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Abstract

Protection of critical wireless infrastructure from malicious attacks has become in-

creasingly important in recent years, with the widespread deployment of various wire-

less technologies and dramatic growth in user populations. This brings substantial

technical challenges to the interception receiver design to sense and identify various

wireless signals using different transmission technologies. The key requirements for

the receiver design include estimation of the signal parameters/features and classifica-

tion of the modulation scheme. With the proper identification results, corresponding

signal interception techniques can be developed, which can be further employed to

enhance the network behaviour analysis and intrusion detection.

In detail, the initial stage of the blind interception receiver design is to identify

the signal parameters. In the thesis, two low-complexity approaches are provided

to realize the parameter estimation, which are based on iterative cyclostationary

analysis and envelope spectrum estimation, respectively. With the estimated signal

parameters, automatic modulation classification (AMC) is performed to automati-

cally identify the modulation schemes of the transmitted signals. A novel approach is

presented based on Gaussian Mixture Models (GMM) in Chapter 4. The approach is

capable of mitigating the negative effect from multipath fading channel. To validate

the proposed design, the performance is evaluated under an experimental propagation

environment. The results show that the proposed design is capable of adapting blind

parameter estimation, realize timing and frequency synchronization and classifying

the modulation schemes with improved performances.
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Chapter 1

Introduction

1.1 Motivation

Protection of critical wireless infrastructure has become increasingly important in

recent years with the widespread deployment of various wireless technologies and

dramatic growth in user populations. Wireless communication systems and networks

suffer from various security threats, including attacks similar to those in wired net-

works and those which are specific to the wireless environment. Wireless communi-

cation signals are open to intrusion from the outside without the need for a physical

connection and, as a result, some techniques that provide to a wired network have

proven to be inadequate in wireless networks. This brings substantial technical chal-

lenges to the spectrum regulation enforcement oriented signal sensing practice, due to

the inherent difficulties in obtaining the content, identification and network behaviour

of a signal of interest through conventional spectral analysis only.

The primary motivation of this study is to further develop the necessary en-

abling technologies required for blind interception receiver design to protect the wire-

less infrastructure and improve its resilience to various attacks. Proper RF signal

sensing and identification, modulation classification are essential to protecting the

public services against illegal usage of wireless communications and malicious attacks

in addition to detecting the presence of personal wireless devices in classified areas.
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Consequently, the study is dedicated to develop a software defined radio (SDR) based

interception receiver to enhance the security of wireless communications, with novel

multi-stage RF signal identification techniques. The proposed receiver will be capa-

ble of identifying, intercepting and analyzing the signal of interest, and reconfiguring

its operating parameters depending on the operational objectives of respective user

groups.

Another motivation for the thesis work is for cognitive radio application. With

the recent rapid growth in wireless applications and systems, the problem of spec-

trum utilization has become more critical than ever before. As an emerging solution,

Cognitive Radio (CR) systems aim to improve the efficiency of spectrum usage with

the principle of sharing the available spectrum resources adaptively. Orthogonal fre-

quency division multiplexing, which has been known to be one of the most effective

multicarrier techniques, has attracted significant attention in the development of CR

systems due to its high spectral efficiency and flexibility in allocating transmission

resources in dynamic environments.

However, the existence of dissimilar wireless transmission schemes poses a chal-

lenge to the design of CR receivers that can operate with the multi-waveform signals.

Therefore, blind system parameter estimation is of significant importance for reliable

communication in CR environments. Furthermore, blind estimation is also helpful

to reduce signaling overhead in the case of adaptive transmission where the system

parameters change depending on the environmental characteristics or the spectrum

availability. The capability of identifying system parameters is necessary for spectrum

survey with the purpose of monitoring the systems to discover illegal transmissions

as well.

Relevant signal identification are originated from SDR, where initial mode iden-

tification has to be performed over a large span of the potential frequency spectrum
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to identify the user air interface. Once connected, an SDR has to monitor alternative

air interfaces to be able to perform inter-standard handover if necessary. To be spe-

cific, the signal detection could be realized through signal sensing and identifications

which are widely used in cognitive radio communications. Signal sensing provides the

capability to sense, learn, and discover the parameters related to the radio channel

characteristics, availability of spectrum and operating environment, user requirements

and applications, and network availability

1.2 Objective

In order to realize the multi-stage signal identification for blind interception receiver

design, blind parameter estimation, synchronization and modulation classification are

the primary objectives in this study.

To be specific, the first step is to identify the primary parameters of the in-

coming signal. Since Orthogonal Frequency Division Multiplexing (OFDM) system

is primarily considered in the study, the key system parameters we select here are

sampling frequency, number of subcarriers, cyclic prefix ratio as well as frequency and

timing offset. Since two directions exist in literature for blind parameter estimation,

which are nonparametric spectrum based and cyclostationarity based, we analyze the

performance for both and develope the approaches to improve the estimation accu-

racy under two scenarios. With the aid of estimated parameters, Carrier frequency

offset (CFO) and timing offset are estimated for the purpose of synchronization. An

iterative scheme is employed to increase the estimation accuracy.

Automatic modulation classification (AMC) is used to automatically identify

the modulation schemes used in an intercepted communication signal by analyzing

the characteristics of the received signal, which is normally corrupted by the noise
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and fading channels. The interest in blind modulation classification has been growing

since the late eighties. It plays several important roles in both civilian and mili-

tary applications including signal surveillance, data interception, and confirmation

of signal identification, interference monitoring, and counter-measure development.

Legitimate signals should be securely transmitted and received, whereas hostile sig-

nals from adversaries must be located, identified, and recovered. The transmitting

frequencies of these signals may range from high frequency to millimetre frequency

band and their format can vary from traditional simple narrowband modulations to

newly introduced wideband schemes particularly OFDM. Under such diverse condi-

tions, advanced techniques are needed for real-time signal interception and processing,

which are vital for decisions involving electronic warfare operations and other actions.

Furthermore, the lab testing platform is introduced in the thesis to verify the

proposed algorithms of blind parameter estimation and modulation classification.

The hardware environments include an arbitrary vector signal generator, spectrum

analyzer and high speed signal acquisition system. Our proposed algorithms for blind

OFDM system parameter estimations and modulation classification are evaluated

using the signal generated from Rohde & Schwarz (R&S) and National Instruments

(NI) signal acquisition system.

1.3 Thesis Contributions

The main contributions of this thesis are summarized as follows:

• In this study, we present an iterative scheme for blind parameter estimation of

OFDM interception receiver design, which is based on cyclostationary feature

detection. The approach avoids the exploration of a wide range of cyclic fre-

quencies by first narrowing the analysis to a region containing the feature of
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interest and performing high resolution exploration in that region to accurately

detect the feature. Based on the detected features, system parameter estimation

(sampling frequency, number of subcarriers and Cyclic Prefix (CP) duration)

can be successfully obtained which provide the essential information for blind

identification.

• An iterative blind parameter estimation and synchronization offset cancellation

scheme is proposed in the study to perform accurate signal sampling and param-

eters identification. Specifically, the arbitrary oversampling ratio is estimated

at first through time-domain envelope spectrum information, based on which

the other system parameters, including the number of subcarriers and the CP

length, are calculated sequentially. Synchronization is obtained from the esti-

mated parameters and an iterative algorithm is employed to refine the results

until a certain threshold is reached.

• With the purpose of modulation classification, a Gaussian Mixture Model (GMM)-

based offline database is established, containing the parameters for different

modulation schemes, as the reference to determine the GMM parameters of the

received signal. Similar work has been investigated before without considering

multipath fading channels. In the thesis, an iterative Maximum A Posteriori

(MAP) channel mitigation technique is introduced to mitigate the multipath

fading as well as to maintain system performance. Kullback-Leibler (K-L) Di-

vergence is employed to measure the distance between the received signal and

the modulation schemes in the database. To further ease the computational

complexity, Gaussian approximation is carried out to cope with multivariate

Gaussian components. Performance analysis is presented using Monte Carlo

simulation to validate the effectiveness of classification accuracy.
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1.4 Thesis Organization

The organization of this thesis is as follows:

In Chapter 2, a low-complexity approach, with the capability of blind OFDM

parameter estimation, is proposed. The design is based on cyclostationary feature

detection over a selected cyclic spectrum range using iterative techniques, instead of

an exploration of the entire spectrum. Therefore, the computational complexity of

signal interception is dramatically reduced. Monte Carlo simulations are conducted

to evaluate the performance of the individual modules as well as the interception

receiver. Numerical results show that the proposed algorithm is capable of signal

detection in blind scenarios with improved performance.

In Chapter 3, an iterative design method for OFDM system parameter estima-

tion and synchronization under a blind scenario for cognitive radio systems is pro-

posed here. A novel envelope spectrum based arbitrary oversampling ratio estimator

is presented first, based on which the algorithms are then developed to provide the

identification of other OFDM parameters (number of subcarriers, cyclic prefix (CP)

length). CFO and timing offset are estimated for the purpose of synchronization with

the help of the identified parameters. An iterative scheme is employed to increase the

estimation accuracy. To validate the proposed design, the performance is evaluated

under an experimental propagation environment and the results show that the pro-

posed design is capable of adapting blind parameter estimation and synchronization

for cognitive radio with improved performances.

Chapter 4 considers the classification of digital modulation schemes in the pres-

ence of multipath fading channels and additive noise. The chapter presents a novel

modulation recognition approach based on GMM. The basic procedure involves pa-

rameter estimation using GMM to set up an offline database and then to classify
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the received signal into different modulation schemes based on the database by us-

ing K-L Divergence. In order to mitigate the negative impact from multipath fading

channels, an iterative MAP-based channel estimation is used in conjunction with the

Expectation-Maximization (EM) algorithm. Furthermore, Gaussian approximation

is carried out to decrease the computational complexity. Monte Carlo simulations are

conducted to evaluate the performance of individual modulation scheme classification.

Numerical results show that the proposed approach is capable of recognizing various

modulated signals with improved performance under Additive white Gaussian noise

(AWGN) and multipath fading channels.

Finally, conclusions are drawn and future works are discussed in Chapter 5.

Notations: An upper (lower) case boldfont letter represents a matrix (column

vector). The superscripts T and H denote the transpose and the Hermitian trans-

pose, respectively. [X]i,j denotes the (i, j)th element of matrix X. The term y(n)

denotes the nth element of vector y. Tr(·), E(·), and R(·) stand for the matrix trace,

the expectation, the real part and the imaginary part, respectively. |y| denotes the

Euclidean norm of y. diag(x1, x2, ..., xN ) represents a diagonal matrix whose lth di-

agonal element is xl while diag(X) denotes a vector of the diagonal elements of X.

IN is the identity matrix of size N ×N .
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Chapter 2

Blind Signal Identification with Iterative

Cyclostationary Analysis

Although cyclostationary analysis of OFDM signals has been widely explored for

spectrum sensing and signal identification, the associated high computational com-

plexity requires additional processing and detection time, which further prevents the

related techniques from fulfilling the demands of real-time military applications. In

addition, recognizable and distinctive features of an OFDM signal in standards-based

civilian communications may not be available in military communications thus, pos-

ing a challenge for accurate identification of the OFDM system parameters. In this

chapter, a low-complexity interception receiver, with the capability of blind OFDM

parameter estimation, is proposed. The interception receiver design is based on cy-

clostationary feature detection over a selected cyclic spectrum range using iterative

techniques, instead of an exploration of the entire spectrum. Therefore, the com-

putational complexity of signal interception is dramatically reduced. Monte Carlo

simulations are conducted to evaluate the performance of the individual modules as

well as the interception receiver. Numerical results show that the proposed algorithm

is capable of signal detection in blind scenarios with improved performance.
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2.1 OFDM Systems

OFDM is a wideband digital communications technique in which high-rate data is

transmitted in parallel via multiple orthogonal subcarriers. In 1966, the idea of

multi-carrier transmission was first brought out by Chang in [1]. Weinstein and

Ebert subsequently proposed a complete digital OFDM system that used discrete

Fourier transform (DFT) and inverse DFT (IDFT) for baseband modulation and

demodulation [2] in 1971. From then on, OFDM systems have been investigated

for wideband communications over mobile radio channels [3]. In this chapter, the

transmitter and receiver structures for OFDM systems are presented in the sequel.

Moreover, the main merits and drawbacks of OFDM system are summarized, followed

by the major applications of OFDM systems.

The usage OFDM for high data transmissions has been investigated due to its

its high spectral efficiency and robustness to multi-path interference. OFDM is an

extension to the conventional frequency division multiplexing (FDM) with respect to

spectrum usage. In FDM, many parallel carriers are modulated and transmitted in

different frequency bands to different users simultaneously. To avoid band interference

caused by spectral leakage in conventional FDM, guard bands are inserted between

two adjacent frequency bands. However, the utilization rate of available frequency

spectrum drops due to the insertion of guard bands. To cope with this inefficient

bandwidth usage, OFDM technique was proposed, in which adjacent subcarriers are

overlapped orthogonally without interfering each other.

2.1.1 General Structure

The basic principle of OFDM is to split a high-rate datastream into a number of lower

rate streams that are transmitted simultaneously over a number of subcarriers. The
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relative amount of dispersion in time caused by multipath delay spread is decreased

because the symbol duration increases for lower rate parallel subcarriers. The other

problem to solve is the intersymbol interference, which is eliminated almost completely

by introducing a guard time in every OFDM symbol. This means that in the guard

time, the OFDM symbol is cyclically extended to avoid intercarrier interference.

An OFDM signal is a sum of subcarriers that are individually modulated by

using phase shift keying (PSK) or quadrature amplitude modulation (QAM). The

symbol can be written as:

s(t) = Re


Ns
2∑

i=−Ns
2

di+Ns/2exp(j2π(fc −
i+ 0.5

T
)(t− ts))

 , ts ≤ t ≤ ts + T

s(t) = 0, t < ts and t > ts + T

(2.1)

where:

Ns is the number of subcarriers

T is the symbol duration

fc is the carrier frequency

The equivalent complex baseband notation is given by:

s(t) =

Ns
2∑

i=−Ns
2

di+Ns/2exp(j2π(
i

T
)(t− ts)), ts ≤ t ≤ ts + T

s(t) = 0, t < ts and t > ts + T

(2.2)

In this case, the real and imaginary parts correspond to the in-phase and quadra-

ture parts of the OFDM signal. They have to be multiplied by a cosine and sine of
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the desired frequency to produce the final OFDM signal. Figure 2.1 shows the block

diagram for the OFDM modulator.

Figure 2.1: OFDM modulator.

The complex baseband OFDM signal defined the equation (2.2) is the inverse

Fourier transform of Ns QAM input symbols. The time discrete case is the inverse

discrete Fourier transform. In practice, this transform can be implemented very

efficiently by the inverse fast Fourier transform (IFFT). The IFFT drastically reduces

the amount of calculations by exploiting the regularity of the operations in the IDFT.

2.1.2 Implementation

In practice, the OFDM signal for the standard IEEE 802.11a is generated as follows:

In the transmitter, binary input data is encoded by a rate 1/2 convolutional encoder.

The rate can be increased to 2/3 and 3/4. After interleaving, the binary values are

converted to QAM values. Four pilot values are added each 48 data values, resulting

in a total of 52 QAM values per OFDM symbol. The symbol is modulated onto 52

subcarriers by applying the Inverse Fast Fourier Transform (IFFT). The output is

converted to serial and a cyclic extension is added to make the system robust to mul-
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tipath propagation. Windowing is applied after to get a narrower output spectrum.

Using an IQ modulator, the signal is converted to analog, which is upconverted to

the 5 GHz band, amplified, and transmitted through the antenna.

Basically, the receiver performs the reverse operations of the transmitter, with

additional training tasks. In the first step, the receiver has to estimate frequency offset

and symbol timing, using special training symbols in the preamble. After removing

the cyclic extension, the signal can be applied to a Fast Fourier Transform to recover

the 52 QAM values of all subcarriers. The training symbols and the pilot subcarriers

are used to correct for the channel response as well as remaining phase drift. The

QAM values are then demapped into binary values, and finally a Viterbi decoder

decodes the information bits.

Figure 2.2 shows the block diagram of an OFDM modem, including the trans-

mitter and the receiver. The IFFT modulates a block of input QAM values onto a

number of subcarriers. In the receiver, the subcarriers are demodulated by the FFT,

which is the reverse operation of the IFFT. These two operations are almost identical.

In fact, the IFFT can be made using an FFT by conjugating input and output of

the FFT and dividing the output by the FFT size. This makes it possible to use the

same hardware for both the transmitter and the receiver. Of course, this saving in

complexity is only possible when the modem does not have to transmit and receive

simultaneously, which is the case for the standard.

In case of the standard IEEE 802.11a, the parameters for the physical layer

(e.g. for OFDM) are listed in Table 2.1

2.1.2.1 Guard Time and Cyclic Extension

One of the most important problems in for wireless communications is the multipath

delay spread. OFDM deals with it very efficiently. The parallel transmission implies
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Figure 2.2: Block diagram of an OFDM transceiver.

Table 2.1: Physical layer parameters.

Data rate Modulation Coding rate Coded bits Coded bits Data bits
(Mbits/s) (R) subcarrier per symbol per symbol

(NBPSC) (NCBPS) (NDBPS)
6 BPSK 1/2 1 48 24
9 BPSK 3/4 1 48 36
9 BPSK 3/4 1 48 36
12 QPSK 1/2 2 96 48
18 QPSK 3/4 2 96 72
24 16-QAM 1/2 4 192 96
36 16-QAM 3/4 4 192 144
48 64-QAM 2/3 6 288 192
54 64-QAM 3/4 6 288 216

that the input datastream is divided in NS subcarriers and the symbol duration

is made NS times smaller, which also reduces the relative multipath delay spread,

relative to the symbol time, by the same factor.

The intersymbolic interference is almost completely eliminated by introducing
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a guard time for a each OFDM symbol. The guard time is chosen larger than the

expected delay spread such that multipath components from one symbol cannot inter-

fere with the next symbol. This guard time could be no signal at all but the problem

of intercarrier interference (ICI) would arise. Then, the OFDM symbol is cyclically

extended in the guard time. Using this method, the delay replicas of the OFDM

symbol always have an integer number of cycles within the FFT interval, as long as

the delay is smaller than the guard time. Multipath signals with delays smaller than

the guard time cannot cause ICI.

If multipath delay exceeds the guard time by a small fraction of the FFT interval

(for example 3%), the subcarriers are not orthogonal anymore, but the interference is

still small enough to get a reasonable constellation. Considering that the multipath

delay exceeds the guard time by 10% of the FFT interval, the constellation is seriously

affected and an unacceptable error rate is obtained.

2.1.2.2 Windowing

Essentially, an OFDM signal consists of a number of unfiltered QAM subcarriers.

This means that the out-of-band spectrum decreases rather slowly, following a sinc

function. For larger number of subcarriers, the spectrum goes down rapidly in the

beginning, which is caused by the fact that the sidelobes are closer together.

To make the spectrum decrease faster, windowing is applied to the OFDM

signal. The standard does not specify the kind of window to be used but an example
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is included using the following function [4]:

WT (t) =


sin2

(
π
2

(
0.5 + t

TTR

))
, for(−TTR

2 < t <
TTR
2 )

1, for(
TTR
2 ≤ t ≤ T − TTR

2 )

sin2
(
π
2

(
0.5− t−T

TTR

))
, for(T − TTR

2 ≤ t < T +
TTR
2 )

(2.3)

considering that TTR is the transition time between two consecutive periods of FFT,

as it can be seen in Figure 2.3.

Figure 2.3: OFDM frame with cyclic extension and windowing

Figure 2.3 also illustrates the possibility of extending the windowing function

over more than one period, TFFT , and additionally shows smoothed transitions by

application of a windowing function, as exemplified in Equation (2.3). In particular,

window functions that extend over multiple periods of the FFT are utilized in the
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definition of the preamble.

Several other conventional windows were simulated including raised cosine,

Hann, Hamming, Blackman and Kaiser. The best performance was obtained for the

Blackman window, considering the resulting stopband attenuation and the transition

bandwidth.

2.2 Cyclostationary Signal Analysis

Signal cyclostationarity has been used as a statistical tool in many different appli-

cations, including spectrum sensing, blind equalization, parameter estimation and

modulation recognition [5] - [7]. Communication signals in general exhibit cyclosta-

tionarity associated with the symbol period, carrier frequency, chip rate and a combi-

nation of these factors [8]. Before discussing the cyclostationarity in OFDM signals,

the fundamental concepts of cyclostationary processes will be first introduced.

A cyclostationary signal is a signal having statistical properties which vary

cyclically with time. Define the mean and time-varying autocorrelation function

(ACF) of a stochastic process x(t) ( e.g., an OFDM communication signal) as

µx(t) = E{x(t)} (2.4)

and

Rx(t1, t2) = E{x(t1)x∗(t2)} (2.5)

Here E{·} is the standard expectation operator and ∗ is the conjugation of the

corresponding complex process.
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x(t) is wide-sense cyclostationary if its mean and time-varying ACF are periodic

in time [9], [10] with a period T . Namely, for any given integer m,

µx(t) = µx(t+mT ) (2.6)

and

Rx(t1, t2) = Rx(t1 +mT, t2 +mT ) (2.7)

Without loss of generality, define t1 = t + τ/2 and t2 = t − τ/2. An alternate

definition of the time-varying ACF for a cyclostationary process is

Rx(t, τ) = E{x(t+ τ/2)x∗(t− τ/2)} (2.8)

Rx(t, τ) is referred to as the symmetric form of the time-varying ACF since

it considers two points in time separated by τ and centred at t. Due to the clear-

ness and simplicity, (2.8) will be used in the following for further explanation about

cyclostationarity.

Analogous to (2.7), wide-sense cyclostationarity in (2.8) can be expressed as

Rx(t, τ) = Rx(t+mT, τ) (2.9)

For any cyclostationary process x(t) that satisfies (2.9), the time-varying ACF

can be expressed as a Fourier series over the corresponding period T

Rx(t, τ) =
∑
α

Rα
x(α, τ)e

j2παt (2.10)
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where the Fourier series coefficients in (2.10) are given as

Rα
x(α, τ) =

1

T

T/2∫
−T/2

Rx(t, τ)e
−j2παtdt (2.11)

Rα
x(α, τ) is referred to as the CCF where α is the cyclic frequency (CF). If a process is

wide-sense stationary, the CCF is identically zero for all α other than α = 0. In other

words, for a stationary process, Rx(t, τ) = R0
x(t, τ) and Rx(t, τ) can be shortened as

Rx(τ) because it is no longer dependent upon t.

The CCF can also be obtained by extending the period of integration in (2.11)

to infinite as follows

Rα
x(α, τ) = lim

T→∞
1

T

T/2∫
−T/2

Rx(t, τ)e
−j2παtdt (2.12)

This expression together with the definition of Rx(t, τ) given in (2.8), provide a

method for estimating the CCF from observed waveforms. Suppose that samples from

the process x(t) are observed during any observation interval T , and this observation

interval is symmetric with respect to the time origin. An estimate for Rα
x(τ) is then

given by

R̂x(α, τ) =
1

T

T/2∫
−T/2

x(t+ τ/2)IT (t+ τ/2)x∗(t− τ/2)IT (t− τ/2)e−j2παtdt (2.13)
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where I is the indicator function defined as

T =


1, |t ≤ T/2

0, elsewhere,

(2.14)

Moreover, define the Fourier transform of the CCF with respect to τ as the

cyclic spectrum (CS)

Sx(α, f) =

∞∫
−∞

Rα
xe

−j2πfτdτ (2.15)

When α = 0, CS is equal to the power spectrum (or spectral density) defined

in the conventional manner [10]. For any wide sense stationary process, the CS is

identically zero for all α other than α = 0. This follows directly from the equivalence

of Rα=0
τ to R(τ) for such a process.

2.3 Blind Parameter Estimation

Various blind OFDM system parameters estimation schemes have been studied in

recent years for both signal identification and signal behaviour analysis. The existing

techniques can be generalized into two categories: with or without sampling frequency

at the transmitter as prior information. The first category has been widely explored

[11], which focused on the synchronization and other parameters. Furthermore, [12]

and [13] present more complete OFDM system parameters extraction which employs

the correlation method to explore the system parameters of OFDM systems. However,

this category of techniques cannot apply to the considered public security problem

due to the unknown information of incoming signals especially for intrusion signal.
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Therefore, for signal detection purpose, blind parameter estimation without

any prior information is investigated in the PSTP milestone 3. Among those sys-

tem parameters, the decisive one is the sampling frequency at the transmitter with

which the signal can be downsampled from carrier frequency and the subsequent

processing is available. There are two primary approaches under current research:

cyclostationarity-based and nonparametric spectrum-based estimation. In details, cy-

clostationary theory, developed for years in various signal processing areas, was first

introduced into OFDM system analysis in [11] and based on Dandawat and Gian-

nakis’ work [15], the key step to estimate sampling frequency through cyclostationary

properties is to examine the cyclo-period of oversampled OFDM signal at the receiver.

In literature, Martin and Kedem [16] detected this period through the periodogram

associated with the sequence having the similar period to the least common multi-

ple periods of the original cyclostationary signal; Hurd and Gerr [17] obtained the

cyclo-period from the bispectrum, which was estimated using the two-dimensional pe-

riodogram; Dandawat and Giannakis [15] aimed at the detection of cyclo-stationarity

under a broader context, almost cyclo-stationary signals, through a statistical χ2 test

based on the cyclic covariance and the cyclic spectrum. In [18], cyclostationarity-

based sampling frequency estimation through Dandawat and Giannakis approach is

presented. However, the above cyclostationarity-based methods failed to fulfill the

demands of military communications since computational complexity leads to overly

long processing and detection times. As a result, a low complexity OFDM receiver is

proposed in the following parts where system parameters, modulation schemes and

channel state information (CSI) are jointly estimated based on the cyclic spectrum.

Specifically, conventional cyclostationary analysis is replaced by a new scheme where

only the samples around specific feature points are computed instead of calculating

over the entire spectrum. Therefore, a large computational burden is removed with
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negligible performance degradation. Based on the cyclic spectrum features, key sys-

tem parameters (sampling frequency, cyclic prefix ratio, number of subcarriers and

frequency offset as well as timing offset) can be successfully obtained which provide

the essential information required for signal identification. Additionally, blind channel

estimation is also included such that the signal can be completely demodulated.

On the other hand, a non-parametric spectrum method for blind parameter

estimation which is based on spectrum information and autocorrelation is an alterna-

tive and complete investigation is provided in [19]. Unfortunately, the method does

not work well for upsampling method with raised cosine filter at transmitter which

is closer to the practical implementation. We propose a blind estimation method to

obtain the key parameters of OFDM system, based on which an iterative channel

estimation scheme is proposed to provide CSI as well with enhanced accuracy for po-

tential resource optimization in networks. We establish a novel two-step estimation

scheme where accurate results are achieved based on the first step coarse estima-

tion. Other system parameters as mentioned above are subsequently estimated as

the input of the channel estimator. Then an iterative channel identification scheme is

proposed to improve the performance of traditional pilot-based methods in the hostile

environments.

Blind signal interception is a fundamental step of signal intelligence for mili-

tary applications. However, there are substantial technical challenges to overcome in

sensing and identifying various wireless signals due to the existence of many differ-

ent transmission technologies and standards. The key requirements to achieve blind

signal interception include detecting the existence of a signal and identification of its

parameters and features. With the proper system parameter identification results,

corresponding signal interception and data recovery techniques can be developed.
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2.4 Introduction of the Proposed Approach

Orthogonal Frequency Division Multiplexing (OFDM) has been widely employed in

many civilian and military broadband communication systems due to its high spec-

tral efficiency and robustness to multi-path interference. Various blind OFDM system

parameter estimation schemes have been studied recently for signal identification [18]

-[21]. Among the existing techniques, cyclostationary estimation is the most com-

monly used due to its reasonable estimation accuracy for various types of air interface

identification. In general, cyclostationarity is an important feature of wireless com-

munication signals which can be used to determine the existence and classification of

a signal [8],[22]. Additionally, cyclostationary analysis has been extensively examined

as a technique for achieving a wide range of analysis in OFDM systems including sig-

nal detection [23], frequency and timing synchronization [24] and channel estimation

[25]. Therefore, improving the reliability of cyclostationarity detection will provide

more accurate system information for further processing of an intercepted signal.

Most signal detection methods are not suitable to fulfill the demands of military

communications since computationally complex receiver design leads to overly long

processing and detection times [18] -[20]. In addition, traditional methods require the

exploration of a wide range of cyclic frequencies and require a long observation time

in order to obtain reliable analysis.

Since the oversampling ratio at the receiver can be arbitrary, it is hard to achieve

high estimation accuracy for non-integer oversampling ratios. As a result, a low

complexity approach is required to overcome the above challenges. The Zoom Fast-

Fourier Transform based method in [21] was proposed to provide a computationally-

efficient estimation with high accuracy, however, the observation time required is still

long for practical use and may suffer from reduced performance due to sampling clock
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frequency instability.

In this chapter, we present an iterative scheme for blind parameter estimation

of OFDM interception receiver design, which is based on cyclostationary feature de-

tection. The method avoids the exploration of a wide range of cyclic frequencies by

first narrowing the analysis to a region containing the feature of interest and per-

forming high resolution exploration in that region to accurately detect the feature.

Based on the detected features, system parameter estimation (sampling frequency,

number of subcarriers and Cyclic Prefix (CP) duration) can be successfully obtained

which provide the essential information for blind identification. Since the compu-

tational complexity of the proposed system is significantly reduced with negligible

performance degradation, the usefulness of the entire system is thus increased. The

proposed receiver in this chapter is capable of providing reliable signal identification

for military signal intelligence applications.

2.5 System Model

Due to the time-varying nature of the wireless channel, it is difficult, at times, to

determine the presence or existence of a wireless signal. In this case, the periodicity

of signal features such as the mean, correlation or spectral descriptors can be used

to determine signal existence and is known as cyclostationary analysis [25]. A signal

is called second-order cyclostationary if its time-varying auto-correlation function

Rx(t, τ)

Rx(t, τ) = E{x(t)x(t+ τ)} (2.16)

is periodic in t for a given delay τ . An OFDM signal possesses a periodic auto-

correlation function due to the insertion of the cyclic prefix and is thus, second-order
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cyclostationary[24].

2.5.1 Oversampled OFDM System Model

Consider an OFDM system with Ns transmission subcarriers. We make the assump-

tion that due to the insertion of the cyclic prefix, there is no inter-symbol interference.

Without loss of generality, we focus on one OFDM symbol with duration Ts. The

transmitted OFDM signal in baseband over [0, Ts) can be represented as

s(t) =
1√
Ns

Ns−1∑
k=0

dkexp(j2π
k

Ts
t)u(t) (2.17)

where u(t) denotes a raised cosine filter defined in [0, Ts) and dn represents a data

symbol with unit average power on the nth subcarrier. Specifically, letting

d , [d0, d1, ..., dNs−1]
T (2.18)

the data symbols on Ns subcarriers satisfy

E[ddH] = INs (2.19)

where INs is an identity matrix of size Ns by Ns.

Suppose that h(t) is an unknown frequency selective multipath channel. The

received time-domain signal can be written as

x(t) =
∑
m

h(m)s(t−mTs) + w(t) (2.20)

where w(t) is additive white Gaussian noise (AWGN) with zero mean and variance
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σ2w. Assuming that the sampling period at the receiver side is Tb with Tb < Ts, the

oversampling factor q is defined as q = Ts/Tb and the corresponding oversampled

OFDM signal can be consequently denoted by

x(n) =
∑
m

h(m)s(n− qm) + w(n) (2.21)

2.5.2 Cyclostationary Analysis in Oversampled OFDM

Signals

If t and τ in (2.16) are replaced with t+ τ/2 and t− τ/2, the autocorrelation function

can be expressed as

Rx(t, τ) = E{x(t+ τ/2)x(t− τ/2)} (2.22)

Therefore, the periodicities can be examined using the cyclic autocorrelation function

(CAF) [8],

Rα
x(τ) = lim

T→∞
1

T

T/2∫
−T/2

Rx(t, τ)e
−j2παtdt (2.23)

for cyclic frequency α and observation length T .

Cyclostationary features can be detected from specific correlation patterns which

occur in the spectrum of the signal. These patterns can be measured by the normal-

ized correlation between two spectral components of x(t) at frequencies f+∆f/2 and

f −∆f/2, where ∆f is the spectral resolution size. The spectral correlation function

(SCF) is introduced to calculate the cyclic spectrum, which is given by [8]

Sα
x (f) = lim

∆f→0
lim

T→∞
1

T
· 1

∆f
·
f+∆f/2∫

f−∆f/2

XT (t, v +
α

2
)X∗

T (t, v −
α

2
)dv (2.24)
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where

XT (t, v) =

t+T/2∫
t−T/2

x(u)e−j2πvudu (2.25)

represents the time-variant Fourier transform of x(t). Together the CAF and SCF

provide a comprehensive means of examining the cyclostationary features of a signal.

Gardner [8] proved that in order to obtain satisfactory estimation information, the

time-spectral resolution product must exceed unity, i.e.,

T∆f ≫ 1 (2.26)

This implies that a lengthy observation time with a high spectral resolution ∆f is

required to resolve the individual features of the SCF. The SCF for a baseband OFDM

signal is shown in Figure 2.4.

Since no prior information is available for a blind OFDM interception receiver,

a captured signal must be oversampled for successful reception as well as for correct

estimation. Identification of cyclostationary features using an arbitrary oversampling

ratio is a challenge for blind OFDM interception receiver design.

Figure 2.5 shows the SCF of the baseband OFDM signal using an oversampling

ratio of q = 2.85. We can see that, due to the oversampling ratio used, the SCF infor-

mation has been shifted towards the zero spectral frequency axis with the significant

peak located at the edge of the signal of interest.

Ideal SCF estimation requires the traversal of the entire cyclic and spectral

frequency domains as well as a lengthy observation time with high spectral resolution,

resulting in high computational complexity and increased processing delay. In the

following sections, an iterative scheme is introduced to determine the cyclostationary

features of the received OFDM signal under an arbitrary oversampling ratio. It
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Figure 2.4: SCF estimate for a baseband OFDM signal.

is found, using simulations, that the proposed method reduces the computational

load drastically. Blind parameter estimation is realized based on this low-complexity

cyclostationary feature analysis.

2.6 Iterative Cyclostationary Analysis with

Arbitrary Oversampling Ratio

After the detection of an incoming signal, the OFDM interception receiver must

identify the desired cyclostationary feature represented as a peak shown in Figure 2.5.

Suppose that the index of the peak of the desired cyclostationary feature along the

cyclic frequency axis is α using a spectral resolution size ∆f . The length of the

cyclic frequency axis is L = 1/∆f and the oversampling ratio q = 1
α∆f . Once the
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Figure 2.5: SCF for oversampling ratio q = 2.85.

oversampling ratio q has been estimated, further parameter estimation can be realized

based on this q. In order to maintain low computational complexity, iterative analysis

is used to increase the oversampling ratio estimation accuracy by first performing low,

and then high resolution estimation.

For an oversampled OFDM signal, the desired cyclostationary feature is located

at the edge of the signal of interest in SCF analysis. One can reduce the computational

load by applying an iterative method with increasing observation time as well as

decreasing spectral resolution size to only a limited search range of the cyclic frequency

axis, which includes the desired peak index.

Low spectral resolution gives coarse SCF information which makes it impossible

to detect the cyclostationary feature. However, the edge of signal of interest is still

apparent. Therefore, the purpose of the tentative SCF analysis with low spectral
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resolution is to identify the relative position of the signal of interest while maintaining

a low computational load.

Assume that the tentative short observation time of the SCF for signal detection

is Tl and the low spectral resolution is ∆fl, then the time-spectral resolution product

is small and the corresponding Sα
x (f) is achieved based on (2.24). Therefore, if the

existence of an incoming signal is declared, the analysis is then performed on the

entire cyclic spectrum using coarse analysis to obtain the spectrum information. We

can then detect the edge of the signal of interest and we can assume that this edge

is located between i and j along the cyclic frequency axis where i < j ∈ (1, 1/∆fl).

Two tentative factors are thus decided as

q1 =
1

j∆fl
(2.27)

q2 =
1

i∆fl

Using q1 and q2 we can broadly define the region of interest that contains the

exact oversampling ratio q, i.e., q1 < q < q2. In order to accurately determine q,

we must increase the time-spectral resolution in the region of interest defined by q1

and q2. Therefore, we can explore a subset of the entire cyclic spectrum instead of

exploring the entire cyclic spectrum itself. In this region we now perform a high

time-spectral resolution analysis with high estimation accuracy. Let us denote the

product of ∆fh and Th to be the high time-spectral resolution candidate. The range

of interest is now limited to α1 and α2, given as

α1 =
1

∆fhq2
(2.28)

α2 =
1

∆fhq1
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We can iteratively improve the estimation accuracy with each iteration increas-

ing in time-spectral resolution within the selected range. Since an arbitrary over-

sampling ratio scenario is considered, both integer and rational oversampling ratios

are possible. Using the iterative approach allows for the efficient estimation of both

integer and rational oversampling ratios which can then be used to detect the desired

cyclostationary feature accurately.

If the estimated oversampling ratio at j − 1, j and j + 1 steps are q(j−1), q(j)

and q(j+1), the final estimation result is achieved if the following conditions are met

|q(j+1) − q(j)| < |q(j) − q(j−1)| < γ (2.29)

where γ is the level of acceptance. Suppose that ∆f̂ is the spectral resolution size

at this step and α̂ is the desired peak index representing the cyclostationary feature.

The estimated oversampling ratio q̂ is identified as

q̂ =
1

α̂∆f̂
(2.30)

With this oversampling ratio, the sampling frequency of a transmitted OFDM

signal can be determined and the corresponding OFDM symbol length is calculated

as well. Therefore, the transmitted OFDM signal is correctly detected by the inter-

ception receiver for further analysis.
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2.7 Parameter Estimation Based on Detected

Cyclostationary Feature

After correctly sampling the received continuous signal, the proposed OFDM intercep-

tion receiver must identify the primary system parameters of the intercepted signal.

The parameters defined here are the number of subcarriers as well as the length of

the cyclic prefix (CP).

For an OFDM symbol with Ns subcarriers, the estimated autocorrelation func-

tion R̂x(n, τ) of the oversampled signal can be written as

R̂x(n, τ) =
1

P

P−1∑
n=0

x(n)x∗(n− τ), τ ∈ [0, 1, ..., P − 1] (2.31)

where P is the length of oversampled incoming signal. The absolute value of R̂x(n, τ)

is considered and is given as

|R̂x(τ)| =



∑P
n=0 |h(n)|2 + σ2w, τ = 0

∑P
n=0 |h(n)|2

Ng
Nf

+ σ2w, τ = Nb,

(2.32)

where h(n) stands for the frequency selective channel impulse responses and σ2w repre-

sents the variance of the AWGN, Ng is the CP length, Nb is the OFDM symbol length

of the oversampled signal with Nb = qNs and Nf is the length of the OFDM subframe

including CP. |R̂x(τ)| will have the most significant peak when τ = Nb. Therefore,

through peak detection, the estimated number of subcarriers can be achieved by

N̂s =
Nb

q̂
(2.33)
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Estimation of the CP length has been discussed in many papers previously ([19],

[21], and [41]). However, some implementations use exhaustive autocorrelation anal-

ysis [41], some require prior information for accurate results [19] and some techniques

are only successful for certain pre-defined CP lengths [21] which are not available

for blind interception receiver design. Therefore, in this section, a new approach is

developed which utilizes the cyclic autocorrelation information.

Assume that Nf = Ng + Ns is the length of OFDM subframe. The estimated

cyclic autocorrelation is given by

Rk
x(τ) =

1

P

P−1∑
n=0

Rx(n, τ)e
−j 2πP kn, (k, τ) ∈ [0, 1, ..., P − 1] (2.34)

where P is the length of the oversampled signal. Using the estimated number of

subcarriers Ns, we can obtain the cyclic autocorrelation with delay τ = Ns. The

cyclic prefix length, Ng, can be determined by using peak detection on Rk
x at τ = Ns.

kopt represents the first peak with the smallest index above the threshold from the
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Figure 2.6: Cyclic autocorrelation test for CP length estimator at fixed τ = Ns.
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cyclic autocorrelation. Therefore, Nf can be identified as

Nf =
2P

kopt
(2.35)

and the CP length Ng is determined as Ng = Nf −Ns.

2.8 Enhanced Channel Estimation with System

Parameters Estimation

After blind parameter estimation for received OFDM signal, further channel identi-

fication can be performed based on the necessary parameters. Here we assume the

baseband received signal after downsampling is denoted by x(n).

2.8.1 Pilot Block Detection

In traditional communication system, the power of pilot block is higher than data

blocks which is shown in Figure 2.7. Therefore, the pilot block can be detected using

the energy detector,

E =
∑
n

|x(n)|2. (2.36)

which means if the energy of a certain block is higher than the average of other, it

can be determined as a pilot block.

2.8.2 Iterative Channel Estimation

After detecting the position of pilot block, an enhanced iterative channel estimation

scheme is proposed in this section to improve the performance of traditional pilot-

aided channel estimation (PACE). It can be assumed that the channel is quasi-static
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Figure 2.7: Different power levels allocated to the pilot block and data block

over a number of OFDM symbols in common wireless environment. Therefore, the

principle of the enhanced channel estimation is that we utilize the initial channel

estimate provided by the pilot block to obtain tentative demodulation results of the

subsequent OFDM symbols. The demodulated OFDM symbols are combined with

the original multiplexed pilot block to enhance the power of the pilot. We summarize

the algorithm as follows:

1. Obtain initial channel estimation by using the block-type block through Least

Square (LS) estimator:

Ĥl =
Xl

Pl
, l = 0, 1, · · · , Ns − 1, (2.37)

where Ĥl denotes the estimated channel frequency response on the lth subcar-
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rier. Pl and Xl denote the pilot symbol and corresponding received sample on

the lth subcarrier.

2. Equalize the subsequent OFDM symbols using the current channel estimate,

d̃n,l = Xn,l/Ĥl, n = 1, 2, · · · , B, (2.38)

where B represents the number of OFDM blocks needed for channel estimation

accuracy enhancement.

3. Make data decisions on the equalized OFDM symbols and denote them as d̂n,l.

Then update the channel estimation as follows,

Ĥl =
1

1 +B

Yl
Pl

+
B∑

n=1

Xn,l

d̂n,l

 . (2.39)

4. Repeat Steps 2) and 3) to simultaneously improve the accuracy of channel esti-

mation and data detection until the estimation results converge or a predefined

number of iterations is achieved.

2.9 Simulation Results and Discussions

This section provides simulation results for the statistical tests of the proposed system.

Monte Carlo simulations are conducted to examine the performance of the above es-

timation approaches under different scenarios. The parameters of the OFDM system

used in the simulation are: number of subcarriers Ns = 200, length of cyclic prefix

Ng = 45 and roll-off factor of raised cosine filter at transmitter is 0.5. The multipath

channel considered has an exponentially decaying phase delay profile, comprised of
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10 complex Gaussian distributed taps. For any variable X, the mean square error

(MSE) is expressed as MSE = |X ′ −X|2, where X
′
is the estimated value and X is

the original.

MSE = |X
′
−X|2 (2.40)

where X
′
is the estimated value and X is the original one.

The MSE of an arbitrary oversampling ratio estimation is exhibited in Figure 2.8

under different frequency resolutions. The Signal-to-Noise Ratio (SNR) used is 10 dB.

From the figure it is obvious that the spectral resolution is an important factor and

that a higher resolution leads to improved accuracy. Based on the Monte Carlo

simulation, 0.1 and 5 × 10−6 are chosen as the optimal low spectral resolution and

high spectral resolution, respectively. Under such selection, the desired estimation

accuracy is realized and low computational complexity is maintained as well.

The simulation results demonstrate the estimation ability of the proposed ap-

proach on arbitrary oversampling ratios. Compared with the numerical results of the

entire spectrum SCF estimation [21], [40] and [41] the estimation accuracy of the

proposed approach is satisfying. Since a higher oversampling ratio provides more sig-

nal information, better estimation accuracy is achieved according to the simulation

results.

Figure 2.9 illustrates the performance of the introduced approaches for the esti-

mation of the number of subcarriers and the CP length. Instead of using recognizable

and distinctive features of an OFDM signal, arbitrary parameters are employed to

test the validity of the proposed receiver design. The oversampling ratio used in the

simulation is q = 5.45. The performance is analyzed using both AWGN and multipath

channels for different SNR levels. From the results, good performance is achieved for
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the estimation of the above two parameters.
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Figure 2.8: MSE of oversampling rate q under multipath channel(SNR = 10dB).

2.9.1 Enhanced iterative channel estimation

The MSE of enhanced iterative channel estimation is simulated in Figure 2.10 which

tells that with our proposed OFDM parameters estimation scheme, the performance of

traditional PACE is significantly better than those with oversampling rate estimation

errors. Around 4dB and 6dB gain can be obtained by the proposed estimation scheme

as compared to the estimation error levels (10 samples and 30 samples, respectively).

Moreover, by utilizing the proposed enhanced iterative channel estimation scheme,

further improvement around 7dB can be observed when the subsequent 5 OFDM data

blocks of the pilot block are used as feedback for accuracy enhancement. The same

measurement increases to 10dB if 10 OFDM blocks are adopted for ”pilot extension”.

The results indicate that when prior knowledge of channel variation is available,
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Figure 2.9: Prob. of the estimation error of number of subcarriers and CP length.

the number of OFDM blocks can be automatically chosen to improve the channel

estimation results. The corresponding Symbol Error Rate (SER) of OFDM received

based on the above channel estimation results is shown in Figure 2.11. It can be

found that the performance of data detection with the proposed OFDM parameters

estimation greatly outperforms those with the indicated estimation errors. The curve

with enhanced iterative channel estimation always leads to the best performance due

to the most accurate channel estimation results.

2.9.2 Complexity Analysis

In this subsection, the computation reduction of the proposed approach is shown in

detail. Let ∆f be the size of the spectral resolution under the tentative analysis step.

The length of the cyclic frequency axis is L = 1/∆f . The computational load needed
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for the entire cyclic spectrum analysis under this step is

Real multiplications : 2L2 log2 L+ 5L∆f (2.41)

Real additions : 2L2 log2 L+ 3L∆f

The observation time Tl and the spectral frequency resolution ∆fl are chosen

to meet Tl∆fl ≈ 1 for the coarse estimation step. Even though the entire spectrum is

explored, the computational load is still low. Denote Th and ∆fh as the length of the

observation time and size of the spectral resolution respectively under the condition

of Th∆fh ≫ 1. Lh is the length of the cyclic frequency axis and R is the limited

cyclic frequency axis range for exploration where R ≪ Lh. In this case, the required

computational complexity within the selected range is

Real multiplications : 2LhR log2 Lh + 5R∆fh (2.42)

Real additions : 2LhR log2 Lh + 3R∆fh

The comparison of the computational complexity between the proposed method

and the whole band SCF method based on the simulation parameters is listed in Table

2.2.

Table 2.2: Complexity needed for the proposed method and traditional estimation.

Real multiplications Real additions

The proposed method 2× 104 2.2× 104

Whole band SCF estimation 1.5× 107 1.6× 107
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2.10 Conclusion

In this chapter we present an OFDM interception receiver that enables parameter

estimation with arbitrary oversampling ratios in blind scenarios. Using an iterative

cyclostationary feature detection, the computational complexity of the estimation

process is dramatically reduced. Through simulations based on AWGN and multi-

path channel models, it was verified that the proposed scheme improves the compu-

tational efficiency without a large degradation in estimation accuracy. Additionally,

the proposed scheme is applicable to not only integer oversampling ratios but also

to rational oversampling ratios. Based on the sampling frequency estimation, other

primary system parameters are obtained successfully. With the computational load

reduction, the proposed method meets the requirements for military communication

with a satisfying estimation accuracy for signal interception.
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Chapter 3

Joint Blind Signal Parameter Estimation

and Synchronization

3.1 Synchronization for OFDM System

Synchronization has been one of the crucial research topics in OFDM system because

of its sensitivity to the timing and frequency errors [26]. To guarantee the fast and

accurate data transmission, the Inter Symbol Interference (ISI) and Inter Carrier In-

terference (ICI) caused in the transmission have to be eliminated as much as possible.

In OFDM system, ISI can be avoided by inserting cyclic prefix with length greater

than the channel impulse response, and the ICI can be eliminated by maintaining the

orthogonality of carriers under the condition that the transmitter and the receiver

have the exact same carrier frequency. But in the real world, frequency offsets will be

arising from the frequency mismatch of the transmitter and the receiver oscillators

and the existence of Doppler shift in the channel. In addition, due to the delay of

signal when transmitting in the channel, the receiver in general starts sampling a

new frame at the incorrect time instant. Therefore, it is important to estimate the

frequency offset to minimize its impact, and to estimate the timing offset at the re-

ceiver to identify the start time of each frame and the FFT window position for each

OFDM.
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The OFDM synchronization can be divided into data-aided and non-data-aided

categories. The data-aided category uses a training sequence or pilot symbols for es-

timation. It has high accuracy and low calculation, but loses the bandwidth and

reduces the data transmission speed. The non-data aided category often uses the

cyclic prefix correlation. It does not waste bandwidth and reduce the transmission

speed, but its estimation range is too small, not suitable for acquisition. In this

chapter, only data-aided methods will be described due to their wide use when re-

searching modern Wireless Local Area Network (WLAN) system. In the reminder

of this section, we present review of the synchronization techniques available in the

literature.

3.1.1 Timing Offset Estimators

3.1.1.1 Schmidl′s Method

Two training symbols are placed at the beginning of each frame as preamble. Here, the

sequence used to generate the training sequence should be chosen on basis of having

a low peak-to-average power ratio so that there is little distortion in the transmitter

amplifier [27].

Table 3.1: PAPR Comparison

Type of Sequence Peak-to-average power ratio
m-sequence 3.5568
Walsh Code 62.0769
Gold Sequence 75.7588

As shown in Table 3.1, the m-sequence has lowest PAPR; therefore it is used to

generate the training sequences. The first training symbol has two identical halves in
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the time domain. It has the following pattern:

Ss = [A,A] (3.1)

To detect the frame, the conjugate of a sample from the first half is multiplied

by the corresponding sample from the second half, and then at the start of the frame,

the products of each of these pairs of samples will have approximately the same phase

and the magnitude of the sum will be peaked [28]. The timing metric of this estimator

is given by

M(d) =
|P (d)|2

(R(d))2
(3.2)

where

P (d) =
L−1∑
m=0

(r∗d+mrd+m+1) (3.3)

R(d) =
L−1∑
m=0

|rd+m+1|2 (3.4)

Here L = N/2 is the length of complex samples in one half of first training

symbol (excluding Cyclic Prefix), rk is the received signal, and d is a time index

corresponding to the first sample in a sliding window of 2L samples.

3.1.1.2 Minn′s Method

Based on Schmidl & Cox′ method, Minn et al [29] modified the training sequences

pattern and timing metrics definition and designed the first training symbol having

four parts with following patterns:

SM = [A,A,−A,−A] (3.5)
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where A represents samples of length L = N/4 generated by N/4 point IFFT of Nc/4

length modulated data of a PN sequence. The timing metric used in the evaluation

of the technique is given by 3.2 where

P (d) =
k=0∑
1

m=0∑
L−1

r∗d+2Lk+mrd+2Lkm+L (3.6)

R(d) =
k=0∑
1

m=0∑
L−1

|rd+2Lkm+L|2 (3.7)

where rk is the received signal, and d is a time index corresponding to the first

sample in a sliding window of 4L samples.

3.1.1.3 Park′s Method

Minn′s method [29] reduces the timing metric plateau found in Schmidl′s method but

the MSE is still large particularly in ISI channels. This is resulted from the timing

metric values around the correct timing point in Minn′s method are almost the same.

Park et al [30] proposed to increase the difference between the peak timing metric

with respect to other metric values. The proposed method entails modifying the

training sequence′s pattern and timing metric′s definition to maximize the different

pairs of product between them. The first training symbol having four parts with the

following patterns:

SP = [A,B,A∗, B∗] (3.8)

where A represents samples of length L = N/4 generated by IFFT of a PN sequence.

B is designed to be symmetric with A. A∗ and B∗ are conjugate of A and B respec-



Chapter 3: Joint Blind Signal Parameter Estimation and Synchronization 46

tively. The timing metric is given by 3.2, where

P (d) =

N/2∑
k=0

(rd−krd+k) (3.9)

R(d) =

N/2∑
k=0

|rd+k|2 (3.10)

where rk is the received signal.

3.1.1.4 Seung′s Method

Based on Park′s et al method [30], Seung′s et al [31] proposed a modified method to

define the time domain preamble pattern as follow:

SC = [A,B∗] (3.11)

where A represents the sequence with length of N/2 generated by IFFT of the

constant amplitude zero auto-correction (CAZAC) sequence modulated by QPSK and

multiplied by a relative large number to maintain an approximately constant signal

energy to generate impulse in correct timing point, B∗ represents the conjugate of B,

which is symmetric with A.

This method then uses zero padding for the guard interval of the preamble

instead of the conventional cyclic prefix. The timing metric is given by (3.2) where

P (d) =

N/2∑
k=0

(rd−krd+k+1) (3.12)

R(d) =
1

2

N/2∑
k=0

|rd+k−N/2|
2 (3.13)
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3.1.2 Carrier Frequency Offset and Sampling Clock Offset

Estimator

Synchronization method conventionally includes the acquisition and tracking pro-

cesses, also called coarse and fine synchronization, respectively. Several acquisition

algorithms by using pre-FFT samples have been proposed in the literature [32], [33],

[34]. For OFDM-based DVB-T system, several approaches focusing on joint carrier

frequency offset (CFO) aid sampling clock offset (SCO) estimation by using the pilots

have been presented [35],[36],[37]. In [35], a joint CFO and SCO tracking algorithm

was proposed based on linear least square estimation. Unfortunately that channel is

assumed to be AWGN channel. In [36], a joint CFO and SCO estimation algorithm

was derived from the maximum likelihood (ML) function and two-dimensional least

square estimation. Due to the linearization of ML function, estimation performance

of the algorithm will degrade when signal SNR becomes large.

3.1.2.1 One Dimensional Linear Least Square Estimation

Applying linear least square estimation to (9) in XXX with M pilots, ks, (s =

1, 2....,M) in one symbol, the CFO and SCO estimations yield:

∆f̂ =

∑M
s=1 θ1(ks)

2πNsTM

n̂ =

∑M
s=1 θ1(ks)Cs∑M

s=1C
2
S

(3.14)

where Cs = (k × 2πNs)/N .

As mentioned, in order to get robust estimation, two methods can be used:

consecutively observe L symbols and compute the average of the value estimated by
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(3.14); adopt a filter such as PI (proportion integral) filter [37]. If we observe L

consecutive symbols, (3.14) is modified as,

∆f̂ =

∑M
s=1 θ1(ks)

2πNsTM(L− 1)
(3.15)

n̂ =

∑M
s=1 θ1(ks)Cs

(L− 1)
∑M

s=1C
2
S

(3.16)

The tracking range of the frequency offset and sampling offset is limited by the

condition θl(k) < π, namely,

2π∆f(LNs +Ng)(1 + n)T + 2πK(LNs +Ng)/N + ϕ(k) < π (3.17)

3.1.2.2 D-Symbols Delay linear Least Square Estimation

Figure 3.1: The principle of D-symbol estimation.

When the remained CFO and SCO are relatively smaller or the noise is very

large. the difference of the rotated phases between two adjacent symbols are very

small, as illustrated in Figure 3.1. This may result in poor estimation accuracy and
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in some cases may give estimation results of the opposite sign. If we compare the

phase rotation of the current synibol with the nest D symbol that delays D symbol-

interval, demonstrated as Figure 3.1.(b) and (c), the effects of noise may be reduced

to some extent. In this case, 3.14 is modified as

θ(k) = ϕl(k)− ϕl−D(k) = 2πDNST∆f + 2πDNskn/N (3.18)

Applying the same least square estimation technique to (3.18), the improved

method is presented as (3.19). When D is equal to t/3 , the RMS (root-mean-square)

of estimation error can be minimized [39]

∆f̂ =

∑L
l=D+1

∑M
s=1 θ1(ks)

2πNsTMD(L−D)

n̂ =

∑L
l=D+1

∑M
s=1 θ1(ks)Cs

D(L−D)
∑M

s=1C
2
S

(3.19)

3.1.2.3 Two Dimensional Linear Least Square Estimation

According to IEEE 802.11a standard, the channel can be estimated at the beginning

of a frame (packet), thanks to 2 long training symbols, and the channel is considered

as invariant within a frame. So ϕHl (k) are considered as a constant value all over the

frame. If we observe L symbol from lth symbol, denoted as li, (i = 1, 2, ..., L), the

rotated phase is written as [39]:

ϕli(ks) = 2π∆f(liNs +Ng) + 2π∆f(liNs +Ng)ηT + (2πk/N)(liNs +Ng)η + ϕ(ks)

(3.20)
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where i = 1, 2, ..., L and s = 1, 2, ...,M . Applying two-dimensional least square

estimation to (3.20), the CFO and SCO estimations yield:

∆f̂ =

∑L
l=1

∑M
s=1 (liNs +Ng)(φli,ks − ϕ(ks))

2πMT
∑L

i=1(liNs +Ng)2

η̂ =

∑L
l=1

∑M
s=1 (liNs +Ng)ks(φli,ks − ϕ(ks))

(2π/N)
∑M

s=1 k
2
s
∑L

i=1(liNs +Ng)2

(3.21)

where M is the total number of pilots in a symbol.

3.2 Introduction of the Proposed Approach

With the recent rapid growth in wireless applications and systems, the problem of

spectrum utilization has become more critical than ever before. As an emerging solu-

tion, Cognitive Radio (CR) systems aim to improve the efficiency of spectrum usage

with the principle of sharing available spectrum resources adaptively. Orthogonal fre-

quency division multiplexing (OFDM), which has been known to be one of the most

effective multicarrier techniques, has attracted significant attention in the develop-

ment of CR systems, due to its high spectral efficiency and flexibility in allocating

transmission resources in dynamic environments.

However, the existence of dissimilar wireless transmission schemes poses a chal-

lenge to the design of CR receivers that can operate with the multi-waveform sig-

nals. Therefore, blind system parameter estimation is of significant importance for

reliable communication in CR environments. Furthermore, the blind estimation is

also helpful to reduce signaling overhead in the case of adaptive transmission where

the system parameters are changed depending on the environmental characteristics
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or spectrum availability. The capability of identifying system parameters is neces-

sary for spectrum survey with the purpose of monitoring the systems to discover

illegal transmissions as well. In the literature, various blind estimation schemes for

CR systems have been presented, which can be generalized into two primary cate-

gories: cyclostationary characteristics-based [18], [20], [40] and nonparametric spec-

trum information-based [41]. Specifically, [18] presented a blind parameter estimation

system through the statistical χ2 test for the cyclo-period. However, the computa-

tional load is comparatively high because of the exploration of entire cyclic spectrum.

Moreover, [20] enhanced the work in [18] by introducing a sliding DFT (SDFT) [40]

implementation and [41] proposed an iterative cyclostationary analysis for parameter

estimation. Both worked on reducing the computational complexity without con-

sidering synchronization offset. [19] investigated the non-parametric characteristics

for blind estimation. However, the introduced method does not work well under the

Nyquist pulse shaping which is closer to the practical implementation. Furthermore,

neither of the work above provided the evaluation from a real transmission environ-

ment, where the propagation is more complex and the system may fail to maintain

performance due to unknown interference.

In this chapter, a blind parameter estimation and synchronization design is

proposed to identify the fundamental parameters of an OFDM system and reduce

the interference from the carrier frequency offset (CFO) and timing offset. In or-

der to guarantee that the information from the transmitter is completely obtained,

an oversampling technique is carried out. Therefore, the decisive step of the pro-

posed approach is to estimate this oversampling ratio, for the purpose of capturing

the air interface signal accurately. However, given the lack of the prior information

and the existence of synchronization offsets, the oversampling ratio can be arbitrary,

which makes the design difficult. Hence, an iterative blind parameter estimation
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and synchronization offset cancellation scheme is proposed in this chapter to realize

the accurate signal sampling and parameters identification. Specifically, the arbitrary

oversampling ratio is estimated at first through time-domain envelope spectrum infor-

mation, based on which the other system parameters including the number of subcar-

riers, and the cyclic prefix (CP) length are calculated sequentially. Synchronization is

realized with the help of the estimated parameters and iteration is employed to refine

the results during each step until certain threshold is reached. In order to test the

effectiveness of the proposed approach, an experimental environment is established.

The OFDM signal is generated from a signal generator with different system param-

eters as well as including CFO and timing offsets. The propagation signal is then

captured by a high speed digitizer for the application of the proposed iterative blind

parameter estimation and synchronization algorithm. Test results are provided to

evaluate the performance of the proposed approach under various scenarios of system

interference.

3.3 System Model

Consider an OFDM system with Ns transmission subcarriers, which is denoted by

{ej2π
t
Ts

n}Ns−1
n=0 and Ts is the OFDM symbol period. Assuming that an appended

sequence with length of Ng (Ng < Ns) is inserted at the beginning of each block as a

cyclic prefix (CP), the transmitted OFDM signal over (0, Ts) can be represented as,

s(t) =
1√
Ns

Ns−1∑
n=0

dne
j 2πntTs gc(t) (3.22)

where dn is the complex data transmitted on the nth subcarrier with E[dnd
∗
n] = 1

and gc(t) is a Nyquist pulse. The raised cosine waveform is taken into consideration in
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this chapter due to its ability to minimize intersymbol interference (ISI) and smooth

the sharp edges of baseband signals, which is defined on (0, Ts) and can be expressed

as,

gc(t) = sinc(
t

Ts
)

cos(πα t
Ts
)

1− 4α2( t
Ts
)2

(3.23)

where α stands for the roll-off factor. Denote h(t) to be an unknown frequency

selective multipath channel, the received time-domain signal is,

x(t) =
∑
λ

sλh(t− λTs) + w(t) (3.24)

where w(t) is additive white Gaussian noise (AWGN) with zero mean and variance

σ2w.

L
s(t) x(t)

h(t)

w(t)

Mhu(t) hd(t)
v(t)

Upsampling Downsampling

Figure 3.2: Illustration of oversampling structure for blind parameter estimation.

From Figure 3.2, upsampling with a factor L is used at the transmitter to

shape the discrete data into a continuous waveform to be transmitted. hu(t) is then

employed as an anti-image filter. At the receiver, the signal is downsampled by a

factor M and hd(t) is used as an anti-aliasing filter to reduce distortion. Normally

M < L for the consideration of oversampling and the ratio q is defined as q = L/M .

So the corresponding oversampled OFDM signal at the receiver can be denoted as

[18],

x(n) =
∑
λ

sλh(n− λq) + w(n) (3.25)
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3.4 Envelope Spectrum-based Oversampling

Ratio Estimation

Without considering the interference from the multipath fading and AWGN channels

in Figure 3.2, we can denote hT (t) = hu(t) ∗ hd(t) as the combination of anti-aliasing

and anti-image filters, with ∗ the convolution operation. Then, according to multirate

signal processing theory [42], we have,

HT (f) =


1, |f | ≤ min( 1L ,

1
M )

0, Others

(3.26)

where HT (f) is the Fourier transform of hT (t). The time-domain relation between

v(t) and s(t) after upsampling can be expressed as,

v(k) =
∞∑

n=−∞
hT (nL+ k ⊕ L)s(⌊ k

L
⌋ − n) (3.27)

where ⊕ and ⌊·⌋ denote mod and floor operations, respectively. Let V (f1) and S(f1)

be the Fourier transform of v(t) and s(t), we have,

V (f1) = HT (f1)S(f1L) (3.28)

After the downsampling by a factor M , the equation for the relationship of s(t)

and x(t) is,

x(n) = v(Mk)

=
∞∑

n=−∞
hT (nL+Mk ⊕ L)s(⌊Mk

L
⌋ − n)

(3.29)
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and assign X(f2) as the Fourier transform of x(t), the frequency-domain relation then

becomes,

X(f2) =
1

M

M−1∑
m=0

V

(
f2 −m

M

)

=
1

M

M−1∑
m=0

HT

(
f2 −m

M

)
S

(
(f2 −m)L

M

) (3.30)

Since f2 = Mf1, we have,

X(f2) =
1

M

M−1∑
m=0

HT

(
f1 −

m

M

)
S

(
f1L− mL

M

)
(3.31)

From the derivation in [42], after analyzing the properties of HT (f1), it can be found

that when m ̸= 0, we have,

HT

(
f1 −

m

M

)
= 0 (3.32)

hence, when |f2| = M |f1| ≤ min{12 ,
1
2q},

X(f2) =
1

M
S(f1L) =

1

M
S(f2

L

M
) =

1

M
S(qf2) (3.33)

Based on the above relation, a peak can be observed at the frequency component

1/2q of X(f2). In order to separate this peak from the frequency band of OFDM

signal, the time-domain envelope spectrum is taken into consideration which can be

described as follows.

If the time-domain relation is taken as y(n) = |x(n)|2, then the Fourier trans-

form of y(n) is defined as the envelope spectrum and thus, the frequency relation is,

Y (f2) = X(f2) ∗X(−f2) (3.34)
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and the desired peak can be observed at the frequency component 1/q of Y (f2). If

the Fast Fourier Transform (FFT) is applied, this relation becomes,

Y (k) = X(k) ∗X∗(N − k) (3.35)

where x∗(n) and X∗(k) represent the conjugation operation. The desired frequency

component is located at the index k = N/q with N equal to the number of FFT

points.
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Figure 3.3: Spectrum information of oversampled OFDM signal (q = 4)

Figure 3.3 exhibits the envelope spectrum of x(n) as Y (k). From the above

analysis, the index k after FFT to indicate oversampling ratio q is located at N/q as

labeled in different Signal-to-Noise Ratio (SNR) scenarios. Since Y (k) has a symmet-

ric pattern with a series of peaks, the peak detection algorithm is employed to find
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the peak closest to the spectrum center, if denoted as k̃, the estimated oversampling

factor q̃ is,

q̃ =
N

k̃
(3.36)

3.5 Joint Iterative Blind Parameter Estimation

and Synchronization

Through (3.36), the oversampling frequency at the transmitter is obtained and the

received signal is sampled accordingly. The next step is to estimate the other OFDM

parameters and synchronize the received signals. The number of subcarriers and the

CP length are considered in this chapter with the approaches from [41].

3.5.1 Estimation of the Number of Subcarriers and CP

Length

For an OFDM symbol with Ns subcarriers, the estimated autocorrelation function

R̂x(n, τ) of the oversampled signal can be written as,

R̂x(n, τ) =
1

P

P−1∑
n=0

x(n)x∗(n− τ) (3.37)

where τ ∈ [0, 1, ..., P − 1], P is the length of oversampled incoming signal. The

absolute value of R̂x(n, τ) is considered and is given as,

|R̂x(τ)| =



∑P
n=0 |h(n)|2 + σ2w, τ = 0

∑P
n=0 |h(n)|2

Ng
Nf

+ σ2w, τ = Nb

(3.38)
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where h(n) is the channel impulse response, Ng is the CP length, Nb is the OFDM

symbol length of the oversampled signal with Nb = qNs and Nf = Ns +Ng. |R̂x(τ)|

will have the most significant peak when τ = Nb. Therefore, through peak detection,

the estimated number of subcarriers can be achieved by,

Ñs =
Nb

q̃
(3.39)

The estimation of the CP length Ng, is accomplished by the cyclic autocorre-

lation which is given by,

Rk
x(τ) =

1

P

P−1∑
n=0

Rx(n, τ)e
−j 2πP kn (3.40)

Using the estimated number of subcarriers Ñs, we can obtain the cyclic autocorre-

lation with delay τ = Ñs. The cyclic prefix length, Ng, can be determined through

peak detection on Rk
x at τ = Ñs. If we assume that kopt represents the first peak

with the smallest index above the threshold from the cyclic autocorrelation then, the

estimated length Ñf can be identified as,

Ñf =
2P

kopt
(3.41)

and the CP length Ñg is determined to be Ñg = Ñf − Ñs.
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3.5.2 Estimation of Carrier Frequency Offset and Timing

Offset

For synchronization, the problem can be modeled as follows (no oversampling),

x(n) = ej(2πfen)s(n− ne) ∗ h(n) + w(n) (3.42)

where fe is the CFO and ne is the timing offset, both of which have an impact on blind

OFDM parameter estimation. If Ns is provided as prior information and the received

signal is perfectly sampled, the estimation of ne and fe can be solved through the

Maximum Likelihood (ML) algorithm proposed by [43]. Therefore, in our case, we

consider Nb as the number of subcarriers for the oversampled OFDM symbol and f
′
e

and n
′
e are assumed to be the CFO and timing offset respectively. The Log Likelihood

estimator is given by [43],

λ(n
′
e, f

′
e) =

|R̂x(n
′
e, Nb)|cos

(
2πf

′
e

Nb
+ ∠(R̂x(n

′
e, Nb))

)
− ρΦ(n

′
e)

(3.43)

where R̂x(n,Nb) is the autocorrelation operation in (3.37) when τ = Nb, ∠ represents

the argument of a complex sequence and,

Φ(n) =
1

2

n+P−1∑
k=n

[|x(k)|2 + |x(k +Nb)|2]

ρ =
|E{x(n)x∗(n+Nb)}|

E{|x(n)|2}E{|x(n+Nb)|2}

(3.44)
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The ML estimation of n
′
e and f

′
e is given by,

n̂
′
e =argmax(n

′
e){|R̂x(n

′
e, Nb)| − ρΦ(n

′
e)}

f̂
′
e = −∠R̂x(n̂

′
e, Nb)

2π
+ n

(3.45)

The above estimator works well under the flat fading channel scenario, accurate

sampling as well as the prior information of OFDM system parameters. Under the

blind estimation scenario and when the multipath fading channel is considered, the

estimator is not optimum. However, the results can be utilized as initial guesses for

both the CFO and the timing offset to refine the estimation accuracy of the OFDM

parameters in the previous steps. Therefore, an iterative scheme is employed to

improve the performance of parameter estimation and synchronization jointly, which

is described below:

1. Obtain the initial oversampling ratio q̃ by setting a downsampling factor M . q̃

is calculated through (3.36).

2. Estimate the number of subcarriers Ñs and CP length Ñg through (3.39) and

(3.41) based on the oversampling ratio q̃.

3. Realize the synchronization from the estimation of the CFO f̂e and n̂e based

on (3.45).

4. Recover the oversampled signal x(n) with the estimated f̂e and n̂e. Repeat Steps

1), 2) and 3) to refine the estimation performance in each step and improve the

accuracy. If the estimated oversampling ratio at j − 1, j and j + 1 steps are

q̃(j−1), q̃(j) and q̃(j+1), the final estimation result is achieved if the following
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conditions are met

|q̃(j+1) − q̃(j)| < |q̃(j) − q̃(j−1)| < γ (3.46)

where γ is the level of acceptance.

3.6 Experimental Results

3.6.1 Lab Testing Platform

Experimental testing has been done through a lab testing platform for algorithm

verification which contains a vector signal generator, a FSP spectrum analyzer and a

high speed digitizer. In our experiments, a R&SR⃝ SMJ100A vector signal generator

is used to generate the OFDM signals, which is used by the proposed blind parameter

estimation and synchronization approach. The SMJ100A supports a wide range of

possible input values ranging from 50mV to 30V as well as software-selectable 50ohm

or 1Mohm input impedance. To intercept the transmitted OFDM signals, a NI

PXI 5105 high speed digitizer is used, which is capable of capturing 8 simultaneous

channels of data at a rate of 60Msamples per second with a resolution of 12 bits. This

high speed digitizer is inserted into a NI PXI-1031 4-Slot 3U Chassis, a high-power

PXI chassis with reduced acoustic noise emission and enhanced cooling capacity. In

the experiments, the output of the SMJ100A is wired into the input of Channel 0 of

the PXI 5105 digitizer. The generated signal is captured, sampled and saved at the

PXI 5105 digitizer through the NI LABVIEW interface. The blind system parameter

estimation and synchronization approach is performed in MATLAB after loading the

saved data from the PXI 5105.
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Signal Generator

Spectrum Analyzer

High Speed Digitizer

Figure 3.4: Instrument setups for lab testing platform.

Table 3.2: System Parameters for The Generated OFDM Signals.

Data Source PRBS
Modulation Type 16QAM
Symbol Rate 0.25Mbps
PSDU Rate 24Mbps
Sequence Length 1024 bytes
Number of Data Subcarriers 48
Number of Pilot Subcarriers 4
Subcarriers Frequency Spacing 0.3125 MHz
Impulse Filter Raised-Cosine Filter
Impulse Length 32
Roll-off Factor 0.5

The parameters employed for OFDM signal generation are listed in Table 4.1.

The impairments are also introduced using the SMJ100A with a Rayleigh fading

channel scenario and different SNRs, CFO and timing offset levels. The definition of

Mean-Square Error (MSE) used in this chapter is,

MSE = |x̃− x|2, (3.47)

where x̃ is the estimated value and x is the original one.
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3.6.2 Experimental Results

The MSE of the iterative oversampling ratio estimation is exhibited in Figure 3.5

using the lab testing platform. The parameters of the OFDM system are taken from

Table 4.1. The CFO is set to fe = 20ppm and the timing offset is ne = 10Ts. The

multipath channel applied is assumed to be Rayleigh fading, where the randomly

generated channel coefficients are {h(n)}NL−1
n=0 with length NL. The channels have

an exponentially decaying phase delay profile, comprised of four complex Gaussian

distributed taps with average power σ2h = E[|{
∑

n hn}|2]. From the experimental

results, it can be seen that low MSE is achieved from the proposed algorithms and the

iteration can improve the estimation accuracy efficiently. Moreover, the experimental

performance demonstrates the estimation ability of the proposed approach on both

integer and rational oversampling ratio scenarios.

Figure 3.6 illustrates the performance of the introduced iterative approach for

the estimation of the number of subcarriers and the CP length. The oversampling

ratio used in the simulation is q = 5.45, and fe = 20ppm, ne = 10Ts. The performance

is analyzed under the same multipath channel environment as above for different SNR

levels. From the results, the performance is satisfying and iteration is able to increase

the estimation accuracy of the above two parameters.

In order to validate the effectiveness of the proposed approach, the bit error rate

(BER) of the received signal is evaluated with different parameters. We assume that

the receiver has perfect knowledge of the multipath fading channel and the modulation

scheme. The OFDM parameters are the same as above. Three levels of CFO are

considered which are fe = 12ppm, 20ppm, 28ppm. The results are evaluated for 5

and 10 iteration scenarios separately. From Figure 3.7, it presents the performance

of proposed approach for data recovery and validates the iterative scheme.
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Figure 3.5: Mean square error of iterative oversampling ratio q.

3.7 Conclusion

In this chapter, we propose a joint iterative blind OFDM parameter estimation and

synchronization approach for cognitive radio (CR) systems to operate with multi-

waveform signals. The chapter begins with introducing the system model for over-

sampled OFDM signals and proposes the envelope spectrum-based arbitrary oversam-

pling ratio estimation. According to the oversampling ratio, the number of subcarriers

and the cyclic prefix (CP) length are identified as well, all of which are used to pro-

vide the necessary information for carrier frequency offset (CFO) and timing offset

estimation. The iterative scheme is then explained to refine the estimation results

and increase the accuracy in every step. The proposed approach is evaluated using a

lab testing platform and from the experimental results, we can see good performance
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Figure 3.6: Prob. of correct estimation of number of subcarriers and CP length.

on blind parameter estimation and synchronization under the presence of a Rayleigh

multipath fading channel and additive noise. Moreover, the bit error rate (BER) for

data recovery is satisfying with the prior information of multipath fading channel and

modulation scheme.
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Figure 3.7: BER of the proposed joint parameter estimation and synchronization.
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Chapter 4

GMM-based Automatic Modulation

Classification

4.1 Automatic modulation classification

Automatic modulation classification (AMC) is used to automatically identify the

modulation scheme used in an intercepted communication signal by analyzing the

characteristics of the received signal, which is normally corrupted by the noise and

fading channels. The interest in blind modulation classification has been growing

since the late eighties. It plays several important roles in both civilian and mili-

tary applications including signal surveillance, data interception, and confirmation

of signal identification, interference monitoring, and counter-measure development.

Legitimate signals should be securely transmitted and received, whereas hostile sig-

nals from adversaries must be located, identified, and recovered. The transmitting

frequencies of these signals may range from high frequency to millimetre frequency

band and their format can vary from traditional simple narrowband modulations to

newly introduced wideband schemes particularly orthogonal frequency division mul-

tiplexing (OFDM). Under such diverse conditions, advanced techniques are needed

for real-time signal interception and processing, which are vital for decisions involving

electronic warfare operations and other tactical actions [44].
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In general, the decision-theoretic methods and the pattern recognition solu-

tions are two typical AMC approaches. Decision-theoretic approach is based on the

likelihood function or the approximation thereof [45]-[48], where the modulation clas-

sification can be deemed as a multiple-hypothesis test, or can be further converted into

a sequence of pair-wise hypothesis tests. Once the appropriate likelihood functions

are established, average likelihood ratio test (ALRT), generalized likelihood ratio test

(GLRT), or hybrid ALRT/GLRT (HLRT) can be adopted as the potential solutions.

The decision-theoretic classifiers with maximum likelihood (ML) are optimal, but

the corresponding close-form solutions either are unavailable or involve the numerical

search of high computation complexity. This approach is not robust with respect to

the model mismatch in the presence of phase or frequency offsets, residual channel

effects, and so on [45]-[48].

On the other hand, in the pattern recognition approach [49]-[55], the modulation

classification module is composed of two subsystems; the first one is a feature extrac-

tion subsystem, which extracts the key features from the received signal; the second

subsystem is a pattern recognizer, which processes those features and determines the

modulation type of the transmitted signal according to a pre-designed decision rule.

The most adopted features are higher-order statistics (HOS), including cumulants and

moments. A hierarchical framework based on fourth-order cumulants is proposed in

[49]. A combination of second- and fourth-order cyclic cumulants (CC) magnitudes

is proposed in [50] while higher-order up to eighth-order CC is adopted in [51] and

nth-order warped CC magnitudes is utilized in [52]. Statistical moments of the signal

phase are used in [53]. Obviously, cumulants are preferred due to their favourable

properties over moments [56]. In contrast to the decision-theoretic methods, the pat-

tern recognition methods may be non-optimal but simple to implement and can often

achieve the nearly optimal performance if carefully designed. Furthermore, the pat-
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tern recognition methods can be robust with respect to the aforementioned model

mismatches. Thus, we focus on the pattern recognition modulation classification ap-

proach in this chapter and two approaches are proposed in both time-domain and

frequency-domain.

4.1.1 Decision Theoretic-based Automatic Modulation

Classification

The decision-theoretic (DT) modulation classification approach provides an optimal

solution in the sense that it minimizes the probability of false classification if all

assumptions of other system parameters are met. Within the DT approach, AMC is

formulated as a multiple composite hypothesis-testing problem, and the corresponding

hypothesis is resolved using maximum likelihood techniques. Various methods for the

determination of the maximum likelihood have been proposed for DT-AMC based

upon different assumptions regarding other unknown signal parameters. An in-depth

understanding of validity this assumption is critical to proper selection of an AMC

technique for a particular scenario.

Three different decision-theoretic algorithms have been developed in the litera-

ture: average likelihood ratio test (ALRT), generalized likelihood ratio test (GLRT)

and hybrid likelihood ratio test (HLRT). ALRT is a popular AMC approach applied

to phase shift keying (PSK) and quadrature amplitude modulation (QAM). ALRT

treats unknown system parameters in the received signal as random variables (R.V.’s)

and the likelihood functions (LF) are obtained by an averaging process. This requires

a hypothesis for the probability density functions (PDF) of the R.V.’s. If the true

PDF coincides with the hypotheses, then the results are optimal. The LF under the
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hypothesis Hi, representative of the ith modulation, i = 1, 2, ..., Nmod, is given by

Λ
(i)
A [r(t)] =

∫
Λ[r(t)|vi, Hi]p(vi|Hi)dvi (4.1)

where Λ[r(t)|vi, Hi] is the conditional LF of the noisy received signal r(t) under Hi,

conditioned on the modulated value for ith modulation scheme vi, and p(vi|Hi) is the

priori PDF of vi under Hi. The known PDF of vi enabled us to reduce the problem

to a simple hypothesis-testing problem by integrating over vi. The ALRT is com-

putationally intensive but current microprocessors have made the ALRT feasible. In

general, the performance of ALRT-AMC is very sensitive to other system parameters

such as symbol timing, baud rate, carrier frequency, carrier phase, pulse shape, and

noise power. The accuracy of ALRT is also affected by channel fading and the type

of noise in presence.

The GLRT treats the modulation scheme candidates as unknown deterministic

values and the maximum likelihood test is applied as if the true values were known.

The best performance is achieved by the so-called uniformly most powerful (UMP)

test [57]. When an UMP test does not exist or hard to derive, a logical procedure is

introduced to estimate the unknown quantities. Assuming is true, and then uses these

estimates in a likelihood ratio test, as if they were correct. If maximum likelihood

(ML) is used for estimates, the test is called GLRT. Obviously, GLRT treats the un-

known quantities (including both the parameters and data symbols) as deterministic

unknowns, and the LF under is given by

Λ
(i)
G [r(t)] = max

vi
Λ[r(t)|vi, Hi] (4.2)

The HLRT is a hybrid approach that treats some of the candidate modulation

schemes as random variables with known PDFs and some of the candidate parameters
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as unknown deterministic variables. This is a combination of the aforementioned two

modulation classification approaches, for which the LF under is given by

Λ
(i)
H [r(t)] = max

vi

∫
Λ[r(t)|vi1, vi2, Hi]p(vi2|Hi)dvi2 (4.3)

where vi = [v
†
i1, v

†
i2]

† and vi1, vi2 are vectors of unknown quantities modelled as

unknown deterministic and R.V.s, respectively. Usually, vi1 and vi2 consist of pa-

rameters and data symbols, respectively.

4.1.1.1 ALRT-based Algorithms

With all other system parameters perfectly known, ALRT leads to a modulation

classification algorithm whose performance can be considered as a benchmark. The

data symbol {s(i)k }Kk=1 in the received signal are treated as independent and identically

distributed (i.i.d.) R.V.’s. The LF under hypothesis Hi is computed by averaging

over the constellation points corresponding to the ith modulation format. To begin

with, consider the ALRT for classifying PSK/QAM modulation signals. For the ith

hypothesis Hi, the joint log-likelihood function can be expressed as

Λ
(i)
A (Hi|r(t)) =

K∑
k=1

T (i)(k) (4.4)

where

T (i)(k) = ln

 1

Mi

Mi∑
j=1

exp

{
−∥r(k)− b(i)(j)∥2

2σ2

} (4.5)

and r(k) is a symbol-based received complex data series of length K, preprocessed

from the intercepted signal emitted from a non-cooperative transmitter through an

AWGN channel with a two-sided power spectral density of σ, and b
(i)
j , j = 1, 2, ...,Mi

is a complex number and is the jth reference state of ith modulation type. The deci-
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sion of modulation classification is achieved based on the following criterion: choose

1 ≤ i ≤ Mi as the modulation type if λ
(i)
A (Hi|rk) is maximum.

Consider now the histogram test when the received signal is real [76]. This test is

very popular in AMC practice for classifying real variables, such as modulation phase,

frequencies, or amplitudes. The histogram is constructed from a density table [67]

with the intervals shown on the x-axis and the number of occurrences in each interval

represented by the height of a rectangle located above the interval. To determine the

similarity between the ALRT and histogram test, we choose both r(k) and b
(i)
j , j =

1, 2, ...,Mi as real values, where b
(i)
j is the jth reference of modulation type. A table

is constructed by dividing T
(i)
1 , T

(i)
2 , ..., T

(i)
Q , and counting the number of T (i)(k)s

occupying the qth interval, denoted by D
(i)
q , for q = 1, 2, ..., Q. If T (i)(k) is bounded

by {−R
(i)
n , R

(i)
p }, i.e. for −R

(i)
n ≤ T (i) ≤ R

(i)
p for all k, we find

T
(i)
q =

l
(i)
q + l

(i)
q+1

2
, If l

(i)
q ≤ T (i) ≤ l

(i)
q+1 (4.6)

where

l
(i)
q = −R

(i)
n +

R
(i)
p +R

(i)
n

Q
(q − 1) (4.7)

Therefore the quantized version of (4.1) will be

Λ
(i)
A (Hi|rk) =

Q∑
k=1

T
(i)
q D

(i)
q (4.8)

Notice that the data seriesD
(i)
q is the histogram value of r(k), for k = 1, 2, ..., K,

with Q bins, and T
(i)
q is the template associated with Hi. In the limit as Q → K,

the results of the histogram test approach the results of the ALRT, showing that the

histogram test is a special case of the ALRT. It is remarkable also that (4.4)-(4.8)
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provide asymptotic optimal templates for histogram test.

4.1.1.2 GLRT- and HLRT-based Algorithms

As the ALRT algorithm suffers from high computational complexity in most realistic

scenarios, GLRT and HLRT algorithms have been investigated as possible solutions

to identify linear modulations. In AWGN and with vi = [θ{s(i)k }Kk=1]
†, the LF for

GLRT and HLRT are respectively given by [57]

Λ
(i)
G [r(t)] = max

θ


K∑
k=1

max
s
(i)
k

(
Re[s

(i)∗
k rke

−jθ]− 2−1
√
ST |s(i)k |2

) (4.9)

Λ
(i)
H [r(t)] = max

θ


K∏
k=1

E
s
(i)
k

{exp[2
√
SN−1

0 Re[s
(i)∗
k rke

−jθ]− STN−1
0 |s(i)k |2]}


(4.10)

E
s
(i)
k

is a finite summation over all the possible constellation points of the ith mod-

ulation, for the kth interval. T is the signal length for pulse shaping filter and S is

the signal power. N0 is the PSD of zero-mean AWGN. θ is the carrier frequency off-

set. GLRT has some implementation advantages over ALRT and HLRT, as it avoids

the calculation of exponential functions and does not require the knowledge of noise

power to compute the LF.
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4.1.2 Pattern Recognition-based Automatic Modulation

Classification

The design of a feature based (FB) modulation classification algorithm first relies on

some features extracted from the intercepted signal followed by a decision-making

process [65]. Sample features of the received signal considered for modulation classi-

fication includes the variance of the centred normalised signal amplitude, phase and

frequency [66], the variance of the zero-crossing interval [67],[68], the variance of the

magnitude of the signal wavelet transform (WT) after peak removal [69]-[71], the

phase PDF [72]-[74] and its statistical moments [75]-[77], moments, cumulants, and

cyclic cumulants of the signal itself [78]-[80], etc.

4.1.2.1 Instantaneous Features-based Algorithms

The most intuitive way to identify the modulation scheme used in the incoming signal

is to explore the information embedded in its instantaneous amplitude, phase and

frequency. To extract such information, different methods have been developed in

the literature. The following different features in various modulated signal are often

employed for modulation classification:

Frequency shift keying (FSK) signals are characterised by constant instanta-

neous amplitude, whereas amplitude shift keying (ASK) signals have amplitude fluc-

tuations, and PSK signals have information in the phase. The maximum of the

discrete Fourier transform (DFT) output of centred (the term ’centred’ specifies that

the average is removed from the data set, DC-free signal) normalized instantaneous

signal was used as a feature to distinguish between FSK and ASK/PSK modulated

signals.
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ASK and BPSK signals have no information in their absolute phases, whereas

M-PSK has. Therefore, the variance of absolute centred normalised phase was used

to distinguish between M-PSK and real-valued constellation.

ASK signals have no phase information by their nature, whereas BPSK has.

Variance of direct (not absolute) centred normalised phase was used to distinguish be-

tween BPSK and ASK modulation schemes. A binary decision tree structure was em-

ployed to discriminate modulation schemes between classes, and furthermore, within

each class, as we will briefly mention later. At each node of the tree, the decision was

made by comparing a statistic against a threshold.

In [74] and [75], the variance of the zero-crossing interval was used as a feature to

distinguish FSK from PSK and the unmodulated waveform (UW). The zero-crossing

interval is a measure of the instantaneous frequency, and it is a staircase function for

FSK signals, whereas a constant for UW and PSK signals. The AMC is treated as a

two hypothesis testing problem: H1 for FSK and H2 for UW and PSK. The hypothe-

ses are formulated based on the Gaussian assumption for the estimated feature, that

is N(µHi
, σ2Hi

), i = 1, 2, with the hypothesis-dependent mean µHi
and variance σ2Hi

(the mean is actually the theoretical value of the feature under whereas the variance

is estimated under each hypothesis.). An LRT is used for decision, which due to the

Gaussian assumption is simplified to the comparison of the feature with a threshold

h, derived from the LRT. The average probability of classification error is then given

by

pe =

[
erfc(n−µH1)

σ2H1

+
erfc(n−µH2)

σ2H2

]

2
(4.11)
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where erfc(·) is the complementary error function defined as

erfc(x) = (2π)−1/2

∞∫
x

exp(−u2

2
)du (4.12)

The variance of the instantaneous frequency was also employed in [76],[77] to

discriminate FSK from UW and PSK. The decision was made by comparing the

feature against a threshold.

4.1.2.2 Wavelet Transform-based Algorithm

The use of the wavelet transform to localize the changes in the instantaneous fre-

quency, amplitude and phase of the received signal was also introduced to AMC.

The distinct behaviour of the Haar WT (HWT) magnitude for PSK, QAM and FSK

signals was employed for modulation identification in [78]-[80]. For a PSK signal, the

HWT magnitude is a constant. On the other hand, because of the frequency and

amplitude variations in FSK and QAM, the HWT magnitude is a staircase function

with peaks at phase changes. These peaks do not provide useful information for non-

continuous phase FSK signals. PSK and FSK signals are of constant amplitude, where

amplitude normalization has no effect on their HWT magnitude. Therefore, the vari-

ance of the HWT magnitude with amplitude normalization was used to discriminate

FSK from PSK and QAM. Furthermore, the variance of the HWT magnitude without

amplitude normalization was employed to distinguish between QAM and PSK. The

decisions were made by comparing the features against some thresholds, based on the

statistical analysis of the features, to minimise the probability of classification error

for PSK signals [78]-[80].
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4.1.2.3 Signal statistics-based Algorithms

To discriminate among BPSK, ASK, M-PSK and QAM, the cumulant-based feature

was adopted, where the nth-order/q-conjugate cumulant of the output of the matched

filter is calculated at the zero delay vectors. To make the decision, an LRT based on

the PDF of the sample estimate of the feature was formulated to achieve minimum

probability of classification error. The moment-based feature was used in [79], where

the nth-order/q-conjugate moment of the output of the matched filter is calculated

at the zero delay. The goal was to distinguish between PSK and QAM. A joint

power estimation and classification was performed in [79]. The decision was made

based on the minimum absolute value of the difference between the sample estimate

and prescribed values of the feature. [80] combined several normalised moments and

cumulants for training a neural network to identify FSK, PSK and QAM in multipath

environments.

Cumulant-based features were proposed in [78] with details to identify the or-

der of ASK, PSK, and QAM modulations, which can be summarized as follows:

the normalized cumulant of fourth-order/two-conjugate for ASK is cr,4,2(0)/c
2
r,2,1(0);

the magnitude of the normalized cumulant of fourth-order/zero-conjugate for PSK

is |cr,4,2(0)|/|c2r,2,1(0)|; and the normalized cumulant of fourth-order/zero-conjugate

for QAM is cr,4,2(0)/c
2
r,2,1(0). The theoretical values of the nth-order/q-conjugate

cumulant, cs(i),n,q, q = 0, ..., n/2, n is even, for several linear modulations are given

in [44]. These values were computed using the moment to cumulant formula in which

the nth-order moments were calculated as ensemble averages over the noise-free unit-

variance constellations with equiprobable symbols. Note that owing to the symmetry

of the signal constellations considered, the nth-order moments for n odd are zero

and hence, using the moment to cumulant formula, it is easy to show that the nth-
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order cumulants for odd are also zero. An LRT was formulated based on the PDFs

of the sample estimates of features, which are Gaussian, that is, N(µH , σ2H). With

a simplified approximation of equal variances under all the hypotheses, the deci-

sion was further reduced to comparing the sample estimate of the chosen feature ω̂

against a threshold, with ω as any of the cumulant-based features previously men-

tioned. For an Nmod hypothesis testing problem, with the hypotheses ordered such

that µH1
< µH2

< ... < µHNmod
, the decision rule is to choose Hi if

µHi−1
+ µHi

2
< ω̂i <

µHi
+ µHi+1

2
(4.13)

where µH0
= −∞ and µHNmod+1

= ∞.

Note that the cumulant-based features cr,4,2(0)/c
2
r,2,1(0) and cr,4,0(0)/c

2
r,2,1(0)

do not depend on a fixed carrier phase θ, as for q = n/2 the exponential factors which

depend on θ cancel each other, whereas for q ̸= n/2 the phase dependency is dropped

by taking the magnitude.

This above method was extended in [81] to classify linear modulations in frequency-

selective channels. The blind alphabet matched equalization algorithm, which was

used for equalization, was also employed for modulation classification. Some other

cumulant-based features were added [72] to the set of features extracted from the

instantaneous amplitude, phase and frequency to include QAM signals in the set of

candidate modulations to be recognized.

Signal moments were applied to distinguish between QPSK and 16QAM. Specif-

ically, a linear combination of the fourth-order/two-conjugate moment and the squared

second-order/one-conjugate moment were employed, with the coefficients and the de-

lay vector optimised to maximize the probability of correct classification. The signal-

moment feature mr,6,3(0)/m
3
r,2,1(0) was employed to identify the order of QAM sig-
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nals in [81], with the decision made based on the minimum absolute value of the

difference between the sample estimate and prescribed values of the feature.

Signal cyclostationarity was also exploited for linear modulation identifica-

tion, via two approaches: 1.spectral line generation when passing the signal through

different nonlinearities, and 2.periodic fluctuations with time of cumulants up to

the nth-order. We note that the nth-order cycle frequencies (CFs) are given by

(n − 2q)/∆f + m/T , with m an integer. The nth-order CF formula also holds for

an IF signal, where ∆f is replaced by the IF frequency, fIF . With this property,

the cyclostationarity of the received signal was exploited for AMC through a pat-

tern of sine-wave frequencies in signal polynomial transformations. For example, the

2fIF and 4fIF sinusoids that appear in the second and fourth powers of the received

signal, respectively, were used in [81] to distinguish between BPSK and QPSK. In

[82], the same property was explored for a baseband modulated signal. By increasing

the order of the nonlinear signal transformation beyond fourth powers, this argument

can be extended to identify modulations of order higher than QPSK. Note that the

quasi-optimal algorithm derived within the LB framework for PSK signal classifica-

tion also exploits such a property, by using the information extracted in time domain.

However, the signal cyclostationarity is not exploited in this work, as the sampling is

performed at the symbol rate T−1.

4.2 Introduction of the Proposed Approach

Modulation classification is a technique used to automatically identify the modulation

scheme used by a transmitter at the receiver side by observing the received signal. The

technique was originally used for signal interception in military communications but

has received renewed interest recently in other areas including adaptive modulation,
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software defined radio and cognitive radio networks. To identify the modulation of an

incoming signal, decision-theoretic methods[84]-[86] and pattern recognition [87]-[90]

are two primary solutions, both of which involve the following steps: preprocessing

of the signal and proper selection of the classification algorithm.

Decision-theoretic approaches are based on the likelihood function or approx-

imation theory [84]-[86]. Although the decision-theoretic classifiers with maximum

likelihood (ML) are optimal, the corresponding closed-form solutions are either un-

available or computationally intensive when performing a numerical search. There-

fore, these approaches are not robust with respect to the model mismatch in the

presence of a fading channel as well as phase or frequency offsets.

Pattern recognition methods [87]-[90] may not be optimal but may be simple

to implement and can often achieve nearly optimal performance if designed carefully.

Within these methods, the modulation classification consists of two subsystems: fea-

ture extraction and pattern recognition. Commonly adopted techniques are higher-

order statistics (HOS), including cyclic cumulants [87]-[88], statistical moments [89]

and support vector machines[90]. Although these methods can be robust when deal-

ing with model mismatch, the classification performance under low Signal-to-Noise

(SNR) scenarios is not satisfactory and the computational complexity can be high.

To alleviate the computational load and maintain performance, we propose a pattern

recognition method in this chapter based on Gaussian Mixture Models (GMM) to

classify the modulation schemes, in the presence of multipath fading channels.

GMM has been used successfully in areas such as statistical analysis and speech

processing. Specifically, GMM has been used for speaker identification [91], which

represents the distribution of the signal with a weighted sum of several multivariate

Gaussian functions. The parameters in the model are the weights, mean values and

covariances, which can be estimated using the Expectation-Maximization (EM) algo-



Chapter 4: GMM-based Automatic Modulation Classification 81

rithm. Since the estimation is based on statistical characteristics, when it comes to

wireless propagation, the approach is not sensitive to the transmission diversity, such

as dissimilar carrier frequencies, sampling frequencies or symbol rates, thus, making

it more robust for implementation. With the purpose of modulation classification,

a GMM-based offline database is established, containing the parameters for differ-

ent modulation schemes, as the reference to determine the GMM parameters of the

received signal. Similar work has been investigated in [92] without considering mul-

tipath fading channels. In this chapter, an iterative Maximum A Posteriori (MAP)

channel mitigation [94] technique is introduced to mitigate the multipath fading as

well as maintain system performance. Kullback-Leibler (K-L) Divergence is employed

to measure the distance between the received signal and the modulation schemes in

the database. To further ease the computational complexity, Gaussian approxima-

tion [93] is carried out to cope with multivariate Gaussian components. Performance

analysis is presented using Monte Carlo simulation to validate the effectiveness of

classification accuracy.

4.3 Background

In this section we present the principle and application of GMM and K-L Divergence

for use in modulation classification.



Chapter 4: GMM-based Automatic Modulation Classification 82

4.3.1 Gaussian Mixture Models (GMM)

A GMM [91] is a parametric probability density function represented by a weighted

sum of K Gaussian component densities, which can be formulated as

p(x|Θ) =
K∑
k=1

ωkg(x|µk,Σk) (4.14)

where x={x}L−1
i=0 represents a continuous-valued data sequence with length L. ωk is

the mixture weights and g(x|µk,Σk) is the kth Gaussian density with mean value µk

and covariance matrix Σk. The GMM parameters are collectively represented by the

notation,

Θ = {ωk, µk,Σk}, k = 1, ..., K (4.15)

and can be determined by using the EM algorithm [91]. Each Gaussian component

density follows the form

g(x|µk,Σk)

=
1

(2π)K/2|Σk|1/2
exp{−1

2
(x− µk)

′Σ−1
k (x− µk)}

(4.16)

Given initial parameters Θa, we wish to estimate the parameters of the GMM

to best match the distribution of {x}. The aim of the EM algorithm is to find the

model parameters which maximize the likelihood of the GMM. Beginning with Θa,

a new model Θ̄ is estimated such that the likelihood p(x|Θ̄) ≥ p(x|Θa) and the new

model then becomes the initial model for the next iteration. The process is repeated

until some convergence threshold is achieved or a predefined iteration step is reached.

During each EM iteration, the following formulas are used to guarantee an increase

in the model’s likelihood value [91].
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Mixture Weights:

ω̄k =
1

L

L∑
i=1

p(k|xi,Θ) (4.17)

Means:

µ̄k =

∑L
i=1 p(k|xi,Θ)xi∑L
i=1 p(k|xi,Θ)

(4.18)

Variances (diagonal covariance):

Σ̄2
k =

∑L
i=1 p(k|xi,Θ)x2i∑L
i=1 p(k|xi,Θ)

− µ̄2k (4.19)

The a posteriori probability for component k is given by

p(k|xi,Θ) =
ωkg(xi|µk,Σk)∑K
k=1 ωkg(xi|µk,Σk)

(4.20)

Table 4.1: Theoretical Values Θ of GMM for Anor

2ASK ωk:0.5056, 0.4944, µk:0.0921, 1.9284, Σk:0.2205, 0.0457
2FSK ωk:1.0000, 0.0000, µk:1.0000, 1.0894, Σk:0.0263, 0.0003
BPSK ωk:1.0000, 0.0000, µk:1.0000, 1.1173, Σk:0.0413, 0.0004

16QAM

ωk:0.0394, 0.0917, 0.0965, 0.0521, 0.0013, 0.0177
0.0720, 0.3958, 0.0102, 0.0142, 0.0034, 0.0122
0.0923, 0.0321, 0.0255, 0.0437

µk:0.4742, 0.4838, 0.4779, 0.5939, 0.8517, 1.2161
1.0699, 1.0802, 0.9470, 1.2887, 1.7136, 1.6107
1.4899, 1.3639, 1.4015, 1.4277

Σk:0.0060, 0.0176, 0.0567, 0.1933, 0.0046, 0.0236
0.0111, 0.0522, 0.0128, 0.0247, 0.0267, 0.0357
0.0396, 0.0244, 0.0095, 0.0075

4.3.2 Kullback-Leibler (K-L) Divergence

After the parameter estimation of GMM, the K-L Divergence is employed to estimate

the directed distance between any two probability distribution functions (p.d.f.), f
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Table 4.2: Theoretical Values Θ of GMM for σ

2ASK ωk:0.3783, 0.6217, µk:24.371, 84.716, Σk:15.303, 23.803
2FSK ωk:0.3071, 0.6929, µk:13.977, 53.751, Σk:9.0016, 17.576
BPSK ωk:0.4804, 0.5196, µk:52.720, 154.54, Σk:32.416, 35.138

16QAM

ωk:0.0128, 0.0350, 0.0519, 0.0241, 0.1495, 0.0233
0.0587, 0.0247, 0.0701, 0.0289, 0.0432, 0.1801
0.0721, 0.1327, 0.0609, 0.0318

µk:1.1435, 5.8910, 14.157, 24.299, 40.212, 55.875
65.682, 88.544, 77.774, 110.23, 131.93, 109.47
144.82, 164.73, 184.06, 193.24

Σk:2.0008, 2.0853, 7.5928, 2.2688, 13.965, 9.1713
12.232, 2.2568, 8.9860, 5.4923, 8.1922, 1.8935,
9.5590, 6.1339, 4.2782, 2.1165

and q [93] and the distance is a measure of the dissimilarity between them. The

definition of the K-L Divergence is

D(f ||q) ≃
∫

f(i) log
f(i)

q(i)
di (4.21)

Denote the GMM parameters for f and q as

f(i) =
∑
k

ωf,kg(i|µf,k,Σf,k)

q(i) =
∑
k

ωq,kg(i|µq,k,Σq,k)

(4.22)

The K-L distance for GMM parameters is calculated as

D(f̂ ||q̂) =

1

2
[log

(
|Σ

f̂
|

|Σq̂|

)
+ Tr[Σ−1

f̂
Σq̂] + (µ

f̂
− µq̂)

TΣq̂(µf̂ − µq̂)]
(4.23)

where µ
f̂
, Σ

f̂
, µq̂ and Σq̂ are the Gaussian approximation [93] of the mean and

covariance of the GMM parameters for f and q, which is given by (taking f as an
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example)

µ
f̂
=

K∑
k=1

ωf,kµf,k (4.24)

Σ
f̂
=

K∑
k=1

ωf,k[Σf,k + (µf,k − µf,s)(µf,k − µf,s)
T ] (4.25)

where (·)T denotes the transpose operation and Tr[·] represents the trace of a matrix.

Therefore, the goal of modulation classification is to find the minimum D(f̂ ||q̂) of the

received signal to one of the considered modulation schemes, and the classification is

realized accordingly.

4.4 GMM-based Modulation Classification

When considering multipath fading channels, the transmission model can be expressed

as

re,i =
M−1∑
m=0

hmsi−m + ni (4.26)

where {hm}M−1
m=0 are the complex coefficients for a multipath fading channel with

length M . {si}L−1
i=0 is the transmitted modulated symbol with length L, which con-

stitutes an independently identically distributed (i.i.d.) process. {ri}L−1
i=0 is the abso-

lute value of received signal sequence {re,i}L−1
i=0 and {ni}L−1

i=0 is the additive Gaussian

noise with a zero mean and a variance of σ2n.

Modulations with Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK),

Phase Shift Keying (PSK) and Quadrature amplitude modulation (QAM) are con-

sidered since they are most commonly used in digital communications. 2ASK, 2FSK,

BPSK and 16QAM are chosen for analysis in this chapter as examples. Hence, the

first step is to identify the signal features adopted for modulation classification.
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4.4.1 Signal Features Extraction

The features selected here are the instantaneous amplitude and the instantaneous

phase of the received signal. The details are described as follows.

1). Instantaneous Amplitude

The instantaneous amplitude {Ai}L−1
i=0 is defined as [92]

Ai = |ri + jr̂i| = |ri + jri ∗
1

iπ
| (4.27)

where {r̂i}L−1
i=0 is the Hilbert Transform of {ri}L−1

i=0 and ∗ denotes the convolution

operation. In order to compensate the channel gain, the instantaneous amplitude is

normalized by

Âi =
Ai

E{Ai}
(4.28)

where E{Ai} is the average value of the {Ai}L−1
i=0 . {Âi}L−1

i=0 is used to discrimi-

nate 2FSK and BPSK modulations from 2ASK and 16QAM. Assuming that γmax =

maxi |Âi|2, Figure 4.1 shows the values of γmax for different modulation schemes

under variable data length when the SNR is 5dB and there is no fading channel inter-

ference. It can be seen that the instantaneous amplitude is capable of distinguishing

the signal with FSK and BPSK modulation.

2). Instantaneous Phase

The instantaneous phase {φi}L−1
i=0 is given by [92]

φi = arg{ri + jr̂i} (4.29)

The second signal feature for modulation classification is the standard deviation

of the centered non-linear component of the instantaneous phase {φi}L−1
i=0 , which is
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Figure 4.1: γmax for different modulation schemes when SNR = 5dB.

defined as

σi =

√
1

L1
(Ω2

i )− (
1

L1
|Ωi|)2 (4.30)

where {Ωi}
L1−1
i=0 is the instantaneous phase {φi}L−1

i=0 for which Ai exceeds the mean

value in order to remove the {φi} that are very sensitive to noise. {σi}
L1−1
i=0 is used

to discriminate between 2ASK, 2FSK and phase modulations (BPSK and 16QAM).

Denoting σmax = maxi{σi}, we can see that Figure 4.2 illustrates the value of σmax

for different modulation schemes under different data length when the SNR is 5dB,

from which it is clear that σmax is a useful feature to distinguish 2ASK and 2FSK.
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Figure 4.2: σmax for different modulation schemes SNR = 5dB.

4.4.2 Modulation Classification Using GMM

Similar to the application in speech identification [91], an offline GMM database needs

to be established for different modulation schemes based on {Âi} and {σi}, which

acts as a reference for the received signal to estimate the GMM parameters. The

block diagram is showed in Figure 4.3.

As mentioned before, the pattern recognition methods are robust with respect

to the model mismatch, therefore, we setup the offline database from the combination

of various transmission parameters for different modulation schemes. In detail, the

carrier frequency and symbol rate vary from 10 MHz to 50 MHz and 500 kHz to 1

MHz, respectively, in the simulation and the sampling frequency used is 100 MHz.

All signals are analyzed as band-limited signals. The choice of GMM configuration
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Figure 4.3: The block diagram for GMM-based modulation classification.

(number of components, mean values and covariance matrices) are decided by the di-

versity of the modulation schemes. Specifically, the selection of Gaussian components

in the chapter are K = 2 for 2ASK, 2FSK and BPSK and K = 16 for 16QAM. We

assume that the parameters in the GMM database for different modulation schemes

are

Θp = {ωp,k, µp,k,Σp,k}, k = 1, ..., K (4.31)

where p = {1, 2, 3, 4} represents the modulation schemes {2ASK, 2FSK, 2PSK, 16QAM}.

If we denote F = {fi}Li=1 as the {Âi} or {σi} of the received signal and Q =

{qi}Li=1 as the {Âi} or {σi} of the transmitted signal, the objective function becomes

P (Q|F ,Θa
p) =

L∏
i=1

p(qi|fi,Θa
p)

=
L∏
i=1

ωaqipqi(fi|µ
a
qi
,Σa

qi
)∑K

k=1 ω
a
p,kpk(fi|µ

a
p,k,Σ

a
p,k)

(4.32)

where Θa
p = (ωap,1, ..., ω

a
p,K ;µap,1, ..., µ

a
p,K ; Σa

p,1, ...,Σ
a
p,K) are the reference parameters

from the database for different modulation schemes. The target is to maximize the



Chapter 4: GMM-based Automatic Modulation Classification 90

likelihood of P (Q|F ,Θa
p) by investigating the GMM parameters for {fi}Li=1 through

the EM algorithm based on (4.17)-(4.20). Then, the modulation classification is

performed according to the K-L Divergence in (4.23).

Distinct from speech recognition systems, the challenge for the application of

GMM to wireless communication is the interference from multipath fading channels,

as shown in (4.26), which severely reduces the classification performance. Therefore,

in order to improve the classification accuracy, an iterative MAP channel estimation

[94] is introduced to mitigate the multipath fading interference, for which the details

are described in Section IV.

4.5 Iterative MAP Channel Mitigation

Modulation Classification

Since {si}L−1
i=0 in (4.26) is an i.i.d. process, it satisfies

E{s(i)s(i− τ1)s(i− τ2)s(i− τ3)} = γ4δ(τ1, τ2, τ3) (4.33)

where γ4 ≡ E{s4i }. According to HOS theory [95], the fourth-order moment of the

received signal r(i) is chosen in this chapter to explore its underlying characteristics,

which can be denoted as

m4
r(τ1, τ2, τ3) = E{r(i)r(i− τ1)r(i− τ2)r(i− τ3)}

= γ4
M−1∑
m=0

h(m)h(m− τ1)h(m− τ2)h(m− τ3)
(4.34)

When τ1 = τ2 = M − 1, and τ3 = m, for m = 0, 1, ...,M − 1 and M is the
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channel length, m4
r(M − 1,M − 1,m) can be written as

m4
r(M − 1,M − 1,m) = γ4(h(0)h(M − 1)h(M − 1)h(m) (4.35)

and when m = 0, we obtain

m4
r(M − 1,M − 1, 0) = γ4h(0)h(M − 1)h(M − 1)h(0) (4.36)

Therefore, the normalized multipath fading coefficients h̃(m) are

h̃(m) =
m4

r(M − 1,M − 1,m)

m4
r(M − 1,M − 1, 0)

, m = 0, 1, ...,M − 1 (4.37)

h̃(m) is used as the initial channel coefficients for the iterative MAP channel

estimation. When h̃(m) is modeled as a Gaussian p.d.f., we have f(h̃) = g(h̃|µ
h̃
,Σ

h̃
)

where µ
h̃
, Σ

h̃
are the mean and covariance matrix of the channels separately. Based

on the MAP channel estimation [94], the required information is the mean value and

covariance matrix of the transmitted signal {si}L−1
i=0 , which can be obtained from the

offline database through Gaussian approximation [93].

Therefore, if we denote µp,s and Σp,s as the mean value and covariance matrix

of the pth modulation scheme in the database, the MAP channel estimation can be

realized by [94]

ĥ = (Σp,s + Σ
h̃
)−1Σ

h̃
(r − µp,s) + (Σp,s + Σ

h̃
)−1Σp,sµh̃ (4.38)

and the channel interference is diminished by

r̂ = IFFT{R
Ĥ
} (4.39)
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where R and Ĥ are the Fast Fourier Transform (FFT) of {ri}Li=0 and ĥ, respec-

tively, and IFFT{·} denotes Inverse Fast Fourier Transform. Extracted from r̂, the

instantaneous amplitude and phase are modeled by GMM based on the pre-processed

database.

In order to increase the estimation accuracy, iteration is employed to allevi-

ate the multipath channel interference. The proposed iteration procedure can be

generalized in the following steps

1. Obtain the initial multipath channel coefficients {h̃m} through (4.37).

2. Carry out the MAP channel estimation based on (4.38) to achieve the channel

impulse response ĥ and reduce the channel interference through (4.39) to acquire

r̂.

3. Using r̂, two signal features, namely, instantaneous amplitude and instantaneous

phase are calculated from (4.28) and (4.30). GMM parameter estimation is

performed from (4.32) as well as the EM algorithm through (4.17)-(4.20).

4. With the estimated parameters, K-L Divergence in (4.23) is employed to mea-

sure the distance between the received signal and the modulation scheme in the

database.

5. Repeat step 1) - 4) for each modulation scheme in the database until the K-L

distance converges to a certain threshold or a predefined number of iteration

steps is reached. At this point, the modulation classification is achieved.
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4.6 Simulation Results and Discussions

In this section, we evaluate our proposed algorithm through Monte Carlo experiments,

in terms of the correct classification probability Pcc versus SNR. The parameters of

the transmitted signal are selected as: the symbol rate fb is chosen to be 1MHz, the

carrier frequency fc is 20MHz, the shifted frequencies for 2FSK are f1 = 5KHz and

f2 = 10KHz and the sampling frequency fs at the receiver is 100MHz. The multipath

channel applied is assumed to be Rayleigh fading, where the randomly generated

channel coefficients are {h(m)}M−1
m=0 with length M . Without loss of generality, we

set h(0)=1 for channel mitigation. The channels have an exponentially decaying phase

delay profile, comprised of four complex Gaussian distributed taps with average power

σ2h = E[|{
∑

m hm}|2]. Traditional HOS-based modulation classification is compared

under the same simulation environment as the proposed approach and a Monte Carlo

simulation using 10000 operations is carried out with the results analyzed below.

Figure 4.4 and Figure 4.5 depict the simulation results for the proposed algo-

rithm and HOS-based modulation classification. The curves labeled as “with Esti-

mated Channel Info.” present the performance with the estimation of the normalized

channel coefficients. It can be seen that the the classification performance of the

proposed GMM with 10 iteration outperforms the HOS under AWGN as well as

multipath channels when SNR> 0dB. Furthermore, compared to the curves without

iteration, the iterative approach can improve the Pcc results considerably under mul-

tipath channels, which exhibit the effectiveness of the proposed iteration technique

to increase the estimation accuracy.
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Figure 4.4: Comparison of GMM and HOS on Pcc for 16QAM and 2FSK.

4.7 Conclusion

Classification of the modulation scheme used in the intercepted signal of interest is

a major step of blind interception receiver design. Accurate identification of the

modulation scheme will naturally improve the reliability of the blind data recovery.

To achieve this goal, various modulation classification algorithms have been

investigated in this chapter to overcome various difficulties associated with the mod-

ulation classification process. One major challenge here is how to limit the negative

impact on the blind modulation classification from many factors, which include un-

known system parameters of the transmitter and receiver involved, and the unknown

signal propagation conditions. Without prior knowledge of the system parameters of
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Figure 4.5: Comparison of GMM and HOS on Pcc for BPSK and 2ASK.

transmitter and receiver, for instance, clock mismatch, carrier frequency and phase

offsets, and timing error, blind identification of the modulation can be a difficult

task. This becomes even more challenging in real-world scenarios from the wire-

less signal propagation environment with multipath fading, frequency-selectivity and

time-variation.

The chapter starts with a comprehensive survey of different modulation recogni-

tion techniques in a systematic way. The two general classes of automatic modulation

identification algorithms are presented in details, which rely on the likelihood function

and features of the received signal, respectively. Moreover, modulation classification

based on GMM for digital communications is proposed in this chapter with an itera-

tive MAP multipath channel mitigation algorithm. An offline database is established
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according to the GMM parameter estimation for different modulation schemes, which

is applied as the reference to model the received signal. K-L Divergence is then em-

ployed to measure the distance between the received signal and the database to realize

the modulation classification. From the simulation results, the instantaneous ampli-

tude and phase are confirmed to be useful tools for extracting the signal features for

different modulation schemes. In addition, the proposed iterative approach can be

utilized to increase the classification performance in the presence of multipath fading

channels.
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Chapter 5

Conclusion

5.1 Contributions of This Thesis

Three main contributions have been achieved in this thesis, including an iterative

cyclostationary analysis for blind signal identication , the joint estimation of signal

parameters and synchronization under envelope spectrum information, and the Gaus-

sian Mixture Models (GMM)-based modulation classification under multipath fading

channels.

The algorithms for different parameters estimation of OFDM system under a

blind scenario are investigated. The OFDM system parameters considered include

sampling frequency, number of subcarriers, cyclic prefix ratio as well as frequency

and timing offset. Since two directions exist in literature for blind parameter estima-

tion which are nonparametric spectrum based and cyclostationarity based, the thesis

analyzed the performance for both and developed the approaches to improve the esti-

mation accuracy under two scenarios. With the aid of estimated parameters, channel

identification is performed to provide CSI as well with enhanced accuracy for poten-

tial resource optimization in networks. Monte Carlo simulations and experimental

measurements are conducted to evaluate the performance of the individual modules

as well as the overall algorithms. Current results show that the proposed algorithm

is capable of adapting to communication with improved performance.
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Considering the synchronization, we propose a joint iterative blind OFDM pa-

rameter estimation and synchronization approach for the interception receiver to op-

erate with multi-waveform signals. The thesis begins with introducing the system

model for oversampled OFDM signals and proposes the envelope spectrum-based

arbitrary oversampling ratio estimation. According to the oversampling ratio, the

number of subcarriers and the cyclic prefix (CP) length are identified as well, all

of which are used to provide the necessary information for carrier frequency offset

(CFO) and timing offset estimation. The iterative scheme is then explained to refine

the estimation results and increase the accuracy in every step.

Classification of the modulation scheme used in the intercepted signal of inter-

est is a major step of blind interception receiver design. Accurate identification of the

modulation scheme will naturally improve the reliability of the blind data recovery.

To achieve this goal, various modulation classification algorithms have been investi-

gated in this thesis to overcome various difficulties associated with the modulation

classification process. One major challenge here is how to limit the negative impact

on the blind modulation classification from many factors, which include unknown

system parameters of the transmitter and receiver involved, and the unknown signal

propagation conditions. Without prior knowledge of the system parameters of trans-

mitter and receiver, for instance, clock mismatch, carrier frequency and phase offsets,

and timing error, blind identification of the modulation can be a difficult task. This

becomes even more challenging in real-world scenarios from the wireless signal prop-

agation environment with multipath fading, frequency-selectivity and time-variation.

This thesis starts with a comprehensive survey of different modulation recogni-

tion techniques in a systematic way. The two general classes of automatic modulation

identification algorithms are presented in details, which rely on the likelihood func-

tion and features of the received signal, respectively. Moreover, we proposed one
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modulation classification scheme based on Gaussian Mixture Models for digital com-

munications with an iterative MAP multipath channel mitigation algorithm. An

offline database is established according to the GMM parameter estimation for dif-

ferent modulation schemes, which is applied as the reference to model the received

signal. K-L Divergence is then employed to measure the distance between the received

signal and the database to realize the modulation classification. From the simulation

results, the instantaneous amplitude and phase are confirmed to be useful tools for

extracting the signal features for different modulation schemes. In addition, the pro-

posed iterative approach can be utilized to increase the classification performance in

the presence of multipath fading channels.

5.2 Future Works

Reliable signal sensing and identification techniques are fundamental to the proposed

blind interception receiver design. New techniques in this domain need to be de-

veloped, while some existing signal sensing and identification techniques may be

customized to meet the specific purposes of this study. With the development of

cooperative communication and compressive sensing techniques, the future work can

be done in the following directions:

• Signal identification is currently one of the most challenging design problems in

cognitive radio. A robust spectrum sensing technique is important in allowing

implementation of a practical dynamic spectrum access in noisy and interference

uncertain environments. In addition, it is desired to minimize the sensing time,

while meeting the stringent cognitive radio application requirements. To cope

with this challenge, concept of compressed sensing can be applied by utilizing

the sparsity of the two-dimensional cyclic spectrum. Compressive sampling is
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used to reduce the sampling rate and a recovery method is developed for recon-

structing the sparse cyclic spectrum from the compressed samples. The recon-

struction solution used, exploits the sparsity structure in the two-dimensional

cyclic spectrum domain which is different from conventional compressed sensing

techniques for vector-form sparse signals.

• Software Defined Radio (SDR) is considered as the next evolutionary step in the

mobile communications. One of the most crucial properties of a SDR terminal

is that it is capable of using a wide range of air interface standards, providing a

seamless interoperability between different standards and an enhanced roaming

capability, paving way to a more flexible and efficient use of spectral resources.

Cooperative cyclostationary analysis is a possible solution in order to detect

and distinguish different systems since those signals have different patterns in

the cyclic spectrum under the cyclostationary analysis. Cooperative scheme

can be utilized to improve the performance and reduce the complexity and

delay. Each user only measures signal power at a single cyclic frequency (CF)

and exchange its information with the others for further decision. The use

of parallel SC detectors at different CFs by different receivers can reduce the

computational complexity and delay as compared to the use of multiple-cycle

detector in each receiver. Since each receiver sees independent noise, fading and

shadowing, effectively, decision based on the information related to the signal

powers simultaneously measured by all receivers search at different CFs, can

offer a better performance enhanced by multi-user diversity, in a short period

of time.
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