1,227 research outputs found

    Design for energy-efficient and reliable fog-assisted healthcare IoT systems

    Get PDF
    Cardiovascular disease and diabetes are two of the most dangerous diseases as they are the leading causes of death in all ages. Unfortunately, they cannot be completely cured with the current knowledge and existing technologies. However, they can be effectively managed by applying methods of continuous health monitoring. Nonetheless, it is difficult to achieve a high quality of healthcare with the current health monitoring systems which often have several limitations such as non-mobility support, energy inefficiency, and an insufficiency of advanced services. Therefore, this thesis presents a Fog computing approach focusing on four main tracks, and proposes it as a solution to the existing limitations. In the first track, the main goal is to introduce Fog computing and Fog services into remote health monitoring systems in order to enhance the quality of healthcare. In the second track, a Fog approach providing mobility support in a real-time health monitoring IoT system is proposed. The handover mechanism run by Fog-assisted smart gateways helps to maintain the connection between sensor nodes and the gateways with a minimized latency. Results show that the handover latency of the proposed Fog approach is 10%-50% less than other state-of-the-art mobility support approaches. In the third track, the designs of four energy-efficient health monitoring IoT systems are discussed and developed. Each energy-efficient system and its sensor nodes are designed to serve a specific purpose such as glucose monitoring, ECG monitoring, or fall detection; with the exception of the fourth system which is an advanced and combined system for simultaneously monitoring many diseases such as diabetes and cardiovascular disease. Results show that these sensor nodes can continuously work, depending on the application, up to 70-155 hours when using a 1000 mAh lithium battery. The fourth track mentioned above, provides a Fog-assisted remote health monitoring IoT system for diabetic patients with cardiovascular disease. Via several proposed algorithms such as QT interval extraction, activity status categorization, and fall detection algorithms, the system can process data and detect abnormalities in real-time. Results show that the proposed system using Fog services is a promising approach for improving the treatment of diabetic patients with cardiovascular disease

    Towards a heterogeneous mist, fog, and cloud based framework for the Internet of Healthcare Things

    Get PDF
    Rapid developments in the fields of information and communication technology and microelectronics allowed seamless interconnection among various devices letting them to communicate with each other. This technological integration opened up new possibilities in many disciplines including healthcare and well-being. With the aim of reducing healthcare costs and providing improved and reliable services, several healthcare frameworks based on Internet of Healthcare Things (IoHT) have been developed. However, due to the critical and heterogeneous nature of healthcare data, maintaining high quality of service (QoS) -in terms of faster responsiveness and data-specific complex analytics -has always been the main challenge in designing such systems. Addressing these issues, this paper proposes a five-layered heterogeneous mist, fog, and cloud based IoHT framework capable of efficiently handling and routing (near-)real-time as well as offline/batch mode data. Also, by employing software defined networking and link adaptation based load balancing, the framework ensures optimal resource allocation and efficient resource utilization. The results, obtained by simulating the framework, indicate that the designed network via its various components can achieve high QoS, with reduced end-to-end latency and packet drop rate, which is essential for developing next generation e-healthcare systems

    A patient agent controlled customized blockchain based framework for internet of things

    Get PDF
    Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.Doctor of Philosoph

    Towards fog-driven IoT eHealth:Promises and challenges of IoT in medicine and healthcare

    Get PDF
    Internet of Things (IoT) offers a seamless platform to connect people and objects to one another for enriching and making our lives easier. This vision carries us from compute-based centralized schemes to a more distributed environment offering a vast amount of applications such as smart wearables, smart home, smart mobility, and smart cities. In this paper we discuss applicability of IoT in healthcare and medicine by presenting a holistic architecture of IoT eHealth ecosystem. Healthcare is becoming increasingly difficult to manage due to insufficient and less effective healthcare services to meet the increasing demands of rising aging population with chronic diseases. We propose that this requires a transition from the clinic-centric treatment to patient-centric healthcare where each agent such as hospital, patient, and services are seamlessly connected to each other. This patient-centric IoT eHealth ecosystem needs a multi-layer architecture: (1) device, (2) fog computing and (3) cloud to empower handling of complex data in terms of its variety, speed, and latency. This fog-driven IoT architecture is followed by various case examples of services and applications that are implemented on those layers. Those examples range from mobile health, assisted living, e-medicine, implants, early warning systems, to population monitoring in smart cities. We then finally address the challenges of IoT eHealth such as data management, scalability, regulations, interoperability, device–network–human interfaces, security, and privacy

    HealthFog: An ensemble deep learning based Smart Healthcare System for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments

    Get PDF
    Cloud computing provides resources over the Internet and allows a plethora of applications to be deployed to provide services for different industries. The major bottleneck being faced currently in these cloud frameworks is their limited scalability and hence inability to cater to the requirements of centralized Internet of Things (IoT) based compute environments. The main reason for this is that latency-sensitive applications like health monitoring and surveillance systems now require computation over large amounts of data (Big Data) transferred to centralized database and from database to cloud data centers which leads to drop in performance of such systems. The new paradigms of fog and edge computing provide innovative solutions by bringing resources closer to the user and provide low latency and energy-efficient solutions for data processing compared to cloud domains. Still, the current fog models have many limitations and focus from a limited perspective on either accuracy of results or reduced response time but not both. We proposed a novel framework called HealthFog for integrating ensemble deep learning in Edge computing devices and deployed it for a real-life application of automatic Heart Disease analysis. HealthFog delivers healthcare as a fog service using IoT devices and efficiently manages the data of heart patients, which comes as user requests. Fog-enabled cloud framework, FogBus is used to deploy and test the performance of the proposed model in terms of power consumption, network bandwidth, latency, jitter, accuracy and execution time. HealthFog is configurable to various operation modes that provide the best Quality of Service or prediction accuracy, as required, in diverse fog computation scenarios and for different user requirements
    • …
    corecore