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Abstract
Automatic scene analysis is an active research area and is useful in many applications 
such as robotics and automation, industrial manufacturing, architectural design and 
multimedia. 3D structural information is one of the most important cues for scene 
analysis.

In this thesis, we present a geometric labeling method to automatically extract 
rough 3D information from a single 2D image. Our method partitions an image 
scene into five geometric regions through labeling every image pixel as one of the 
five geometric classes (namely, “bottom”, “left ”, “center”, “right”, and “top” ). We 
formulate the geometric labeling problem as an energy minimization problem and 
optimize the energy with a graph cut based algorithm. In our energy function, we 
address the spatial consistency of the geometric labels in the scene while preserving 
discontinuities along image intensity edges. We also incorporate ordering constraints 
in our energy function. Ordering constraints specify the possible relative positional 
labels for neighbor pixels. For example, a pixel labeled as the “left” can not be 
the right of a pixel labeled as the “right” and a pixel labeled as the “bottom” can 
not be above a pixel labeled as the “top”. Ordering constraints arise naturally in a 
real scene. We observed that when ordering constraints are used, the commonly used 
graph-cut based «-expansion is more likely to get stuck in local minima. To overcome 
this, we developed new graph-cut moves which we call order-preserving moves. Unlike 
«-expansion which works for two labels in each move, order-preserving moves act on 
all labels. Although the global minimum is still not guaranteed, we will show that 
optimization with order-preserving moves is shown to perform significantly better 
than «-expansion.

Experimental results show that it is possible to significantly increase the per­
centage of reasonably good labeling by promoting spatial consistency and incorporat­
ing ordering constraints. It is also shown that the order-preserving moves performs 
significantly better than the commonly used «-expansion when ordering constraints 
are used as there is a significantly improvement in computational efficiency and opti­
mality while the improvement in accuracy of pixel labeling is also modest.

in



We also demonstrate the usefulness of the extracted 3D structure information 
of a scene in applications such as novel view generation, virtual scene walk-through, 
semantic segmentation, scene synthesis, and scene text extraction. We also show how 
we can apply this order-preserving moves for certain simple shape priors in graph-cut 
segmentation.

Our geometric labeling method has the following main contributions:

(i) We develop a new class of graph-cut moves called order-preserving moves, which 
performs significantly better than «-expansion when ordering constraints are 
used.

(ii) We formulate the problem in a global optimization framework where we address 
the spatial consistency of labels in a scene by formulating an energy function 
which encourages spatial consistency between neighboring pixels while preserv­
ing discontinuities along image intensity edges.

(iii) We incorporate relative ordering information about the labels in our energy 
function.

(iv) We show that our ordering constraints can also be used in other applications 
such as object part segmentation.

(v) We also show how the proposed order-preserving moves can be used for certain 
simple shape priors in graph-cut segmentation.

Keywords:
Automatic, 3D structural information, Geometric labeling, Energy minimization, 
Graph cut, Ordering constraints, «-expansion, Order-preserving move.
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Chapter 1

Introduction

1.1 Motivation

3D structural information is one of the most important cues for scene understanding 

in many applications such as robotics and automation, industrial manufacturing, 

architectural design and multimedia.

We are interested in developing algorithms which can extract 3D structural 

information from scene images. In general, there are two main approaches which 

can be used in 3D scene reconstruction: Multiple View approach and Single View 

approach.

Methods based on multiple view approach methods use feature correspon­

dences [1] between images (e.g. stereo images, multiple-view images, video sequences, 

and/or 3D range data) and projective geometry constraints to reconstruct the 3D 

geometry and camera calibration parameters. Traditional 3D scene reconstruction 

based on multiple view geometry has been an active research area in the past few 

several decades. Although significant progress has been made in this area, a reliable 

and automatic 3D reconstruction is still a distant goal.

Traditional multiple view methods require special equipment, such as multiple 

cameras, range scanners, etc., as they need to use feature correspondence between 

images to reconstruct the 3D geometry [2]. Moreover, using projective geometry 

1
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constraints to recover a metric reconstruction of an architectural scene is usually 

computationally intensive. Furthermore, when the environment tends to be extremely 

low textured, using projective geometry is usually unreliable since the absence of 

reliable features makes the correspondence problem highly ambiguous.

Unlike traditional multiple view 3D reconstruction methods which can provide 

metric accurate 3D reconstruction, single view methods can only recover approximate 

3D information due to the fact that a single view of a scene does not have enough 

information about the depth of the scene points. Single view reconstruction problem 

can be solved to some extent by either imposing some constraints on the scene or 

through user interaction.

In general, single view methods recover approximate 3D information by either 

manually partitioning the image into several geometrical parts or formulating it as 

an image segmentation or pixel labeling problem which involves assigning a geomet­

rical label from a finite set of possibilities to each image pixel. The 3D structural 

information can then be obtained from these geometrical labels.

Although single view methods can only recover approximate 3D information, 

the recovered approximate 3D information is very useful in many applications such 

as for scene visualization, object recognition, virtual reality, etc.

More details about 3D reconstruction algorithms from both the multiple view 

approach and the single view approach are described in chapter 2.

Horry et al. provided an interactive user interface to partition the input image 

into five geometrical parts using a spidery mesh [3]. Hoiem et al. extracted only an 

approximate 3D structure from a single 2D image through learning the preferences of 

the rough geometric labels (such as “sky”, “ground”, etc.,) for each image pixel [4]. 

Inspired by above approaches, we present a geometric labeling method in this thesis, 

which can automatically extract rough 3D information from a single 2D image by 



3

using a five-parts model (i.e., bottom, top, center, left and right). Unlike Hoiem et al., 

we formulate the problem in a global optimization framework and optimize the energy 

with a graph cut based method. In this approach, we address the spatial consistency 

of the labels in a scene by formulating it as an energy function which encourages 

spatial consistency between neighboring pixels while preserving discontinuities along 

the image intensity edges. We also incorporate relative ordering information about the 

labels in our energy function which allows us to define and enforce spatial consistency 

rules. These consistency rules are based on such facts as a pixel labeled as the “left” 

can not be to the right of a pixel labeled as the “right” and a pixel labeled as the 

“bottom” can not be above a pixel labeled as the “top”. During this research, we 

observed that the commonly used graph-cut based «-expansion is more likely to get 

stuck in a local minimum when ordering constraints are used. This led us to develop 

new graph-cut moves which we call order-preserving moves. Unlike «-expansion, 

order-preserving moves act on all labels. Although the global minimum is still not 

guaranteed, we will show that optimization with order-preserving moves performs 

significantly better than «-expansion.

Experimental results show that the overall performance is significantly improved 

by encouraging spatial consistency and incorporating ordering constraints. The per­

centage of reasonably good labeling1 is increased from 29.3% to 74.3% for the 300 

indoor images and from 16.7% to 61.9% for the 42 outdoor images. There is also a 

modest improvement in overall pixel labeling accuracy. When ordering constraints 

are used, comparing the proposed order-preserving moves with the commonly used 

«-expansion, there is a significant improvement in processing time from 85.5s (o = 

219.Os) to 62.3s (σ = 25.6s) for 300 indoor images and from 286.4s (o = 480.1s) to 

1. Reasonably good labeling refers to labeling with an overall accuracy which is above a 
certain threshold and can be used successfully for the virtual scene walk-through application.
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56.5s (σ = 18.3s) for 42 outdoor images and on average the energy is 27.3% smaller 

(σ = 9.8%) for the 300 indoor images and is 29.2% smaller (o = 18.5%) for the 42 

outdoor images.

We also demonstrate the usefulness of the extracted 3D structure information 

of the scene in the applications of novel view generation, virtual scene walk-through, 

semantic segmentation, scene synthesis, and scene text extraction. We also show the 

applicability of the proposed order-preserving moves for certain simple shape priors 

in graph-cut segmentation.

Although Hoiem et al. attempted global optimization techniques for geometric 

labeling, they were not able to improve the performance [5]. We argue that the 

improvements we were able to achieve are probably due to the following factors. In 

Hoiem’s method, the optimization is performed on superpixel level where a superpixel 

is simply an image region obtained from a region segmentation algorithm whereas our 

method is based on individual pixels. Hence their method is dependant on the region 

segmentation algorithm to ensure that all the pixels in each super-pixel belong to a 

single label. By optimizing on a pixel level, our algorithm does not suffer from such 

a limitation as we are able to break apart any superpixel as needed. In particular, we 

are able to better align the boundaries between the geometric labels with the intensity 

edges in the image, which provides better results. In addition, our stringent set of 

ordering constraints and better optimization with order-preserving moves contributes 

to the improvement in results.
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1.2 Contributions

The main contributions of our proposed method are summarized as follows2:

2. This work has been accepted for presentation at the IEEE International Conference on 
Computer Vision and Pattern Recognition (CVPR2008) which is one of the top conferences 
in this area.

(a) We proposed a geometric labeling method which can automatically extract the 

rough 3D information with high accuracy and efficiency. Here, the accuracy is 

in terms of correct pixel labeling.

(b) We formulated the problem in a global optimization framework, where we address 

the spatial consistency of the labels in the scene by formulating an energy 

function which encourages spatial consistency between neighboring pixels while 

preserving discontinuities along image intensity edges.

(c) We incorporated relative ordering information about the labels in our energy 

function as ordering constraints that arise naturally in the scene.

(d) We developed new graph-cut moves called order-preserving moves for the 

graph cut optimization framework, which performs significantly better than 

«-expansion when ordering constraints are used.

(e) Apart from applying the proposed ordering constraints in scene segmentation, we 

have shown that these constraints can also be used in other applications such 

as object part segmentation.

(f) We have shown that the proposed order-preserving moves can also be used for 

certain simple shape priors in graph-cut segmentation.
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1.3 Overview of the Proposed Algorithms

In our proposed method, we assume that an image is to be segmented into five 

geometric parts (each part corresponds to a label), which we call “center”, “left”, 

“right”, “top”, “bottom” as shown in Fig. 1.1.

(a) original image

Figure 1.1: Image and labels. Color scheme: green = “bottom”, yellow = “left”, cyan 
= “center”, magenta = “right”, blue = “top”. We use this particular color scheme 
consistently throughout the thesis.

(b) image labels

We formulate the geometric labeling problem in a global energy optimization 

framework, using our five part model, and optimize the energy with a graph cut based 

algorithm.

In the graph cut based optimization framework, there are two terms called 

the data term and the smoothness term, respectively. The data term specifies the 

penalty for a single pixel p to have a certain label, and thus encourages each pixel to be 

assigned the label that incurs the smallest penalty. The smoothness term encourages 

spatial consistency by penalizing neighboring pixels p and q that are not assigned the 

same label.

In our proposed method, we first train a classifier to find out individual label 

preferences for each pixel by using a Support Vector Machine (SVM) algorithm. We 
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address the spatial consistency of the geometric labels in the scene and also incorpo­

rate higher level knowledge (i.e. ordering constraints) about the scene labels in our 

smoothness term as spatial consistency and ordering constraints arise naturally in the 

scene.

The ordering constraints between the labels are easy to read from their names: 

a pixel labeled as “left” can not be the right of any pixel labeled as “center”, a pixel 

labeled as “top” can not be below any pixel labeled as “center”, etc. In addition, we 

can enforce a more stringent set of constraints: if a pixel p labeled as “center” has 

a neighbor q with a different label, then q must have label “left”, “right”, “top” or 

“bottom” if it is to the left, right, above, or below p, respectively.

In our method, we develop new graph-cut moves which we call order-preserving 

moves as we observe that the commonly used graph-cut based α-expansion is more 

likely to get stuck in a local minimum when ordering constraints are used. Unlike 

a-expansion, order-preserving moves act on all labels. Although the global minimum 

is still not guaranteed, we will show that optimization with order-preserving moves 

performs significantly better than a-expansion.

Experimental results show that promoting spatial consistency and incorporating 

ordering constraints significantly improves the performance. We also demonstrate the 

usefulness of the extracted 3D structure information of the scene in the applications 

of novel view generation, virtual scene walk-through, semantic segmentation, scene 

synthesis and scene text extraction. Meanwhile, we also use order-preserving moves 

for certain simple shape priors in graph-cut segmentation.
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1.4 Organization of the Thesis

This thesis presents a geometric labeling method, which can automatically extract 

rough 3D information from a single 2D image. In previous sections, we briefly intro­

duced the problems and the motivation behind this thesis.

Chapter 2 reviews the relevant literature on different 3D scene structural infor­

mation extraction methods from two approaches, namely, the Multiple View approach 

and the Single View approach.

Chapter 3 is a brief overview of relevant algorithms including basic image pro­

cessing, Support Vector Machines and the Graph Cut algorithms, and provides the 

theoretical base for the proposed algorithm.

Chapter 4 describes the proposed algorithm in detail and Chapter 5 illustrates 

some of the experimental results.

Finally, in chapter 6, we present the concluding remarks on the proposed algo­

rithm followed by a discussion of future work.



Chapter 2

Related work

Recovering 3D structural information from 2D images is an active research area in 

computer vision and can be used in many applications such as virtual reality, robot 

navigation, environment simulation, architectural design, industrial manufacturing 

and multimedia.

In general, 3D reconstruction methods can be classified into categories: Multi­

ple view approach and the Single view approach. This classification is based on the 

number of images used in reconstructing a 3D scene. In this section, We will discuss 

the 3D reconstruction methods from both approaches as 3D reconstruction from Mul­

tiple view approach is a classic and still an active research area whereas Single view 

approach has been attracting more interests recently. For the sake of completeness, 

an adequate review of multiple view reconstructions algorithms are presented in sec­

tion 2.1. However, the reader may skip this section without an impact on readability 

of later sections.

2.1 Multiple View 3D Reconstruction

Traditional multiple view 3D reconstruction methods use feature/pixel correspon­

dences between images (e.g. stereo images, or multiple images, or video sequences, 

and/or 3D range data) to reconstruct the 3D geometry or camera calibration [6, 7]. 

9
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All the traditional 3D reconstruction requires special equipment, such as multiple 

cameras, range scanners [2].

Kolmogorov et al. proposed two 3D scene reconstruction methods where they 

formulated the 3D scene reconstruction problem as an energy minimization problem 

and optimized the energy with graph-cut algorithm [8, 9]. Both methods treat the in­

put images symmetrically and can handle visibility constraints properly. The method 

proposed by Kolmogorov and Zabin in 2002 can handle arbitrary number of cameras 

but imposes the spatial smoothness while preserving discontinuities with respect to 

a single cameras [8]. The method proposed by Kolmogorov et al. in 2003 can impose 

the spatial smoothness while preserving discontinuities with respect to a large number 

of cameras [9].

Based on the above methods proposed by Kolmogorov and co-workers [8, 9], 

Goldlucke and Magnor [10] proposed a simultaneous 3D scene reconstruction and 

background separation method by adding one more term called background term in 

the energy function. The added background term introduces the penalty for each 

pixel being labeled as background where the penalty value is calculated based on the 

normalized cross-correlation of the image values with the background values as well as 

the depth information of background. The energy function proposed by Goldlucke et 

al. can still be optimized with the «-expansion based graph cut method proposed by 

Boykov et al. [11].

Yuan and Medioni introduced a novel method to obtain the 3D Euclidean re­

construction for both the moving objects and the background in a video sequence 

captured from a moving camera [12]. They treated the moving objects as static 

objects observed by a moving “virtual camera” with a linear constraint. In their 

method, a homography-based motion segmentation method is first applied to the 

video sequence to get the static background and motion blobs. Then, the classic 
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Structure from Motion (SFM) methods are used to estimate camera poses, the 3D 

shape of the moving objects, as well as the static background.

Cheung et al. proposed a method to increase the accuracy of 3D Visual Hull 

(VH) reconstruction through combining the Shape-From-Silhouette (SFS) technique 

with the stereo information [13]. In their method, they obtained multiple silhouette 

images captured across time. They first constructed a representation of VHs called 

the bounding edge representation. Then, they applied the multi-view stereo to extract 

points called Colored Surface Points (CSP) on the object surface based on one of the 

fundamental properties of VH: each bounding edge must touch the object at least one 

point. Those obtained CSPs were then used in a 3D image alignment algorithm to find 

the 6 DOF rigid motion between two VHs. Finally they used this rigid transformation 

to treat all the silhouette images as being captured at the same time, which increase 

the number of silhouette images used. Therefore, their method can improve the shape 

approximation than traditional SFS methods.

Liu et al. mapped the 2D image texture onto the 3D range data by integrating 

the multi-view geometry with automated 3D registration techniques [14]. They used 

the 3D range scans and the 2D photographie images to generate a pair of 3D models 

of the scene. The first model is a dense 3D point cloud produced by the range 

images through the a 3D-to-3D registration method. The second model is a sparse 

3D point cloud produced by the sequence of 2D photographie images by using the 

Structure from Motion (SFM) method based on the multi-view geometry. Then, they 

developed a novel model alignment algorithm to recover the similarity transformation 

parameters (i.e. rotation, scale, and translation), which finds the best alignment 

between the dense and sparse models. Finally, these alignment parameters were used 

to get the optimal texture mapping from the 2D photographie images to the 3D dense 

model.
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Shum et al. presented an interactive 3D reconstruction system by using a 

collection of panoramic image mosaics [15]. A panoramic mosaics is a set of images 

taken around the same view and associated with a transformation matrix. To generate 

a 3D scene, their system first recovered the camera pose for each mosaic based on 

line directions manually specified by a user and points and then constructed the 3D 

model using all available geometric constraints. In their method, they partitioned the 

constraints into soft and hard linear constraints, formulated the 3D modeling problem 

as a linearly-constrained least-square problem, and solved using QR factorization 

efficiently.

Debevec et al. recovered the 3D scenes from a sparse set of still images by using 

a hybrid geometry- and image-based approach which integrated the geometry-based 

modeling technique with the image-based rendering technique [16]. In their method, 

they first provided an easy-to-use interactive modeling interface which allowed the 

user to construct a geometric model of scene from images. Then, a view-dependent 

texture mapping method was used to project different images onto the model based 

on the user’s viewpoint. Their method can recover accurate architectural models from 

a few photographs with a number of user-specified correspondences.

Jiang et al. introduced a panoramic 3D scene recovery method by using ro­

tational stereo cameras with simple epipolar constraints [17]. They acquired two 

sampled spatio-temporal volumes by rotating two parallel stereo camera about a 

vertical axis with a constant velocity. Those two sampled spatio-temporal volumes 

consist of two sequential images captured by a uniform angular interval and can be 

resampled into a set of multi-perspective panoramas. They computed the depth map 

from four image pairs among 5 images (four panoramas and one original image) using 

a multi-baseline algorithm with a number of epipolar constraints.

Jiang and Lu also proposed a panoramic 3D scene reconstruction method by fus- 
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ing the image color intensity information with laser range data [18]. In their method, 

they acquired two types of panoramic scene data: a dense spatio-temporal volumes 

from the CCD camera and the distance information from the laser range scanner. 

They resampled the dense spatio-temporal volumes and estimated the dense-depth 

panoramic map. They then fused the estimated dense-depth map with the depth map 

measured using a laser range scanner by formulating the fusing problem as an energy 

minimization problem and optimized the energy with a belief propagation algorithm. 

In their energy function, they incorporated the active depth measurements obtained 

from a 2D laser range scanner with the passive geometry reconstruction obtained 

from the image sequence captured from the CCD camera. Their experimental results 

showed that by fusing the image color intensity information with laser range data, 

they can get a more robust and accurate reconstruction than either using geometry 

reconstruction or range scanned data alone [19].

There are some other methods which recover the sparse 2D features (such as 

points and line segments) into the 3D world through using geometric projection among 

multiple images [20, 21]. Some sparse 3D reconstruction methods apply the classic 

Structure from Motion (SFM) techniques to recover the sparse 3D world from video 

sequence [22, 23] while some other methods recover the sparse 3D information by 

finding the feature correspondences between stereo images [24, 7]. However, all these 

methods normally can not be directly used to get solid/dense scene reconstruction.

Although traditional 3D scene reconstruction based on multiple view geometry 

has been heavily studied in the last several decades, a reliable and automatic 3D 

reconstruction is still a distant goal. When the environment tends to be extremely 

low textured such as in some indoor environment, using projective geometry is usually 

unreliable as low texture makes the correspondence problem highly ambiguous.
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2.2 Single View 3D Reconstruction

Unlike the traditional 3D reconstruction methods which can provide accurate metric 

3D reconstruction, single view methods can only recover approximate 3D information 

as a single view of a scene does not have enough information about the depth of the 

scene points. However, the recovered approximate 3D information is very useful in 

many applications such as in scene visualization, object recognition, virtual reality, 

etc. In general, the single view reconstruction problem can be solved to some extent 

by either through user interaction or imposing constraints on the scene.

A general approach for single view methods is to formulate the 3D reconstruc­

tion problem as a pixel labeling problem by manually or automatically partitioning 

the single image into several geometrical parts/regions. Pixel labeling problem in­

volves assigning a label from a finite set of possibilities to each image pixel.

Horry et al. developed a Tour Into the Picture (TIP) method to obtain a simple 

scene model from a single 2D image [3]. In their method, they used a spidery mesh 

to partition the input image into 5 geometric regions. To generate an animated 3D 

scene, users have to specify the vanishing point, background, and foreground objects 

manually using the graphical interface they provided. Thus this approach requires 

intensive user interaction.

Criminisi et al. extracted the geometric information and constructed the 3D 

models from single uncalibrated perspective images of a scene by using two canonical 

types of measurements: lengths of segments on planar surfaces and the distances of 

points from planes [25]. In their method, an image-to-world homography matrix was 

first estimated by computing the projective transformation between four manually 

measured world points with four manually selected corresponding points in the image. 

Therefore, lengths of the segments on planar surfaces can be computed based on the 
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estimated homography matrix. The distances of points from planes was computed 

based on the manually selected reference objects, the estimated vanishing point, and 

the vanishing line. In their method, meaningful objects (such as walls, people, etc.,) 

are segmented by using an interactive silhouette cut-out method. 3D reconstruction 

can be completed by repeatedly segmenting, measuring, and inserting the manually 

selected objects into the reconstructed 3D model with respect to the manually selected 

reference plane. As the authors stated, their method is especially suitable for man­

made environment where there are frequent architectural elements and/or geometric 

patterns as they exploited orthogonality and parallelism constraints of the scene.

Johansson proposed a simple linear algorithm to reconstruct new views of piece­

wise planar objects [26]. This method assumes the scene to be piecewise planar patch 

and calculates the homographies for each patch by manually selecting the intersec­

tion lines between scene planes. As the author stated, this method is suitable for 

man-made environment such as buildings.

Prasad et al. proposed a 3D reconstruction method for curved 3D surface [27]. 

They formulated the 3D reconstruction as a global optimization problem by mini­

mizing a surface smoothness objective function. In their method, they applied the 

thin-plate energy which was subjected to some constraints from the apparent con­

tour (also called silhouette) as well as some user specified constraints, such as surface 

normals.

Zhang et al. introduced a novel approach to reconstruct the free-form texture­

mapped 3D scene models from a single painting or photograph [28]. In their method, 

after user specified a sparse set of constraints on the local shape of the scene including 

surface position, normals,silhouettes, and creases, then a smooth 3D surface which 

satisfies these constraints was generated. In their method, the problem of computing 

the best surface that satisfy these constraints was cast as a constrained optimization 
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problem.

Colombo et al. presented a metric 3D reconstruction from a single uncalibrated 

view of Surfaces of Revolution (SOR) [29]. SOR represents a class of scene with 

repeated structure generated by the rotation of a planar curve around an axis. The 

presence of these repeated structures can be used as the geometric constraints. With 

repetitive structures, 3D models are comparably easy to compute. However, their 

method can only be used in objects with SOR, which are very common on some 

man-made objects.

Coughlan and Yuille proposed a method for labeling pixels with so called “Man­

hattan” orientations, which consists of vertical, horizontal, or depth directions [30]. 

In addition, they have the “clutter” label, for pixels inconsistent with the Manhattan 

orientations. An individual pixel likelihood for a particular orientation is based on 

the gradient. A Bayesian framework is used for spatial consistency between pixels. 

This method is not suitable for images containing textured scene, such as textured 

walls/floors, since the majority of the edges in such scenes would not be consistent 

with the Manhattan directions.

Delage et al. proposed a dynamic Bayesian network model to automatically 

recover 3D scene from a single 2D indoor image [31]. However, their method is based 

on recognizing the “floor-wall” boundary in each column of the image, and is not 

appropriate for scenes that do not have sufficiently large “floor-wall” boundaries.

Teruel et al. also presented a real time 3D reconstruction method for single 

indoor image by interpreting the indoor scene in terms of a set of vertical planes 

lying on a common horizontal plane [32].

Zhang and Tsui reconstructed an arbitrary 3D object from a single view of an 

object and its image in a plane mirror [33]. In their method, they calculated the 

correspondence between the object and its counterpart in the mirror as they were 
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auto-epipolar. However, only a partial object can be reconstructed as only a fraction 

of the object and its corresponding image in a plane mirror can be simultaneously 

visible in a single view.

All the methods discussed above either require user interaction or make rela­

tively restrictive assumptions about the scene.

Recently, Hoiem et al. introduced a novel method that allows the automatic 

extraction of rough 3D structure from a single 2D image through learning [34, 4, 35]. 

Unlike most of the scene recognition algorithms [36, 37] which model semantic classes, 

such as cars, faces, etc., they reconstructed the geometric structure of scene regions 

through learning geometric labels, such as “vertical”, “sky”, “ground”, based on the 

appearance of a region. Their method is very accurate and fast. Although it provides 

only a rough 3D description of a scene, such rough description is quite useful for 

scene visualization and object recognition. In a later publication, Hoiem et al. tried 

a global optimization for geometric labeling without improvement due to the fact 

that the optimization in their method is performed on superpixel level and not on 

pixel level [5]. Therefore in case when a superpixel contains pixels with different true 

labels, they can not assign the true labels to all the pixels in that superpixel.



Chapter 3

Preliminaries

This chapter reviews two image processing operations: directional filtering and Dif­

ference of Oriented Gaussian (DOOG), a machine learning algorithm called Support 

Vector Machines and the Graph Cut optimization algorithm, which provide the the­

oretical base for the proposed algorithm.

3.1 Image Processing

In image processing, feature extraction refers to methods that aim at computing 

abstractions of image information in order to make a local decision for a given task. 

Choosing discriminating and independent features (i.e. good features) is one of the 

most critical aspects in machine learning and pattern recognition in order to get a 

successful classification [38, 39]. Image features are measurable heuristic properties 

or information extracted from the image. Widely used good features include image 

edges, corners, ridge and blobs [40, 41].

In this section, I will describe two low level feature extraction methods which 

are used in our proposed method for training/learning, namely the directional filtering 

and Difference-Of-Oriented-Gaussian (DOOG).

18
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3.1.1 Directional filtering

Directional filtering is a bank of filtering operations which are normally used to extract 

image edges in different directions. Fig. 3.1 shows a directional filtering operation 

called compass operator [42]. A convolution operation with the compass operator 

calculates the second derivative of intensity in four orientations 0°, 45°, 90° and 

135°, where 0° denotes horizontal direction, 90° denotes vertical direction and 45° 

and 135° are 45° and 135° diagonal directions, respectively. Fig. 3.2 demonstrates an 

original test image and its corresponding results of four directional filters.

Figure 3.1: Directional filters, (a) 0°, (b) 45°, (c) 90°, (d) 135°.

-1 -1 -1 -1 -1 2 -1 2 -1 2 -1 -1

2 2 2 -1 2 -1 -1 2 -1 -1 2 -1

-1 -1 -1 2 -1 -1 -1 2 -1 -1 -1 2

(a) (b) (c) (d)

3.1.2 Difference-Of-Oriented-Gaussian(DOOG)

The Difference of Oriented Gaussian DOOG is an operation which calculates the 

difference between two oriented Gaussians of different sizes with the width of positive 

Gaussian being smaller than the width of the negative one [43, 44]. DOOG is normally 

used for texture analysis in computer vision.

Let G(x, y, Tg, Ty) be the two-dimensional Gaussian function defined in Eq. 3.1,

-((-x0)2+(-v)2)
G(x, y,02,0y) = Aexp 2oy 2oy (3.1)
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Figure 3.2: Directional filtering (a) original image (b) 0° (c) 45° (d) 90° (e) 1350 (f) 
edge overlayed image.

where ox, σy are the variance in x and y direction, respectively, which denote the 

width of the Gaussian function. The oriented Gaussian G(x,y,T,0y,0) is the two­

dimensional Gaussian G(x, y, σx, Ty) rotated by an angle θ defined in Eq. 3.2,

G(x,y, 02,0y,0) = Aexp-(a(z-o)2+b(-zo)(y-y0)+c(y-v0)2) (3.2)

where,
COS0xo sin 0
—)-+ (-σX Oy

sin 20 l sin 20

sin 0 9 cosO c = (------)= + (­
Ox Oy

The DOOG is the difference between two oriented Gaussians which is defined in 
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Eq. 3.3,

Doog(x,y,σx,σy,θ,r) = Ki - G(x, y,σx,σy,θ) - K2 - G(x,y,r - σx,r - σy,θ) (3.3) 

where G(x, y, σx, σy) denotes two-dimensional oriented Gaussian function, and K1 

and K2 denote positive constants. Fig. 3.3 and Fig. 3.4 demonstrate the 2D Oriented 

Gaussian and DOOG with 12 orientations respectively.

Fig. 3.5 shows the corresponding DOOG filtering results for the same testing 

image as shown in Fig. 3.2. □□□□□□ 
0° 15° 30° 45° 60° 75° 

eaen/dë
90° 105° 120° 135° 150° 165°

Figure 3.3: Oriented Gaussian.

0° 15° 30° 45° 60° 75°

90° 105° 120° 135° 150° 165°

Figure 3.4: Difference of Oriented Gaussian filters.
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0° 30° 60°

90° 120° 150°

Figure 3.5: DOOG filtering for the same testing image as shown in Fig. 3.2.

3.2 Support Vector Machine (SVM)

Support Vector Machine is a very popular technique for classification. A classification 

task usually involves training and testing data consisting of data instances, where each 

data instance in the training set contains a set of features or attributes and a target 

value, also called class label. The goal of SVM is to find the optimal hyperplanes 

which can separate classes within the training data set with the largest margin as 

shown in Fig. 3.6. When the classes are not linearly separable, SVM maps the input 

data from a low dimensional space into a high-dimensional space where the mapped 

data are linearly separable. The mapping function is called kernel function. Fig. 3.7 

shows an example of data mapping, where the data are not linearly separable in 

the two-dimensional space. But after mapping, they are linearly separable in the 

three-dimensional space.
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Figure 3.6: Hyperplane of SVM (maximum margin in linearly separable case): the 
vector w is the normal of the separating hyperplane and b is the offset parameter, 
which allows the margin increase

Figure 3.7: SVM kernel function a

a. This diagram was reproduced from the textbook titled Pattern Classification [45].
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3.2.1 Classification

In this section, we review the most well known SVM method proposed by Vladimir 

Vapnik in [46, 47].

Let (xi,yi) be the instance and label pair, where Xj ∈ Rn, yl ∈ {1, —1}, and 

i = 1, • • • , I is the number of instances. SVM finds the optimal hyperplane w∙x-b = 0, 

with the largest margin w∙x-b = ±1. The vector w is the normal of the separating 

hyperplane and b is the offset parameter, which allows the margin increase as shown 

in Fig. 3.6.

Vapnik introduced the concept of soft margin through applying the slack vari­

ables [46]. As shown in Fig. 3.8, by using the slack variables, it allows mislabeled 

examples, which is suitable in the case when data are not linearly separable even in 

the high-dimensional space.

×

×

O

O

2
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O 
O

X
X

O 
O

Figure 3.8: Soft margin of SVM: slack variables used in linearly not separable case.

The SVM algorithm introduced by Vapnik is summarized in algorithm 1:
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Algorithm 1 (SVM)
Given: a training set of instance—label pairs (xi, Yi), where i=1, ,l,ci € Rn1 
and y ∈ {-1,1}1
Solving: the optimization problem

1 '
min -Tw + C , & 
w,b,6 2 1=1

subject to
yi(ωτφ(xi) +b)21-Si

620
In the above equation, Q(.) is a function, which maps feature vectors Xi into a 
higher (even infinite) dimensional space, and Si are slack variables, which allow 
mislabeled examples through soft margin. C > 0 is the penalty parameter of the 
error term.

The kernel function K(Ii, xj) is defined as follows:

K(XilXj) = O(i) O(aj).

Through the use of kernel functions, computation in the higher dimensional case in 

SVM is performed only implicitly. Therefore, it avoids the curse of dimensionality 

problems. The following are the most commonly used kernel functions:

(i) Linear: K(xi,xj) = x^xj-

(ii) Polynomial: K(xi,xj) = (~xT Xj + r)d,Y > 0.

(iii) Radial Basis Function (RBF): K(xi,xj) = exp(-Ylxi — xjll2),° > 0.

(iv) Sigmoid: K(xi, xj) = tanh(yxTXj + τ).

Here, Y, r, and d are kernel parameters.
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3.2.2 Probabilistic outputs

The output of SVM is an uncalibrated value and not a probability distribution of 

a label given the feature vector [46]. However, in practical recognition situations, 

the posterior probability P(class∖input) is very useful. Although the standard SVM 

methods do not provide such probabilities, there are ways that can be used to convert 

uncalibrated SVM values into probabilities [48, 49].

Here, we describe a popular approach proposed by Platt, who proposed to 

approximate the posterior probability through fitting a parametric sigmoid function 

on the uncalibrated SVM outputs [48]. The sigmoid function maps the SVM outputs 

to posterior probabilities. Let the unthresholded output of an SVM be

f(x) = h(=)+b (3.4)

where

h(x) = 2 JiaiK(Ti, x) (3.5)

Platt fit the sigmoid function

Pr(v -1/z) = PA,B(%) = 1-——L____ (3.6)

Where the best parameter (A,B) are then estimated by solving the following regular­

ized maximum likelihood problem with a set of labeled examples {(Ni, Yi)},1

min F(A, B) = - X(t; log(Pi) + (1 - ti) 1°B(1 - Pi)). (3.7)
(A,B) S 
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where 
__________ 1________

Po 1+exp(Af(i)+ B) 

and
s N44 if y, =+1, 
) 1 

( N-+2 

where N+ and N- are the numbers of positive and negative examples of Yi, respec­

tively.

So far, we have discussed binary or two-class classification, i.e Yi € {1,—1}. For 

a multi-class classification problem, where Yi ∈ {1,2, ...k}, the classification involves 

assigning each of the instance into one of the k classes. Since two-class problems are 

much easier to solve, many authors propose to use two classifier for multi-class classifi­

cation through pairwise coupling [50, 51]. Pairwise coupling combines all comparisons 

for each pair of class. Voting is a common way to combine pairwise comparisons [52].

3.3 Graph Cut Optimization

In this section, we briefly give a review on the graph cuts algorithm proposed by 

Boykov et al. [11]. Let P be the set of all pixels in an image, C be a finite label 

set C = {l1,l2,-.}, and fp be a label assigned to a pixel p (i.e. p e P, fp € C). 

Let f = {fplp ∈ P} be the collection of all pixel/label assignments, the graph cuts 

algorithm minimizes the following energy function:

EU) = 2 Dp(fp)+ 2 VpM,fq∙) (3.8)
peP (p,q)eN

In Eq. 4.1, Dp(fp) and Vp,q(fp, fq) are called the data and the smoothness terms, 

respectively, and N is a neighborhood system on P.
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The data term Dp(fp) specifies the penalty for pixel p to have label fp, and thus 

encourages each pixel to be assigned the label of smallest penalty. The smoothness 

term Vpq(fp, fq) encourages spatial consistency by penalizing neighboring pixels p and 

q that are not assigned the same label.

It has been proved that given a finite set of labels £, when the smoothness term 

is a discontinuity preserving interaction term, the global minimization of the energy 

functions above in Eq. 4.1 is NP-hard, even in the simplest discontinuity preserving 

case [11].

However, discontinuity preserving interaction is one of the most common sit­

uations in vision problems, which assumes that features vary smoothly within the 

objects but vary dramatically at object boundaries.

For example, for Potts model, Vp,q(fp, fq) = 0 if fp = fq and Vp,q(fp, fq) = wpq 

if fp = fqι where wpq is a positive coefficient that can depend on the particular pixel 

pair (p, q). Typically wpq is small if there is an intensity edge between pixels p and 

q, and wpq is large otherwise. This encourages the discontinuities between labels to 

align with the image edges.

Boykovet al. developed the a — B swap algorithm and the ^-expansion algo­

rithm [11], based on the efficient max-flow algorithm [53]. The a-expansion and the 

a — β swap algorithm are briefly described in algorithm 2 and 3 respectively.

Algorithm 2 (a-expansion algorithm)
1: Start: an arbitrary labeling f
2: Set: success = 0
3: for each label a ∈ £ doA / /
4: • Find f = argminE(f ) among f within one a-expansion of f
5: • if E(f) < E(f ), set f:=f and success = 1
6: end for
7: If success = 1 goto 2
8: Return f
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Algorithm 3 (a — B swap algorithm)
1: Start: an arbitrary labeling f
2: Set: success = 0
3: for each pair of labels {α, B} CL do
4: • Find f = argminE(f ) among f within one a - B swap of f
5: • if E(f) < E(f ), set f := f and success = 1
6: end for
7: If success = 1 goto 2
8: Return f

Both the a — β swap algorithm and the a-expansion algorithm can achieve 

approximate solutions to this NP-hard minimization problem with guaranteed opti­

mality bounds. For Potts model, in case of two labels, the energy in Eq. 4.1 can be 

minimized exactly, and in the multi-label case a solution that is optimal within a 

factor of two can be found with the a-expansion.

Given the following conditions for any labels a,3, € C:

Vp.4(,/) = 0 6 a = B, (3.9)

Vp.q(a,B) = V.q(B,a) 2 0, (3.10)

Vp.q(a,B) ≤ Vp.q(a,n) + V.q(x.B). (3.11)

If Vp,q satisfies all the above three conditions in Eq. 3.9 to Eq. 3.11, it is called metric. 

If Vp,q only satisfies the conditions in Eq.(3.9) and Eq.(3.10), it is called semimetric.

The a-expansion algorithm works under the condition that Vp,q is metric, while 

the a — B swap algorithm works if Vp,q is semimetric. Therefore, the a - B swap 

algorithm has more relaxing conditions, while «-expansion is computational more 

efficient.



Chapter 4

Geometric Class Scene Labeling

4.1 Graph Cut with Order-Preserving Moves

In this section we describe the graph-cut optimization framework with our order­

preserving moves. Suppose we have a pixel labeling problem where the task is to 

assign to each image pixel p some label from a finite label set C. Let P be the set of 

all pixels in an image, and fp be a label assigned to a pixel p (i.e. p € P, fp € C). Let 

f = {fplp ∈ P} be the collection of all pixel/label assignments. The energy function 

is:

E() = 2 Dp(p)+ 2 Vm(IpJq) (4.1)
peP (p,q)EN

Eq. (4.1) is the commonly used energy function for graph cut optimization, 

where Dp(fp) and Vpq(fp, fq) are called the data and the smoothness terms, respec­

tively, and N is a neighborhood system on P. We use the standard 4-connected N 

which consists of ordered pixel pairs (p, q). We assume the following image indexing: 

if p is to the left of q, then p <q, and if p is above q, then also p < q.

The data term Dp(fp) specifies the penalty for pixel p to have label fp, and thus 

encourages each pixel to be assigned the label of smallest penalty. The smoothness 

term Vpq(fp, fq) encourages spatial consistency by penalizing neighboring pixels p and 

q that are not assigned the same label.

30
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For example for Potts model, Vpq(fp, fq) = 0 if fp = fq and Vpq(fp, fq) = wpq 

if fp = fq, where wpq is a positive coefficient that can depend on the particular 
_I )2pixel pair (p,q). Typically, wpq = b- exp(--24-), where Ip and Iq are the image 

intensity values for pixel p and q, respectively. Therefore, wpq is small if there is an 

intensity edge between pixels p and q, and wpq is large otherwise. This encourages 

the discontinuities between labels to align with the image edges.

For Potts model, the graph-cut based a-expansion [11] performs best in terms of 

speed and accuracy [54] when compared to other popular minimization methods such 

as Tree-reweighted max-product message passing (TRW) [55] and Belief Propagation 

(BP) [56∣.

In case of two labels, the energy in Eq. (4.1) can be minimized exactly, and in 

the multi-label case a solution that is optimal within a factor of two can be found 

with the a-expansion [11]. The a-expansion finds a local minimum with respect to 

expansion moves. Given a labeling f and a label α, a move from f to fa is called 

an a-expansion if fp = fp => fp = α, i.e the set of pixels labeled as α “expands” 

in fa. The optimal a-expansion can be found efficiently using a min-cut/max-fiow 

algorithm [53]. The a-expansion algorithm iterates over all labels α, finding the best 

a-expansion, until convergence.

In addition to spatial consistency, Vpq can also be used to incorporate a smooth­

ness prior on a labeling, such as ordering constraints on labels. For example, if p is 

immediately to the left of q, to prohibit f(p) = uCentern and f(q) = “left”, we set 

Vpq(“ center”, “left”) = K, where K is a prohibitively large constant. For example, 

K can be set equal to E(fcenter), where fcenter is a labeling which assigns the “cen­

ter” label to every image pixel. Notice that Efcenter only involves the data terms 

and does not involve any no smoothness terms. Hence our definition of K is not 

recursive.
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Ordering constraints arise naturally in real scenes (for example, “sky” and 

“ground”, “left wall” and “right wall”, etc.) and can be used for many applications. 

An example of ordering constraint is prohibiting a pixel with a “car wheel” label to 

be above a pixel with a “car roof’ label. However, after adding ordering constraints 

to Potts model, the factor of 2 approximation no longer holds. We observe that the 

commonly used graph-cut based à-expansion is more likely to get stuck in a local 

minimum when ordering constraints are used. Researchers who used ordering con­

straints can not achieve good results with «-expansion alone [57, 58]. This motivates 

us to develop new graph-cut moves which we call order-preserving moves. Unlike 

«-expansion, order-preserving moves act on all labels. Although the global minimum 

is still not guaranteed, we will show that optimization with order-preserving moves 

performs significantly better than «-expansion.

In the geometric scene labeling, we assume that an image is to be segmented 

into five geometric parts (each part corresponds to a label), which we call “center”, 

“left”, “right”, “top”, “bottom”. For compactness, we abbreviate label names with 

their first letter, i.e. L, R, T, B, C, respectively. The smoothness terms Vpq are 

in Table4.1. The model in Table 4.1 is Potts plus the ordering constraints. Under 

this model, a labeling has a finite energy only if the “center” part is a rectangle, 

and the “left”, “right”, “top”, “bottom” parts are to the left, right, above, below 

the “center” part, respectively. Above model is based on the assumption that the 

photographs are taken with the typical camera orientation (the camera image plane 

is perpendicular to the floor for indoor images or ground for outdoor images). In the 

case when the camera image plane is not perpendicular to the floor/ground, we can 

use fourier transform to detect the image orientation and rotate it back to the typical 

camera orientation.
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Table 4.1: Smoothness terms Vpq
Horizontal Neighbors

P = (x, y),q = (x + 1,y)
fp∖fq L R C T B

L 0 ∞ Wpq Wpq Wpq
R ∞ 0 ∞ ∞ ∞
C ∞ Wpq 0 ∞ ∞
T ∞ Wpq ∞ 0 ∞
B ∞ Wpq ∞ ∞ 0

Vertical Neighbors

P= (x, y),q = (x,y+1)
fp∖fq L R C T B

L 0 ∞ ∞ ∞ Wpq
R ∞ 0 ∞ ∞ wpq
C ∞ co 0 ∞ Wpq
T Wpq Wpq Wpq 0 00
B ∞ ∞ ∞ ∞ 0

Fig. 4.1 and Fig. 4.2 show how it is easier to get stuck in a local minimum using 

alpha-expansion than our order-preserving moves for a same pixel labeling problem 

when ordering constraints are added to the Potts model.

Consider Fig. 4.1, which shows the results of «-expansion for an instance of 

a geometric class labeling problem. Fig. 4.1(a) shows the labeling after one itera­

tion, where one iteration means one «-expansion for each label « ∈ {L, R, T, B, C}. 

Fig. 4.1(b) shows the labeling after two iterations. Only the B region expands from 

(a) to (b), and the algorithm, in fact, converges after 2 iterations. However, the 

labeling in Fig. 4.1(b), which has energy of 1,590,159, is far from the optimum.

Fig. 4.2(d) shows the labeling (found by our order-preserving moves algorithm) 

that has a much better energy of 1,443,150. The problem with the local minimum 

in Fig. 4.1(b) can be described as follows: To get to a better labeling, a smaller C 

region is needed. However, expansion on the C label will never shrink it. Labels 

B, T, L, and R need to expand, each one separately, to obtain a smaller C region. 

However, each individual expansion on the B, T, L, R does not result in a lower 

energy, and so the expansion algorithm gets stuck in a local minimum. We also show 

experimentally in Chapter 5 that the energies obtained by the order-preserving moves 

are significantly better than those of «-expansion.
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(a) after one iteration (b) after two iterations

Figure 4.1: Results with a-expansion. Initial labeling, not shown, is all pixels labeled 
as “center”. Color scheme: green = “bottom”, yellow = “left”, cyan = “center”, 
magenta = “right”, blue = “top”. This color scheme is consistent throughout the 
thesis.

Figure 4.2: Results with order-preserving moves on the same problem as in Fig. 4.1. 
Initial labeling (not shown) was all “center”, (a) vertical move from the initial labeling, 
(b) horizontal move applied to (a), (c) vertical move applied to (b), (d) horizontal 
move applied to (c).
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In order to improve on a-expansion moves in the presence of ordering con­

straints, we should allow a pixel to have a choice of labels to switch to as opposed to 

just a single label a. Let Lp be a subset of labels that pixel p is allowed to switch 

to in one move. Typically, graph-cut algorithms use the same rule for choosing Lp 

for every pixel. For a-expansion, Lp consists of a and the old label of pixel p. For 

a-β swap [11], Lp = {a,β}. For global optimization methods, Lp = C, but they can 

handle only a restricted type of energies, and ours is not of that type [59, 60].

Our insight is that by using different rules when selecting Lp for different pixels, 

we can have a larger Lp for each pixel, as compared to «-expansion, i.e. In a single 

move, for each pixel, there are more labels to choose from. Notice that the choice 

of Lp precisely defines the allowed moves, i.e. A move from f to f' is allowed if 

fp ∈ Lp. Therefore, we must select Lp's in such a way that the allowed move of 

minimum energy can be computed efficiently. In addition, Lp must have the old label 

of pixel p, so that the set of allowed moves contains the old labeling and therefore the 

best allowed move is not worse than the old labeling. We found two such moves and 

call them horizontal order-preserving and vertical order-preserving.

Fig. 4.2 shows labelings for order-preserving moves on the same example of 

geometric labeling as in Fig. 4.1. A horizontal move (from Fig. 4.2 (a) to Fig. 4.2(b)) 

allows any change in labels except the region labeled as C cannot change its height. 

Either increase or decrease in width of the C region is allowed. The name “horizontal” 

reflects the fact that the C region can change in the horizontal, but not in the vertical 

direction. Similarly, a vertical move (from Fig. 4.2(b) to Fig. 4.2(c)) allows any change 

in labels except the region labeled as C cannot change its width.

Let f be a labeling, and Tp the horizontal coordinate of pixel p. Let x be the 

smallest x coordinate of any pixel that has label C in f, that is x = min {aplfp = C}. 

Similarly, let x be the largest x coordinate of any pixel that has label C in f, that is 
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x = max{xplfp = C}. Recall that Lp is the set of allowed labels that p can switch to 

in a single move. It is easy to see that for a vertical move, the following rules apply. If 

Px < x, then Lp = {T, L, B}. If x SPx <x, then Lp = {T, C, B}. Finally, if px > x, 

then Lp = {T, R, B}. In other words, divide f into three rectangles with two vertical 

lines, one passing through the border of the L and C regions and the other passing 

through the border of C and R regions. Then pixels in the left rectangle can switch 

their labels to T, L or B. Pixels in the middle rectangle can switch their labels to T, 

C or B, and finally pixels in the right rectangle can switch their labels to T, R or B.

To find an optimal vertical move, we use a very important result from 

Schlesinger [60]. They define a submodular energy in the case of multiple ordered 

labels and give a graph construction that can be used to optimize a submodular en­

ergy globally with the minimum cut. An energy is submodular if every Vpq term 

is submodular [60]. In turn, Vpq is submodular, if for any a < B, and a' < βl, 

Vpq(a, a') + Vpq(β, B') ≤ Vpq(a, β') + Vpq(β, a’). See also [61] for an equivalent result. 

It is easy to check that the vertical move energy with Vpq's in Table 4.1 and label 

order T<L<B,T<C<B, and T< R< B is submodular. Notice that we do not 

have to order labels L, C, R with respect to each other because a single pixel under 

vertical move never has to choose between L, C, and R. There is no way to order all 

labels L, C, R, B, T so that our energy is submodular. Thus the main idea behind our 

moves is choosing Lp's for each p in such a way that the energy function restricted 

to the corresponding move is submodular. Due to symmetry, horizontal moves are 

handled similarly to vertical. In practice, we compute the optimal horizontal move 

by transposing the image, swapping labels L and T, R and B, and computing the 

optimal vertical move. Thus, an order-preserving move gives every pixel a choice of 

3 labels to switch to, while a-expansion gives a choice of only 2 labels. In addition, 

a-expansion effectively acts on only one label, since only a label is allowed to increase 
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its territory during the move. Our moves act on all labels simultaneously, since any 

label has a chance to increase (as well as shrink) its territory during a single move.

We compute a local minimum with respect to the order-preserving moves. We 

start with an initial labeling and alternate between the best vertical and horizontal 

order-preserving moves until no move that would result in a lower energy can be 

found. The initial labeling has to be order-preserving. In practice, we start with all 

pixels labeled as C. Fig. 4.2 shows the sequence of labelings that we obtain under the 

order-preserving moves from the first one in Fig. 4.2(a) to the one at the convergence 

after 4 steps in Fig. 4.2(d). For the first move in Fig. 4.2(a), no L and R labels are 

allowed, since the initial labeling has all pixels labeled as C. That is why the labeling 

in Fig. 4.2(a) appears as horizontal bands where there is no L and R labels at all. For 

the order-preserving moves, we use the efficient max-flow algorithm [53] for min-cut 

computation.

4.2 Proposed Method

In this section, we apply the order-preserving moves to the geometric class scene 

labeling. Here, the goal is to automatically extract a coarse 3D scene structure from 

a single 2D image by assigning each image pixel its rough geometric label, such as 

“sky”, “ground”, etc. Unlike previous approaches, we formulate the problem in a 

global optimization framework using the five part model discussed in Sec. 4.1 and 

optimizing the energy in Eq. (4.1) with order-preserving moves.

Our label set is C = {bottom(B), left(L), center(C), right(R), top(T)}. The Vpq 

terms in Eq. (4.1) are as in Sec. 4.1. The set of ordering constraints from Sec. 4.1 

ensures that the boundaries between the parts agree with the directions caused by 

the perspective effects under the standard camera orientation. In other words, the 
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boundary between the “left” and “bottom” parts is a diagonal, slanted down and to 

the left. We are also able to align the boundaries between the geometric labels with 

the intensity edges in the image. For the data terms in Eq. (4.1), we train a classifier 

in a manner similar to Hoiem et al. [4]. The details of this method are described are 

in Sec. 4.2.1.

4.2.1 Data term

According to the literature on Markov random field (MRF) [62], we would like to 

model the data term Dp(fp) as

Dp(p) = -log Pr(pIFp), (4.2)

where Fp is some observed feature vector at pixel p and Pr(fp|Fp) is the conditional 

probability of pixel p given feature Fp. However, for the geometric labels used in this 

thesis, image data at a single pixel does not contain enough information to construct 

a useful likelihood model in Eq. (4.2).

We take an approach very similar to Hoiem et al. [4] who observe that an image 

region frequently does contain enough data to reliably classify it with a geometric 

label. We first partition images into “superpixels”1 by a segmentation algorithm 

proposed by Felzenszwalb et al. [63], where they partitioned an image into a number 

of segments based on the image color information. Fig. 4.3 shows that the partitioned 

image regions can interpret more intuitively discriminant features than traditional 

image grids. Choosing the size of superpixel is critical in our method as if the size 

is too small, the calculated features are not discriminant whereas if the size is too 

1. Superpixel is simply an image region returned by a segmentation algorithm.
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large, it is difficult to break up the superpixel. In our implementation, the size of 

superpixels is chosen by visually looking at the partitioning results on a small set of 

training images.

I
|

Figure 4.3: Superpixel: (a) original images, (b) Segmented superpixels: different 
colors correspond to different superpixels.

Then, we compute a large set of features (listed in Table 4.2) for each superpixel. 

The features that we used are similar to the features used by Hoiem et al. [4], which 

are the statistics on location, color, geometry, texture and edges of the generated 

superpixels. We did not perform feature analysis as the performance is acceptable. 

These statistics include the location of the centroid, 10th and 90th percentile of the
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Table 4.2: Features
Feature Descriptions No.
Location 6
L1. Centroid: x,y 2
L2. x,y: 10th and 90th percentile 4
Geometry 4
G1. Orientation 1
G2. Shape: ratio of MajorAxis∕MinorAxis 1
G3. Eccentricity 1
G4. Area 1
Edges 4
E1. Compass Filters: mean 4
Color 7
Cl. Intensity value: mean 1
C2. R value: mean 1
C3. G value: mean 1
C4. B value: mean 1
C5. H value: mean 1
C6. S value: mean 1
C7. V value: mean 1
Texture 15
Tl. DOOG Filters: mean abs response 12
T2. DOOG Filters: mean of variables in Tl 1
T3. DOOG Filters: id of max of variables in Tl 1
T4. DOOG Filters: (max-median) of variables in Tl 1

superpixel position, orientation, ratio of MajorAxis∕MinorAxis, shape, eccentricity, 

mean RGB and HSV values, mean response of the Compass Filters and mean absolute 

response of DOOG filters. Finally, we use the generated superpixels as training 

examples and apply the SVM classifier.

The output of SVM is an uncalibrated value and not a probability distribution 

of a label given the feature vector. We use a method proposed by Wu et al. [50, 64], 

which is based on the method proposed by Platt [48] to convert the output of SVM 
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into the distribution Pr(S = l|Fs), where I is a label, Fs is a feature vector computed 

on superpixel S, and S = I stands for the event that all pixels inside superpixel S 

have the same label I. Thus, for a given label I, we learn the probability that all 

pixels inside a superpixel S have label I (under the assumption that all pixels within 

a superpixel should have the same label).

As we already mentioned, we would like to learn the probability that a single 

pixel p has label 1. However, we can not learn these probabilities directly since there 

is not enough image information at an individual pixel p. Our solution is to simply 

to apply the distributions learned on the super pixels to the pixel based data term 

Dp(fp). That is Dp(p) = -log Pr(SP = fpIFsp), where log Pr(SP = fpIFsp) is the 

learned log probability of label fp given the superpixel feature vector Fgp s.t. p E S. 

This approach makes sense since our energy in Eq. (4.1) does not require the true 

pixel based negative log probabilities. It is sufficient to come up with a reasonable 

penalty scheme for the Dp(fp) term, that is the scheme that for a given pixel p 

imposes higher penalties for the less likely labels. It is a reasonable assumption that 

if Pr(S = Z1) < Pr(S = Z2), then for most pixels p E S, Pr(p = l1) < Pr(p = 12).

An alternative approach would be to formulate the labeling problem on the 

superpixel level, as has been tried before [5]. However, in case a superpixel does not 

contain pixels with the same true label, it becomes impossible to assign the true labels 

to all the pixels in that superpixel. By performing optimization on the pixel level, 

we are able to break apart any superpixel to better align the boundaries between the 

geometric labels with the intensity edges in the image, since a change in a geometric 

label tends to coincide with an intensity edge in the image.
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4.2.2 Method summary

In summary, our geometric class labeling method includes four steps. First, we parti­

tion the input image into a set of superpixels. Then, we calculate the feature vector 

for each superpixel. After that, we use the trained classifier to learn the superpixel 

probabilities. Finally, the learned probabilities are fed into a global optimization 

framework, using the five part model discussed in Sec. 4.1 and optimized with our 

order-preserving moves. The four step procedure is illustrated in Fig. 4.4.

Figure 4.4: Illustration of our approach: (a) original image, (b) most probable label 
for each superpixel: the lighter colors correspond to higher probabilities, (c) SVM 
labeling, (d) our graph cut with order-preserving moves labeling, where geometric 
class labeling colors are overlayed on the original image in (c) and (d).

U



Chapter 5

Experimental Results

5.1 Indoor Images

We have collected and manually labeled 600 images from different indoor environ­

ments, such as corridors, lecture rooms, laboratories, cafeteria, etc. We used 300 

images for SVM training, and 300 images for performance testing. Some examples of 

our images are shown in Fig. 5.1.

JHIB

meini

Figure 5.1: Sample indoor images

43
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In this experiment, the five geometrical class labels: left, right, bottom, top, 

and center exactly correspond to the “left wall”, “right wall”, “ceiling”, “floor”, and 

“back wall” in the indoor scene, respectively.

In Fig. 5.2, we compare the results of SVM classification (5.2b), à-expansion 

without ordering constraints (5.2c) and our order-preserving moves (5.2d). As ex­

pected, the SVM labelings are not nearly as spatially consistent as those obtained 

with graph cut optimization. In the 6th row in Fig. 5.2 (b), SVM fails to label most 

of the floor correctly. The spatial smoothness constraints helps label most of the floor 

correctly for the same image in Fig. 5.2 (c) and (d). Comparing graph cuts with and 

without ordering constraints, in columns (5.2c) and (5.2d), respectively, implausible 

regions are frequent in Fig. 5.2 (c). For example, back wall patches appear in the 

middle of the left wall (in rows 1 — 4); right wall patches in the middle of the back 

wall (in rows 4 — 8); ceiling patches appear in the middle of left wall (in row 8) and 

back wall(in row 5). In the bottommost row of Fig. 5.2 (c), a large area of back wall 

is smoothed out in Fig. 5.2 (c). In almost all images shown in Fig. 5.2 (c), the back 

wall is present with significantly distorted shape compared to the results in Fig. 5.2 

(d). This clearly shows that incorporating ordering constraints tends to guide the 

graph cut optimization away from implausible solutions. In Fig. 5.3 we show some 

results of à-expansion in (5.3b) and order-preserving moves in (5.3c) when ordering 

constraints are used in the energy function. As expected, «-expansion gets stuck in 

a local minimum easier. Figs. 5.4 shows more results, illustrating the accuracy the 

proposed method can achieve without user interaction. It is worth noticing that it is 

not necessary for an image to contain all the five geometric parts in order to be used 

in our method. For example, in the first image of the 2nd row, the image does not 

have a right wall at all. However, our proposed method can produce correct labeling. 

Therefore, our model can be used in an even more general way.
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(a) (b) (c) (d)

Figure 5.2: Indoor image result comparison: (a) original images (b) SVM labeling, 
(c) «-expansion without ordering constraints (d) order-preserving moves.
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(a) (b) (c)
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Figure 5.3: Indoor image result comparison: (a) original images, (b) a-expansion 
with ordering constraints, (c) order-preserving moves.
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Figure 5.4: Indoor image results: (a) original images, (b) order-preserving moves.
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5.2 Outdoor Images
We downloaded and collected 84 outdoor street images from the Google image and 

Yahoo image search, and from the PASCAL Object Recognition Database [65] as well. 

All images were manually labeled. We used half of the images for training and half 

for testing for testing the performance. Some example images are shown in Fig. 5.5.

is Mi m tn kd 
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Figure 5.5: Sample outdoor images

In this experiment, the five geometrical class labels: bottom, top, left, right, 

center correspond to the “sky”, “ground”, “left-side”, “right-side”, and “back-side” 

of scene, respectively. Therefore, our 5-part model can also perfectly be used in this 

application.
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In Fig. 5.6, we compare the results of SVM classification (5.6b), «-expansion 

without ordering constraints (5.6c), and our order-preserving moves (5.6d). As ex­

pected, the SVM labelings are not nearly as spatially consistent as those obtained 

with graph cut optimization. In the 2nd, 5th and 7th rows in Fig. 5.6 (b), SVM fails to 

label large areas of ground correctly. The spatial smoothness constraints helps label 

most of the ground correctly for the same images in Fig. 5.6 (c) and Fig. 5.6 (d).

Comparing graph cuts with and without ordering constraints( in columns (c) 

and (d) in Fig. 5.6), implausible regions are frequent in Fig. 5.6 (c): left-side patches 

and right-side patches appear connected directly without back-side patches in between 

(in row 3 and row 4) ; right-side scene patch appears in the middle of the left-side 

scene (in the 6th row). In the bottommost row of Fig. 5.6 (c), a large area of back-side 

scene is labeled as ground. For the other images in Fig. 5.6 (c), the back-side scene is 

present but its shape is distorted compared to the results in Fig. 5.6 (d). It is clear 

that incorporating ordering constraints helps by guiding graph cut optimization away 

from implausible solutions.

In Fig. 5.7 we show some results of a-expansion (5.7b) and order-preserving 

moves (5.7c) when ordering constraints are used in the energy function. From Fig. 5.7 

we can see that «-expansion gets stuck in a local minimum even easier in the outdoor 

scene than the indoor scene as almost all the back-side scene in Fig. 5.7 (b) is presented 

as a thin line which is only a few pixels thick. In the 3rd row in Fig. 5.6 (b), a large 

back-side patch is in the middle of the sky. Clearly, incorporating ordering constraints 

help guide the graph cut optimization away from implausible solutions.

Figs. 5.8 also shows more results, illustrating the accuracy the proposed method 

can achieve with no user interaction.
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(a) (b) (c) (d)
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Figure 5.6: Outdoor image result comparison: (a) original images (b) SVM labeling, 
(c) a-expansion without ordering constraints (d) order-preserving moves.
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(a) (b) (c)
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Figure 5.7: Outdoor image result comparison: (a) original images, (b) a-expansion 
with ordering constraints, (c) order-preserving moves.
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Figure 5.8: Outdoor image results: (a) original images, (b) order-preserving moves.
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Figure 5.9: Accuracy comparison: in bins by quality vs. accuracy rate, where SVM 
results are grouped in 10 equal bins, ordered from least accurate to most accurate.

5.3 Discussions

Since the data term in our energy function is calculated based on the probabilities 

generated by SVM, when SVM gives reasonable label probabilities, our algorithm 

can significantly improve SVM results. However, when SVM results are far from 

reasonable, our order-preserving moves can worsen SVM results as the algorithm is 

trying to satisfy the ordering constraints that can not be reasonably satisfied (see 

in Fig. 5.11). Therefore, the overall accuracy improvement over SVM computed for 

all the images is not large. However, when SVM results are not reasonable, they 

are hardly useful for applications anyway. The overall accuracy rate is computed by 

Eq 5.1.
=NP * 100% (5.1)

Nt

where Np is the number of pixels with correct labels and Nt is the number of total 

pixel in an image.

We put SVM results in 10 equal bins, ordered from least accurate to most 

accurate. The higher the bin number, the more accurate are the SVM labelings in
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that bin. Fig. 5.9 shows the accuracy of the algorithms for each bin. For the worst 

bin (unreliable SVM results), accuracy of order-preserving moves are worse than the 

accuracy of SVM only labeling for outdoor images. For the best bins (very accurate 

SVM results), order-preserving moves do not improve SVM results significantly since 

there is not much room for improvement. However, in the middle range (from about 

4th bin to the 8th bin), there is noticeable improvement over SVM and «-expansion, 

especially for the outdoor images. For example, in the 6th bin, order-preserving moves 

have about 80% accuracy, followed by approximately 75% accuracy for «-expansion 

and SVM. 
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Figure 5.10: Accuracy rate vs. % of images
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Fig. 5.10 shows the percentage of labelings that have the at least the accuracy 

rate specified on the horizontal axis. For example, for indoor images, 52% of order­

preserving labelings have the accuracy rate of at least 90%, whereas only 33% and 

46% of SVM and «-expansion labelings, respectively, have this accuracy rate. Order­

preserving moves always have a higher percentage of images at any given accuracy 

rate in the range between 75% and 100%.

We also directly compare the energy values produced by the two algorithms,
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Table 5.1: Energy Reduction Improvement of Order-preserving move over a—expansion

Total energy (%) Data energy (%) Smoothness energy (%)

Indoor 27.3 ± 9.8 2.2 ± 3.6 96.0 ± 1.1

Outdoor 29.2 ± 18.5 8.7 ± 24.6 91.5 ± 3.0

the proposed order-preserving moves always give a smaller energy compared to a- 

expansion as shown in Table 5.1. On the 300 indoor images, on average, the energy 

is 27.3% smaller (o = 9.8%). On the 42 outdoor images, on average, the energy is 

29.2 % smaller (σ = 18.5%).

Figure 5.11: Failure cases (a) original images (b) SVM generated label probabilities 
(c) SVM labeling, (d) Order-preserving moves.

Some failures are shown in Fig. 5.11. The ordering constraints are not violated 

in Fig. 5.11(d), but the “center” region between the “left” and the “right” regions it 

is too thin to be seen at this resolution. Most failures occur when the “center” data 

terms are far from reasonable, as in Fig. 5.11 (b).

We computed percentage of “successful” labelings, where a labeling is success­

ful if it has at least 90% overall accuracy or at least 80% overall accuracy and the 

“center” region is at least 60% accurate. We found experimentally that labelings



56

Table 5.2: Performance Summary

Percentage of Successful Labelings (%)

SVM «-exp. no OC «-exp. with OC Order-pres. moves

Indoor 29.3 61.0 72.3 74.3

Outdoor 16.7 40.5 38.1 61.9

Overall Accuracy Rate (%)

SVM α-exp. no OC «-exp. with OC Order-pres. moves

Indoor 83.0 84.1 84.7 85.0

Outdoor 74.0 75.2 71.0 75.3

Processing Time (seconds)

SVM «-exp. no OC a-exp. with OC Order-pres. moves

Indoor 34.5 ± 2.6 45.5 ± 3.6 85.5 ± 219.0 62.3 ± 25.6

Outdoor 29.3 ± 8.4 43.8 ± 12.4 286.4 ± 480.1 56.5 ± 18.3

satisfying these conditions can be used successfully for virtual scene walk-through. 

Table 5.2 summarizes the performance of SVM, «-expansion without and with or­

dering constraints, and the order-preserving moves (in that order). Order-preserving 

moves algorithm is a clear winner when it comes to the percentage of “successful” 

labelings and also shows a modest improvement for the overall accuracy rate. From 

Table 5.2, we can also see that the Order-preserving move method is a lot better than 

the «-expansion method in the manner of computation time although these two have 

very similar overall accuracy performance. The average processing time calculated 

on a personal computer with 2.4GHz CPU and 2048MB memory is also listed in Ta­

ble 5.2. The computational time includes superpixel segmentation, feature extraction, 

data terms calculation, and the corresponding energy minimization.
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5.4 Other Images
Our geometrical scene class labeling with ordering constraints model can also be 

used in many applications, such as human figure/gesture detection, computer-screen 

detection, etc.

In this section, we will show how our model to be used in the applications of 

the nature scene and object part segmentation, i.e. Mickey mouse segmentation. The 

labeling of natural scenes involves seascape segmentation whereas the Mickey Mouse 

segmentation involves labeling the body parts of the Mickey Mouse.

5.4.1 Nature scene

In the application of the nature scene (seascapes), three geometrical class labels: 

bottom, top, center are used which correspond to the “sea”, “sky”, and “mountain” 

in the scene, respectively. In this case, only the vertical ordering constrains are used. 

We also use one none-geometrical class label called “object”, which corresponds to 

large scene objects. There are no ordering constraints for the “object” label.

We have collected and manually labeled 92 of nature scene images, which are 

obtained from the website “Thailand Bilder” (Photo and Image Gallery from Thai­

land) [66]. Out of this 92 images, we used 61 images for training SVM, and 31 images 

for testing the performance. Fig. 5.12 shows some of the examples.

Fig. 5.13 shows some of the experimental results, where we compare the results 

of SVM classification (5.13b), «-expansion without ordering constraints (5.13c) and 

with ordering constraints (5.13d).

In general, all the 3 algorithms work well for most of the images. However, 

there are still some small spare mislabeled regions for the SVM labeling in Fig. 5.13 

(b), which can be smoothed out by smoothness constrains as shown in Fig. 5.13 (c) 

and Fig. 5.13 (d).



58

Figure 5.12: Sample nature scene images

Comparing the a-expansion without ordering constraints Fig. 5.13 (c) and with 

ordering constraints Fig. 5.13 (d), it appears that the improvement with ordering 

constraints is not huge. However, optimization with ordering constraints does recover 

some fine details in scene. For examples, in the first row, Fig. 5.13 (c) mislabels part 

of the small mountain in the right side as sea; in the third row, Fig. 5.13 (c) mislabels 

part of the small mountain in the right side as sky; in the second last row, Fig. 5.13 

(c) mislabels a sea region in the left as mountain.

As we mentioned before, when SVM works almost perfect, there is not too much 

room for improvement. In our nature scene application, SVM can get almost perfect 

classification. The reason lies on the features used here are highly discriminant in 

the nature scene. For example, color information is a very good feature as “sky” is 

always blue. However, in general, such case does not happen quite often in most of 

the real applications. In the case when SVM can not generate such perfect results, 

the order-constraints do have a better performance.
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(a) (b) (c) (d)

Figure 5.13: Nature scene results: (a) original images, (b) SVM labeling, (c) a- 
expansion, no ordering constraints (d) with ordering constraints. Color scheme: 
blue=“sky”, green = “mountain”, red= "sea", yellow= “object”.
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5.4.2 Segmenting images with Mickey mouse(tm)

For the Mickey mouse part segmentation, the five geometrical class labels: bottom, 

top, center, left, right correspond to the “leg”, “head”, “body”, “left-hand”, “right­

hand”. Therefor, the five-part model is quite appropriate for this application. We also 

use one non-geometric class label called “background” which corresponds to image 

background. There are no ordering constraints for the “background” label, either.

Mickey mouse images are downloaded from Google and Yahoo image search 

website. We have collected and manually labeled 70 of Mickey mouse images. We 

use cross validation method for training and testing due to the small data set. Some

examples of the images are shown in Fig. 5.14.

Figure 5.14: Sample Mickey mouse images
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Figure 5.15: Mickey mouse results: (a) original images, (b) SVM labeling, (c) d'­
expansion with ordering constraints. Color scheme: blue= “leg”, green = “body”, 
red= “head”, yellow= “hand”.

Fig. 5.15 shows some of the experimental results, which shows that à-expansion 

with ordering constraints (5.15c) performs significantly better than the SVM results 

(5.15b).

Fig. 5.16 shows the performance comparison between the ^-expansion without 

and with ordering constraints. It is clear that using ordering constraints algorithm 

improves the segmentation as shown in Fig. 5.16 (c) and Fig. 5.16 (d).
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(a) (b) (c) (d)

Figure 5.16: Mickey mouse result comparison: (a) original images, (b) SVM labeling, 
(c) α-expansion without ordering constraints, (d) a-expansion with ordering con­
straints. Color scheme: blue= "leg", green = “body”, red= "head", yellow= "hand".

5.5 Applications

In this section, we illustrate the use of scene structure obtained from the proposed 

segmentation algorithm in applications such as virtual scene walk-through, seman­

tic segmentation, scene synthesis and scene text extraction. We also show how our 

order-preserving moves can be used for certain simple shape priors in graph-cut seg­

mentation.

5.5.1 Automatic novel view & virtual scene walk-through

In the applications of novel view and virtual scene walk-through, we assume that the 

scene is a 3D box. We use the idea of spidery mesh to fit perspective projection and 

mimic 3D camera transformations [3] to navigate a scene. Spidery mesh is composed 

of four parts (vanishing point, radiai lines, inner and outer rectangles), which parti­

tions the 2D image into five regions (left, right, rear, floor, and ceiling). Since we have 
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already labeled the image into exactly these hve regions, generating the spidery mesh 

is trivial. We fit the radiai lines with the RANSAC algorithm based on the boundary 

points between regions labeled as different geometric classes [67, 68]. Vanishing point 

is calculated as the weighted average of the intersection of the radiai lines, the inner 

rectangle is the region labeled as the back wall and the rest are outer rectangles. 

Fig. 5.17 illustrates the spidery mesh generation.

Fig. 5.18 shows some of the novel view results and part of the virtual scene walk­

through results for indoor images. In Fig. 5.19, we show that using SVM labeling 

alone fails to produce satisfactory novel view generation/scene walk-through results 

as the room appears to have a strangely curved walls and floor. Those results are 

generated by using the above spidery mesh on a reasonably good SVM labeling. 

Fig. 5.20 and Fig. 5.21 show part of the virtual scene walk-through results and some 

of the novel view results for outdoor images.

Figure 5.17: Spidery mesh generation: (a) original image, (b) labeled image, (c)~(f) 
radiai lines fitted between the boundaries of left wall and ceiling; right wall and ceiling, 
left wall and floor, and right wall and floor, (g) vanishing point and fitted radiai lines, 
(h) spidery mesh overlayed on the original image.
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(a)

(d)

(b)

(f)

Figure 5.18: Indoor virtual scene walk-through results generated by using our method, 
(a) spidery mesh overlayed on the original image, (b) walk forward, (c) look left, (d) 
look right, (e) look down, (f) look up.

(a)

(d) (f)

Figure 5.19: Virtual scene walk-through results by using SVM labels directly, (a) 
spidery mesh overlayed on the original image, (b) walk forward, (c) look left, (d) look 
right, (e) look down, (f) look up.
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(d) (e) (f)

IIII, 5

: A

Figure 5.20: Outdoor virtual scene walk-through results generated by using our 
method, (a) original image, (b) walk forward, (c) look left, (d) look right, (e) look 
down, (f) look up.

(b3)
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Figure 5.21: Outdoor novel view results generated by using our method, (a) original 
images, (b1)-(b3) generated views.
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5.5.2 Semantic segmentation, scene synthesis and scene 

text extraction

The obtained scene structure can also be combined with high level knowledge in 

many applications. For example, doors, windows, nameplates, and information signs 

are usually on the wall; people, cars, chairs and boxes usually touch the floor/ground. 

We demonstrate the usefulness of the obtained geometric information on two very 

popular applications in computer vision: semantic segmentation and scene synthesis 

[69, 70].

Fig. 5.22 shows the results of semantic segmentation. In the first row of

Fig. 5.22, we use the use weighted least squares line fitting method [71] to get line 

boundaries of the doors and the nameplates.

Sky

Sea/Beach 
People

Figure 5.22: Semantic segmentation, (a) original image, (b) labeled image, (c) se­
mantic segmented image, (d) generated semantic information.

Fig. 5.23 shows some of the scene synthesis results, where segmented objects 

are naturally inserted into a scene with good reasoning. Since Mickey mouse can only 

stand on the ground or sit on the beach, by touching the segmented Mickey mouse’ 

foot-part with regions labeled as “floor” or the leg-part with the region labeled as 

“beach/sea”, Mickey mouse can be inserted into indoor (5.23bl and 5.23b2) and 
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seascape (5.23b3) environment naturally. By touching the segmented wheels with 

the region labeled as “ground”, segmented cars are naturally inserted on the street 

ground (5.23b4).

(bl) (b2) (b3) (b4)

Figure 5.23: Scene synthesis, (al-a4) original image, (bl-b4) synthetic image.

Since the obtained scene structure information with some higher level knowledge 

can help to avoid ambiguous information produced by only local bottom-up informa­

tion, it also be used to achieve a superior performance on object detection [72, 73], 

which is another popular applications in computer vision [74, 75, 76]. Fig. 5.24 demon­

strates the superior performance on scene text extraction, where, we apply the scene 

text detection methods proposed by us in previous publications [77, 78].

Figure 5.24: Scene text detection, (a) original image, (b) scene text detection without 
high level knowledge, (c) scene text detection with high level knowledge.
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5.5.3 Shape prior for segmentation

Shape priors for segmentation in general [79, 80, 81] and segmentation with a graph­

cut [82, 83] is a recent area of interest. General segmentation with a shape prior is 

usually based on local optimization and therefore is prone to getting stuck in a local 

minimum. The graph-cut methods used in this application have to register the shape 

model with the image during the segmentation process, which is a difficult task in 

itself [82, 83].

Instead of shape priors specific to a particular object, we investigate simple 

generic shapes such as “rectangle”, “trapezoid”, etc. We observe that by splitting 

an image into parts with ordering constraints between them, we can enforce the 

“center” region to be of a certain shape. Usually the object/background segmentation 

is formulated as a binary labeling: the labels are the object and the background. We 

use more than two labels to incorporate a shape prior: the object corresponds to the 

“center” label and the other labels correspond to the background. This is a novel 

approach for incorporating shape priors. It is the relative order of the parts that 

enforce a certain shape for the object. We use a rectangular and a trapezoidal shape, 

although other simple shapes can be implemented as well. In [84], they use a similar 

idea but only for rectangular shapes.

A recent related work segments rectangles using generalized eigenvectors [85]. 

In this method, they used the ratio of perimeters from different metrics as the shape 

measurement and the final segmented shape is obtained by thresholding the optimized 

eigenvectors. Unlike this method, our method does not need any measurement for 

shapes and can get direct shape representations from the obtained labels without any 

other post-processing such as thresholding.

We now explain how to incorporate simple geometric shape priors in graph-cut 
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segmentation of an object from its background. For a rectangle, we use the same Vpq 

as in Table4.1, except now any Vpq not involving label C is set to 0 since a discon­

tinuity between, say labels L and B does not correspond to the border between the 

object and the background. We consider a trapezoid with parallel sides in horizontal 

orientation, and the shorter side on top (for other trapezoids, an image just needs to 

be rotated). To get a trapezoid, we relax the following constraints in Table4.1: for 

vertical neighbors, we set Vpq(L, C) = Vpq(R, C) = wpq, instead of ∞. This change 

allows the borders between the L and C regions and C and R regions to be diagonals, 

slanted to the left and to the right, respectively. Strictly speaking, this shape prior is 

not a true trapezoid since we cannot enforce the borders between the L and C regions 

and C and R regions to be straight lines. We still use the term “trapezoid” for the 

lack of a better name.

We can use object-specific data terms based on brightness, user interaction, etc. 

However, to study the effect of the shape prior in isolation from regional influences, 

we opted to find regions with strong intensity edges on the boundary that agree with 

the shape prior. An object-specific Dp can always be added, of course. We do have 

to set Dp for any p on the image border. We set each border p to strongly prefer its 

own border, i.e. for p on the left border, Dp(L) = 0 and Dp(C) = Dp(R) = Dp(T) = 

Dp(B) = ∞, etc. Thus our cost function (ignoring the border data terms, which are 

constant for finite energy labelings) is the sum of the wpq on the boundary between 

the object and the other regions. To avoid a trivial solution (the object of size 1 pixel), 

we make wpqs negative whenever there is a strong intensity edge between pixels p 

and q, biasing towards a larger boundary coinciding with intensity edges. In general, 

making wpq < 0 is not always possible, but it is possible for our vertical/horizontal 

moves.

Figs. 5.25 and 5.26 show the results with rectangular and trapezoid prior and
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illustrate the ability to pick out interesting regions that obey the corresponding shape 

priors without any knowledge of the object/background regional properties. In both 

βgures, the original images are in the top row, and the results are in the second row. 

All results were obtained with the same parameter settings.

Figure 5.25: Rectangle shape prior.

Figure 5.26: Trapezoid shape prior.



Chapter 6

Conclusions

6.1 Conclusions

In this thesis, we present a geometric labeling method to automatically extract rough 

3D information from a single 2D image through labeling the scene into five geometric 

classes (namely, “bottom”, “left ”, “center”, “right”, and “top” ). We formulate 

the geometric labeling problem as an energy minimization problem and optimize the 

energy with a graph cut based algorithm.

Our method encourages spatial consistency between neighboring pixels while 

preserving discontinuities along image intensity edges. We also incorporate relative 

ordering information about the labels in our method as ordering constraints arise 

naturally in the scene. Experimental results show that it is possible to increase the 

percentage of good labelings significantly by encouraging spatial consistency as well 

as incorporating the ordering constraints.

In this thesis, we also develop new graph-cut moves which we call order­

preserving moves. Experimental results show that order-preserving moves performs 

significantly better than commonly used «-expansion when ordering constraints are 

used as there is a significantly improvement in computational efficiency and optimality 

and a modest improvement in pixel labeling as well.

We have tested our geometric labeling method on a large set of image data 

including indoor scene, outdoor scene, outdoor nature scene, and on cartoon Mickey 
71
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Mouse images. Experimental results show that encouraging spatial consistency and 

incorporating ordering constraints significantly improves the performance.

We also demonstrate the usefulness of the extracted 3D structural information 

of the scene in the applications of novel view generation, virtual scene walk-through, 

semantic segmentation, scene synthesis, and scene text extraction. In addition, we 

use our order-preserving moves for certain simple shape priors (i.e. rectangle and 

trapezoid) in graph-cut segmentation.

In summary, our geometric labeling method has the following main contribu­

tions:

(i) Our proposed method can automatically extract the rough 3D information with 

high accuracy and efficiency. Here the accuracy is in terms of correct pixel 

labeling.

(ii) We formulate the problem in a global optimization framework where we address 

the spatial consistency of the labels in the scene by formulating an energy 

function which encourages spatial consistency between neighboring pixels while 

preserving discontinuities along image intensity edges.

(iii) We incorporate relative ordering information about the labels in our energy 

■ function as ordering constraints arise naturally in the scene.

(iv) Most importantly, we develop new graph-cut moves, called order-preserving 

moves, which perform significantly better than α-expansion when ordering con­

straints are used.

(v) we have shown that our ordering constraints can also be used in other applica­

tions. For example, in the application of Mickey mouse images, we use ordering 

constraints to do object part segmentation.
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(vi) The order-preserving moves can also be used for certain simple shape priors 

in graph-cut segmentation which is a novel concept for using shape priors on 

object segmentation.

6.2 Future Work

Experimental results show that when the class probabilities generated by the SVM 

classifier are reasonable, (i.e. the scene image contain mostly the major surface types: 

“bottom”, “left ”, “center”, “right”, and “top” ), then incorporating the label ordering 

constraints as well as the spatial smoothness helps recover accurate (relative) 3D 

structure. However, when SVM results are far from reasonable, trying to satisfy the 

ordering constraints can worsen SVM results.

Major failures of our proposed method arose from the failures of the SVM based 

classifier. In order to overcome this, we plan to improve our SVM based classifier 

by learning more discriminant and useful features. Additional ways to improve our 

algorithm is to incorporate minimum size constraints on the labeled “center” region. 

In many failure cases, the “center” is unrealistically thin(l or 2 pixels). It is relatively 

straightforward to incorporate the constraint that the labeled “center” region be no 

thinner than a given value into the graph cut optimization.

In addition, we are also planning to achieve the following major goals in the 

future:

(i) We will extend this algorithm to include temporal image sequences and incorpo­

rate temporal consistency and motion cue to the geometric labels. For example, 

we can incorporate the smoothness along the time axis since geometric labeling 

is typically continuous in time domain.
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(ii) We will also incorporate high level knowledge into our framework. For example, 

we can incorporate the homographie transform information into our smoothness 

constraints since pixels within the same geometric labelled region should have 

the same homographie transformation.

(iii) Incorporating the geometric 3D structural information (monocular vision cues) 

into other applications such as multi-view 3D reconstruction:

- In the application of multiple view geometry 3D reconstruction, the geo­

metric labeling information obtained from the proposed algorithm can be 

used to remove outliers and reduce ambiguity in feature correspondence 

matching. Therefore, it can improve the accuracy and efficiency on com­

puting the homographie transformation from multiple images.

- Indoor scenes tend to be extremely low textured, therefore, the obtained 

geometric labeling information is also very useful for depth estimation as 

traditional stereo reconstruction may fail in such textureless scenes.
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Glossary

Binary image - An image whose pixel only has two logical values: O’s (off pixels) 

and l’s (on pixels).

Compass filtering - A widely used directional filtering operation, which can be 

used to extract edges in different directions.

Color image - A multispace image in which each space represents a specific color 

plane.

Data term - An energy cost term, which specifies the penalty for a single pixel to 

have certain label, and thus encourages each pixel to be assigned the label of smallest 

penalty.

Digital image - A matrix of numbers that can be displayed.

Digital image processing- Manipulation of images by a digital computer.

Directional filtering- A bank of filtering operations which are normally used to 

extract image edges in different directions.

Difference of Oriented Gaussian (DOOG)- A bank of filtering operations, which 

are normally be used to do texture analysis by taking the difference between a set of 

oriented gaussian operation.

Filtering — A neighborhood operation, which works with the values of image pixels 

in the neighborhood and the corresponding values of a sub-image which has the same 

dimensions as the neighborhood.

Graph Cut — An energy minimization method, which can be employed to efficiently 

solve a wide variety of computer vision problems, where energy minimization problems 
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can be reduced to instances of the maximum flow problem in a graph (and thus, by 

the max-flow min-cut theorem, define a minimal cut of the graph).

Gray-level - A value associated with a pixel, corresponding to its brightness.

Histogram - A function which summarizes the gray-level content of an image by 

showing, for each gray level, the number of pixels in the images that have that gray­

level.

Intensity image - pixel value represents the brightness or gray level with a range 

from 0 to 2n — 1, where the intensity 0 usually represents black and the intensity 

2n — 1 represents full intensity (white), n is the image storage bits.

Pixel - A single point or element in a digital image matrix.

Point operations — also called contrast enhancement or contrast stretching oper­

ations, are gray-scale transformations that take a single input image into a single 

output image in such a way that each output pixels’ gray level depends only upon 

the gray level of the corresponding input pixel.

Segmentation — A partition procedure which subdivides an image into its con­

stituent regions or objects.

Sharpening — A fundamental filtering operation which highlights fine details in an 

image by spatial differentiation.

Smoothing — A fundamental operation in image filtering which reduces or smoothes 

out sharp transitions in gray levels.

Smoothness term — An energy cost term, which encourages spatial consistency by 

penalizing neighboring pixels that are not assigned the same label.

Superpixel — An image region returned by a segmentation algorithm.

Support Vector Machines (SVM) - A set of related supervised learning methods 

used for classification and regression which belong to a family of generalized linear 

classifiers.
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