of memory and computational cost, as the size of

the lattice increases. Instead, the network uses sparse bilateral convolutional layers

(Section 4.1) as building blocks. These layers maintain efficiency by using indexing

structures to apply convolutions only on occupied parts of the lattice, and allow flex-

ible specifications of the lattice structure enabling hierarchical and spatially-aware

feature learning, as well as joint 2D-3D reasoning. Both point-based and image-

based representations can be easily incorporated in a network with such layers and

the resulting model can be trained in an end-to-end manner.

1.4 Content-Adaptive Convolutions

The fact that the weights of a convolutional filter are spatially shared brings many

of its desirable properties, but it is also a major limitation, as it makes convolutions
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content-agnostic. Once a CNN is trained, the same convolutional filter banks are

applied to all the images and all the pixels irrespective of their content. The image

content varies substantially across images and pixels. Thus a single trained CNN

may not be optimal for all image types (e.g . images taken in daylight vs. at night,

Figure 1.3) as well as different pixels in an image (e.g . sky vs. pedestrian pixels).

Ideally, we would like CNN filters to be adaptive to the type of image content, which

is not the case with standard CNNs.

sunny scene rainy scene

Figure 1.3: A same scene under two different weather conditions can benefit from
convolutional filters adaptive to the conditions.

In the last part of the dissertation, we relate sparse high-dimensional filtering used

earlier for point cloud processing to content-adaptive convolutions. Since pixels of an

image are arranged in a dense 2D grid, it is natural to consider their neighborhoods in

terms of XY pixel coordinates for convolutional operations. However, that is not the

only option, and luckily with proper tools for sparse high-dimensional filtering, any

feature coordinates, even high-dimensional ones, can be considered for constructing

neighborhood structures to conduct convolutions.

To get an idea why convolutions over other feature spaces make sense, let’s take

a look at bilateral filters [121] as an example. A bilateral filter is an edge-preserving

smoothing filter, i.e. a smoothing filter that is designed to better preserve the sharp

edges in the image. Just like a traditional Gaussian smoothing filter, it produces the
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new intensity of an image pixel with a weighted average of intensities of its nearby

pixels, and the weights come from a Gaussian distribution. The averaging behavior

is close to a low-pass filter and reduces noises in the input. Both filters share the

definition:

Ifiltered(p) =
1

N(x)

∑
p′∈Ω(p)

W (p′, p)I(p′) (1.1)

where p and p′ are pixel coordinates, I is the original image, Ifiltered is the filtered

output, Ω is the filtering neighborhood, W (p′, p) is the filter weight, and N(p) =∑
p′∈Ω(x) W (p′, p) is a normalization term to ensure that the overall image brightness

won’t change after the filtering.

For a Gaussian smoothing filter, the weights are simply defined to capture spatial

closeness:

W (p′, p) = exp

(
−‖p

′ − p‖2

2σ2

)
(1.2)

where σ is the standard deviation of the Gaussian distribution that is typically man-

ually picked.

The function gives higher weight to nearby pixels than more distant pixels. If a

filtering neighborhood Ω(p) happens to contain a sharp transition of intensity values,

pixels across the boundary will still take part in the averaging, resulting a blurrier

boundary in the filtered image.

A bilateral filter differs in that it also considers the intensity closeness when as-

signing weights to the neighboring pixels:

W (p′, p) = exp

(
−‖p

′ − p‖2

2σ2
s

)
︸ ︷︷ ︸

spatial kernel

exp

(
−‖I(p′)− I(p)‖2

2σ2
r

)
︸ ︷︷ ︸

range kernel

(1.3)
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The two components in the weight function, referred to as spatial kernel and range

kernel, depend on Euclidean distances of pixels and intensity differences respectively.

Because the filter weights vary according to image content (as opposed to being

shared everywhere as in Equation 1.2), bilateral filters can be considered as a type of

content-adaptive filter.

The connection to high-dimensional filtering becomes obvious when the two ker-

nels in Equation 1.3 are rewritten as a combined kernel:

W (p′, p) = exp

(
−‖p

′ − p‖2

2σ2
s

− ‖I(p′)− I(p)‖2

2σ2
r

)
(1.4)

= exp

(
−1

2

(
x′

σs
− x

σs

)2

− 1

2

(
y′

σs
− y

σs

)2

− 1

2

(
I(p′)

σr
− I(p)

σr

)2
)

(1.5)

= exp

(
−1

2
‖vp′ − vp‖2

)
(1.6)

where vp is a vector containing three elements (assuming image is grayscale):

[x, y, I(p)]ᵀ.

Equation 1.6 indeed describes bilateral filter as a three-dimensional Gaussian filter

for grayscale images. For RGB color images, a bilateral filter can similarly be seen

as a five-dimensional Gaussian filter in (x, y, R,G,B) space. Note that in these high-

dimensional spaces, the pixels are quite sparse, just like points in a 3D point clouds,

and the same computational tools can be applied.

A bilateral filter performs content-adaptive filtering in a very specific and limited

manner: it smooths images with filters adapted to local image content so that sharp

details are preserved. As we present in the final part of the dissertation (Chapter 5),

we explore several directions to extend the idea to design a more general-purpose

operation for neural networks, including:

• Replacing the spatial kernel in Equation 1.3 with free-form filters can allow

learning filters for purposes beyond smoothing.
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• In Equation 1.3, the Gaussian standard deviations σs and σr are hyperparam-

eters and need to be picked manually, e.g . via cross-validation. Allowing them

to be learnable parameters would help find the optimal choices more efficiently.

• Bilateral filters use two hand-picked kernels, a spatial kernel and a range kernel.

While this design decision is well-motivated for its intended application, ideally,

we would want to learn the best features (i.e. v in Equation 1.6) to build a

kernel that best suits the diverse end tasks.

• For tasks involving only images, explicitly embedding pixels into a higher-

dimensional space and performing convolutions there can be a significant com-

putational overhead. Formulating the operation in a way that can be imple-

mented as a dense 2D operation not only avoids burdensome high-dimensional

computations but also allows easier integration with existing image-based neural

network architectures.

1.5 Dissertation Outline

The rest of the dissertation is organized as followed. We first provide a literature

review over related research topics in Chapter 2. In Chapter 3, we investigate the

feasibility of adapting 2D CNNs to 3D recognition tasks to circumvent the difficulties

of directly operating on 3D data. We propose a neural network operation that can

effectively pool information from multiple 2D views and allows a single CNN to be

trained end-to-end incorporating all views simultaneously. Next, we look into the

challenging problem of point cloud processing in Chapter 4 and propose a new type

of neural network layer based on sparse high-dimensional filtering. With the new layer

and several architectures designed around it, we can directly operate on point clouds

without voxelization or 2D projections, which incur additional computation burden

and bring unavoidable loss of information. The new architectures also make possible

12



efficient joint 2D-3D processing. In Chapter 5, we relate the sparse high-dimensional

filtering technique with content-adaptive image filtering, and propose another type

of layer that can allow its filters to adapt to image content while still benefit from

the spatial-sharing property and the efficiency of traditional convolutional filters. We

end the disseratation with conclusions and a discussion of potential future extensions

in Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we provide literature review over a few relevant topics. Some

additional topics that are specific to only certain chapters are covered later in the

respective chapters.

2.1 Convolutional Neural Networks

Much of the work in this dissertation is motivated by the recent success in com-

puter vision tasks using CNNs. AlexNet [71] is an important milestone for image

recognition and pioneered many design choices that are still widely adopted today.

With a network deeper than ever before, AlexNet achieved image classification perfor-

mance almost unimaginable at that time on the challenging ImageNet [29] benchmark.

Since then, many deeper and more powerful architectures have been proposed, such

as VGG [113], ResNet [51], Inception [117], etc., pushing the image classification

accuracies even higher.

Besides image classification, CNNs have also seen tremendous success in a wide

range of other visual recognition tasks, such as object detection [40, 41, 98], semantic

segmentation [20], texture recognition [23], and fine-grained classification [78].

CNNs trained on large datasets such as ImageNet have been shown to learn

general-purpose image descriptors useful for other tasks [30, 97, 23], either directly

or through a process called fine-tuning where smaller-scale further training on the

downstream tasks is conducted. This in particular contributes to the success of the

Multi-View CNN approach described in Chapter 3.
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2.2 3D Shape Descriptors

A large corpus of shape descriptors has been developed for drawing inferences

about 3D objects in both the computer vision and graphics literature. Shape de-

scriptors can be classified into two broad categories: native 3D shape descriptors that

directly work on the native 3D representations of objects, such as polygon meshes,

voxel-based discretizations, point clouds, or implicit surfaces, and view-based descrip-

tors that describe the shape of a 3D object by “how it looks” in a collection of 2D

projections.

With the exception of the recent work of Wu et al . [137] which learns shape

descriptors from the voxel-based representation of an object through 3D convolutional

nets, previous native 3D shape descriptors were largely “hand-designed” according

to a particular geometric property of the shape surface or volume. For example,

shapes can be represented with histograms or bag-of-features models constructed out

of surface normals and curvatures [53], distances, angles, triangle areas or tetrahedra

volumes gathered at sampled surface points [89], properties of spherical functions

defined in volumetric grids [60], local shape diameters measured at densely sampled

surface points [16], heat kernel signatures on polygon meshes [9, 66], or extensions of

the SIFT and SURF feature descriptors to 3D voxel grids [64]. Developing classifiers

and other supervised machine learning algorithms on top of such 3D shape descriptors

poses a number of challenges. First, the size of organized databases with annotated 3D

models is rather limited compared to image datasets, e.g ., ModelNet contains about

150K shapes (its 40 category benchmark contains about 4K shapes). In contrast, the

ImageNet database [29] already includes tens of millions of annotated images. Second,

native 3D shape descriptors tend to be very high-dimensional, making classifiers prone

to overfitting due to the so-called “curse of dimensionality”.

On the other hand view-based descriptors have a number of desirable properties:

they are relatively low-dimensional, efficient to evaluate, and robust to 3D shape
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representation artifacts, such as holes, imperfect polygon mesh tesselations, noisy

surfaces. The rendered shape views can also be directly compared with other 2D

images, silhouettes or even hand-drawn sketches. An early example of a view-based

approach is the work by Murase and Nayar [88] that recognizes objects by matching

their appearance in parametric eigenspaces formed by large sets of 2D renderings of 3D

models under varying poses and illuminations. Another example, which is particularly

popular in computer graphics setups, is the Light Field Descriptor [17] that extracts a

set of geometric and Fourier descriptors from object silhouettes rendered from several

different viewpoints. Alternatively, the silhouette of an object can be decomposed into

parts and then represented by a directed acyclic graph (shock graph) [82]. Cyr and

Kimia [24] defined similarity metrics based on curve matching and grouped similar

views, called aspect graphs of 3D models [65]. Eitz et al. [32] compared human

sketches with line drawings of 3D models produced from several different views based

on local Gabor filters, while Schneider et al. [106] proposed using Fisher vectors [92] on

SIFT features [81] for representing human sketches of shapes. These descriptors are

largely “hand-engineered” and some do not generalize well across different domains.

2.3 Deep Neural Networks for 3D Data

Much attention has been given to 3D representation learning in the past few years

following the wide success of deep neural networks in computer vision. As 3D data

can come in many different formats (Figure 1.1), researchers have proposed deep

neural network operations and architectures specifically designed for common types

of 3D data formats.

2.3.1 Voxel networks

Voxel-based methods convert the input 3D shape representation into a 3D vol-

umetric grid. Early voxel-based architectures executed convolution in regular, fixed
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voxel grids, and were limited to low shape resolutions due to high memory and com-

putation costs [137, 86, 94, 8, 38, 107]. Instead of using fixed grids, more recent ap-

proaches pre-process the input shapes into adaptively subdivided, hierarchical grids

with denser cells placed near the surface [101, 100, 63, 130, 118]. As a result, they

have much lower computational and memory overhead. On the other hand, con-

volutions are often still executed away from the surface, where most of the shape

information resides. An alternative approach is to constrain the execution of volu-

metric convolutions only along the input sparse set of active voxels of the grid [45].

2.3.2 Point cloud networks

Qi et al . [95] pioneered another type of deep networks having the advantage of

directly operating on point clouds. The networks learn spatial feature representa-

tions for each input point, then the point features are aggregated across the whole

point set [95], or hierarchical surface regions [96] through max-pooling. This aggre-

gation may lose surface information since the spatial layout of points is not explicitly

considered.

Concurrent to work in this dissertation, a large body of research has developed

better leveraging the spatial relationships among local point neighborhoods [73, 54,

138, 132, 120, 136, 83]. Many of these approaches adopt a general notion of convolu-

tion, which is defined as:

(F ∗ k)(xi) =
∑

xj∈N (xi)

k(xi, xj)F(xj) (2.1)

where xi and xj are point coordinates, N (xi) is the neighborhood considered for

the convolution around xi, F contains the point features, and k is the kernel function.

Under this definition, these approaches differ in their choices of the neighborhood

construction and kernel functions:
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• Neighborhood. A very common choice to build local point neighborhoods is

to construct k-nearest neighbor graph [73, 138, 136, 132]. Other choices include

grid cells [54, 83] and radius neighborhoods [120].

• Kernel function. The design of kernel function k also sees a great diversity in

recent research work. Some researchers advocate using continuous kernel func-

tions to mitigate the issue of irregular spatial layout in point clouds. Multilayer

perceptron (MLP) networks is a natural choice for this approach. A MLP can

take as inputs the spatial offsets of the neighboring points, xj − xi, and output

the respective weight [136, 73]. More complicated designs can also consider the

features at the points as part of the inputs [132]. Some researchers propose

to use a parameterized family of geometric functions in place of MLPs for eas-

ier optimization [138]. As an alternative to continuous kernel functions, some

recent work takes inspiration from the wide success of 2D image convolutions

and propose methods to use discrete filters on point clouds [120, 83, 54]. Since

kernel weights are defined only on a limited set of discrete locations, the focus

of such work is then to properly associate neighboring points with the defined

kernel locations. Some networks [120, 83] even possess the capability to learn

the kernel locations during training, instead of learning only the weights.

The approach presented in this dissertation (Chapter 4) also falls under the general

notion of Equation 2.1. We design our networks and make unique choices of the local

neighborhoods and kernel functions to achieve a balance in optimal performance,

efficiency, and flexibility in applications.

2.3.3 Non-Euclidean networks

An alternative approach is to represent the input surface as a graph (e.g ., a

polygon mesh or point-based connectivity graph), convert the graph into its spec-

tral representation, then perform convolution in the spectral domain [11, 52, 28, 6].
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However, structurally different shapes tend to have largely different spectral bases,

and thus lead to poor generalization. Yi et al . [141] proposed aligning shape basis

functions through a spectral transformer, which, however, requires a robust initializa-

tion scheme. Another class of methods embeds the input shapes into 2D parametric

domains and then execute convolutions within these domains [114, 84, 34]. How-

ever, these embeddings can suffer from spatial distortions or require topologically

consistent input shapes. Other methods parameterize the surface into local patches

and execute surface-based convolution within these patches [85, 7, 87]. Such non-

Euclidean networks have the advantage of being invariant to surface deformations,

yet this invariance might not always be desirable in man-made object segmentation

and classification tasks where large deformations may change the underlying shape or

part functionalities and semantics. We refer to Bronstein et al . [10] for an excellent

review of spectral, patch- and graph-based methods.
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CHAPTER 3

3D SHAPE RECOGNITION WITH MULTI-VIEW
CONVOLUTIONAL NEURAL NETWORKS

A longstanding question in computer vision concerns the representation of 3D

shapes for recognition: should 3D shapes be represented with descriptors operating on

their native 3D formats, such as voxel grid or polygon mesh, or can they be effectively

represented with view-based descriptors? In this chapter, we address this question in

the context of learning to recognize 3D shapes from a collection of their rendered views

on 2D images. We first present a standard CNN architecture trained to recognize the

shapes’ rendered views independently of each other, and show that a 3D shape can

be recognized even from a single view at an accuracy far higher than using state-of-

the-art 3D shape descriptors. Recognition rates further increase when multiple views

of the shapes are provided. In addition, we present a novel CNN architecture that

combines information from multiple views of a 3D shape into a single and compact

shape descriptor offering even better recognition performance. The same architecture

can be applied to accurately recognize human hand-drawn sketches of shapes. At the

end, we conclude that a collection of 2D views can be highly informative for 3D shape

recognition and is amenable to emerging CNN architectures and their derivatives.

3.1 Multi-View Convolutional Neural Networks

As discussed above, our focus in this chapter is on developing view-based de-

scriptors for 3D shapes that are trainable, produce informative representations for

recognition and retrieval tasks, and are efficient to compute.
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Figure 3.1: Multi-View CNN for 3D shape recognition (illustrated using the 1st camera
setup). At test time a 3D shape is rendered from 12 different views and are passed
thorough CNN1 to extract view based features. These are then pooled across views
and passed through CNN2 to obtain a compact shape descriptor.

Our view-based representations start from multiple views of a 3D shape, generated

by a rendering engine. A simple way to use multiple views is to generate a 2D

image descriptor per each view, and then use the individual descriptors directly for

recognition tasks based on some voting or alignment scheme. For example, a näıve

approach would be to average the individual descriptors, treating all the views as

equally important. Alternatively, if the views are rendered in a reproducible order,

one could also concatenate the 2D descriptors of all the views. Unfortunately, aligning

a 3D shape to a canonical orientation is hard and sometimes ill-defined. In contrast

to the above simple approaches, an aggregated representation combining features

from multiple views is more desirable since it yields a single, compact descriptor

representing the 3D shape.

Our approach is to learn to combine information from multiple views using a

unified CNN architecture that includes a view-pooling layer (Figure 3.1). All the

parameters of our CNN architecture are learned discriminatively to produce a single

compact descriptor for the 3D shape. Compared to exhaustive pairwise comparisons

between single-view representations of 3D shapes, our resulting descriptors can be
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directly used to compare 3D shapes leading to significantly higher computational

efficiency.

3.1.1 Multi-view input representations

3D models in online databases are typically stored as polygon meshes, which are

collections of points connected with edges forming faces. To generate rendered views

of polygon meshes, we use the Phong reflection model [93]. The mesh polygons

are rendered under a perspective projection and the pixel color is determined by

interpolating the reflected intensity of the polygon vertices. Shapes are uniformly

scaled to fit into the viewing volume.

To create a multi-view shape representation, we need to setup viewpoints (virtual

cameras) for rendering each mesh. We experimented with two camera setups. For

the 1st camera setup, we assume that the input shapes are upright oriented along

a consistent axis (e.g ., z-axis). Most models in modern online repositories, such as

the 3D Warehouse, satisfy this requirement, and some previous recognition methods

also follow the same assumption [137]. In this case, we create 12 rendered views by

placing 12 virtual cameras around the mesh every 30 degrees (see Figure 3.1). The

cameras are elevated 30 degrees from the ground plane, pointing towards the centroid

of the mesh. The centroid is calculated as the weighted average of the mesh face

centers, where the weights are the face areas. For the 2nd camera setup, we do not

make use of the assumption about consistent upright orientation of shapes. In this

case, we render from several more viewpoints since we do not know beforehand which

ones yield good representative views of the object. The renderings are generated by

placing 20 virtual cameras at the 20 vertices of an icosahedron enclosing the shape.

All cameras point towards the centroid of the mesh. Then we generate 4 rendered

views from each camera, using 0, 90, 180, 270 degrees rotation along the axis passing

through the camera and the object centroid, yielding total 80 views.

22



We note that using different shading coefficients or illumination models did not

affect our output descriptors due to the invariance of the learned filters to illumi-

nation changes, as also observed in image-based CNNs [71, 30]. Adding more or

different viewpoints is trivial, however, we found that the above camera setups were

already enough to achieve high performance. Finally, rendering each mesh from all

the viewpoints takes no more than ten milliseconds on modern graphics hardware.

3.1.2 Recognition with multi-view representations

We claim that our multi-view representation contains rich information about 3D

shapes and can be applied to various types of tasks. In the first setting, we make use

of existing 2D image features directly and produce a descriptor for each view. This is

the most straightforward approach to utilize the multi-view representation. However,

it results in multiple 2D image descriptors per 3D shape, one per view, which need

to be integrated somehow for recognition tasks.

3.1.2.1 Image descriptors

We consider two types of image descriptors for each 2D view: a state-of-the-art

“hand-crafted” image descriptor based on Fisher vectors [104] with multi-scale SIFT,

as well as CNN activation features [30].

The Fisher vector image descriptor is implemented using VLFeat [128]. For each

image multi-scale SIFT descriptors are extracted densely. These are then projected to

80 dimensions with PCA, followed by Fisher vector pooling with a Gaussian mixture

model with 64 components, square-root and `2 normalization.

For our CNN features we use the VGG-M network from [15] which consists of

mainly five convolutional layers conv1,...,5 followed by three fully connected layers

fc6,...,8 and a softmax classification layer. The penultimate layer fc7 (after ReLU

non-linearity, 4096-dimensional) is used as image descriptor. The network is pre-

trained on ImageNet images from 1k categories, and then fine-tuned on all 2D views
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of the 3D shapes in training set. As we show in our experiments, fine-tuning improves

performance significantly. Both Fisher vectors and CNN features yield very good per-

formance in classification and retrieval compared with popular 3D shape descriptors

(e.g ., SPH [60], LFD [17]) as well as 3D ShapeNets [137].

3.1.2.2 3D shape classification

We train one-vs-rest linear SVMs (each view is treated as a separate training

sample) to classify shapes using their image features. At test time, we simply sum up

the SVM decision values over all 12 views and return the class with the highest sum.

Alternative approaches, e.g ., averaging image descriptors, lead to worse accuracy.

3.1.2.3 3D shape retrieval

A distance or similarity measure is required for retrieval tasks. For shape x with

nx image descriptors and shape y with ny image descriptors, the distance between

them is defined in Equation 3.1. Note that the distance between two 2D images is

defined as the `2 distance between their feature vectors, i.e. ‖xi − yj‖2.

d(x,y) =

∑
j mini ‖xi − yj‖2

2ny
+

∑
i minj ‖xi − yj‖2

2nx
(3.1)

To interpret this definition, we can first define the distance between a 2D image xi

and a 3D shape y as d(xi,y) = minj ‖xi−yj‖2. Then given all nx distances between

x’s 2D projections and y, the distance between these two shapes is computed by

simple averaging. In Equation 3.1, this idea is applied in both directions to ensure

symmetry.

We investigated alternative distance measures, such as minimum distance among

all nx · ny image pairs and the distance between average image descriptors, but they

all led to inferior performance.
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3.1.3 Learning to aggregate views with Multi-View CNN

Although having multiple separate descriptors for each 3D shape can be successful

for classification and retrieval compared to existing 3D descriptors, it can be incon-

venient and inefficient in many cases. For example, in Equation 3.1, we need to

compute all nx × ny pairwise distances between images in order to compute distance

between two 3D shapes. Simply averaging or concatenating the image descriptors

leads to inferior performance. In this section, we focus on the problem of learning to

aggregate multiple views in order to synthesize the information from all views into a

single, compact 3D shape descriptor.

We design the Multi-View CNN (MVCNN) architecture on top of image-based

CNNs (Figure 3.1). Each image in a 3D shape’s multi-view representation is passed

through the first part of the network (CNN1) separately, aggregated at a view-pooling

layer, and then sent through the remaining part of the network (CNN2). All branches

in the first part of the network share the same parameters in CNN1. We use element-

wise maximum operation across the views in the view-pooling layer. An alternative is

element-wise mean operation, but it is not as effective in our experiments. The view-

pooling layer can be placed anywhere in the network. We show in our experiments

that it should be placed close to the last convolutional layer (conv5) for optimal

classification and retrieval performance. View-pooling layers are closely related to

max-pooling layers and maxout layers [42], with the only difference being the di-

mension that their pooling operations are carried out on. The MVCNN is a directed

acyclic graphs and can be trained or fine-tuned using stochastic gradient descent with

back-propagation.

Using fc7 (after ReLU non-linearity) in an MVCNN as an aggregated shape de-

scriptor, we achieve higher performance than using separate image descriptors from

an image-based CNN directly, especially in retrieval (62.8%→ 70.1%). Perhaps more

importantly, the aggregated descriptor is readily available for a variety of tasks, e.g .,
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shape classification and retrieval, and offers significant speed-ups against multiple

image descriptors.

An MVCNN can also be used as a general framework to integrate perturbed image

samples (also known as data jittering). We illustrate this capability of MVCNNs in

the context of sketch recognition in Section 3.2.2.

3.1.4 Low-rank Mahalanobis metric

When a MVCNN is fine-tuned for classification, its retrieval performance is not

directly optimized. Although we could train it with a different objective function

suitable for retrieval, we found that a simpler approach can readily yield a significant

retrieval performance boost (see row 12 in Table 3.1). We learn a Mahalanobis metric

W that directly projects MVCNN descriptors φ ∈ Rd to Wφ ∈ Rp, such that the `2

distances in the projected space are small between shapes of the same category, and

large otherwise. We use the large-margin metric learning algorithm and implemen-

tation from [111], with p < d to make the final descriptor compact (p = 128 in our

experiments). The fact that we can readily use metric learning over the output shape

descriptor demonstrates another advantage of using MVCNNs.

3.2 Experiments

3.2.1 3D shape classification and retrieval

3.2.1.1 ModelNet40

We first evaluate our shape descriptors on the Princeton ModelNet dataset [125].

ModelNet currently contains 127,915 3D CAD models from 662 categories1. A 40-

class well-annotated subset containing 12,311 shapes from 40 common categories,

1As of 01/20/2020.
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Table 3.1: Classification and retrieval results on the ModelNet40 dataset. On the top
are results using state-of-the-art 3D shape descriptors. Our view-based descriptors
including Fisher vectors (FV) significantly outperform these even when a single view
is available at test time (#Views = 1). When multiple views (#Views=12 or 80)
are available at test time, the performance of view-based methods improve signifi-
cantly. The MVCNN architecture outperforms the view-based methods, especially
for retrieval.

Method
Training Config. Test Config. Cla.

(Acc.)
Ret.

(mAP)
Pre-train Fine-tune #Views #Views

(1) SPH [60] - - - - 68.2% 33.3%
(2) LFD [17] - - - - 75.5% 40.9%
(3) 3D ShapeNets [137] ModelNet40 ModelNet40 - - 77.3% 49.2%

(4) FV - ModelNet40 12 1 78.8% 37.5%
(5) FV, 12× - ModelNet40 12 12 84.8% 43.9%
(6) CNN ImageNet1K - - 1 83.0% 44.1%
(7) CNN, f.t. ImageNet1K ModelNet40 12 1 85.1% 61.7%
(8) CNN, 12× ImageNet1K - - 12 87.5% 49.6%
(9) CNN, f.t.,12× ImageNet1K ModelNet40 12 12 88.6% 62.8%

(10) MVCNN, 12× ImageNet1K - - 12 88.1% 49.4%
(11) MVCNN, f.t., 12× ImageNet1K ModelNet40 12 12 89.9% 70.1%
(12) MVCNN, f.t.+metric, 12× ImageNet1K ModelNet40 12 12 89.5% 80.2%
(13) MVCNN, 80× ImageNet1K - 80 80 84.3% 36.8%
(14) MVCNN, f.t., 80× ImageNet1K ModelNet40 80 80 90.1% 70.4%
(15) MVCNN, f.t.+metric, 80× ImageNet1K ModelNet40 80 80 90.1% 79.5%

* f.t.=fine-tuning, metric=low-rank Mahalanobis metric learning
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Figure 3.2: Precision-recall curves for various methods for 3D shape retrieval on the
ModelNet40 dataset. Our method significantly outperforms the state-of-the-art on
this task achieving 80.2% mAP.

ModelNet40, is provided on the ModelNet website. For our experiments, we use the

same training and test split of ModelNet40 as in [137]2.

Our shape descriptors are compared against the 3D ShapeNets by Wu et al . [137],

the Spherical Harmonics descriptor (SPH) by Kazhdan et al . [60], the LightField

descriptor (LFD) by Chen et al . [17], and Fisher vectors extracted on the same

rendered views of the shapes used as input to our networks.

Results of shape classification and retrieval on ModelNet are summarized in Ta-

ble 3.1. Precision-recall curves are provided in Figure 3.2. Remarkably, the Fisher

vector baseline with just a single view achieves a classification accuracy of 78.8%

outperforming the state-of-the-art learned 3D descriptors (77.3% [137]). When all 12

views of the shape are available at test time (based on our first camera setup), we can

also average the predictions over these views. Averaging increases the performance of

Fisher vectors to 84.8%. The performance of Fisher vectors further supports our claim

2Based on our correspondence with the authors of [137], for each category the first 80 shapes in the
“train” folder (or all shapes if there are fewer than 80) should be used for training, while the first
20 shapes in the “test” folder should be used for testing.
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that 3D objects can be effectively represented using view-based 2D representations.

The trends in performance for shape retrieval are similar.

Using our CNN baseline trained on ImageNet in turn outperforms Fisher vectors

by a significant margin. Fine-tuning the CNN on the rendered views of the training

shapes of ModelNet40 further improves the performance. By using all 12 views of the

shape, its classification accuracy reaches 88.6%, and mean average precision (mAP)

for retrieval is also improved to 62.8%.

MVCNN outperforms all state-of-the-art descriptors as well as the Fisher vector

and CNN baselines. With fine-tuning on the ModelNet40 training set, our model

achieves 89.9% classification accuracy, and 70.1% mAP on retrieval using the first

camera setup. If we do not make use of the assumption about consistent upright

orientation of shapes (second camera setup), the performance remains still intact,

achieving 90.1% classification accuracy and 70.4% retrieval mAP. MVCNN constitutes

an absolute gain of 12.8% in classification accuracy compared to the state-of-the-art

learned 3D shape descriptor [137] (77.3% → 90.1%). Similarly, retrieval mAP is

improved by 21.2% (49.2% → 70.4%). Finally, learning a low-rank Mahalanobis

metric improves retrieval mAP further while classification accuracy remains almost

unchanged, and the resulting shape descriptors become more compact (d = 4096, p =

128).

Confusion matrix of 3D shape classification on ModelNet40 is given in Figure 3.3.

Here MVCNN with fine-tuning on 12 views (row 11 in Table 3.1) is used. Top

confusions occur at 1) flower pot → plant (45%), 2) table → desk (32%), 3) flower

pot → vase (20%), 4) plant → flower (19%), and 5) stool → chair (15%). Note that

these are all very closely related categories. Distinctions between some of these pairs

are ambiguous even for humans.

Position of view-pooling. We considered different locations to place the view-

29



pooling layer in the MVCNN architecture.Performance is not very sensitive among

the later few layers (conv4–fc7); however any location prior to conv4 decreases classifi-

cation accuracies significantly. We find conv5 offers slightly better accuracies (∼1%),

and thus use it for all our experiments.

Saliency map among views. For each 3D shape S, our multi-view representation

consists of a set of K 2D views {I1, I2 . . . IK}. We would like to rank pixels in the 2D

views w.r.t. their influence on the output score Fc of the network (e.g . taken from fc8

layer) for its ground truth class c. Following [112], saliency maps can be defined as

the derivatives of Fc w.r.t. the 2D views of the shape:

[w1, w2 . . . wK ] =

[
∂Fc
∂I1

∣∣∣∣
S

,
∂Fc
∂I2

∣∣∣∣
S

. . .
∂Fc
∂IK

∣∣∣∣
S

]
(3.2)

The magnitude of the derivative indicates changes to which pixels can influence

the class score the most. For MVCNN, w in Equation 3.2 can be computed using

back-propagation with all the network parameters fixed, and can then be rearranged

to form saliency maps for individual views. Examples of saliency maps are shown

in Figure 3.4. From the saliency maps, the most important views are usually the

canonical views where the object looks the most recognizable. Within each individual

saliency map, highly activated regions often point to distinct details (such as the

handles of a dresser).

3.2.1.2 ShapeNetCore55

We participated the competition of SHREC’16 track “Large-Scale 3D Shape Re-

trieval from ShapeNetCore55”3 and submitted results based on MVCNNs. The

ShapeNetCore55 competition dataset contains a total of 51,190 3D models from 55

categories. The dataset provides standard training, validation and test splits, consti-

3http://shapenet.cs.stanford.edu/shrec16/
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tuting 70% (35,765), 10% (5,159) and 20% (10,266) of the dataset respectively. The

competition uses two different versions of the dataset: a non-perturbed dataset where

all 3D models are consistently aligned, and a perturbed dataset where each model has

been randomly rotated by a uniformly sampled rotation. We use the 1st camera setup

with 12 views described in Section 3.1.1 for the non-perturbed dataset, and the 2nd

camera setup with 80 views for the perturbed dataset.

Evaluation metrics. The submitted results to the competition are evaluated based

on a set of standard information retrieval evaluation metrics:

1. Precision and Recall

2. F-score

3. Mean average precision (mAP)

4. Normalized discounted cumulative gain (NDCG)

Each model in the dataset is also assigned a sub-category which indicates a more

refined class for the object. There are 204 sub-categories in total. The sub-category

label is only considered in NDCG as a rough notion of finer relevance between 3D

models.

Data balancing. The 55 categories in ShapeNetCore55 are highly imbalanced. In

the training set, the largest category has about 150 times more shapes than the

smallest category. The subcategories are even more imbalanced. To perform category

balancing, we apply Equation 3.3 to the training class distribution d, and randomly

sample a training set for each training epoch according to dbalanced. t is a parameter

that controls the trade-off between macro-averaged and micro-averaged evaluation
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metrics. We set t to 0.5 for training the 55-category network and 0.2 for the 204-

subcategory network.

dbalanced(k) = avg(d) · ( d(k)

avg(d)
)t (3.3)

Retrieval with MVCNN. We train two networks for each camera setup: one for

55-way classification and another for 204-way subcategory classification. For each

query, we first predict its 55-way class label and construct a retrieval set containing

all shapes with the same predicted label. Then we extract features for the query

and the targets from the output layer of the 204-way subcategory network (i.e. the

features are the classification probabilities) and re-rank the results according to their

L2 distances to the query. The re-ranking step will not influence precision and recall,

and is designed mainly for improving NDCG.

The networks are based on VGG-M with the view-pooling layer placed at fc7

layer and are initialized with ImageNet-pretrained weights. For ModelNet40, we use

the penultimate layer in the network as features together with low-rank Mahalanobis

metric learning for dimension reduction. For ShapeNetCore55, however, we use the

output layer for optimal performance on the competition.

Our submission obtained the 1st place in the competition on the non-perturbed

dataset and the 2nd place on the perturbed dataset. Detailed results can be found

in the official competition report [105].

3.2.2 Sketch recognition: jittering revisited

Given the success of our aggregated descriptors on multiple views of a 3D object, it

is logical to ask whether aggregating multiple views of a 2D image could also improve

performance. Here we show that this is indeed the case by exploring its connection

with data jittering in the context of sketch recognition.
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Table 3.2: Classification results on SketchClean. Fine-tuned CNN models significantly
outperform Fisher Vectors [106] by a significant margin. MVCNNs are better than
CNN trained with data jittering. The results are shown with two different CNN
architectures – VGG-M (row 2-5) and VGG-VD (row 6-9).

Method Aug. Accuracy

(1) FV [106] - 79.0%

(2) CNN M - 77.3%
(3) CNN M, fine-tuned - 84.0%
(4) CNN M, fine-tuned 6× 85.5%
(5) MVCNN M, fine-tuned 6× 86.3%

(6) CNN VD - 69.3%
(7) CNN VD, fine-tuned - 86.3%
(8) CNN VD, fine-tuned 6× 86.0%
(9) MVCNN VD, fine-tuned 6× 87.2%

(10) Human performance n/a 93.0%

Data jittering, or data augmentation, is a method to generate extra samples from a

given image. It is the process of perturbing the image by transformations that change

its appearance while leaving the high-level information (class label, attributes, etc.)

intact. Jittering can be applied at training time to augment training samples and to

reduce overfitting, or at test time to provide more robust predictions. In particular,

several authors [71, 15, 117] have used data jittering to improve the performance of

deep representations on 2D image classification tasks. In these applications, jittering

at training time usually includes random image translations (implemented as random

crops), horizontal reflections, and color perturbations. At test time jittering usually

only includes a few crops (e.g ., four at the corners, one at the center and their

horizontal reflections). We now examine whether we can get more benefit out of

jittered views of an image by using the same feature aggregation scheme we developed

for recognizing 3D shapes.

The human sketch dataset [31] contains 20,000 hand-drawn sketches of 250 object

categories such as airplanes, apples, bridges, etc. The accuracy of humans in recog-
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nizing these hand-drawings is only 73% because of the low quality of some sketches.

Schneider and Tuytelaars [106] cleaned up the dataset by removing instances and

categories that humans find hard to recognize. This cleaned dataset (SketchClean)

contains 160 categories, on which humans can achieve 93% recognition accuracy. Us-

ing SIFT Fisher vectors with spatial pyramid pooling and linear SVMs, Schneider and

Tuytelaars achieved 68.9% recognition accuracy on the original dataset and 79.0% on

the SketchClean dataset. We split the SketchClean dataset randomly into training,

validation and test set,4 and report classification accuracy on the test set in Table 3.2.

With an off-the-shelf CNN (VGG-M from [15]), we are able to get 77.3% classifica-

tion accuracy without any network fine-tuning. With fine-tuning on the training set,

the accuracy can be further improved to 84.0%, significantly surpassing the Fisher

vector approach. These numbers are achieved by using the penultimate layer (fc7) in

the network as image descriptors and linear SVMs.

Although it is impractical to get multiple views from 2D images, we can use jitter-

ing to mimic the effect of views. For each hand-drawn sketch, we do in-plane rotation

with three angles: -45°, 0°, 45°, and also horizontal reflections (hence 6 samples per

image). We apply the two CNN variants (regular CNN and MVCNN) discussed earlier

for aggregating multiple views of 3D shapes, and get 85.5% (CNN w/o view-pooling)

and 86.3% (MVCNN w/ view-pooling on fc7) classification accuracy respectively. The

latter also has the advantage of a single, more compact descriptor for each hand-drawn

sketch.

With a deeper network architecture (VGG-VD, a network with 16 weight layers

from [113]), we achieve 87.2% accuracy, further advancing the classification perfor-

mance, and closely approaching human performance.

4The dataset does not come with a standard training/val/test split.
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Examples of correctly and wrongly classified hand-drawn sketches are shown in

Figure 3.5. Most misclassified sketches contain visually similar components with the

target class, e.g . spider and crab have a similar layout of legs, and some very abstract

sketches are difficult to recognize even for humans.

3.2.3 Sketch-based 3D shape retrieval

Due to the growing number of online 3D repositories, many approaches have been

investigated to perform efficient 3D shape retrieval. Most online repositories (e.g . 3D

Warehouse [123], TurboSquid [126], Shapeways [124]) provide only text-based search

engines or hierarchical catalogs for 3D shape retrieval. However, it is hard to convey

stylistic and geometric variations using only textual descriptions, thus sketch-based

shape retrieval [142, 108, 32] has been proposed as an alternative for users to retrieve

shapes with an approximate sketch of the desired 3D shape in mind. Sketch-based

retrieval is challenging since it involves two heterogeneous data domains (hand-drawn

sketches and 3D shapes), and sketches can be highly abstract and visually different

from target 3D shapes. Here we demonstrate the potential strength of MVCNNs in

sketch-based shape retrieval.

For this experiment, we construct a dataset containing 193 sketches and 790 CAD

models from 10 categories existing in both SketchClean and ModelNet40. Following

[32], we produce renderings of 3D shapes with a style similar to hand-drawn sketches

(see Figure 3.6).

This is achieved by detecting Canny edges on the depth buffer (also known as

z-buffer) from 12 viewpoints. These edge maps are then passed through CNNs to

obtain image descriptors. Descriptors are also extracted from 6 perturbed samples

of each query sketch in the manner described in Section 3.2.2. Finally we rank 3D

shapes w.r.t. “average minimum distance” (Equation 3.1) to the sketch descriptors.

Representative retrieval results are shown in Figure 3.7.
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We are able to retrieve 3D objects from the same class with the query sketch, as

well as being visually similar, especially in the top few matches. Our performance is

36.1% mAP on this dataset. Here we use the VGG-M network trained on ImageNet

without any fine-tuning on either sketches or 3D shapes. With a fine-tuning procedure

that optimizes a distance measure between hand-drawn sketches and 3D shapes, e.g .,

by using a Siamese Network [22], retrieval performance can be further improved.

3.3 Conclusions

While the world is full of 3D shapes, as humans at least, we understand that

world is mostly through 2D images. We have shown that using images of shapes as

inputs to modern learning architectures, we can achieve performance better than any

previously published results, including those that operate on direct 3D representations

of shapes.

While even a näive usage of these multiple 2D projections yields impressive dis-

crimination performance, by building descriptors that are aggregations of information

from multiple views, we can achieve compactness, efficiency, and better accuracy. In

addition, by relating the content of 3D shapes to 2D representations like sketches,

we can retrieve these 3D shapes at high accuracy using sketches, and leverage the

implicit knowledge of 3D shapes contained in their 2D views.

There are a number of directions to explore in future work. One is to experiment

with different combinations of 2D views. Which views are the most informative? How

many views are necessary for a given level of accuracy? Can informative views be

selected on the fly?

Another obvious question is whether our view aggregating techniques can be used

for building compact and discriminative descriptors for real-world 3D objects from

multiple views, or automatically from video, rather than merely for 3D polygon mesh
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models. Such investigations could be immediately applicable to widely studied prob-

lems such as object recognition and face recognition.
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Figure 3.3: Confusion matrix of ModelNet40 classification.
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0.45 0.85 1.15 2.16 1.95 1.34 1.06 0.37 0.40 0.27 0.66 0.45
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0.29 0.25 0.74 0.93 1.28 0.32 0.22 0.40 0.58 0.52 0.21 0.21

Figure 3.4: Saliency maps on samples from ModelNet. Top three views with the
highest saliency are highlighted in blue and the relative magnitude of gradient energy
for each view is shown on top. The saliency maps are computed by back-propagating
the gradients of the class score onto the images via the view-pooling layer. Notice
that the handles of the dresser are the most discriminative features. (Figures are
contrast enhanced for visibility.)
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Figure 3.5: Examples of correctly and wrongly classified hand-drawn sketches. All
sketches in each row are classified into the class labeled on top left. False positives
are in red, with their ground truth classes labeled on top.
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Figure 3.6: Line-drawing style rendering from 3D shapes.

query top 10 retrieved 3D shapes

Figure 3.7: Sketch-based 3D shape retrieval examples. Top matches are shown for
each query, with mistakes highlighted in red.
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CHAPTER 4

3D POINT CLOUD PROCESSING WITH SPARSE
LATTICE NETWORKS

In this chapter, we introduce a generic and flexible neural network architecture

for processing point clouds that alleviates some of the aforementioned issues with ex-

isting deep architectures. Our key observation is that the bilateral convolution layers

(BCLs) proposed in [57, 61] have several favorable properties for point cloud pro-

cessing. BCL provides a systematic way of filtering unordered points while enabling

flexible specifications of the underlying lattice structure on which the convolution op-

erates. BCL smoothly maps input points onto a sparse lattice, performs convolutions

on the sparse lattice and then smoothly interpolates the filtered signal back onto the

original input points.

4.1 Bilateral Convolution Layer

In this section, we briefly review the Bilateral Convolution Layer (BCL) that forms

the basic building block of our SPLATNet architecture for point clouds. BCL provides

a way to incorporate sparse high-dimensional filtering inside neural networks. In [57,

61], BCL was proposed as a learnable generalization of bilateral filtering [121, 2], hence

the name ‘Bilateral Convolution Layer’. Bilateral filtering involves a projection of a

given 2D image into a higher-dimensional space (e.g ., space defined by position and

color) and is traditionally limited to hand-designed filter kernels. BCL provides a way

to learn filter kernels in high-dimensional spaces for bilateral filtering. BCL is also

shown to be useful for information propagation across video frames [56]. We observe
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Splat

Input

Convolve

Segmentation

Slice

Figure 4.1: Bilateral Convolution Layer. Splat : BCL first interpolates input fea-
tures F onto a dl-dimensional permutohedral lattice defined by the lattice features
L at input points. Convolve: BCL then does dl-dimensional convolution over this
sparsely populated lattice. Slice: The filtered signal is then interpolated back onto
the input signal. For illustration, input and output are shown as point cloud and the
corresponding segmentation labels.

that BCL has several favorable properties to filter data that is inherently sparse and

high-dimensional, like point clouds. Here, we briefly describe how a BCL works and

then discuss its properties.

4.1.1 Inputs to BCL

Let F ∈ Rn×df be the given input features to a BCL, where n denotes the number

of input points and df denotes the dimensionality of input features at each point. For

3D point clouds, input features can be low-level features such as color, position, etc.,

and can also be high-level features such as features generated by a neural network.

One of the interesting characteristics of BCL is that it allows a flexible specification

of the lattice space in which the convolution operates. This is specified as lattice

features at each input point. Let L ∈ Rn×dl denote lattice features at input points

with dl denoting the dimensionality of the feature space in which convolution operates.

For instance, the lattice features can be point position and color (XY ZRGB) that

define a 6-dimensional filtering space for BCL. For standard 3D spatial filtering of

point clouds, L is given as the position (XY Z) of each point. Thus BCL takes input
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features F and lattice features L of input points and performs dl-dimensional filtering

of the points.

4.1.2 Processing steps in BCL

As illustrated in Figure 4.1, BCL has three processing steps, splat, convolve and

slice, that work as follows.

1. Splat. BCL first projects the input features F onto the dl-dimensional lattice

defined by the lattice features L, via barycentric interpolation. Following [1],

BCL uses a permutohedral lattice instead of a standard Euclidean grid for

efficiency purposes. The size of lattice simplices or space between the grid

points is controlled by scaling the lattice features ΛL, where Λ is a diagonal

dl × dl scaling matrix.

2. Convolve. Once the input points are projected onto the dl-dimensional lattice,

BCL performs dl-dimensional convolution on the splatted signal with learnable

filter kernels. Just like in standard spatial CNNs, BCL allows an easy specifi-

cation of filter neighborhood in the dl-dimensional space.

3. Slice. The filtered signal is then mapped back to the input points via barycen-

tric interpolation. The resulting signal can be passed on to other BCLs for

further processing. This step is called “slicing”. BCL allows slicing the filtered

signal onto a different set of points other than the input points. This is achieved

by specifying a different set of lattice features Lout ∈ Rm×dl at m output points

of interest.

All the above three processing steps in BCL can be written as matrix multiplica-

tions:

F̂c = SsliceBconvSsplatFc, (4.1)
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where Fc denotes the cth column/channel of the input feature F and F̂c denotes the

corresponding filtered signal.

4.1.3 Point cloud density normalization

BCL has a normalization scheme to deal with uneven point density, or more

specifically, the fact that some lattice vertices are supported by more data points

than others. Input signals are filtered directly with the learnable filter kernels, and

are also filtered in a separate second round with their values replaced by 1s with a

Gaussian kernel. The filter responses in the second round are then used for normaliz-

ing responses from the first round. This is similar to using homogeneous coordinates,

which are widely adopted in bilateral filtering implementations such as [1].

4.1.4 Properties of BCL

There are several properties of BCL that makes it particularly convenient for point

cloud processing. Here, we mention some of those properties:

• The input points to BCL need not be ordered or lie on a grid as they are

projected onto a dl-dimensional grid defined by lattice features Lin.

• The input and output points can be different for BCL with the specification of

different input and output lattice features Lin and Lout.

• Since BCL allows separate specifications of input and lattice features, input

signals can be projected into a different dimensional space for filtering. For

instance, a 2D image can be projected into 3D space for filtering.

• Just like in standard spatial convolutions, BCL allows an easy specification of

filter neighborhood.

• Since a signal is usually sparse in high-dimension, BCL uses hash tables to index

the populated vertices and does convolutions only at those locations. This helps

in efficient processing of sparse inputs.
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Refer to [1] for more information about sparse high-dimensional Gaussian filtering

on a permutohedral lattice and refer to [57] for more details on BCL.

4.2 Sparse Lattice Networks

With BCLs as building blocks, we propose a new neural network architecture,

which we refer to as SPLATNet (SParse LATtice Networks), that does hierarchical

and spatially-aware feature learning for unordered points.

SPLATNet has several advantages for point cloud processing:

• SPLATNet takes the point cloud as input and does not require any pre-processing

to voxels or images.

• SPLATNet allows an easy specification of filter neighborhood as in standard

CNN architectures.

• With the use of hash table, our network can efficiently deal with sparsity in the

input point cloud by convolving only at locations where data is present.

• SPLATNet computes hierarchical and spatially-aware features of an input point

cloud with sparse and efficient lattice filters.

• In addition, our network architecture allows an easy mapping of 2D points into

3D space and vice-versa. Following this, we propose a joint 2D-3D deep archi-

tecture that processes both the multi-view 2D images and the corresponding

3D point cloud in a single forward pass while being end-to-end learnable.

The inputs and outputs of two versions of the proposed network, SPLATNet3D and

SPLATNet2D-3D, are depicted in Figure 4.2. We demonstrate the above advantages

with experiments on point cloud segmentation. Experiments on both RueMonge2014

facade segmentation [102] and ShapeNet part segmentation [140] demonstrate the

superior performance of our technique compared to prior state-of-the-art techniques,

while being computationally efficient.

46



4.2.1 3D point cloud processing with SPLATNet3D

We first introduce SPLATNet3D, an instantiation of our proposed network archi-

tecture which operates directly on 3D point clouds and is readily applicable to many

important 3D tasks. The input to SPLATNet3D is a 3D point cloud P ∈ Rn×d, where

n denotes the number of points and d ≥ 3 denotes the number of feature dimensions

including point locations XY Z. Additional features are often available either directly

from 3D sensors or through pre-processing. These can be RGB color, surface normal,

curvature, etc. at the input points. Note that input features F of the first BCL and

lattice features L in the network each comprises a subset of the d feature dimensions:

df ≤ d, dl ≤ d.

...

+

SPLATNet3D

CNN1 +

BCL 
L3D | Λ0/2

T-1
BCL 
L3D | Λ0/2

BCL 
L3D | Λ0

1⨉1 
CONV

1⨉1 
CONV

1⨉1 
CONV

CNN2SPLATNet2D-3D

...

...

1⨉1 
CONV

Input point cloud

Input images

3D predictions
(SPLATNet3D)

3D predictions
(SPLATNet2D-3D)
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L2D, L3D | Λa

2D➝3D
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+
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3D➝2D

1⨉1 
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Figure 4.2: Illustration of inputs, outputs and network architectures for SPLATNet3D

and SPLATNet2D-3D.

As output, SPLATNet3D produces per-point predictions. Tasks like 3D seman-

tic segmentation and 3D object part labeling fit naturally under this framework.

With simple techniques such as global pooling [95], SPLATNet3D can be modified

to produce a single output vector and thus can be extended to other tasks such as

classification.
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4.2.1.1 Network architecture.

The architecture of SPLATNet3D is depicted in Figure 4.2. The network starts

with a single 1× 1 CONV layer followed by a series of BCLs. The 1× 1 CONV layer

processes each input point separately without any data aggregation. The functionality

of BCLs is already explained in Section 4.1. For SPLATNet3D, we use T BCLs each

operating on a 3D lattice (dl = 3) constructed using 3D point locations XY Z as

lattice features, Lin = Lout ∈ Rn×3. We note that different BCLs can use different

lattice scales Λ. Recall from Section 4.1 that Λ is a diagonal matrix that controls

the spacing between the grid points in the lattice. For BCLs in SPLATNet3D, we

use the same lattice scales along each of the X, Y and Z directions, i.e., Λ = λI3,

where λ is a scalar and I3 denotes a 3 × 3 identity matrix. We start with an initial

lattice scale λ0 for the first BCL and subsequently divide the lattice scale by a factor

of 2 (λt = λt−1/2) for the next T − 1 BCLs. In other words, SPLATNet3D with T

BCLs use the following lattice scales: (Λ0,Λ0/2, . . . ,Λ0/2
T−1). Lower lattice scales

imply coarser lattices and larger receptive fields for the filters. Thus, in SPLATNet3D,

deeper BCLs have longer-range connectivity between input points compared to earlier

layers. We will discuss more about the effects of different lattice spaces and their

scales later. Like in standard CNNs, SPLATNet allows an easy specification of filter

neighborhoods. For all the BCLs, we use filters operating on one-ring neighborhoods

and refer to the supp. material for details on the number of filters per layer.

The responses of the T BCLs are concatenated and then passed through two ad-

ditional 1× 1 CONV layers. Finally, a softmax layer produces point-wise class label

probabilities. The concatenation operation aggregates information from BCLs op-

erating at different lattice scales. Similar techniques of concatenating outputs from

network layers at different depths have been useful in 2D CNNs [48]. All parameter-

ized layers, except for the last CONV layer, are followed by ReLU and BatchNorm.

More details about the network architecture are given in the supp. material.
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4.2.1.2 Lattice spaces and their scales.

The use of BCLs in SPLATNet allows easy specifications of lattice spaces via

lattice features and also lattice scales via a scaling matrix.

Changing the lattice scales Λ directly affects the resolution of the signal on which

the convolution operates. This gives us direct control over the receptive fields of

network layers. Figure 4.3 shows lattice cell visualizations for different lattice spaces

and scales. Using coarser lattice can increase the effective receptive field of a filter.

Another way to increase the receptive field of a filter is by increasing its neighborhood

size. But, in high-dimensions, this will significantly increase the number of filter

parameters. For instance, 3D filters of size 3, 5, 7 on a regular Euclidean grid have

33 = 27, 53 = 125, 73 = 343 parameters respectively. On the other hand, making the

lattice coarser would not increase the number of filter parameters leading to more

computationally efficient network architectures.

We observe that it is beneficial to use finer lattices (larger lattice scales) earlier in

the network, and then coarser lattices (smaller lattice scales) going deeper. This is

consistent with the common knowledge in 2D CNNs: increasing receptive field grad-

ually through the network can help build hierarchical representations with varying

spatial extents and abstraction levels.

Although we mainly experiment with XY Z lattices in this work, BCL allows for

other lattice spaces such as position and color space (XY ZRGB) or normal space.

Using different lattice spaces enforces different connectivity across input points that

may be beneficial to the task. In one of the experiments, we experimented with a

variant of SPLATNet3D, where we add an extra BCL with position and normal lattice

features (XY Znxnynz) and observed minor performance improvements.
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(x, y, z), I3 (x, y, z), 8I3 (nx, ny, nz), I3

Figure 4.3: Effect of different lattice spaces and scales. Visualizations for different
lattice feature spaces L = (x, y, z), (x, y, z), (nx, ny, nz) along with lattice scales Λ =
I3, 8I3, I3. (nx, ny, nz) refers to point normals. All points falling in the same lattice
cell are colored the same.

4.2.2 Joint 2D-3D processing with SPLATNet2D-3D

Oftentimes, 3D point clouds are accompanied by 2D images of the same target.

For instance, many modern 3D sensors capture RGBD streams and perform 3D recon-

struction to obtain 3D point clouds, resulting in both 2D images and point clouds of a

scene together with point correspondences between 2D and 3D. One could also easily

sample point clouds along with 2D renderings from a given 3D mesh. When such

aligned 2D-3D data is present, SPLATNet provides an extremely flexible framework

for joint processing. We propose SPLATNet2D-3D, another SPLATNet instantiation

designed for such joint processing.

The network architecture of the SPLATNet2D-3D is depicted in the green box of

Figure 4.2. SPLATNet2D-3D encompasses SPLATNet3D as one of its components and

adds extra computational modules for joint 2D-3D processing. Next, we explain each

of these extra components of SPLATNet2D-3D, in the order of their computations.

CNN1. First, we process the given multi-view 2D images using a 2D segmentation

CNN, which we refer to as CNN1. In our experiments, we use the DeepLab [19]
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architecture for CNN1 and initialize the network weights with those pre-trained on

PASCAL VOC segmentation [33].

BCL2D→3D. CNN1 outputs features of the image pixels, whose 3D locations often do

not exactly correspond to points in the 3D point cloud. We project information from

the pixels onto the point cloud using a BCL with only splat and slice operations.

As mentioned in Section 4.1, one of the interesting properties of BCL is that it

allows for different input and output points by separate specifications of input and

output lattice features, Lin and Lout. Using this property, we use BCL to splat

2D features onto the 3D lattice space and then slice the 3D splatted signal on the

point cloud. We refer to this BCL, without a convolution operation, as BCL2D→3D

as illustrated in Figure 4.4. Specifically, we use 3D locations of the image pixels as

input lattice features, Lin = L2D ∈ Rm×3, where m denotes the number of input

image pixels. In addition, we use 3D locations of points in the point cloud as output

lattice features, Lout = L3D ∈ Rn×3, which are the same lattice features used in

SPLATNet3D. The lattice scale, Λa, controls the smoothness of the projection and

can be adjusted according to the sparsity of the point cloud.

2D-3D Fusion. At this point, we have the result of CNN1 projected onto 3D points

and also the intermediate features from SPLATNet3D that exclusively operates on the

input point cloud. Since both of these signals are embedded in the same 3D space, we

concatenate these two signals and then use a series of 1× 1 CONV layers for further

processing. The output of the ‘2D-3D Fusion’ module is passed on to a softmax layer

to compute class probabilities at each input point of the point cloud.

BCL3D→2D. Sometimes, we are also interested in segmenting 2D images and want

to leverage relevant 3D information for better 2D segmentation. For this purpose, we

51



Splat

2D Segmentations 3D Segmentation

Slice

Figure 4.4: 2D to 3D projection. Illustration of 2D to 3D projection using splat and
slice operations. Given input features of 2D images, pixels are projected onto a 3D
permutohedral lattice defined by 3D positional lattice features. The splatted signal
is then sliced onto the points of interest in a 3D point cloud.

back-project the 3D features computed by the ‘2D-3D Fusion’ module onto the 2D

images by a BCL2D→3D module. This is the reverse operation of BCL2D→3D, where

the input and output lattice features are swapped. Similarly, a hyper-parameter Λb

controls the smoothness of the projection.

CNN2. We then concatenate the output from CNN1, input images and the output

of BCL3D→2D, and pass them through another 2D CNN, CNN2, to obtain refined 2D

semantic predictions. In our experiments, we find that a simple 2-layered network is

good enough for this purpose.

All components in this 2D-3D joint processing framework are differentiable, and

can be trained end-to-end. Depending on the availability of 2D or 3D ground-truth

labels, loss functions can be defined on either one of the two domains, or on both

domains in a multi-task learning setting. More details of the network architecture are

provided in the supp. material. We believe that this joint processing capability offered

by SPLATNet2D-3D can result in better predictions for both 2D images and 3D point

clouds. For 2D images, leveraging 3D features helps in view-consistent predictions
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Table 4.1: Results on facade segmentation. Average IoU scores and approximate
runtimes for point cloud labeling and 2D image labeling using different techniques.
Runtimes indicate the time taken to segment the entire test data (202 images sequen-
tially for 2D and a point cloud for 3D).

(a) Point cloud labeling

Method Average
IoU

Runtime
(min)

With only 3D data
OctNet [101] 59.2 -
Autocontext3D [37] 54.4 16
SPLATNet3D

(Ours)
65.4 0.06

With both 2D and 3D data
Autocontext2D-3D [37] 62.9 87
SPLATNet2D-3D

(Ours)
69.8 1.20

(b) Multi-view image labeling

Method Average
IoU

Runtime
(min)

Autocontext2D [37] 60.5 117
Autocontext2D-3D [37] 62.7 146
DeepLab2D [19] 69.3 0.84
SPLATNet2D-3D

(Ours)
70.6 4.34

across multiple viewpoints. For point clouds, incorporating 2D CNNs help leverage

powerful 2D deep CNN features computed on high-resolution images.

4.3 Experiments

We evaluate SPLATNet on tasks on two different benchmark datasets of Rue-

Monge2014 [102] and ShapeNet [140]. On RueMonge2014, we conducted experiments

on the tasks of 3D point cloud labeling and multi-view image labeling. On ShapeNet,

we evaluated SPLATNet on 3D part segmentation. We use Caffe [59] neural network

framework for all the experiments.

4.3.1 RueMonge2014 facade segmentation

Here, the task is to assign semantic label to every point in a point cloud and/or

corresponding multi-view 2D images.
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Input point cloud Ground truth SPLATNet3D SPLATNet2D-3D

Figure 4.5: Sample visual results of SPLATNet3D and SPLATNet2D-3D for Facade
point cloud labeling.

4.3.1.1 Dataset

RueMonge2014 [102] provides a standard benchmark for 2D and 3D facade seg-

mentation and also inverse procedural modeling. The dataset consists of 428 high-

resolution and multi-view images obtained from a street in Paris. A point cloud with

approximately 1M points is reconstructed using the multi-view images. A ground-

truth labeling with seven semantic classes of door, shop, balcony, window, wall, sky

and roof are provided for both 2D images and the point cloud. Sample point cloud

sections and 2D images with their corresponding ground truths are shown in Fig-

ure 4.5 and 4.6 respectively. For evaluation, Intersection over Union (IoU) score is

computed for each of the seven classes and then averaged to get a single overall IoU.

4.3.1.2 Implementation details

We experiment with both SPLATNet variants for the facade segmentation task.

Here we provide detailed description of the network architectures and the training

setup.

Network architecture of SPLATNet3D. We use 5 BCLs (T = 5) followed by 2

1 × 1 CONV layers in SPLATNet3D for the facade segmentation task. We omit the

initial 1 × 1 CONV layer since we find it has no effect on the overall performance.
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The number of output channels in each layer are: B64-B128-B128-B128-B64-C64-C7.

Note that although written as a linear structure, the network has skip connections

from all BCLs (layers start with “B”) to the penultimate 1× 1 CONV layer. We use

an initial scale Λ0 = 32I3 for scaling lattice features XY Z, and divide the scale in half

after each BCL: 32I3, 16I3, 8I3, 4I3, 2I3. Input features to the network comprise of a

7-dimensional vector at each point representing RGB color, normal and height above

the ground. The unit of raw XY Z inputs is meter, with Y (aligned with gravity axis)

having a range of 7.1 meters. For all the BCLs, we use filters operating on one-ring

neighborhoods on the lattice.

Network architecture of SPLATNet2D-3D. We use SPLATNet3D as described

above as the 3D component of the 2D-3D joint model. The “2D-3D Fusion” compo-

nent has 2 1 × 1 CONV layers: C64-C7. DeepLab [19] segmentation architecture is

used as CNN1. CNN2 is a small network with 2 CONV layers: C32-C7, where the

first layer has 3 × 3 filters and 32 output channels, and the second one has 1 × 1

filters and 7 output channels. We use Λa = 64 and Λb = 1000 for 2D↔3D projections

with BCLs. Note that the dataset provides one-to-many mappings from 3D points to

pixels. By using a very large scale (i.e., Λb = 1000), 3D unaries are directly mapped

to the corresponding 2D pixel locations without any interpolation.

Training. We randomly sample facade segments of 60k points and use a batch size

of 4 when training SPLATNet3D. CNN1 is initialized with Pascal VOC [33] pre-

trained weights and fine-tuned for 2D facade segmentation. Adam optimizer [62]

with an initial learning rate of 0.0001 is used for training both SPLATNet3D and

SPLATNet2D-3D. Since the training data is small, we augment point cloud training

data with random rotations, translations, and small color perturbations. We also

augment 2D image data with small color perturbations during training.
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4.3.1.3 Results on point cloud labeling

Experimental results with average IoU and runtime are shown in Table 4.1a. Re-

sults show that, with only 3D data, our method achieves an IoU of 65.4 which is a

considerable improvement (6.2 IoU ↑) over the state-of-the-art deep network, Oct-

Net [101].

Since this dataset comes with multi-view 2D images, one could leverage the infor-

mation present in 2D data for better point cloud labeling. We use SPLATNet2D-3D to

leverage 2D information and obtain better 3D segmentations. Table 4.1a shows the

experimental results when using both the 2D and 3D data as input. SPLATNet2D-3D

obtains an average IoU of 69.8 outperforming the previous state-of-the-art by a large

margin (6.9 IoU ↑), thereby setting up a new state-of-the-art on this dataset. This is

also a significant improvement from the IoU obtained with SPLATNet3D demonstrat-

ing the benefit of leveraging 2D and 3D information in a joint framework. Runtimes

in Table 4.1a also indicate that our SPLATNet approach is much faster compared to

traditional Autocontext techniques. Sample visual results for 3D facade labeling are

shown in Figure 4.5.

4.3.1.4 Results on multi-view image labeling

Table 4.1b shows the results of multi-view image labeling on this dataset using

different techniques. Using DeepLab (CNN1) already outperforms existing state-of-

the-art by a large margin. Leveraging 3D information via SPLATNet2D-3D boosts the

performance to 70.6 IoU. An increase of 1.3 IoU from only using CNN1 demonstrates

the potential of our joint 2D-3D framework in leveraging 3D information for better

2D segmentation.

4.3.2 ShapeNet part segmentation

The task of part segmentation is to assign a part category label to each point in

a point cloud representing a 3D object.
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Input Ground truth SPLATNet2D-3D

Figure 4.6: Sample visual results of SPLATNet2D-3D for 2D facade segmentation.

4.3.2.1 Dataset

The ShapeNet Part dataset [140] is a subset of ShapeNet, which contains 16681

objects from 16 categories, each with 2-6 part labels. The objects are consistently

aligned and scaled to fit into a unit cube, and the ground-truth annotations are

provided on sampled points on the shape surfaces. It is common to assume that

the category of the input 3D object is known, narrowing the possible part labels

to the ones specific to the given object category. We report standard IoU scores

for evaluation of part segmentation. An IoU score is computed for each object and

then averaged within the objects in a category to compute mean IoU (mIoU) for each

object category. In addition to reporting mIoU score for each object category, we also
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Figure 4.7: Sample visual results of SPLATNet3D and SPLATNet2D-3D for ShapeNet
part segmentation.

report “class average mIoU” which is the average mIoU across all object categories,

and also “instance average mIoU”, which is the average mIoU across all objects.

4.3.2.2 Implementation details

We experiment with both SPLATNet variants for the object part segmentation

task. Here we provide detailed description of the network architectures and the

training setup.

Network architecture of SPLATNet3D. We use a 1 × 1 CONV layer in the

beginning, followed by 5 BCLs (T = 5), and then 2 1×1 CONV layers in SPLATNet3D

for the ShapeNet part segmentation task. The number of output channels in each layer

are: C32-B64-B128-B256-B256-B256-C128-Cx. “x” in the last CONV layer denotes
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the number of part categories, and ranges from 2-6 for different object categories.

Point locations XY Z are used as input features as well as lattice features L for all

the BCLs. We use an initial scale Λ0 = 64I3 for scaling lattice features XY Z, and

divide the scale in half after each BCL: 64I3, 32I3, 16I3, 8I3, 4I3.

Network architecture of SPLATNet2D-3D. We use SPLATNet3D as described

above as the 3D component of the joint model. The “2D-3D Fusion” component has

2 1×1 CONV layers: C128-Cx. The same DeepLab architecture is used for CNN1. We

use Λa = 32 in BCL2D→3D. Since 2D prediction is not needed, CNN2 and BCL3D→2D

are omitted.

Training. Since the category of the input object is assumed to be known, we train

separate networks for each object category. CNN1 is initialized the same way as in the

facade experiment. Adam optimizer with an initial learning rate of 0.0001 is used. We

augment point cloud data with random rotations, translations, and scalings during

training. We train our networks until validation loss plateaus. Training SPLATNet3D

and SPLATNet2D-3D take about 2.5 and 3 days respectively on a single graphics card

(Nvidia GeForce GTX 1080 Ti). With default settings, training PointNet++ takes

3.5 days on the same hardware.

4.3.2.3 Results on 3D object part segmentation

We evaluate both SPLATNet3D and SPLATNet2D-3D for this task.

SPLATNet3D uses only 3D point clouds as input. Experimental results are shown

in Table 4.2. SPLATNet3D obtains a class average mIoU of 82.0 and an instance

average mIoU of 84.6, which is on-par with the best networks that only take point

clouds as input (PointNet++ [96] uses surface normals as additional inputs).

59



We also adopt the SPLATNet2D-3D network, which operates on both 2D and 3D

data, for this task. For the joint framework to work, we need rendered 2D views

and corresponding 3D locations for each pixel in the renderings. We first render 3-

channel images: Phong shading [93], depth, and height from ground. Cameras are

placed on the 20 vertices of a dodecahedron from a fixed distance, pointing towards

the object’s center. The 2D-3D correspondences can be generated by carrying the

XY Z coordinates of 3D points into the rendering rasterization pipeline so that each

pixel also acquires coordinate values from the surface point projected onto it. Re-

sults in Table 4.2 show that incorporating 2D information allows SPLATNet2D-3D to

improve noticeably from SPLATNet3D with 1.7 and 0.8 increase in class and instance

average mIoU respectively. SPLATNet2D-3D obtains a class average IoU of 83.7 and

an instance average IoU of 85.4, outperforming existing state-of-the-art approaches.
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Table 4.2: Results on ShapeNet part segmentation showing class average mIoU, instance average mIoU and mIoU scores for all
the categories on the task of point cloud labeling using different techniques.

#instances 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

class instance air- bag cap car chair ear- guitar knife lamp laptop motor- mug pistol rocket skate- table
avg. avg. plane phone bike board

Yi et al . [140] 79.0 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3
3DCNN [95] 74.9 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.8 76.4 51.2 65.3 77.1
Kd-network [63] 77.4 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
PointNet [95] 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [96] 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
SyncSpecCNN [141] 82.0 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1

SPLATNet3D 82.0 84.6 81.9 83.9 88.6 79.5 90.1 73.5 91.3 84.7 84.5 96.3 69.7 95.0 81.7 59.2 70.4 81.3
SPLATNet2D-3D 83.7 85.4 83.2 84.3 89.1 80.3 90.7 75.5 92.1 87.1 83.9 96.3 75.6 95.8 83.8 64.0 75.5 81.861



On one Nvidia GeForce GTX 1080 Ti, SPLATNet3D runs at 9.4 shapes/sec, while

SPLATNet2D-3D is slower at 0.4 shapes/sec due to a relatively large 2D network

operating on 20 high-resolution (512 × 512) views, which takes up more than 95%

of the computation time. In comparison, PointNet++ runs at 2.7 shapes/sec on the

same hardware1.

4.3.2.4 Filtering in higher-dimensional spaces

We experiment with a variant of SPLATNet3D where an additional BCL with 6-

dimensional position and normal lattice features (XY Znxnynz) is added between the

last two 1 × 1 CONV layers. This modification gave only a marginal improvement

of 0.2 IoU over standard SPLATNet3D in terms of both class and instance average

mIoU scores.

4.3.2.5 Limitations with the dataset

We observed a few types of labeling issues in the ShapeNet Part dataset:

• Some object part categories are frequently labeled incorrectly. E.g ., skateboard

axles are often mistakenly labeled as “deck” or “wheel” (Figure 4.8a).

• Some object parts, e.g . “fin” of some rockets, have incomplete range or coverage

(Figure 4.8b).

• Some object part categories are labeled inconsistently between shapes. E.g .,

airplane landing gears are seen labeled as “body”, “engine”, or “wings” (Fig-

ure 4.8c).

• Some categories have parts that are labeled as “other”, which can be confus-

ing for the classifier as these parts do not have clear semantic meanings or

1We use the public implementation released by the authors (https://github.com/charlesq34/
pointnet2) with settings: model = ‘pointnet2 part seg msg one hot’, VOTE NUM = 12,
num point = 3000 (in consistence with our experiments).
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structures. E.g ., in the case of earphones, anything that is not “headband” or

“earphone” are given the same label (“other”) (Figure 4.8d).

The first two issues make evaluations and comparisons on the benchmark less

reliable, while the other two make learning ill-posed or unnecessarily hard for the

networks. Thus we suspect pushing the performance further would pose a potential

risk of overfitting the dataset.

4.4 Conclusions

In this chapter, we propose the SPLATNet architecture for point cloud process-

ing. SPLATNet directly takes point clouds as input and computes hierarchical and

spatially-aware features with sparse and efficient lattice filters. In addition, SPLAT-

Net allows an easy mapping of 2D information into 3D and vice-versa, resulting in a

novel network architecture for joint processing of point clouds and multi-view images.

Experiments on two different benchmark datasets show that the proposed networks

compare favorably against state-of-the-art approaches for segmentation tasks. In the

future, we would like to explore the use of additional input features (e.g ., texture)

and also the use of other high-dimensional lattice spaces in our networks.
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(d) Confusing labels

Figure 4.8: Four types of labeling issues in the ShapeNet Part dataset are shown here.
Two examples from the test set are given for each type, where the first row shows the
ground-truth labels and the second row shows our predictions with SPLATNet2D-3D.
Our predictions appear to be more accurate than the ground truth in some cases (see
the skateboard axles in Figure 4.8a and the rocket fins in Figure 4.8b).
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CHAPTER 5

PIXEL-ADAPTIVE CONVOLUTIONAL NEURAL
NETWORKS

Convolution is a basic operation in many image processing and computer vision

applications and the major building block of CNN architectures. It forms one of the

most prominent ways of propagating and integrating features across image pixels due

to its simplicity and highly optimized CPU/GPU implementations. In this chapter,

we concentrate on two important characteristics of standard spatial convolution and

aim to alleviate some of its drawbacks: Spatial Sharing and its Content-Agnostic

nature.

Spatial Sharing : A typical CNN shares filters’ parameters across the whole input.

In addition to affording translation invariance to the CNN, spatially invariant convo-

lutions significantly reduce the number of parameters compared with fully connected

layers. However, spatial sharing is not without drawbacks. For dense pixel prediction

tasks, such as semantic segmentation, the loss is spatially varying because of varying

scene elements on a pixel grid. Thus the optimal gradient direction for parameters

differs at each pixel. However, due to the spatial sharing nature of convolution, the

loss gradients from all image locations are globally pooled to train each filter. This

forces the CNN to learn filters that minimize the error across all pixel locations at

once, but may be sub-optimal at any specific location.

Content-Agnostic: Once a CNN is trained, the same convolutional filter banks are

applied to all the images and all the pixels irrespective of their content. The image

content varies substantially across images and pixels. Thus a single trained CNN may
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not be optimal for all image types (e.g . images taken in daylight and at night) as well

as different pixels in an image (e.g . sky vs. pedestrian pixels). Ideally, we would like

CNN filters to be adaptive to the type of image content, which is not the case with

standard CNNs. These drawbacks can be tackled by learning a large number of filters

in an attempt to capture both image and pixel variations. This, however, increases

the number of parameters, requiring a larger memory footprint and an extensive

amount of labeled data. A different approach is to use content-adaptive filters inside

the networks.

Existing content-adaptive convolutional networks can be broadly categorized into

two types. One class of techniques make traditional image-adaptive filters, such as

bilateral filters [2, 121] and guided image filters [50] differentiable, and use them

as layers inside a CNN [69, 76, 147, 21, 18, 57, 77, 14, 36, 79, 131, 134]. These

content-adaptive layers are usually designed for enhancing CNN results but not as a

replacement for standard convolutions. Another class of content-adaptive networks

involve learning position-specific kernels using a separate sub-network that predicts

convolutional filter weights at each pixel. These are called “Dynamic Filter Net-

works” (DFN) [139, 58, 26, 135] (also referred to as cross-convolution [139] or kernel

prediction networks [4]) and have been shown to be useful in several computer vision

tasks. Although DFNs are generic and can be used as a replacement to standard

convolution layers, such a kernel prediction strategy is difficult to scale to an entire

network with a large number of filter banks.

In this chapter, we propose a new content-adaptive convolution layer that ad-

dresses some of the limitations of the existing content-adaptive layers while retaining

several favorable properties of spatially invariant convolution. Figure 5.1 illustrates

our content-adaptive convolution operation, which we call “Pixel-Adaptive Convolu-

tion” (PAC). Unlike a typical DFN, where different kernels are predicted at different

pixel locations, we adapt a standard spatially invariant convolution filter W at each

66



𝐾

 𝑊

f-1,-1 f-1,0 f-1,1

f0,-1 f0,0 f0,1

f1,-1 f1,0 f1,1

𝐾(f-1,-1,f0,0) 𝐾(f-1,0,f0,0) 𝐾(f-1,1,f0,0)

𝐾(f0,-1,f0,0) 𝐾(f0,0,f0,0) 𝐾(f0,1,f0,0)

𝐾(f1,-1,f0,0) 𝐾(f1,0,f0,0) 𝐾(f1,1,f0,0)

𝐾

Figure 5.1: Pixel-Adaptive Convolution (PAC) modifies a standard convolution on
an input v by modifying the spatially invariant filter W with an adapting kernel K.
The adapting kernel is constructed using either pre-defined or learned features f . ⊗
denotes element-wise multiplication of matrices followed by a summation. Only one
output channel is shown for the illustration.

pixel by multiplying it with a spatially varying filter K, which we refer to as an

“adapting kernel”. This adapting kernel has a pre-defined form (e.g., Gaussian or

Laplacian) and depends on the pixel features. For instance, the adapting kernel that

we mainly use in this work is Gaussian: e−
1
2
||fi−fj ||2 , where fi ∈ Rd is a d-dimensional

feature at the ith pixel. We refer to these pixel features f as “adapting features”, and

they can be either pre-defined, such as pixel position and color features, or can be

learned using a CNN.

We observe that PAC, despite being a simple modification to standard convolu-

tion, is highly flexible and can be seen as a generalization of several widely-used filters.

Specifically, we show that PAC is a generalization of spatial convolution, bilateral fil-

tering [2, 121], and pooling operations such as average pooling and detail-preserving

pooling [103]. We also implement a variant of PAC that does pixel-adaptive trans-

posed convolution (also called deconvolution) which can be used for learnable guided
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upsampling of intermediate CNN representations. We discuss more about these gen-

eralizations and variants in Section 5.2.

As a result of its simplicity and being a generalization of several widely used

filtering techniques, PAC can be useful in a wide range of computer vision problems.

In this work, we demonstrate its applicability in three different vision problems. In

Section 5.3, we use PAC in joint image upsampling networks and obtain state-of-

the-art results on both depth and optical flow upsampling tasks. In Section 5.4,

we use PAC in a learnable conditional random field (CRF) framework and observe

consistent improvements with respect to the widely used fully-connected CRF [69].

In Section 5.5, we demonstrate how to use PAC as a drop-in replacement of trained

convolution layers in a CNN and obtain performance improvements after fine-tuning.

In summary, we observe that PAC is highly versatile and has wide applicability in a

range of computer vision tasks.

5.1 Related Work

5.1.1 Content-adaptive filtering

Some important content-adaptive filtering techniques include bilateral filtering [2,

121], guided image filtering [50], non-local means [12, 3], and propagated image fil-

tering [99], to name a few. A common line of research is to make these filters dif-

ferentiable and use them as content-adaptive CNN layers. Early work [147, 21] in

this direction back-propagates through bilateral filtering and can thus leverage fully-

connected CRF inference [69] on the output of CNNs. The work of [57] and [36]

proposes to use bilateral filtering layers inside CNN architectures. Chandra et al . [14]

propose a layer that performs closed-form Gaussian CRF inference in a CNN. Chen et

al . [18] and Liu et al . [79] propose differentiable local propagation modules that have

roots in domain transform filtering [39]. Wu et al . [134] and Wang et al . [131] propose

neural network layers to perform guided filtering [50] and non-local means [131] re-
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spectively inside CNNs. Since these techniques are tailored towards a particular CRF

or adaptive filtering technique, they are used for specific tasks and cannot be directly

used as a replacement of general convolution. Closest to our work are the sparse,

high-dimensional neural networks [57] which generalize standard 2D convolutions to

high-dimensional convolutions, enabling them to be content-adaptive. Although con-

ceptually more generic than PAC, such high-dimensional networks can not learn the

adapting features and have a larger computational overhead due to the use of spe-

cialized lattices and hash tables.

5.1.2 Dynamic filter networks

Introduced by Jia et al . [58], dynamic filter networks (DFN) are an example of

another class of content-adaptive filtering techniques. Filter weights are themselves

directly predicted by a separate network branch, and provide custom filters specific

to different input data. The work is later extended by Wu et al . [135] with an addi-

tional attention mechanism and a dynamic sampling strategy to allow the position-

specific kernels to also learn from multiple neighboring regions. Similar ideas have

been applied to several task-specific use cases, e.g . motion prediction [139], semantic

segmentation [49], and Monte Carlo rendering denoising [4]. Explicitly predicting

all position-specific filter weights requires a large number of parameters, so DFNs

typically require a sensible architecture design and are difficult to scale to multiple

dynamic-filter layers. Our approach differs in that PAC reuses spatial filters just as

standard convolution, and only modifies the filters in a position-specific fashion. Dai

et al . propose deformable convolution [26], which can also produce position-specific

modifications to the filters. Different from PAC, the modifications there are repre-

sented as offsets with an emphasis on learning geometric-invariant features.
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5.1.3 Self-attention mechanism

PAC is also related to the self-attention mechanism originally proposed by Vaswani

et al . for machine translation [127]. Self-attention modules compute the responses

at each position while attending to the global context. Thanks to the use of global

information, self-attention has been successfully used in several applications, including

image generation [146, 91] and video activity recognition [131]. Attending to the whole

image can be computationally expensive, and, as a result, can only be afforded on

low-dimensional feature maps, e.g . as in [131]. A PAC layer produces responses that

are sensitive to a more local context (which can be alleviated through dilation), and

is therefore much more efficient.

5.2 Pixel-Adaptive Convolution

In this section, we start with a formal definition of standard spatial convolution

and then explain our generalization of it to arrive at our pixel-adaptive convolution

(PAC). Later, we will discuss several variants of PAC and how they are connected to

different image filtering techniques.

5.2.1 Extending spatial convolution to higher-dimensions

Formally, a spatial convolution of image features v = (v1, . . . ,vn),vi ∈ Rc over n

pixels and c channels with filter weights W ∈ Rc′×c×s×s can be written as

v′i =
∑
j∈Ω(i)

W [pi − pj] vj + b (5.1)

where pi = (xi, yi)
ᵀ are pixel coordinates, Ω(·) defines an s× s convolution window,

and b ∈ Rc′ denotes biases. With a slight abuse of notation, we use [pi − pj] to

denote indexing of the spatial dimensions of an array with 2D spatial offsets. This

convolution operation results in a c′-channel output, v′i ∈ Rc′ , at each pixel i.
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Equation 5.1 highlights how the weights only depend on pixel position and thus

are agnostic to image content. In other words, the weights are spatially shared and,

therefore, image-agnostic. As outlined earlier, these properties of spatial convolutions

are limiting: we would like the filter weights W to be content-adaptive.

One approach to make the convolution operation content-adaptive, rather than

only based on pixel locations, is to generalize W to depend on the pixel features,

f ∈ Rd:

v′i =
∑
j∈Ω(i)

W (fi − fj) vj + b (5.2)

where W can be seen as a high-dimensional filter operating in a d-dimensional feature

space. In other words, we can apply Equation 5.2 by first projecting the input signal

v into a d-dimensional space, and then performing d-dimensional convolution with

W. Traditionally, such high-dimensional filtering is limited to hand-specified filters

such as Gaussian filters [1]. Recent work [57] lifts this restriction and proposes a

technique to freely parameterize and learn W in high-dimensional space. Although

generic and used successfully in several computer vision applications [57, 56, 115],

high-dimensional convolutions have several shortcomings. First, since data projected

on a higher-dimensional space is sparse, special lattice structures and hash tables

are needed to perform the convolution [1] resulting in considerable computational

overhead. Second, it is difficult to learn features f resulting in the use of hand-

specified feature spaces such as position and color features, f = (x, y, r, g, b). Third,

we have to restrict the dimensionality d of features (say, < 10) as the projected input

image can become too sparse in high-dimensional spaces. In addition, the advantages

that come with spatial sharing of standard convolution are lost with high-dimensional

filtering.
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5.2.2 Pixel-Adaptive Convolution

Instead of bringing convolution to higher dimensions, which has the above-mentioned

drawbacks, we choose to modify the spatially invariant convolution in Equation 5.1

with a spatially varying kernel K ∈ Rc′×c×s×s that depends on pixel features f :

v′i =
∑
j∈Ω(i)

K (fi, fj) W [pi − pj] vj + b (5.3)

where K is a kernel function that has a fixed parametric form such as Gaussian:

K(fi, fj) = exp(−1
2
(fi − fj)

ᵀ(fi − fj)). Since K has a pre-defined form and is not

parameterized as a high-dimensional filter, we can perform this filtering on the 2D grid

itself without moving onto higher dimensions. We call the above filtering operation

(Equation 5.3) as “Pixel-Adaptive Convolution” (PAC) because the standard spatial

convolution W is adapted at each pixel using pixel features f via kernel K. We

call these pixel features f as “adapting features” and the kernel K as “adapting

kernel”. The adapting features f can be either hand-specified such as position and

color features f = (x, y, r, g, b) or can be deep features that are learned end-to-end.

5.2.3 PAC as a generalization of other techniques

PAC, despite being a simple modification to standard convolution, generalizes

several widely used filtering operations, including

• Spatial Convolution can be seen as a special case of PAC with adapting kernel

being constant K(fi, fj) = 1. This can be achieved by using constant adapt-

ing features, fi = fj,∀i, j. In brief, standard convolution (Equation 5.1) uses

fixed, spatially shared filters, while PAC allows the filters to be modified by the

adapting kernel K differently across pixel locations.

• Bilateral Filtering [121] is a basic image processing operation that has found

wide-ranging uses [90] in image processing, computer vision and also computer
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graphics. Standard bilateral filtering operation can be seen as a special case of

PAC, where W also has a fixed parametric form, such as a 2D Gaussian filter,

W [pi − pj] = exp(−1
2
(pi − pj)

ᵀΣ−1(pi − pj)).

• Pooling operations can also be modeled by PAC. Standard average pooling

corresponds to the special case of PAC where K(fi, fj) = 1, W = 1
s2
· 1. Detail

Preserving Pooling [103, 133] is a recently proposed pooling layer that is useful

to preserve high-frequency details when performing pooling in CNNs. PAC can

model the detail-preserving pooling operations by incorporating an adapting

kernel that emphasizes more distinct pixels in the neighborhood, e.g . K(fi, fj) =

α + (|fi − fj|2 + ε2)
λ
.

The above generalizations show the generality and the wide applicability of PAC

in different settings and applications. We experiment using PAC in three different

problem scenarios, which will be discussed in later sections.

Some filtering operations are even more general than the proposed PAC. Examples

include high-dimensional filtering shown in Equation 5.2 and others such as dynamic

filter networks (DFN) [58] discussed in Section 5.1. Unlike most of those general

filters, PAC allows efficient learning and reuse of spatially invariant filters because it

is a direct modification of standard convolution filters. PAC offers a good trade-off

between standard convolution and DFNs. In DFNs, filters are solely generated by an

auxiliary network and different auxiliary networks or layers are required to predict

kernels for different dynamic-filter layers. PAC, on the other hand, uses learned pixel

embeddings f as adapting features, which can be reused across several different PAC

layers in a network. When related to sparse high-dimensional filtering in Equation 5.2,

PAC can be seen as factoring the high-dimensional filter into a product of standard

spatial filter W and the adapting kernel K. This allows efficient implementation

of PAC in 2D space alleviating the need for using hash tables and special lattice

structures in high dimensions. PAC can also use learned pixel embeddings f instead
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of hand-specified ones in existing learnable high-dimensional filtering techniques such

as [57].

5.2.4 Variants of PAC

In addition to the standard PAC layer described in Section 5.2.2, some variants

of the layer are also useful depending on the usage scenarios.

5.2.4.1 Transposed PAC

Transposed convolution (sometimes called “deconvolution” in deep learning lit-

erature) is a commonly used operation in neural networks that involve upsampling.

We refer to the transposed variant of PAC as PACᵀ. Similar to standard transposed

convolution, PACᵀ uses fractional striding and results in an upsampled output. As we

show in Section 5.3, PACᵀ plays an important role in the proposed joint upsampling

network.

5.2.4.2 PAC on sparse inputs

The standard PAC layer is defined on dense 2D inputs. Removing this constraint

would open up opportunities for applications where sparse data are given as input.

In order to process sparse inputs, we can modify the layer to take a third input

(together with features v and f), observation mask M ∈ {0, 1}H×W . Each binary bit

in M indicates whether the corresponding value in v is observed or not. Note that f

still needs to be dense — this turns out not a very restrictive requirements and many

applications can still fit under the formulation. The PAC layer can then be easily

modified to incorporate the observation mask:

v′i =
1

Zi

∑
j∈Ω(i)

MjK (fi, fj) W [pi − pj] vj + b, (5.4)
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where Zi is a normalization factor to compensate the differences in signal density

across pixel positions:

Zi =
∑
j∈Ω(i)

Mj (5.5)

In case of very sparse input, it is likely that there are output positions which

receive no observed inputs, i.e. Mj = 0,∀j ∈ Ω(i), and the output value at those

positions are undefined based on Equation 5.4. To properly handle this, we also need

to define an output observation mask:

M ′
i = 1[Zi > 0] (5.6)

The output masks can then be used as input masks to the subsequent layers, till

the signal is dense everywhere, i.e. Mi = 1,∀i, from where regular PAC layers (or

just standard spatial convolutional layers) can be directly applied.

While we have not experimented with tasks that make use of the sparse variant

of PAC, here we discuss a few potential use cases:

• Sparse depth map completion. Depth maps acquired from LiDAR sensors

are often very sparse. Using the accompanying RGB images as adapting feature

f can help provide guidance to fill in the gaps to produce dense depth maps.

The depth completion benchmark in the KITTI suite [122] provides an ideal

evaluation environment for this task.

• Monte Carlo rendering upsampling. Since it is expensive to obtain a large

number of samples per pixel (SPP), computer graphics systems often render

at a low sampling rate and then upsample as a post-processing step. There

is already some existing work ([4], [129], etc.) on applying neural networks for

this purpose, however our layer can be used to leverage additional 3D clues, e.g .

depth buffer, normal directions, to facilitate the upsampling procedure.
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5.2.5 Implementation

We implemented PAC as a network layer in PyTorch with GPU acceleration1.

Our implementation enables back-propagation through the features f , permitting the

use of learnable deep features as adapting features.

The implementation of PAC and its variants allows easy and flexible specifica-

tion of different options that are commonly used in standard convolution: filter size,

number of input and output channels, striding, padding and dilation factor.

5.3 Joint Upsampling

Joint upsampling is the task of upsampling a low-resolution signal with the help

of a corresponding high-resolution guidance image. An example is upsampling a low-

resolution depth map given a corresponding high-resolution RGB image as guidance.

Joint upsampling is useful when some sensors output at a lower resolution than cam-

eras, or can be used to speed up computer vision applications where full-resolution

results are expensive to produce. PAC allows filtering operations to be guided by

the adapting features, which can be obtained from a separate guidance image, mak-

ing it an ideal choice for joint image processing. We investigate the use of PAC for

joint upsampling applications. In this section, we introduce a network architecture

that relies on PAC for deep joint upsampling, and show experimental results on two

applications: joint depth upsampling and joint optical flow upsampling.

5.3.1 Deep joint upsampling with PAC

A deep joint upsampling network takes two inputs, a low-resolution signal x ∈

Rc×h/m×w/m and a high-resolution guidance g ∈ Rcg×h×w, and outputs upsampled

signal x↑ ∈ Rc×h×w. Here m is the required upsampling factor. Similar to [74], our

upsampling network has three components (as illustrated in Figure 5.2):

1Code is available at https://suhangpro.github.io/pac/
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Figure 5.2: Joint upsampling with PAC. Network architecture showing encoder, guid-
ance and decoder components. Features from the guidance branch are used to adapt
PACᵀ kernels that are applied on the encoder output resulting in upsampled signal.

• Encoder branch operates directly on the low-resolution signal with convolution

(CONV) layers.

• Guidance branch operates solely on the guidance image, and generates adapting

features that will be used in all PACᵀ layers later in the network.

• Decoder branch starts with a sequence of PACᵀ, which perform transposed pixel-

adaptive convolution, each of which upsamples the feature maps by a factor of 2.

PACᵀ layers are followed by two CONV layers to generate the final upsampled

output.

The layers in each branch of the joint depth upsampling networks are listed in Ta-

ble 5.1. Since we use each PACᵀ for 2× upsampling, 4×, 8×, 16× networks requires

2, 3, 4 PACᵀ layers respectively. The final output from the guidance branch is equally

divided in the channel dimension for use as adapting features for the PACᵀ layers in

the decoder. All CONV and PACᵀ layers use 5× 5 filters, and are followed by ReLU

except for the last CONV. We use Gaussian kernels for K in all PACᵀ layers.
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standard lite

4× 8× 16× 4× 8× 16×

Encoder
C32 C32 C32 C12 C12 C8
C32 C32 C32 C16 C16 C16
C32 C32 C32 C22 C16 C16

Guidance
C32 C32 C32 C12 C12 C8
C32 C32 C32 C22 C16 C16
C32 C48 C64 C24 C36 C40

Decoder

P32 P32 P32 P12 P12 P8
P32 P32 P32 P16 P16 P16
C32 P32 P32 C22 P16 P16
C1 C32 P32 C1 C20 P16

C1 C32 C1 C16
C1 C1

#Params 183K 222K 260K 56K 56K 56K

Table 5.1: Network architectures for joint depth upsampling. “C” stands for regular
CONV, “P” stands for PACᵀ (the transposed convolution variant of PAC), and the
number after them represents the number of output channels.

We design two variants of our model, standard and lite. The standard variant

has a simpler design, but has varying number of parameters for different upsampling

factors, and overall consume more memory than DJF [74], a previous state-of-the-art

approach on joint depth upsampling. For the lite variant, we reduce the number of

filters and make sure the networks roughly match the number of parameters compared

to DJF.

Similar network architectures are also used for optical flow upsampling. First

layer of encoder and last layer in decoder are modified to fit the two (u, v) channels

in optical flow instead of one channel in depth maps, i.e. using “C2” instead of “C1”

in Table 5.1.

5.3.2 Joint depth upsampling

Here, the task is to upsample a low-resolution depth by using a high-resolution

RGB image as guidance. We experiment with the NYU Depth V2 dataset [110],
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which has 1449 RGB-depth pairs. Following [74], we use the first 1000 samples for

training and the rest for testing. The low-resolution depth maps are obtained from

the ground-truth depth maps using nearest-neighbor downsampling. Table 5.2 shows

root mean square error (RMSE) of different techniques and for different upsampling

factors m (4×, 8×, 16×). Results indicate that our network outperforms others in

comparison and obtains state-of-the-art performance. Sample visual results are shown

in Figure 5.3.

We train our network with the Adam optimizer using a learning rate schedule of

[10−4× 3.5k, 10−5× 1.5k, 10−6× 0.5k] and with mini-batches of 256×256 crops. We

found this training setup to be superior to the one recommended in DJF [74], and also

compare with our own implementation of it under such a setting (“DJF (Our impl.)”

in Table 5.2). We keep the network architecture similar to that of previous state-of-

the-art technique, DJF [74]. In DJF, features from the guidance branch are simply

concatenated with encoder outputs for upsampling, whereas we use guidance features

to adapt PACᵀ kernels. Although with similar number of layers, our network has

more parameters compared with DJF. We also trained a lighter version of our network

(“Ours-lite”) that matches the number of parameters of DJF, and still observe better

performance showing the importance of PACᵀ for upsampling.

5.3.3 Joint optical flow upsampling

We also evaluate our joint upsampling network for upsampling low-resolution op-

tical flow using the original RGB image as guidance. Estimating optical flow is a

challenging task, and even recent state-of-the-art approaches [116] resort to simple

bilinear upsampling to predict optical flow at the full resolution. Optical flow is

smoothly varying within motion boundaries, where accompanying RGB images can

offer strong clues, making joint upsampling an appealing solution. We use the same

network architecture as in the depth upsampling experiments, with the only differ-
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Input Guide Bilinear DJF Ours GT

Figure 5.3: Deep joint upsampling. Results of different methods for 16× joint depth
upsampling (top row) and 16× joint optical flow upsampling (bottom row). Our
method produces results that have more details and are more faithful to the edges in
the guidance image.

ence being that instead of single-channel depth, input and output are two-channel

flow with u, v components. We experiment with the Sintel dataset [13] (clean pass).

The same training protocol in Section 5.3.2 is used, and the low-resolution optical

flow is obtained from bilinear downsampling of the ground-truth. We compare with

baselines of bilinear interpolation and DJF [74], and observe consistent advantage

(Table 5.3). Figure 5.3 shows a sample visual result indicating that our network is

Table 5.2: Joint depth upsampling. Results (in RMSE) show that our upsampling
network consistently outperforms other techniques for different upsampling factors.

Method 4× 8× 16×

Bicubic 8.16 14.22 22.32
MRF 7.84 13.98 22.20
GF [50] 7.32 13.62 22.03
JBU [68] 4.07 8.29 13.35
Ham et al . [46] 5.27 12.31 19.24
DMSG [55] 3.78 6.37 11.16
FBS [5] 4.29 8.94 14.59
DJF [74] 3.54 6.20 10.21
DJF+ [75] 3.38 5.86 10.11
DJF (Our impl.) 2.64 5.15 9.39

Ours-lite 2.55 4.82 8.52
Ours 2.39 4.59 8.09
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capable of restoring fine-structured details and also produces smoother predictions in

areas with uniform motion.

Table 5.3: Joint optical flow upsampling. End-Point-Error (EPE) showing the im-
proved performance compared with DJF [74].

4× 8× 16×

Bilinear 0.465 0.901 1.628
DJF [74] 0.176 0.438 1.043

Ours 0.105 0.256 0.592

5.4 Conditional Random Fields

In this section, we draw the connection between conditional random fields (CRFs)

and PAC, and present a new kind of CRF model that allows efficient inference within

deep neural networks with the help of PAC layers.

CRFs are a class of statistical modeling method introduced by Lafferty et al . [72].

A CRF models the probabilistic distribution over two sets of variables: observations

X = {X1,X2, . . . ,Xm} and outputs Y = {Y1,Y2, . . . ,Yn}. Outputs and observa-

tions often come in corresponding pairs (in such cases m = n), however this is not

always a requirement. Such distributions can have wide ranges of applications. A

simple example in natural language processing (NLP) is part-of-speech tagging, where

X represents the individual words in a sentence and Y represents their part-of-speech

labels. Another common usage is image segmentation tasks in computer vision where

X represents the pixel intensities and Y represents the label of each pixel (e.g . in-

dicating whether a pixel belongs to foreground or background). Depending on the

application, both X and Y can be either continuous or discrete variables.

Instead of directly modeling a joint distribution over X and Y, a CRF describes

the conditional distribution, p(Y|X). A significant advantage of adopting such a

discriminative framework is that CRFs do not need to consider dependencies that
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involve only variables in X. Roughly speaking, the model over (X,Y) is a CRF if

variables in Y obey the Markov property when conditioned on X globally. More

concretely, Lafferty et al . define a CRF on X and Y as follows [72]:

Definition. Let G = (V,E) be an undirected graph such that Y = (Yv)v∈V , so

that Y is indexed by the vertices of G. Then (X,Y) is a CRF when the variables

Yv, conditioned on X, obey the Markov property with respect to the graph, i.e.

p(Yv|X,Yw, w 6= v) = p(Yv|X,Yw, w ∼ v), where w ∼ v means that w and v are

directly connected as an edge in E.

For NLP tasks such as part-of-speech tagging, the graph G takes a simple chain

structure; while for image segmentation tasks G is usually a grid where each pixel

is connected with its four neighboring pixels. In either case, the only cliques in the

graph are edges and vertices, and according to the Hammersley–Clifford theorem the

distribution over random field Y given X has the form:

pθ(y|x) ∝ exp(−
∑
v∈V

ψ1(yv,x, θ)−
∑

(u,v)∈E

ψ2(yu,yv,x, θ)) (5.7)

where ψ1 is unary potential function over vertices, ψ2 is pairwise potential function

over edges, and θ are parameters of the CRF that usually need to be learned from

training data.

5.4.1 Fully-connected CRFs

Early adoptions of CRFs in computer vision tasks were limited to models with

pairwise potentials on neighboring pixels or patches [43, 35, 109] for efficiency rea-

sons. The lack of longer-range connections often results in overly smooth bound-

aries in the predictions. Fully-Connected CRF (Full-CRF) [69] was proposed to offer

the benefits of dense pairwise connections among pixels, which resorts to approxi-

mate high-dimensional filtering [1] for efficient inference. Consider a semantic label-
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ing problem, where each pixel i in an image I can take one of the semantic labels

li ∈ {1, ...,L}. Full-CRF has unary potentials usually defined by a classifier such as

CNN: ψu(li) ∈ RL. And, the pairwise potentials are defined for every pair of pixel

locations (i, j): ψp(li, lj|I) = µ(li, lj)K(fi, fj), where K is a kernel function and µ is a

compatibility function. A common choice for µ is the Potts model: µ(li, lj) = [li 6= lj].

[69] utilizes two Gaussian kernels with hand-crafted features as the kernel function:

K(fi, fj) =w1 exp

{
−‖pi − pj‖2

2θ2
α

− ‖Ii − Ij‖
2

2θ2
β

}
︸ ︷︷ ︸

appearance kernel

+w2 exp

{
−‖pi − pj‖2

2θ2
γ

}
︸ ︷︷ ︸

smoothness kernel

(5.8)

where w1, w2, θα, θβ, θγ are model parameters, and are typically found by a grid-search.

The appearance kernel encourages nearby similar pixels to be assigned the same class.

The smoothness kernel introduces additional spatial smoothness in the predictions

and helps remove small isolated regions.

Inference in Full-CRF amounts to maximizing the following Gibbs distribution:

p(l|I) ∝ exp(−
∑

i ψu(li)−
∑

i<j ψp(li, lj)), l = (l1, l2, ..., ln). Exact inference of Full-

CRF is hard, and [69] relies on mean-field approximation which is optimizing for an

approximate distribution Q(l) =
∏

iQi(li) by minimizing the KL-divergence between

P (l|I) and the mean-field approximation Q(l). This leads to the following mean-field

(MF) inference step that updates marginal distributions Qi iteratively for t = 0, 1, ...:

Q
(t+1)
i (l)← 1

Zi
exp

{
− ψu(l)−

∑
l′∈L

µ(l, l′)
∑
j 6=i

K(fi, fj)Q
(t)
j (l′)

}
(5.9)

The main computation in each MF iteration,
∑

j 6=iK(fi, fj)Q
(t)
j , can be viewed as

high-dimensional Gaussian filtering. Previous work [69, 70] relies on permutohedral

lattice convolution [1] to achieve efficient implementation.
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Figure 5.4: PAC-CRF. Illustration of inputs, outputs and the operations in each
mean-field (MF) step of PAC-CRF inference. Also shown is the coverage of two 5× 5
PAC filters, with dilation factors 16 and 64 respectively.

5.4.2 Efficient, learnable CRFs with PAC

Existing work [147, 57] back-propagates through the above MF steps to combine

CRF inference with CNNs resulting in end-to-end training of CNN-CRF models.

While there exists optimized CPU implementations, permutohedral lattice convolu-

tion cannot easily utilize GPUs because it “does not follow the SIMD paradigm of

efficient GPU computation” [119]. Another drawback of relying on permutohedral

lattice convolution is the approximation error incurred during both inference and

gradient computation.

We propose PAC-CRF, which alleviates these computation issues by relying on

PAC for efficient inference, and is easy to integrate with existing CNN backbones.

PAC-CRF also has additional learning capacity, which leads to better performance

compared with Full-CRF in our experiments.

5.4.2.1 PAC-CRF

In PAC-CRF, we define pairwise connections over fixed windows Ωk around each

pixel instead of dense connections:
∑

k

∑
i

∑
j∈Ωk(i) ψ

k
p(li, lj|I), where the k-th pair-

wise potential is defined as:

84



ψkp(li, lj|I) = Kk(fi, fj)W
k
lj li

[pj − pi] (5.10)

Here Ωk(·) specifies the pairwise connection pattern of the k-th pairwise potential

originated from each pixel, and Kk is a fixed Gaussian kernel. Intuitively, this formu-

lation allows the label compatibility transform µ in Full-CRF to be modeled by W,

and to vary across different spatial offsets.

5.4.2.2 Inference

As with Full-CRFs, we can perform mean-field inference for PAC-CRFs. We will

start from the mean-field update equation for general pairwise CRFs, Equation 5.11.

Detailed derivation for it can be found in Koller and Friedman [67, Chapter 11.5].

Qi(l) =
1

Zi
exp

{
− ψu(l)−

∑
j∈Ω(i)

Elj∼Qj
ψp(l, lj)

}
(5.11)

Considering that we use multiple neighborhoods (with different dilation factors)

in parallel, the update equation becomes

Qi(l) =
1

Zi
exp

{
− ψu(l)−

∑
k

∑
j∈Ωk(i)

Elj∼Qj
ψkp(l, lj)

}
(5.12)

Substituting the pairwise potential with

ψkp(li, lj) = Kk(fi, fj)W
k
lj li

[pj − pi] (5.13)

the update rule becomes
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Qi(l) =
1

Zi
exp

{
− ψu(l)−

∑
k

∑
j∈Ωk(i)

Elj∼Qj

{
Kk(fi, fj)W

k
lj l

[pj − pi]

}}

=
1

Zi
exp

{
− ψu(l)−

∑
k

∑
l′∈L

∑
j∈Ωk(i)

Kk(fi, fj)W
k
l′l[pj − pi]Qj(l

′)

}
(5.14)

Using Equation 5.14 in an iterative fashion leads to the final update rule of mean-

field inference:

Q
(t+1)
i (l)← 1

Zi
exp

{
− ψu(l)−

∑
k

∑
l′∈L

∑
j∈Ωk(i)

Kk(fi, fj)W
k
l′l[pj − pi]Q

(t)
j (l′)

︸ ︷︷ ︸
PAC

}
(5.15)

MF update now consists of PACs instead of sparse high-dimensional filtering as

in Full-CRF (Equation 5.9). As outlined in Section 5.1, there are several advantages

of PAC over high-dimensional filtering. With PAC-CRF, we can freely parameterize

and learn the pairwise potentials in Equation 5.10 that also use a richer form of

compatibility transform W. PAC-CRF can also make use of learnable features f for

pairwise potentials instead of pre-defined ones in Full-CRF. Figure 5.4 (left) illustrates

the computation steps in each MF update with two pairwise PAC kernels.

5.4.2.3 Interpretation of the PAC-CRF formulation

Recall that the pairwise potentials in Full-CRF is defined as the product of a

compatibility function and a kernel function, ψp(li, lj|I) = µ(li, lj)K(fi, fj), where the

kernel function K has two terms, appearance kernel and smoothness kernel (Equa-

tion 5.8).

For the moment, let’s consider a special case of PAC-CRF where the pairwise

potential includes a single Gaussian kernel and uses a two-dimensional filter W:
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K(fi, fj) = W[pj − pi]G(fi, fj)

= W[pj − pi] exp

{
−1

2
‖fi − fj‖2

}
(5.16)

There are two major differences between this kernel function and the one used in

Full-CRF:

1. The smoothness kernel in Full-CRF can now be considered as represented by

filter W. It can still be initialized as a Gaussian, but arbitrary filter is allowed

to be learned.

2. The appearance kernel now operates on f directly without the need of decom-

posing it into multiple parts, and without the individual scaling factors (θα, . . . ).

Both changes give the pairwise potential more learning capacity. Note that f

can be the output of some other network layers. A simple linear layer can learn

appropriate scaling factors, while in other cases a more complex network may be

preferred. For input with more than RGB channels (e.g . 3D data with color, depth,

normal, curvature, etc.), hand-engineering and finding parameters for kernel functions

like Equation 5.8 can be time-consuming and suboptimal, so allowing the function to

be learned from data in an end-to-end fashion is particularly desirable.

Note that in Equation 5.16, W is a 2D matrix, and the corresponding pairwise

potential is defined as

ψp(li, lj) = µ(li, lj)W[pj − pi]K(fi, fj) (5.17)

where µ(li, lj) is the compatibility matrix. The full pairwise potential of PAC-

CRF, ψp(li, lj) = K(fi, fj)Wlj li [pj − pi] , can be seen as a further step of general-

ization, where W is now a 4D tensor. Intuitively, this formulation allows the label
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compatibility pattern to be spatially varying across different pixel locations. Equa-

tion 5.17 can be seen as a special case factorizing the 4D tensor as the product of two

2D matrices.

5.4.2.4 Long-range connections with dilated PAC

The major source of heavy computation in Full-CRF is the dense pairwise pixel

connections. In PAC-CRF, the pairwise connections are defined by the local convolu-

tion windows Ωk. To have long-range pairwise connections while keeping the number

of PAC parameters managable, we make use of dilated filters [20, 143]. Even with

a relatively small kernel size (5 × 5), with a large dilation, e.g . 64, the CRF can

effectively reach a neighborhood of 257× 257. A concurrent work [119] also propose

a convolutional version of CRF (Conv-CRF) to reduce the number of connections

in Full-CRF. However, [119] uses connections only within small local windows. We

argue that long-range connections can provide valuable information, and our CRF

formulation uses a wider range of connections while still being efficient. Our formula-

tion allows using multiple PAC filters in parallel, each with different dilation factors.

In Figure 5.4 (right), we show an illustration of the coverage of two 5× 5 PAC filters,

with dilation factors 16 and 64 respectively. This allows PAC-CRF to achieve a good

trade-off between computational efficiency and long-range pairwise connectivity.

5.4.3 Semantic segmentation with PAC-CRF

The task of semantic segmentation is to assign a semantic label to each pixel in an

image. Full-CRF is proven to be a valuable post-processing tool that can considerably

improve CNN segmentation performance [20, 147, 57]. Here, we experiment with

PAC-CRF on top of the FCN semantic segmentation network [80]. We choose FCN

for simplicity and ease of comparisons, as FCN only uses standard convolution layers

and does not have many bells and whistles.
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In the experiments, we use scaled RGB color, [ R
σR
, G
σG
, B
σB

]ᵀ, as the guiding features

for the PAC layers in PAC-CRF . The scaling vector [σR, σG, σB]ᵀ is learned jointly

with the PAC weights W. We try two internal configurations of PAC-CRF: a single

5×5 PAC kernel with dilation of 32, and two parallel 5×5 PAC kernels with dilation

factors of 16 and 64. 5 MF steps are used for a good balance between speed and

accuracy. We first freeze the backbone FCN network and train only the PAC-CRF

part for 40 epochs, and then train the whole network for another 40 epochs with

reduced learning rates.

5.4.3.1 Dataset

We follow the training and validation settings of FCN [80] which is trained on

PascalVOC images and validated on a reduced validation set of 736 images. We also

submit our final trained models to the official evaluation server to get test scores on

1456 test images.

5.4.3.2 Baselines

We compare PAC-CRF with three baselines: Full-CRF [69], BCL-CRF [57], and

Conv-CRF [119]. For Full-CRF, we use the publicly available C++ code, and find the

optimal CRF parameters through grid search. For BCL-CRF, we use 1-neighborhood

filters to keep the runtime manageable and use other settings as suggested by the

authors. For Conv-CRF, the same training procedure is used as in PAC-CRF. We

use the more powerful variant of Conv-CRF with learnable compatibility transform

(referred to as “Conv+C” in [119]), and we learn the RGB scales for Conv-CRF in the

same way as for PAC-CRF. We follow the suggested default settings for Conv-CRF

and use a filter size of 11×11 and a blurring factor of 4. Note that like Full-CRF

(Equation 5.8), the other baselines also use two pairwise kernels.
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Table 5.4: Semantic segmentation with PAC-CRF. Validation and test mIoU scores
along with the runtimes of different techniques. PAC-CRF results in better improve-
ments than Full-CRF [69] while being faster. PAC-CRF also outperforms Conv-
CRF [119] and BCL [57]. Runtimes are averaged over all validation images.

Method mIoU (val / test) CRF Runtime

Unaries only (FCN) 65.51 / 67.20 -

Full-CRF [69] +2.11 / +2.45 629 ms
BCL-CRF [57] +2.28 / +2.33 2.6 s
Conv-CRF [119] +2.13 / +1.57 38 ms

PAC-CRF, 32 +3.01 / +2.21 39 ms
PAC-CRF, 16-64 +3.39 / +2.62 78 ms

Figure 5.5: Semantic segmentation with PAC-CRF and PAC-FCN. We show three
examples from the validation set. Compared to Full-CRF [69], BCL-CRF [57], and
Conv-CRF [119], PAC-CRF can recover finer details faithful to the boundaries in the
RGB inputs.

5.4.3.3 Results

Table 5.4 reports validation and test mean Intersection over Union (mIoU) scores

along with average runtimes of different techniques. Our two-filter variant (“PAC-

CRF, 16-64”) achieves better mIoU compared with all baselines, and also compares

favorably in terms of runtime. The one-filter variant (“PAC-CRF, 32”) performs

slightly worse than Full-CRF and BCL-CRF, but has even larger speed advantage,

offering a strong option where efficiency is needed. Sample visual results are shown

in Figure 5.5.
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Mean-field inference steps. Table 5.5 shows how mIoU changes with different

mean-field update steps. We find no additional improvements beyond 5 steps, and

use 5 steps for all other experiments.

Table 5.5: Validation mIoU when using different number of mean-field update steps
in PAC-CRF.

Mean-field steps 1 3 5 7

mIoU 68.38 68.72 68.90 68.90
time 19 ms 49 ms 78 ms 109 ms

On the contribution of dilation. Just like standard convolution, PAC supports

dilation to increase the receptive field without increasing the number of parameters.

This capability is leveraged by PAC-CRF to allow long-range connections. For a sim-

ilar purpose, Conv-CRF applies Gaussian blur to pairwise potentials to increase the

receptive field. To quantify the improvements due to dilation, we try another base-

line where we add dilation to Conv-CRF. The improved performance (+2.13/+1.57

→ +2.50/+1.91) validates that dilation is indeed an important ingredient, while the

remaining gap shows that the PAC formulation is essential to the full gain.

5.4.3.4 Limitations

While being quantitatively better and retaining more visual details overall, PAC-

CRF produces some amount of noise around boundaries. Figure 5.6 shows a few such

examples. The artifacts are likely due to a known “gridding” effect of dilated filters,

and a similar behavior has been reported in earlier work [144].

In [144], the proposed solution involves several modifications to the networks ar-

chitectures: using decreasing dilation factors towards later layers in the networks,
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Figure 5.6: Artifacts in the PAC-CRF predictions. From left to right: RGB image,
ground-truth labeling, PAC-CRF output with zoomed-in details.

appending a few (non-dilated) convolutional layers at the end of the networks, etc.

These measures, however, do not fit naturally within PAC-CRF.

5.5 Layer Hot-Swapping with PAC

So far, we design specific architectures around PAC for different use cases. In

this section, we offer a strategy to use PAC for simply upgrading existing CNNs with

minimal modifications through what we call layer hot-swapping.

5.5.1 Layer hot-swapping

Network fine-tuning has become a common practice when training networks on

new data or with additional layers. Typically, in fine-tuning, newly added layers

are initialized randomly. Since PAC generalizes standard convolution layers, it can

directly replace convolution layers in existing networks while retaining the pre-trained

weights. We refer to this modification of existing pre-trained networks as layer hot-

swapping.
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5.5.2 Semantic segmentation with layer hot-swapping

We continue to use semantic segmentation as an example, and demonstrate how

layer hot-swapping can be a simple yet effective modification to existing CNNs. Fig-

ure 5.7 illustrates a FCN [80] before and after the hot-swapping modifications. We

swap out the last CONV layer of the last three convolution groups, CONV3 3,

CONV4 3, CONV5 3, with PAC layers with the same configuration (filter size, input

and output channels, etc.), and use the output of CONV2 2 as the guiding feature

for the PAC layers. By this example, we also demonstrate that one could use earlier

layer features (CONV2 2 here) as adapting features for PAC. Using this strategy, the

network parameters do not increase when replacing CONV layers with PAC layers.

All the layer weights are initialized with trained FCN parameters. To ensure a better

starting condition for further training, we scale the guiding features by a small con-

stant (0.0001) so that the PAC layers initially behave very closely to their original

CONV counterparts. We use 8825 images for training, including the Pascal VOC
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Figure 5.7: Layer hot-swapping with PAC. A few layers of a network before (top) and
after (bottom) hot-swapping. Three CONV layers are replaced with PAC layers, with
adapting features coming from an earlier convolution layer. All the original network
weights are retained after the modification.
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2011 training images and the additional training samples from [47]. Validation and

testing are performed in the same fashion as in Section 5.4.

Results are reported in Table 5.6. We show that our simple modification (PAC-

FCN) provides about 2 mIoU improvement on test (67.20→ 69.18) for the semantic

segmentation task, while incurring virtually no runtime penalty at inference time.

Note that PAC-FCN has the same number of parameters as the original FCN model.

The improvement brought by PAC-FCN is also complementary to any additional

CRF post-processing that can still be applied. After combined with a PAC-CRF (the

16-64 variant) and trained jointly, we observe another 2 mIoU improvement. Sample

visual results are shown in Figure 5.5.

Table 5.6: FCN hot-swapping CONV with PAC. Validation and test mIoU scores
along with runtimes of different techniques. Our simple hot-swapping strategy pro-
vides 2 IoU gain on test. Combining with PAC-CRF offers additional improvements.

Method PAC-CRF mIoU (val / test) Runtime

FCN-8s - 65.51 / 67.20 39 ms
FCN-8s 16-64 68.90 / 69.82 117 ms

PAC-FCN - 67.44 / 69.18 41 ms
PAC-FCN 16-64 69.87 / 71.34 118 ms

5.6 Conclusions

In this chapter, we propose PAC, a new type of filtering operation that can effec-

tively learn to leverage guidance information. We show that PAC generalizes several

popular filtering operations and demonstrate its applicability on different uses ranging

from joint upsampling, semantic segmentation networks, to efficient CRF inference.

PAC generalizes standard spatial convolution, and can be used to directly replace

standard convolution layers in pre-trained networks for performance gain with mini-

mal computation overhead.
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CHAPTER 6

CONCLUSIONS

In this dissertation, we present our effort on a few fronts where directly applying

existing deep neural network designs would pose challenges. 3D data can come in

many different types of representations, most of which not amenable to the powerful

CNN operations and architectures known for their success in image recognition tasks.

3D shapes represented as polygon meshes do not have a regular spatial layout. To

apply CNNs, many choose to voxelize the shapes so 3D data lives on a regular grid

and then one can easily extend 2D CNNs into 3D versions. We propose Multi-View

CNNs in Chapter 3 as an alternative to the voxel-based representations. Relying on

2D features from multiple views and a simple mechanism to pool information from

all views, Multi-View CNNs are remarkably efficient compared to 3D networks on

high-resolution voxels. Moreover, the performance advantages we showcase in the

experiments prove that 2D projections of 3D objects can carry a large amount of

useful information for recognition tasks.

Another very common type of 3D data representation is point cloud. Its impor-

tance has risen rapidly recently due to the wide adoption of 3D sensors in applications

such as autonomous driving. Like polygon meshes, point clouds also do not have a

regular grid structure. Since point clouds can be very sparse, voxelization is often a

poor choice for its computational overheads. In Chapter 4, we present the SPLAT-

Net architectures that implicitly impose some lattice structure over the point clouds.

Besides its strength we demonstrate in point cloud semantic segmentation tasks, a
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unique advantage of SPLATNet is that it can incorporate multi-view 2D inputs when

available for end-to-end training and inference.

In Chapter 5, we present a new type of operation named Pixel-Adaptive Convo-

lution (PAC). PAC is inspired by sparse high-dimensional filtering, the underlying

operation utilized in SPLATNet. Although PAC’s subjects are images, which live on

dense regular grids, PAC essentially projects the pixels onto a high-dimensional space

and then performs sparse high-dimensional filtering in that space. We demonstrate

several usage examples of PAC, including joint upsampling, semantic segmentation

and efficient CRF inference.

6.1 Future Directions

Going forward, we identify a few potential directions for future work based on the

observations and conclusions in this dissertation:

• Developing a principled approach to better combine 2D and 3D inputs

into a unified representation that is optimized for the end task. In

Chapter 3, we investigate the trade-off between 2D and 3D representations. In

Chapter 4, we present a strategy to integrate both 2D and 3D data in a single

network. However, in these cases, the 2D and 3D representations are still largely

separate and retain their original structures. Consider the task of understanding

the environment for an autonomous vehicle, while a detailed 3D reconstruction

of the environment can definitely be useful, it is not likely that an intelligent

agent under normal conditions would require a full 3D reconstructed world to

operate the vehicle. We can envision a hybrid representation that strives the

best balance between performance and efficiency.

• Unsupervised learning for 3D representations. Even with the recent de-

velopments in large-scale 3D datasets, the amount of 3D labeled data available
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for supervised training is still very limited compared to 2D images. The superior

performance of Multi-View CNN benefits substantially from the pre-training en-

abled by the large image datasets. Unsupervised learning, and self-supervised

learning in particular, has gain encouraging success recently [44] in represen-

tation learning for images, offering pre-training performances closely matching

supervised pre-training for some tasks. We believe many of the proven ideas

and techniques there can be borrowed for learning 3D representations as well

and can help mitigate the issue of insufficient labeled data.
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Orts, Sergio, Cazorla, Miguel, and López, Jorge Azoŕın. PointNet: A 3D convo-
lutional neural network for real-time object class recognition. In Proc. IJCNN
(2016).

100



[39] Gastal, Eduardo SL, and Oliveira, Manuel M. Domain transform for edge-aware
image and video processing. ACM Trans. Graph. 30, 4 (2011), 69.

[40] Girshick, R. B., Donahue, J., Darrell, T., and Malik, J. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In Proc. CVPR
(2014).

[41] Girshick, Ross. Fast r-cnn. In Proc. ICCV (2015), pp. 1440–1448.

[42] Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y.
Maxout networks. ArXiv e-prints (Feb. 2013).

[43] Gould, Stephen, Rodgers, Jim, Cohen, David, Elidan, Gal, and Koller, Daphne.
Multi-class segmentation with relative location prior. IJCV 80, 3 (2008), 300–
316.

[44] Goyal, Priya, Mahajan, Dhruv, Gupta, Abhinav, and Misra, Ishan. Scaling and
Benchmarking Self-Supervised Visual Representation Learning. In Proc. ICCV
(2019).

[45] Graham, Benjamin, and van der Maaten, Laurens. Submanifold sparse convo-
lutional networks. arXiv:1706.01307 (2017).

[46] Ham, Bumsub, Cho, Minsu, and Ponce, Jean. Robust image filtering using
joint static and dynamic guidance. In Proc. CVPR (2015), pp. 4823–4831.

[47] Hariharan, Bharath, Arbelaez, Pablo, Bourdev, Lubomir, Maji, Subhransu,
and Malik, Jitendra. Semantic contours from inverse detectors. In Proc. ICCV
(2011).
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Van Gool, Luc. Learning where to classify in multi-view semantic segmentation.
In Proc. ECCV (2014).

[103] Saeedan, Faraz, Weber, Nicolas, Goesele, Michael, and Roth, Stefan. Detail-
preserving pooling in deep networks. In cvpr (2018), pp. 9108–9116.

[104] Sanchez, Jorge, Perronnin, Florent, Mensink, Thomas, and Verbeek, Jakob.
Image classification with the Fisher vector: Theory and practice. IJCV (2013).

[105] Savva, Manolis, Yu, Fisher, Su, Hao, Aono, M, Chen, B, Cohen-Or, D, Deng,
W, Su, Hang, Bai, Song, Bai, Xiang, et al. SHREC16 track: Largescale 3D
shape retrieval from shapenet core55. In Proc. Eurographics workshop on 3D
object retrieval (2016).

[106] Schneider, Rosália G., and Tuytelaars, Tinne. Sketch classification and
classification-driven analysis using Fisher vectors. ACM Trans. Graph. 33, 6
(Nov. 2014), 174:1–174:9.

[107] Sedaghat, N., Zolfaghari, M., Amiri, E., and Brox, T. Orientation-boosted
voxel nets for 3D object recognition. In Proc. BMVC (2017).

[108] Shao, Tianjia, Xu, Weiwei, Yin, Kangkang, Wang, Jingdong, Zhou, Kun, and
Guo, Baining. Discriminative sketch-based 3D model retrieval via robust shape
matching. In Computer Graphics Forum (2011), Wiley Online Library.

[109] Shotton, Jamie, Winn, John, Rother, Carsten, and Criminisi, Antonio. Tex-
tonboost: Joint appearance, shape and context modeling for multi-class object
recognition and segmentation. In Proc. ECCV (2006).

[110] Silberman, Nathan, Hoiem, Derek, Kohli, Pushmeet, and Fergus, Rob. Indoor
segmentation and support inference from rgbd images. In Proc. ECCV (2012),
Springer, pp. 746–760.

[111] Simonyan, K., Parkhi, O. M., Vedaldi, A., and Zisserman, A. Fisher vector
faces in the wild. In Proc. BMVC (2013).

105



[112] Simonyan, Karen, Vedaldi, Andrea, and Zisserman, Andrew. Deep inside con-
volutional networks: Visualising image classification models and saliency maps.
CoRR abs/1312.6034 (2013).

[113] Simonyan, Karen, and Zisserman, Andrew. Very deep convolutional networks
for large-scale image recognition. CoRR abs/1409.1556 (2014).

[114] Sinha, Ayan, Bai, Jing, and Ramani, Karthik. Deep learning 3D shape surfaces
using geometry images. In Proc. ECCV (2016).

[115] Su, Hang, Jampani, Varun, Sun, Deqing, Maji, Subhransu, Kalogerakis, Evan-
gelos, Yang, Ming-Hsuan, and Kautz, Jan. SPLATNet: Sparse lattice networks
for point cloud processing. In Proc. CVPR (2018).

[116] Sun, Deqing, Yang, Xiaodong, Liu, Ming-Yu, and Kautz, Jan. PWC-Net: CNNs
for optical flow using pyramid, warping, and cost volume. In Proc. CVPR
(2018), pp. 8934–8943.

[117] Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet, Pierre, Reed, Scott,
Anguelov, Dragomir, Erhan, Dumitru, Vanhoucke, Vincent, and Rabinovich,
Andrew. Going deeper with convolutions. In Proc. CVPR (2015), pp. 1–9.

[118] Tatarchenko, M., Dosovitskiy, A., and Brox, T. Octree generating networks:
Efficient convolutional architectures for high-resolution 3D outputs. In Proc.
ICCV (2017).

[119] Teichmann, Marvin T. T., and Cipolla, Roberto. Convolutional CRFs for se-
mantic segmentation. arXiv:1805.04777 (2018).

[120] Thomas, Hugues, Qi, Charles R, Deschaud, Jean-Emmanuel, Marcotegui, Beat-
riz, Goulette, François, and Guibas, Leonidas J. Kpconv: Flexible and de-
formable convolution for point clouds. In Proc. ICCV (2019), pp. 6411–6420.

[121] Tomasi, Carlo, and Manduchi, Roberto. Bilateral filtering for gray and color
images. In Proc. ICCV (1998).

[122] Uhrig, Jonas, Schneider, Nick, Schneider, Lukas, Franke, Uwe, Brox, Thomas,
and Geiger, Andreas. Sparsity invariant cnns. In Proc. 3DV (2017), IEEE,
pp. 11–20.

[123] 3D Warehouse. https://3dwarehouse.sketchup.com/.

[124] Shapeways. http://www.shapeways.com/.

[125] The Princeton ModelNet. http://modelnet.cs.princeton.edu/. [Online;
accessed March 2015].

[126] TurboSquid. http://www.turbosquid.com/.

106

https://3dwarehouse.sketchup.com/
http://www.shapeways.com/
http://modelnet.cs.princeton.edu/
http://www.turbosquid.com/


[127] Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion,
Gomez, Aidan N, Kaiser,  Lukasz, and Polosukhin, Illia. Attention is all you
need. In Proc. NeurIPS (2017), pp. 5998–6008.

[128] Vedaldi, A., and Fulkerson, B. VLFeat: An open and portable library of com-
puter vision algorithms. http://www.vlfeat.org/, 2008.

[129] Vogels, Thijs, Rousselle, Fabrice, McWilliams, Brian, Röthlin, Gerhard, Harvill,
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