129 research outputs found

    Frequency Domain Independent Component Analysis Applied To Wireless Communications Over Frequency-selective Channels

    Get PDF
    In wireless communications, frequency-selective fading is a major source of impairment for wireless communications. In this research, a novel Frequency-Domain Independent Component Analysis (ICA-F) approach is proposed to blindly separate and deconvolve signals traveling through frequency-selective, slow fading channels. Compared with existing time-domain approaches, the ICA-F is computationally efficient and possesses fast convergence properties. Simulation results confirm the effectiveness of the proposed ICA-F. Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in wireless communications nowadays. However, OFDM systems are very sensitive to Carrier Frequency Offset (CFO). Thus, an accurate CFO compensation technique is required in order to achieve acceptable performance. In this dissertation, two novel blind approaches are proposed to estimate and compensate for CFO within the range of half subcarrier spacing: a Maximum Likelihood CFO Correction approach (ML-CFOC), and a high-performance, low-computation Blind CFO Estimator (BCFOE). The Bit Error Rate (BER) improvement of the ML-CFOC is achieved at the expense of a modest increase in the computational requirements without sacrificing the system bandwidth or increasing the hardware complexity. The BCFOE outperforms the existing blind CFO estimator [25, 128], referred to as the YG-CFO estimator, in terms of BER and Mean Square Error (MSE), without increasing the computational complexity, sacrificing the system bandwidth, or increasing the hardware complexity. While both proposed techniques outperform the YG-CFO estimator, the BCFOE is better than the ML-CFOC technique. Extensive simulation results illustrate the performance of the ML-CFOC and BCFOE approaches

    Orthogonal Frequency Division Multiplexing modulation and inter-carrier interference cancellation

    Get PDF
    The Orthogonal Frequency Division Multiplexing (OFDM) technique, wireless channel models, and a pair of new intercarrier interference self-cancellation methods are investigated in this thesis. The first chapter addresses the history of OFDM, along with its principles and applications. Chapter two consists of three parts: the principal, the modern OFDM models, and the Peak to Average Power Ratio (PAPR) problem. Chapter two also summarizes possible PAPR solutions. Chapter three discusses a series of well-known wireless channel models, as well as the general formula for wireless channels. In Chapter four, ICI problem has been discussed, along with its existing solutions. Chapter five focuses on two new ICI self-cancellation schemes, namely the clustering method and the multi-codebook method. These two new methods show promising results through the simulations. A summary of this thesis and the discussion of future research are also provided in Chapter five

    Frequency-domain receiver design for doubly-selective channels

    Get PDF
    This work is devoted to the broadband wireless transmission techniques, which are serious candidates to be implemented in future broadband wireless and cellular systems, aiming at providing high and reliable data transmission and concomitantly high mobility. In order to cope with doubly-selective channels, receiver structures based on OFDM and SC-FDE block transmission techniques, are proposed, which allow cost-effective implementations, using FFT-based signal processing. The first subject to be addressed is the impact of the number of multipath components, and the diversity order, on the asymptotic performance of OFDM and SC-FDE, in uncoded and for different channel coding schemes. The obtained results show that the number of relevant separable multipath components is a key element that influences the performance of OFDM and SC-FDE schemes. Then, the improved estimation and detection performance of OFDM-based broadcasting systems, is introduced employing SFN (Single Frequency Network) operation. An initial coarse channel is obtained with resort to low-power training sequences estimation, and an iterative receiver with joint detection and channel estimation is presented. The achieved results have shown very good performance, close to that with perfect channel estimation. The next topic is related to SFN systems, devoting special attention to time-distortion effects inherent to these networks. Typically, the SFN broadcast wireless systems employ OFDM schemes to cope with severely time-dispersive channels. However, frequency errors, due to CFO, compromises the orthogonality between subcarriers. As an alternative approach, the possibility of using SC-FDE schemes (characterized by reduced envelope fluctuations and higher robustness to carrier frequency errors) is evaluated, and a technique, employing joint CFO estimation and compensation over the severe time-distortion effects, is proposed. Finally, broadband mobile wireless systems, in which the relative motion between the transmitter and receiver induces Doppler shift which is different or each propagation path, is considered, depending on the angle of incidence of that path in relation to the direction of travel. This represents a severe impairment in wireless digital communications systems, since that multipath propagation combined with the Doppler effects, lead to drastic and unpredictable fluctuations of the envelope of the received signal, severely affecting the detection performance. The channel variations due this effect are very difficult to estimate and compensate. In this work we propose a set of SC-FDE iterative receivers implementing efficient estimation and tracking techniques. The performance results show that the proposed receivers have very good performance, even in the presence of significant Doppler spread between the different groups of multipath components

    Receiver design for nonlinearly distorted OFDM : signals applications in radio-over-fiber systems

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Universidade do Porto. Faculdade de Engenharia. 201

    Robust frequency-domain turbo equalization for multiple-input multiple-output (MIMO) wireless communications

    Get PDF
    This dissertation investigates single carrier frequency-domain equalization (SC-FDE) with multiple-input multiple-output (MIMO) channels for radio frequency (RF) and underwater acoustic (UWA) wireless communications. It consists of five papers, selected from a total of 13 publications. Each paper focuses on a specific technical challenge of the SC-FDE MIMO system. The first paper proposes an improved frequency-domain channel estimation method based on interpolation to track fast time-varying fading channels using a small amount of training symbols in a large data block. The second paper addresses the carrier frequency offset (CFO) problem using a new group-wise phase estimation and compensation algorithm to combat phase distortion caused by CFOs, rather than to explicitly estimate the CFOs. The third paper incorporates layered frequency-domain equalization with the phase correction algorithm to combat the fast phase rotation in coherent communications. In the fourth paper, the frequency-domain equalization combined with the turbo principle and soft successive interference cancelation (SSIC) is proposed to further improve the bit error rate (BER) performance of UWA communications. In the fifth paper, a bandwidth-efficient SC-FDE scheme incorporating decision-directed channel estimation is proposed for UWA MIMO communication systems. The proposed algorithms are tested by extensive computer simulations and real ocean experiment data. The results demonstrate significant performance improvements in four aspects: improved channel tracking, reduced BER, reduced computational complexity, and enhanced data efficiency --Abstract, page iv

    Multi-stage Wireless Signal Identification for Blind Interception Receiver Design

    Get PDF
    Protection of critical wireless infrastructure from malicious attacks has become increasingly important in recent years, with the widespread deployment of various wireless technologies and dramatic growth in user populations. This brings substantial technical challenges to the interception receiver design to sense and identify various wireless signals using different transmission technologies. The key requirements for the receiver design include estimation of the signal parameters/features and classification of the modulation scheme. With the proper identification results, corresponding signal interception techniques can be developed, which can be further employed to enhance the network behaviour analysis and intrusion detection. In detail, the initial stage of the blind interception receiver design is to identify the signal parameters. In the thesis, two low-complexity approaches are provided to realize the parameter estimation, which are based on iterative cyclostationary analysis and envelope spectrum estimation, respectively. With the estimated signal parameters, automatic modulation classification (AMC) is performed to automatically identify the modulation schemes of the transmitted signals. A novel approach is presented based on Gaussian Mixture Models (GMM) in Chapter 4. The approach is capable of mitigating the negative effect from multipath fading channel. To validate the proposed design, the performance is evaluated under an experimental propagation environment. The results show that the proposed design is capable of adapting blind parameter estimation, realize timing and frequency synchronization and classifying the modulation schemes with improved performances

    Adaptive Modulation Schemes for Underwater Acoustic OFDM Communication

    Get PDF
    High data rate communication is challenging in underwater acoustic (UA) communication as UA channels vary fast along with the environmental factors. A real-time Orthogonal frequency-division multiplexing (OFDM) based adaptive UA communication system is studied in this research employing the National Instruments (NI) LabVIEW software and NI CompactDAQ device. The developed adaptive modulation schemes enhance the reliability of communication, guarantee continuous connectivity, ensure maximum performance under a fixed BER at all times and boost data rate
    • …
    corecore