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ABSTRACT 

In wireless communications, frequency-selective fading is a major source of impairment 

for wireless communications.  In this research, a novel Frequency-Domain Independent 

Component Analysis (ICA-F) approach is proposed to blindly separate and deconvolve signals 

traveling through frequency-selective, slow fading channels.  Compared with existing time-

domain approaches, the ICA-F is computationally efficient and possesses fast convergence 

properties.  Simulation results confirm the effectiveness of the proposed ICA-F. 

Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in 

wireless communications nowadays.  However, OFDM systems are very sensitive to Carrier 

Frequency Offset (CFO).  Thus, an accurate CFO compensation technique is required in order to 

achieve acceptable performance.  In this dissertation, two novel blind approaches are proposed to 

estimate and compensate for CFO within the range of half subcarrier spacing: a Maximum 

Likelihood CFO Correction approach (ML-CFOC), and a high-performance, low-computation 

Blind CFO Estimator (BCFOE).   

The Bit Error Rate (BER) improvement of the ML-CFOC is achieved at the expense of a 

modest increase in the computational requirements without sacrificing the system bandwidth or 

increasing the hardware complexity.  The BCFOE outperforms the existing blind CFO estimator 

[25, 128], referred to as the YG-CFO estimator, in terms of BER and Mean Square Error (MSE), 

without increasing the computational complexity, sacrificing the system bandwidth, or increasing 

the hardware complexity.  While both proposed techniques outperform the YG-CFO estimator, 

the BCFOE is better than the ML-CFOC technique.  Extensive simulation results illustrate the 

performance of the ML-CFOC and BCFOE approaches.
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CHAPTER ONE: INTRODUCTION 

The first-generation (1G) radio systems use analog communication techniques to 

transmit voice over radio, such as Advanced Mobile Phone Services (AMPS), Nordic 

Mobile Telephone (NMT) systems, and Total Access Communication Systems (TACS), 

which were developed in the 1970s and 1980s.  The 2G systems were built in the 1980s 

and 1990s, and featured the implementation of digital technology, such as Global System 

for Mobile communications (GSM), Digital-AMPS (D-AMPS), Code Division Multiple 

Access (CDMA), and Personal Digital Cellular (PDC).  Among them, GSM is the most 

successful and common 2G system.   

The 3G mobile technologies, which developed rapidly in the 1990s, provide users 

with high-rate mobile access.  Three major radio air interface standards for 3G are 

Wideband CDMA (WCDMA), Time Division Synchronous-CDMA (TD-SCDMA), and 

CDMA2000.  The transmitted rate of 3G is up to 144 kb/s for high-mobility traffic, 384 

kb/s for low-mobility traffic, or 2 Mb/s in good conditions.  However, there are two 

limitations associated with 3G.  One is that CDMA cannot provide very high rate service, 

such as 100 Mb/s, due to excessive interference between services.  The other is the 

difficulty in providing a full range of multirate services with different Quality of Service 

(QoS) and performance requirements.  Therefore, the future mobile communication 

system with features of high-rate transmission and open network architecture, called 4G, 

is desired to satisfy the increasing demand for broadband wireless access.  The key 

objectives of 4G are to provide reliable transmissions with peak rates ranging from 100 

Mb/s for high-mobility applications to 1 Gb/s for low-mobility applications.  In addition, 
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4G achieves high spectrum efficiency up to 10 b/s/Hz, and provides ubiquitous services 

that can accommodate various radio accesses [126]. 

These wireless revolutions have brought unprecedented excitement into the field 

of Signal Processing.  In recent years, Blind Signal Separation (BSS) techniques have 

been intensively explored.  BSS requires neither prior system knowledge nor any training 

sequence.  Moreover, BSS is usually robust to multipath fading.  Consequently, the BSS 

techniques are promising in increasing the capacity and reliability of wireless systems [40, 

41, 58]. 

This chapter is organized as follows.  In Section 1.1, multipath fading mechanism 

and model are studied.  Section 1.2 presents BSS via Independent Component Analysis 

(ICA).  A popular ICA method, the natural-gradient ICA algorithm, is also introduced.  In 

Section 1.3, the properties of ICA applied to wireless communications are discussed.  

Frequency-selective fading and fast fading are two major obstacles to applying ICA in 

wireless communications.  The organization of this dissertation is summarized in Section 

1.4. 

The mathematical notations used throughout this research work are listed in Table 

1. 
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Table 1 
Mathematical notations  

( )T.  Transposition 

( )∗.  Conjugation 

( )H.  Conjugate transposition 

[ ].E  Expectation 

( ).Re  Extracting real-valued scalar 

( ).Max  Selecting maximum value 

( ) Mmod.  Modulus after division by M  

(.)diag  Forming a diagonal matrix whose diagonal elements are 

chosen from the vector 

.  Absolute value 

.  Norm of a vector 

←  Substituting the variable on the left-hand side with the value on 

the right-hand side 

⊗  Convolution 

≈  Approximate equal 

( )nδ  Dirac delta function 

μ  Convergence factor used in the gradient method 

I  Identity matrix 
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1.1 Multipath Fading Channel 

Transmission in wireless communication systems is carried out in the radio wave 

propagation environment, which places fundamental limitations on the performance of 

wireless communications.  An accurate characterization of the propagation channel is an 

essential requirement for a successful design of reliable communication systems.  It is 

thus crucial to have a good knowledge of radio fading channels [48, 97, 100, 111]. 

The origin of fading mechanism for wireless channels is traced to the scattering of 

an electromagnetic wave by a random medium.  There are three basic mechanisms that 

impact the electromagnetic wave propagation in wireless communications.  They are 

reflection, diffraction, and scattering [112, 113]: 

 Reflection occurs when a propagating electromagnetic wave impinges on a smooth 

surface with very large dimensions compared with the RF signal wavelength. 

 Diffraction occurs when the radio path between a transmitter and a receiver is 

obstructed by a dense body with large dimensions compared with the RF signal 

wavelength.   

 Scattering occurs when a radio wave impinges on either a large rough surface or any 

surface whose dimensions are on the order of the RF signal wavelength. 

Large-Scale and Small-Scale Fading 
Two types of fading affect signals transmitted over fading channels: large-scale 

fading and small-scale fading.  Large-scale fading represents the average signal power 

attenuation or the path loss due to motion over large areas.  This phenomenon is affected 

by prominent terrain contours between a transmitter and a receiver.  The receiver is often 

represented as being shadowed by such prominences.  The statistics of large-scale fading 
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provide a way of computing an estimate of path loss as a function of distance.  This is 

described in terms of a mean-path loss and a log-normally distributed variation about the 

mean. 

Small-scale fading refers to the dramatic changes in the signal amplitude and 

phase that can be experienced as a result of small changes in the spatial separation 

between a transmitter and a receiver.  Small-fading manifests itself in two mechanisms, 

namely, time-spreading of the signal, and time-variant behavior of the channel.  The 

time-spreading manifestation results from non-optimum impulse responses of fading 

channels.  This time-spreading mechanism is characterized in the time-delay domain as a 

multipath delay spread, dT .  The channel is time-variant because of motions between the 

receiver and the transmitter, and propagation path changing.  The time-variant 

mechanism is characterized in the time domain as a channel coherence time, cT . 

Types of Small-Scale Fading 

Provided the transmitted symbol period, sT , the transmitted signal undergoes flat 

fading if  

ds TT >                                                                                                               (1.1.a) 

Otherwise, the transmitted signal undergoes frequency-selective fading if  

ds TT <                                                                                                               (1.1.b) 

For the flat-fading channel, all received multipath components of a symbol arrive 

within the symbol time duration.  Hence, these components are not resolvable.  Here, 

there is no channel-induced Intersymbol Interference (ISI) distortion, since the time-

spreading does not result in significant overlap between neighboring received symbols. 
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For the frequency-selective fading channel, the received multipath components of 

a symbol extend beyond the symbol’s time duration.  Such multipath dispersion yields 

the channel-induced ISI. 

A fading channel is also classified either as fast fading or slow fading.  In a fast 

fading channel, the channel impulse response changes rapidly within sT , i.e., cT  is 

smaller than sT  as: 

cs TT >                                                                                                               (1.2.a) 

In a slow fading channel, cT  is larger than sT  as: 

cs TT <                                                                                                               (1.2.b) 

Fast fading describes a condition where the time duration in which the channel 

behavior in a correlated manner is short compared with the time duration of a symbol.  

Therefore, it can be expected that the fading character of the channel changes several 

times while a symbol is propagating, leading to distortion of the basedband pulse shape.  

The time duration in which the slow-fading channel behaves in a correlated 

manner is long compared with the time duration of a transmission symbol.  Thus, one can 

expect the channel state to virtually remain unchanged during the time in which a symbol 

is transmitted.  The propagation symbols do not likely suffer from the pulse distortion 

described above.  

Wide-Sense Stationary Uncorrelated Scattering (WSSUS) Channel 

In wireless communications, transmitted signals travel through multiple paths; 

this phenomenon is referred to as multipath propagation.  This effect can cause 

fluctuations in the received signal’s amplitude, phase, and angle of arrival.  Multipath 
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propagation is a very common phenomenon of radio communication channels, and a 

major source of impairment for wireless communication systems. 

Bello introduced a simple, common-used fading channel model: Wide-Sense 

Stationary Uncorrelated Scattering (WSSUS) channel [13].  This model treats signal 

variations arriving with different delays as uncorrelated.  Bello proved that the WSSUS 

channel is effectively Wide-Sense Stationary (WSS) in both the time domain and the 

frequency domain.  Mathematically, the WSSUS channel can be regarded as a time-

varying linear filter, with baseband impulse response ( )τ,th  given by: 

( ) ( ) ( ))()(exp)(,
1

0
ttjtth p

P

p
pp ττδαρτ −= ∑

−

=

                                                           (1.3) 

where P  is the number of multipath components, )(tpρ , )(tpα , and )(tpτ  are the 

magnitude, the phase, and the multipath delay of the pth  multipath component, 

respectively.  The variable τ  represents the excess time delay of the multipath 

component in the channel at a specific time t . 

When there is no line-of-sight path between the transmitter and the receiver, 

)(tpρ  is statistically described by the Rayleigh distribution.  This type of fading is called 

Rayleigh fading.  On the other hand, in the presence of the line-of-sight path, )(tpρ  is 

statistically described by the Rician distribution, and this fading is called Rician fading.  
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1.2 Blind Source Separation via Independent Component Analysis 

BSS is now one of the most prominent areas in Digital Signal Processing (DSP) 

with solid theoretical foundations and numerous potential applications [32, 80, 81, 95, 

96].  In fact, BSS has become a very important research topic in many areas, such as [24]:  

• Biomedical Signal Processing; biomedical signals acquired with multi-electrode 

devices, such as electrocardiography (ECG), electromyography (EMG), 

electroencephalography (EEG) and magnetoencephalography (MEG). 

• Speech and Audio Enhancement where BSS is applied to separate and deconvolve 

the source signals. 

• Digital Communication Systems where BSS is applied to separate the source 

signals from the interference signals.  

• Data Mining where BSS is applied to find hidden factors in available data. 

Independent Component Analysis (ICA) is the most widely used method to 

perform BSS.  In ICA, unknown source signals are extracted from sensor measurements, 

which are the unknown combinations of the source signals [17, 27, 53, 54].  The lack of 

prior knowledge about the combination is compensated by statistically strong but 

physically plausible assumption that the source signals are independent and non-Gaussian. 

ICA Formulation 

The standard ICA model assumes the existence of M  source signals, 's nsm )( , 

110 ,...M-,m = , and M  received signals 'snxm )( .  Without loss of generality, the 

's nsm )( and the 'snxm )(  are assumed to be zero-mean.  If this is not true, then the 

received signals 'snxm )(  can always be centered by subtracting the sample mean, which 
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makes the model zero-mean.  For simplicity, noise terms are omitted in the problem 

formulation.  This noise-free model is sufficient for many applications.  

The source signal vector )(nS  and the received signal vector )(nX  are defined as: 

[ ]TMm nsnsnsnS )(),...,(),...,()( 10 −=                                                                  (1.4.a) 

and 

[ ]TMm nxnxnxnX )(),...,(),...,()( 10 −=                                                                (1.4.b) 

respectively. 

The 'snxm )(  are the linear, instantaneous combinations of the 'snsm )( .  This 

scheme is represented compactly in the vector-matrix form as: 

)()( nASnX =                                                                                                      (1.5) 

where A  is an unknown full-rank MM ×  matrix. 

The ICA model is a generative model, which describes the received signals as 

being generated by a process of combining the source signals.  The independent 

components are latent variables, meaning that they cannot be directly observed.  Also, the 

combination matrix is assumed to be unknown.  The task is to estimate the source signal 

vector )(nS  from the received signal vector )(nX  without knowing the combination 

matrix A .  In general, it is very difficult.  However, with some practical assumptions, the 

separation is feasible.  The two basic assumptions are listed as following [17]: 

 The columns of the combination matrix A  are linearly independent so that the 

matrix A  is invertible. 

 The underlying components 'snsm )(  are statistically independent and non-

Gaussian. 
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The task of ICA is to determine the separating matrix W  so that the separated 

signal vector )(~ nS  becomes an estimate of the source signal vector )(nS  as:  

[ ]
)(        

)(~),...,(~),...,(~)(~
10

nWX
nsnsnsnS T

Mm

=
= −                                                                      (1.6) 

Since the combination matrix A  is unknown, it is obvious that the two 

ambiguities associated with ICA hold [53, 118] as: 

 The permutation ambiguity is that the order of the recovered signals snsm )'(~  

cannot be uniquely determined.  

 The gain ambiguity is that the phase and amplitude of the recovered signals 

snsm )'(~  cannot be determined. 

In order to solve these ambiguities, additional prior information about the source 

signals and the combination is needed.  Based on this idea, techniques to solve these two 

ambiguities are presented in the ICA algorithms devised in this research work. 

Performance of ICA 

The global system matrix C  associated with the separating matrix W  is defined 

as: 

WAC =                                                                                                                 (1.7) 

The aim of ICA can be restated as making the global system matrix C  in the form as: 

PDC =                                                                                                                (1.8) 

where P  is the permutation matrix, and D  is the diagonal matrix.   

The matrix P  and D  are associated with the permutation ambiguity and the gain 

ambiguity, respectively.  
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The original source signals and the combination parameters are known in the 

simulation process.  In this case, various performance indices are used to measure the 

performance of ICA.  In this research work, crosstalk error, ( )CCE , is used to measure 

the departure of the global system matrix C  from the ideal case shown in (1.7) as: 

( ) ∑ ∑∑ ∑
−

=

−

= ⎟
⎠
⎞⎜

⎝
⎛

−

=

−

= ⎟
⎠
⎞⎜

⎝
⎛ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

1

0

1

0 max

1

0

1

0 max
1 1 2

,

2
,

2
,

2
,

M

l

M

m C

C
M

m

M

l C

C

lm

lm

lm

lmCCE                                (1.9) 

where the lmc ,  is the ( )lm   entry of the C . 

In (1.9), the ( )CCE  is zero when the source components are ideally separated as 

shown in (1.8).  This index is invariant to permutation and gain ambiguities [81]. 

Principle of ICA 
The principle of ICA can be explained through several different, but equivalent 

frameworks.  Probably, the most intuitive framework is derived from the Central Limit 

Theorem (CLT).  According to the CLT, if the source signals are non-Gaussian and 

independent, the distribution of their sum tends to be more Gaussian than the distribution 

of any individual one.  That is to say that the separated signal )(~ nsm  is maximally non-

Gaussian if it equals one of 'snsm )( .  Thus, the basic ICA algorithm is based on the 

measurement of the non-Gaussianity of the separated signals [53].   

The fourth-order cumulant, Kurtosis, is usually used to measure non-Gaussianity 

in ICA, because of its simplicity and useful properties [53].  Kurtosis of a complex 

random variables, )(nxm , is defined as: 

( ) [ ] [ ]( ) [ ] 242224  )( )(2)()( nxEnxEnxEnxKurt mmmm −−=                                  (1.10) 
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It is well known that Kurtosis of a Gaussian random variable equals zero.  

Generally, a random variable with a negative Kurtosis is said to be sub-Gaussian.  A sub-

Gaussian probability density tends to be flatter than the Gaussian one.  If Kurtosis of a 

random variable is positive, this random variable is called super-Gaussian.  A typical 

super-Gaussian probability density has a sharper peak and longer tails than the Gaussian 

one.  Hence, Kurtosis measures the departure of a random variable from a Gaussian 

random variable. 

In ICA algorithms, nonlinear functions are implicitly used to approximate 

Kurtosis.  For sub-Gaussian and super-Gaussian signals, the nonlinear function ( )sf  is 

usually chosen as: 

sssf 2)( =                                                                                                      (1.11.a) 

or 

( )ssf tanh)( =                                                                                                 (1.11.b) 

respectively [5, 82]. 

In some ICA algorithms, first a cost function is set up.  Then, the gradient method 

is used to optimize the cost function whose minimum corresponds to the separation case.  

In other words, using a cost function converts the ICA problem into an optimization 

problem.  Usually, high-order statistical information about the source signals is used to 

build up the cost function [17, 18].  Given a cost function )(WJ , the steepest-gradient 

method is given by: 

W
WJWW

∂
∂

−←
)(μ                                                                                            (1.12) 

The steepest-gradient ICA algorithm is given by [12, 90]: 
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( ) [ ]( ))(~)(~21 nSnSEWWW H
non

H ++←
−

μ                                                           (1.13) 

where the nonlinear vector )(~ nSnon  is given by: 

( ) ( ) ( )[ ]TMmnon nsfnsfnsfnS )(~,...,)(~,...,)(~)(~
10 −=                                                    (1.14) 

Natural-Gradient ICA Algorithm 

The gradient of the cost function )(WJ  points in the steepest direction in the 

Euclidean orthogonal coordinate system.  However, the parameter space is not always 

Euclidean but has a Riemannian metric structure.  In such a case, the steepest direction is 

given by the so-called natural gradient.  Thus, for the Riemannian parameter space, the 

standard gradient direction is no longer appropriate.  The natural-gradient direction, on 

the other hand, uses the knowledge of the Riemannian distance structure of the parameter 

space to alter the gradient direction.  Thus, the natural-gradient method provides fast and 

accurate adaptation behavior [3]. 

For any suitable smooth gradient-searchable cost function )(WJ , the natural-

gradient adaptation is defined as: 

( )
W
WJWGWW

∂
∂

−← − )(1μ                                                                                (1.15) 

where ( )WG  is the Riemannian metric tensor for the parameter W . 

The natural-gradient ICA algorithm is given by [2, 3, 4]: 

[ ]( )WnSnSEIWW H
non  )(~)(~

−+← μ                                                                 (1.16) 

Compared with the steepest-gradient ICA algorithm (1.13), the natural-gradient 

ICA algorithm (1.16) has the following advantages [50]: 

 Low computational complexity.  It is clear that no matrix inversion is needed in 

(1.16) compared with (1.13). 
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 Fast convergence. 

 Equivariant property.  Since the equivariant algorithm works well even if the 

combination matrix is ill-conditioned, the performance of the natural-gradient ICA 

algorithm is uniformly good for all combination matrices [19]. 

Fast Fixed-Point ICA Algorithm 

Other than the natural-gradient ICA algorithm, there are numerous well-known, 

prominent ICA algorithms [42].  Among them, the Fast fixed-point ICA algorithm 

(FastICA) [55, 56, 57] has a number of desirable properties compared with other ICA 

algorithms. 

• The convergence of the FastICA is cubic, or at least quadratic.  This is in contrast 

to the natural-gradient ICA algorithm whose convergence is only linear. This means a 

very fast convergence. 

• There are no step size parameters needed to choose, contrary to gradient-based 

algorithms. This means that the FastICA is easy to use.  

• The performance of the FastICA can be optimized by choosing a suitable 

nonlinearity.  In particular, one can obtain algorithms that are robust and/or of minimum 

variance. 

• The independent components can be estimated one by one. 

One iteration of the FastICA for find a row vector H
mW  of the separating matrix 

W  is given by [14]: 

( )

m
H

m
H

m
H

m

H
m

H
mm

WnXWfnXWnXWfE

nXWfnXWnXEW

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛−

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛←

∗

222

2

)(')()(         

)()()(
                          (1.17.a) 
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and 

m

m
m W

WW ←                                                                                                     (1.17.b) 

where ( )xf '  is the derivate of ( )xf , and the nonlinear function ( )xf  is chosen from one 

of these functions as: 

x
xf

+
=

1.02
1)(1                                                                                           (1.18.a) 

x
xf

+
=

1.0
1)(2                                                                                                (1.18.b) 

and 

xxf =)(3                                                                                                         (1.18.c) 

The one-unit algorithm in (1.17) can extended to the estimation of the whole ICA 

transformation.  A simple way to accomplish this is a deflation scheme based on a Gram-

Schmidt-like decorrelation.  This decorrelation scheme is suitable for deflationary 

separation of the independent components.  Sometimes, it is preferable to estimate all the 

independent components simultaneously, and use symmetric decorrelation [53].  

Whitening Preprocessing 
Whitening usually is the first step in ICA algorithms.  The benefit of whitening is 

that the combination matrix becomes orthogonal.  Instead of having to estimate the 2M  

elements in the original combination matrix A , only 2/)1( −MM  parameters in the 

orthogonal combination matrix are needed to be identified [53]. 

Let us define XC  as the covariance matrix of the received signal vector )(nX . 

[ ])()( nXnXEC H
X =                                                                                          (1.19) 

XC  can be expressed in the form of its eigenvalues sm 'λ  and eigenvectors sm 'β  as: 
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H
x BDBC =                                                                                                        (1.20) 

where D  is the diagonal matrix of sm 'λ  as: 

( )10 ,...,,..., −= MmdiagD λλλ                                                                               (1.21) 

and B  is the orthogonal matrix of sm 'β  as: 

[ ]10 ,...,..., −= MmB βββ                                                                                        (1.22) 

The whitening matrix of  )(nX  can be expressed as: 

HBDV 21−=                                                                                                       (1.23) 

where the matrix 21−D  is computed by a simple component-wise operation over sm 'λ  as: 

( )21
1

2121
0

21 ,...,,..., −
−

−−− = MmdiagD λλλ                                                                     (1.24) 

The )(nX  is whitened by a linear transformation as: 

)()(~ nVXnX =                                                                                                    (1.25) 

It is easy to prove  

[ ] InXnXE H =)(~)(~                                                                                             (1.26) 

The natural-gradient ICA algorithm is summarized in Table 2. 



 17

Table 2 
Outline of the natural-gradient ICA algorithm  

Task: Estimate the source signals )(nS  from their linear mixture as: 

)()( nASnX = . 

Step 1. Whiten the )(nX  through a linear transform given by: 

( )
)(        

)(~

2/1 nBXD
nVXnX

−=

=
 

where D  is the diagonal matrix of eigenvalues of the covariance matrix 

XC , and B  is the matrix of the eigenvectors of the covariance matrix XC . 

Step 2. Initialize the separation matrix W~ . 

Step 3. Produce the )(~ nS  as: 

)(~~)(~ nXWnS =  

Step 4. Obtain the nonlinear vector )(~ nSnon  as: 

[ ]TMmnon nsfnsfnsfnS ))(~())),...,(~()),...,(~()(~
10 −=  

where ( )( ) ( ) ( )nsnsnsf 2=  is used for sub-Gaussian signals, and  

( ) ( )( )nsnsf tanh)( =  is chosen for super-Gaussian signals. 

Step 5. Update the separation matrix W~  as: 

  ( )WnSnSIWW H
non

~)(~)(~~~ −+← μ  

Step 6. Normalize W  using 

( ) 21~~~~ −
← WWWW H  

Step 7. Check the convergence of W~ .  If the convergence is not reached 

 go back to Step 3, otherwise proceed to Step 8. 

Step 8. The separating matrix corresponding to A  is given by: 

VWW ~=  

Step 9. The recovered signal vector is given by: 

)(~)(ˆ nSVnS =  
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1.3 Independent Component Analysis Applied to Wireless Communications 

The wireless communication revolution has brought unprecedented excitement 

into the field of signal processing [49, 125].  On the other hand, communication over 

wireless channels presents formidable challenges to signal processing.  Sophisticated 

signal processing techniques are necessary to cope with various issues ranging from 

efficient source and channel coding to modulation and receiver designs.  As a powerful 

technique, ICA also arises in a wide variety of wireless communication applications, for 

example, digital radio with diversity, dually polarized radio channels, and multi-

user/multi-access communications systems. 

There are several reasons to apply ICA [24], such as: 

• Training sequences for interference are often not available. 

• In rapid time-varying channels, training may not be efficient. 

• The system capacity can be increased by eliminating or reducing training 

sequences. 

• Multi-path fading during the training period may lead to poor source or channel 

estimations. 

• Training in distributed systems requires synchronization and/or sending a training 

sequence each time when a new link is to be set up.  This may not be feasible in a multi-

user scenario. 

Both pros and cons exist when ICA is applied to wireless communications. 

Pros of ICA Applied to Wireless Communications 

In wireless communications, the source signals are man-made, and hence their 

properties are completely known in advance.  There are ample structures that can be 
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exploited for high-performance ICA algorithms.  This problem is semi-blind in the sense 

that certain additional prior information is available about the data model. 

 The source signals are digitally modulated and discrete.  In digital 

communications, binary or M-ary information is transmitted as discrete combinations of 

the amplitude and/or the phase of the carrier signal.  Based on the discrete character of 

the source signal, computationally efficient algorithms can be realized [31, 45], and the 

steady-state performance of algorithms can be improved [79]. 

 The Probability Density Functions (PDFs) of the source signals are known.  In 

communications, the signals are artificial; thus their properties are known exactly.  

Several ICA algorithms require knowledge of the PDFs of the source signals.  Since the 

PDFs are completely predetermined, they can be exploited in these ICA algorithms.  

These resulting algorithms can achieve the desired performance based on a very small 

number of samples.  Thus, adaptation to rapidly changing combination conditions, such 

as fast fading in mobile communications, becomes feasible [119, 120]. 

 The primary information about combination structure is partially available, and 

the combination mechanism is determined by a limited number of parameters.  Prior 

combination information can be incorporated into the ICA algorithms to achieve low-

computation and high-performance algorithms at a given number of data points [71-74]. 

Cons of ICA Applied to Wireless Communications 

Mutlipath fading channel is the major challenge addressed by ICA in wireless 

communications.  The relationship between types of fading and corresponding 

combination models is summarized in Fig. 1.   

 If fading is frequency-independent, the combination model is instantaneous.  

Otherwise, if fading is frequency-selective, the combination model is convolutive. 
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  If fading is fast, the combination model is time-variant.  Otherwise, if fading is 

slow, the combination model is time-invariant. 

 

 

Figure 1: Types of fading experienced by the source signals and the corresponding 

combination models 

 

The basic ICA model is instantaneous and time-invariant.  The ICA algorithms 

developed in [62, 63] are proposed for this combination model, following flat, slow 

fading.  Frequency-selective fading and fast fading result in convolutive and time-variant 

combinations, respectively.  The convolutive or time-variant combination model is more 
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complicated than the basic ICA model.  Thus, frequency-selective fading and fast fading 

are two major obstacles to applying ICA to wireless communications.  Fast-convergence 

ICA algorithms devised in [127] are used to separate the time-variant, instantaneous 

combinations.  The time-invariant, convolutive ICA combination is solved by the 

frequency-domain ICA algorithm developed in this dissertation.  The most complicated 

situation, the time-variant, convolutive ICA combination model, remains open though. 

1.4 Organization of the Dissertation 

This dissertation is organized as follows: 

 Chapter 2, “Frequency-Domain Independent Component Analysis,” proposes a novel 

Frequency-Domain ICA (ICA-F) approach to separate the time-invariant, convolutive 

combinations of the digitally modulated signals.  The ICA-F has lower computational 

complexity and faster convergence property than existing time-domain approaches. 

 Chapter 3, “Carrier Frequency Offset in OFDM Systems,” builds Carrier Frequency 

Offset (CFO) model in Orthogonal Frequency Division Multiplexing (OFDM) 

systems.  In OFDM systems, transmission of data over orthogonal subcarriers results 

in robustness against ISI in the time domain.  However, an OFDM system suffers 

more from CFO than the corresponding single carrier system.  In this chapter, the CFO 

model is studied to provide some basis for the compensation approaches in the 

following two chapters. 

 Chapter 4, “A Blind Maximum Likelihood Carrier Frequency Offset Correction 

Approach for OFDM Systems,” proposes a novel Maximum Likelihood CFO 

Correction approach (ML-CFOC).  The performance improvement of the ML-CFOC 
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has been achieved at the expense of a modest increase in the computational 

requirements. 

 Chapter 5, “High-Performance Blind Carrier Frequency Offset Estimator for OFDM 

Systems”, proposes a novel Blind CFO Estimator (BCFOE) for OFDM systems.  This 

novel approach outperforms the existing approaches [25, 128] with the same amount 

of computation. 

 Chapter 6, “Contributions and Future Work”, summarizes the research work presented 

in this dissertation, and recommends further research directions. 
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CHAPTER TWO: FREQUENCY-DOMAIN INDEPENDENT 
COMPONENT ANALYSIS 

In this chapter, a novel frequency-domain Independent Component Analysis 

(ICA-F) approach is proposed to blindly separate and deconvolve the convolutive 

combinations of digitally modulated signals in wireless communications.  This approach 

relies on the fundamental observation that if signals are independent in one domain, their 

corresponding components in a linearly transformed domain are also independent.  The 

proposed ICA-F lends itself to computationally efficient Fast Fourier Transform (FFT), 

which converts the convolutive combination in the time domain into multiple 

instantaneous combinations in the frequency domain.  Then, the natural-gradient 

Independent Component Analysis (ICA) algorithm is employed in each frequency bin to 

separate frequency components of source signals.  The permutation and gain ambiguities 

associated with the ICA algorithm are successfully solved.  The ICA-F has lower 

computational complexity and faster convergence than the existing time-domain 

approach.  Simulation results confirm the effectiveness of the proposed ICA-F [66-69]. 

This chapter is organized as follows.  Section 2.1 formulates the convolutive 

combination model in the time and frequency domains.  In Section 2.2, the proposed 

ICA-F is developed.  In addition, the permutation and gain ambiguities associated with 

the frequency-domain ICA approach are successfully resolved.  Comparison between the 

ICA-F and the time-domain approach is given in Section 2.3.  Simulation results are 

presented in Section 2.4.  Finally, conclusions are drawn in Section 2.5. 



 24

2.1 Convolutive Combination Model 

In wireless communications, when the source signals travel through frequency-

selective, slow fading channels, the received signals are the convolutive combinations of 

the source signals instead of the instantaneous combinations.  A specific case is shown in 

Fig. 2, in which there are two transmitters and two receivers. 

 

 

Figure 2: Convolutive combination model for the case of two transmitters and two 

receivers 

 

Convolutive Combination Model in the Time Domain 

There are M  source signals snsl )'( , 1,...,1,0 −= Ml , and M received signals 

snxm )'( , 1,...,1,0 −= Mm .  The )(, nh lm  represents the impulse response of the channel 

from the transmitter l  to the receiver m .  This convolutive combination process can be 

expressed as: 
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∑
−

=

⊗=
1

0
, )()()(

M

l
llmm nsnhnx                                                                                    (2.1) 

The convolutive combination model in (2.1) allows for two important propagation 

effects typically found in fading channels of wireless communications.  First, the source 

signal )(nsl  does not arrive at all receivers simultaneously; there are delays between the 

instants when the )(nsl  arrives at the different receivers.  Second, and more generally, 

the model shown in (2.1) shows that the )(nsl  arrives at a receiver via more than one 

path.  This is known as multipath propagation. 

Convolutive Combination Model in the Frequency Domain 

)(zSl  and )(zX m  are denoted as the z-transforms of )(nsl and )(nxm , 

respectively.  The equation (2.1) in the time domain can be written in the z-domain as: 

( ) ∑
−

=

=
1

0
, )()(

M

l
llmm zSzHzX                                                                                      (2.2) 

where )(, zH lm  is the z-transforms of )(, nh lm . 

Define the source signal vector )(zS  and the received signal vector )(zX  as:  

[ ]TMl zSzSzSzS )(),...,(),...,()( 10 −=                                                                   (2.3.a) 

and 

[ ]T
Mm zXzXzXzX )(),...,(),...,()( 10 −=                                                              (2.3.b) 

respectively. 

The channel effects can be expressed as  
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⎟
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⎛
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 26

(2.2) is written in the matrix-vector form as: 

)()()( zSzHzX =                                                                                                 (2.5)  

From (2.5), it is clear that convolutive combination in the time domain is 

expressed as instantaneous combinations in the frequency domain.  Thus, applying 

discrete Short Time Fourier Transform (STFT) on the snxm )'(  is to convert the 

convolutive combination in time domain into instantaneous combinations in the 

frequency bins.  For each frequency bin, the natural-gradient ICA algorithm is used to 

separate the source frequency components.  This is the basic idea of the proposed ICA-F, 

which is developed in the next section. 

2.2 Proposed Frequency-Domain Independent Component Analysis 

The structure of the proposed ICA-F, which is comprised of five processing 

stages, is shown in Fig. 3.  In the first stage, the discrete STFT is applied to the received 

signals snxm )'( .  As a result, the time domain convolutive combination in (2.1) is 

transformed into multiple instantaneous combinations in the frequency domain in (2.5).  

Then, the source components in each frequency bin are recovered using the natural-

gradient ICA algorithm.  Since the natural-gradient ICA algorithm is applied individually 

to each frequency bin, the recovered signals suffer from the permutation ambiguity.  This 

permutation ambiguity is solved by using cross-statistics between the source frequency 

components.  In the next stage, the discrete Inverse STFT (ISTFT) is applied to obtain the 

snsl )'(~ .  Because the skrUl )',(  suffer from the gain ambiguity, the )(~ nsl  is a filtered 
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version of the )(nsl .  The delayed version of the )(nsl , )(ˆ nsl , is obtained by passing 

)(~ nsl  through blind equalizers, Fig. 3. 

 

 

Figure 3: The proposed Frequency-Domain Independent Component Analysis (ICA-F) 

approach with correcting the permutation and gain ambiguities 

 

Discrete Short-Time Fourier Transform (STFT) 
In the first stage, the discrete STFT [28, 87] is applied to the received signals 

snxm )'( .  The analysis window ( )nwin  used in the discrete STFT is a rectangular 

window of length L , which is given by: 
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⎩
⎨
⎧ −<≤

=
otherwise     ,0

10      when ,1
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Ln
nwin                                                                       (2.6) 

Then, the K-point Fast Fourier Transform (FFT) is performed over the windowed section 

of the snxm )'( .  The number K  is larger than or equal to the window length L  as: 

LK ≥                                                                                                                   (2.7) 

Thus, the discrete STFT of the )(nxm , ),( krX m , is expressed as: 

KnrLkj

n
mm enrLwinnxkrX )(2

0
)()(),( −−

+∞

=

−= ∑ π                                                        (2.8) 

where ,...)2,1(, =rr , is the frame number, and )1,...,1,0(, −= Kkk , is the frequency bin 

index. 

In the same way as (2.8), the ),( krSl  is denoted as the discrete STFT of the )(nsl .  

For the frame number r  and the frequency bin k , the vector ),( krS , and the vector 

),( krX  are defined as: 

( ) [ ]TMl krSkrSkrSkrS ),(),...,,(),...,,(, 10 −=                                                    (2.9.a) 

and 

( ) [ ]T
Mm krXkrXkrXkrX ),(),...,,(),...,,(, 10 −=                                                (2.9.b) 

respectively. 

Now, the convolutive combination in the time domain as specified in (2.1) is 

converted into K  instantaneous combinations in the frequency domain as follows: 

),()(),( krSkHkrX =                                                                                        (2.10) 

where the ),( lm  entry of the matrix )(kH  is given by: 

Kkjezlmlm zHkH π2)()( ,, −=
=                                                                                   (2.11) 
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The source signals snsl )'(  are assumed to be complex-valued, zero-mean, 

stationary, non-Gaussian distributed, and statistically independent.  Appendix A shows 

that in each frequency bin, the skrSl )',(  are also independent, and the ICA assumptions 

are valid.  Accordingly, the natural-gradient ICA algorithm is suitable to estimate the 

skrSl )',( . 

Natural-Gradient ICA Algorithm 

It each frequency bin, the skrX m )',(  are the instantaneous combinations of the 

skrSl )',( .  The complex natural-gradient ICA algorithm specified at Table 2 can be used 

to obtain skrYl )',( , which suffer from the permutation and gain ambiguities. 

Solving Permutation Ambiguity  
Since the separating systems are independently adapted in frequency bins, the 

source components may be extracted with arbitrary orders.  The frequency component 

from one source signal must be grouped before the Inverse STFT (ISTFT) is performed.  

If skrYl )',(  are from different source signals, they are independent.  Otherwise, they are 

statistically dependent.  This independence is measured by the fourth-order cross-

cumulant.  The fourth-order cross-cumulant between )0,(rYl  and 0),,( ≠kkrYm , 

)(, kCUM ml , is defined as: 

[ ] [ ] [ ]
[ ] [ ] 22

2222
,

 ),()0,( ),()0,(                  

),( )0,( ),()0,( )(

krYrYEkrYrYE

krYErYEkrYrYEkCUM

mlml

mlmlml

−−

−=

∗
                      (2.12) 

In principle, )(, kCUM ml  is zero when )0,(rYl  and ),( krYm  are from the different source 

signals.  Otherwise, )(, kCUM ml  is non-zero [30, 83]. 
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From the explanation above, a method to solve the permutation ambiguity is 

given as following.  First, the order of the srYl )'0,(  is chosen as the reference order.  

Then, the order of the skrYl )',( , 0≠k , is adjusted such that it is the same as the 

reference order.  To do so, the recovered source components without the permutation 

ambiguity, skrUl )',( , are given by: 

)0,()0,( rYrU ll =                                                                                             (2.13.a) 

and 

0    ),,(),( ≠= kkrYkrU ml                                                                              (2.13.b) 

where the ),( krYm  has the maximum absolute value of )(, kCUM ml  for 1,..,1,0 −= Mm . 

Discrete Inverse Short-Time Fourier Transform (ISTFT) 
In this stage, the overlap-add method [89, 98] is used to implement the discrete 

ISTFT.  The overlapping occurs when the points of the FFT, K , is larger than the 

window length L .  

Solving Gain Ambiguity 

Due to the gain ambiguity, the skrUl )',(  are subjected to arbitrary complex gains 

in frequency bins.  Thus, the snsl )'(~  are the filtered versions of the source signals, and 

encounter both magnitude and phase distortions.  In theICA-F, blind equalizers 

employing Constant Modulus Algorithm (CMA) [43, 60] are used to compensate for 

these distortions.  CMA is a blind equalization technique that restores modulus of source 

signals.  In CMA, the FIR filter, )(nbl , is used to filter the )(~ nsl  to produce the )(ˆ nsl  as: 

)(~)()(ˆ nsnbns lll ⊗=                                                                                          (2.14) 

The coefficients of )(nbl  are updated as:   
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( )[ ]lllllll RnsnsnsEnbnb −−← ∗ 2)(ˆ)(ˆ)(~)()( λ                                                     (2.15) 

where lλ  is the convergence factor, and the constant lR  is defined as: 

[ ]
[ ]2

4

)( 

)( 

nsE

nsE
R

l

l
l =                                                                                                   (2.16) 

The update rule in (2.15) runs iteratively until the )(nbl  converges.  Consequently, the 

snsl )'(ˆ  are the delayed versions of the snsl )'( , and are not subjected to the phase and 

amplitude distortion as the snsl )'(~  

Table 3 
Outline of the proposed ICA-F 

Task: Estimate the source signals snsl )'(  from their convolutive 

combinations as: 

∑
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=

⊗=
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0
, )()()(

M

l
llmm nsnhnx  

Step 1. Perform the discrete STFT over the snxm )'( , and convert the 

convolutive combination in the time domain into multiple 

instantaneous combinations in the frequency domain as: 

∑
−

=

=
1

0
, ),()(),(

M

l
llmm krSkHkrX  

Step 2. Separate the frequency components, skrYl )',( , from the above 

instantaneous combinations, following the steps in Table 2. 

Step 3. Solving the permutation ambiguity to obtain the skrUl )',( . 

Step 4. Perform ISTFT over the skrUl )',(  to produce the snsl )'(~ . 

Step 5. Perform blind equalization over the snsl )'(~  to produce the   

snsl )'(ˆ . 
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2.3 Comparison Between the Proposed ICA-F and Time-Domain Approaches 

Many ICA approaches have been proposed to separate the convolutive 

combination, and they are classified into two approaches based on the domain to apply 

ICA: the time-domain ICA approach [1, 5, 50] and the frequency-domain ICA approach 

[6, 8, 16, 23, 29, 30, 52, 59, 64, 83, 86, 92, 99, 105, 108, 109, 110, 114, 115].  In the 

frequency-domain ICA approach, the convolutive combination in the time domain is 

converted into multiple instantaneous combinations in the frequency domain.  Then, 

these instantaneous combinations are individually separated by an instantaneous ICA 

algorithm.  The advantage of the frequency-domain ICA approach lies in the fact that the 

convolutive combination with a large number of unknown parameters is decomposed into 

multiple, independent instantaneous combinations, each with fewer parameters to be 

estimated.  As a result, the frequency-domain ICA approach generally has a simpler 

implementation and better convergence properties over the time-domain ICA approach. 

The main challenges to implement the frequency-domain ICA approach, however, 

are the permutation and gain ambiguities, i.e., frequency components are estimated with 

arbitrary orders and scales in frequency bins.  The permutation ambiguity leads to 

interference of the frequency components among the recovered signals.  The gain 

ambiguity results in linear distortions of the recovered signals.  If these two ambiguities 

are not properly solved, the frequency-domain ICA approach cannot work successfully. 

In the existing literature, many frequency-domain ICA approaches [6, 8, 16, 52, 

59, 86, 99, 105, 108, 109, 110, 114, 115, 123] are proposed to separate the convolutive 

combinations of speech signals.  However, few references [29, 30, 83] are known for 

digitally modulated signals in wireless communications.  Moreover, the approaches in [6, 
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8, 16, 52, 59, 86, 99, 105, 108, 109, 110, 114, 115] do not fully solve the gain ambiguity, 

that is, the recovered signals are the filtered versions of the source signals.  However, the 

technique presented here, the ICA-F, utilizes blind equalizers to successfully solve the 

gain ambiguity.  Thus, the signals recovered by the ICA-F are the delayed versions of the 

source signals. 

Computational Complexity Comparison 
The time-domain ICA approach is theoretically sound and achieves good 

separation performance once it converges.  However, the time-domain approach is 

computationally extensive since the adaptation includes convolution operations.  The 

time-domain ICA approach works well when convolutive combinations have short delays.  

However, when this approach is applied to convolutive combinations with long delays, it 

is unrealizable because of the computational requirements [50].   

It is computationally efficient to separate the source signals in the frequency 

domain, as convolution in the time domain becomes computationally efficient 

multiplications in the frequency domain.  The frequency-domain ICA approach has a 

computational complexity of ( )FF logΟ , where F  is the length of separating filters, 

whereas the time-domain ICA approach has ( )2FΟ  [114, 115]. 

Separation Performance Comparison 

In time-domain ICA approaches, statistical dependencies among filter taps reduce 

the convergence speed since updating a filter tap influences adaptation of the ones 

succeeding it.  When the filter is very long, convergence is potentially problematic. 

The frequency-domain ICA approach employs the discrete STFT, which converts 

the convolutive combination into multiple independent instantaneous combinations.  This 



 34

means that adaptation of one parameter does not interference with other parameters, 

which results in fast convergence and good performance. 

2.4 Simulation Results 

Computer simulations are performed to confirm the effectiveness of the proposed 

ICA-F.  The simulation setting, shown in Table 4, is used throughout this paper.  The 

computer simulations employ the third-order convolutive combination system with the 

following coefficients as: 
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For the noise-free case, the crosstalk error evolutions of the instantaneous 

combinations in the frequency bins, from 0=k  to 7=k , are shown in Figures 4 to 11, 

respectively.  It is obvious that the natural-gradient ICA method has successfully 

separated the source frequency components in each frequency bin, as shown in Fig.4 to 

Fig.11. 
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Table 4 
Simulation parameters for the proposed ICA-F 

Source signals  

Uniformly-distributed, 
independent Differential 
Quadrature Phase Shift Keying 
(DQPSK) 

The number of source and received 
signals 

2 

Samples of the received signals  90,000 

The length of the rectangular window 3 

The points of the FFT 8 

The FIR filter length in blind 
equalizers 

8 

The constant in blind equalizers  2=lR  

 

 

Figure 4: The crosstalk error evolution versus iteration number for the frequency bin #0 

without additive noise 
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Figure 5: The crosstalk error evolution versus iteration number for the frequency bin #1 

without additive noise 

 

 

Figure 6: The crosstalk error evolution versus iteration number for the frequency bin #2 

without additive noise 
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Figure 7: The crosstalk error evolution versus iteration number for the frequency bin #3 

without additive noise 

 

 

Figure 8: The crosstalk error evolution versus iteration number for the frequency bin #4 

without additive noise 
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Figure 9: The crosstalk error evolution versus iteration number for the frequency bin #5 

without additive noise 

 

 

Figure 10: The crosstalk error evolution versus iteration number for the frequency bin #6 

without additive noise 
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Figure 11: The crosstalk error evolution versus iteration number for the frequency bin #7 

without additive noise 

 

The space diagrams of the received signals without additive noises are shown in 

Fig.12a and Fig.12b, respectively.  These space diagrams do not resemble characteristics 

of DQPSK due to the convolutive combination.  The space diagrams of the recovered 

source signals employing the ICA-F are shown in Fig. 13a and 13b, which resemble the 

characteristic DQPSK constellation with easily correctable phase rotations.  These space 

diagrams show that the proposed ICA-F successfully separates and deconvolves the 

convolutive combination.  Figure 14a and Figure 14b present the space diagrams of the 

recovered signals without solving the permutation and gain ambiguities.  These results 

demonstrate that the frequency domain ICA approach cannot achieve a good performance 

improvement without solving the permutation and gain ambiguities.   
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Figure 15 shows the Bit Error Rate (BER) of the simulated system employing the 

proposed ICA-F with and without solving the permutation and gain ambiguities versus 

SNR.  For comparison, the BER of the received signals is also plotted.  It suffers from 

error floor due to effects of the convolutive combination.  It is clear that the proposed 

ICA-F greatly reduces the BER.  However, if the ICA-F does not solve the permutation 

and gain ambiguities, the resulting BER is even worse than that of the received signals.  

This observation confirms the importance of solving the permutation and gain 

ambiguities in the frequency-domain ICA approach. 

 

                   

 (a)                                                      (b) 

Figure 12: Space diagrams of the received signals )(0 nx  and )(1 nx  without additive 

noises 
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 (a)                                                   (b) 

Figure 13: Space diagrams of )(ˆ0 ns  and )(1̂ ns  without additive noises, where the 

permutation and gain ambiguities have been corrected by using the ICA-F 

 

               

 (a)                                                   (b) 

Figure 14: Space diagrams of the recovered signal 1 and recovered signal 2 without 

additive noises, where the permutation and gain ambiguities have not been corrected 
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Figure 15: BER of the simulated system with compensation of the proposed ICA-F, 

without any compensation, and with compensation where the permutation and gain 

ambiguities have not been corrected versus SNR 

2.5 Conclusions 

In wireless communications, the received signals are the convolutive 

combinations of the source signals in case of slow, frequency-selective fading channels.  

In this contribution, a novel frequency-domain Independent Component Analysis 

approach (ICA-F) is proposed to blindly separate and deconvolve the source signals.  In 

the ICA-F, the convolutive combination in the time domain is converted to multiple 

instantaneous combinations in the frequency domain.  The proposed ICA-F is more 

computationally efficient and converges faster than the existing time domain approach.  

The ICA-F successfully solves the permutation and gain ambiguities, which are the major 



 43

obstacles to implement the frequency-domain ICA approach.  Computer Simulations 

illustrate the performance of the proposed ICA-F. 
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CHAPTER THREE: CARRIER FREQUENCY OFFSET IN OFDM 
SYSTEMS 

In Orthogonal Frequency Division Multiplexing (OFDM) systems, the wideband 

source signal is partitioned into multiple narrow-band signals.  These narrow-band 

signals are transmitted simultaneously via the orthogonal, overlapping subcarriers.  These 

subcarriers are closely spaced in frequency compared with the total channel bandwidth.  

Thus, the tolerable Carrier Frequency Offset (CFO) becomes a very small fraction of the 

channel bandwidth.  In addition, the CFO causes two deleterious effects; one is the 

reduction of signal power, and the second is the introduction of Intercarrier Interference 

(ICI) from other subcarriers that are not orthogonal.  Consequently, OFDM systems are 

very sensitive to CFO.  In this chapter, CFO effects in OFDM systems are carefully 

investigated and modeled. 

This chapter is organized as follows.  Section 3.1 introduces the principle of 

OFDM systems.  In Section 3.2, existing CFO estimation approaches are examined.  The 

OFDM system model including CFO is given in Section 3.3.  Properties of ICI 

coefficients are studied in Section 3.4. 

3.1 OFDM Basics 

In Multicarrier Modulation (MCM) systems, the transmitting data is divided into 

multiple parallel bit streams, which are modulated onto corresponding subcarriers.  For 

each subcarrier in MCM systems, the influence of multipath fading is attenuation and 

phase rotation.  Consequently, only a one-tap equalizer is needed for each subcarrier.  
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Thus, equalization in a MCM system is much simpler than the corresponding single-

carrier system [15, 26, 88]. 

In earlier MCM systems, the total bandwidth is divided into multiple non-

overlapping subcarriers between which a frequency guard-band is inserted.  It seems 

reasonable to avoid spectral overlap of subcarriers in order to eliminate Intercarrier 

Interference (ICI).  However, this scheme leads to inefficient utilization of the available 

spectrum.  To cope with this inefficiency, an overlapping MCM technique, Orthogonal 

Frequency Division Multiplexing (OFDM), was proposed [21].  OFDM systems differ 

from the original MCM systems in that spectra of the subcarriers are overlapped and 

mutually orthogonal. 

In OFDM, each subcarrier has an integer number of cycles within a given time 

interval, and the number of cycles by which each adjacent subcarrier differs is exactly 

one.  This property ensures orthogonality between OFDM subcarriers.  These subcarriers 

are modulated using Phase Shift Keying (PSK) or Quadrature Amplitude Modulation 

(QAM).  The amplitude spectrum of each modulated subcarrier using either PSK or 

QAM has a sinc shape.  At the peak spectral response of each subcarrier, all other 

subcarrier spectral responses are identically zero. 

Following data modulation, symbols are fed through a serial-to-parallel 

conversion process.  Each PSK or QAM symbol is assigned into a subcarrier.  QAM is 

the most popular type of modulation in combination of OFDM.  Rectangular 

constellations are especially easy to implement as they can be split into independent 

Pulse Amplitude Modulation (PAM) components for both the in-phase and quadrature 

parts.   
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An Inverse Fast Fourier Transform (IFFT) is performed to produce a time domain 

signal.  A guard time is introduced to eliminate Intersymbol Interference (ISI) caused by 

the delay spread of fading channels.  As a rule, the guard time is usually two or four times 

larger than the expected delay spread.  This can take care of ISI, but ICI, crosstalk 

between subcarriers, remains an issue.  To reduce ICI, OFDM symbols are cyclically 

extended into the guard interval.  This cyclic extension ensures that an OFDM symbol 

has an integer number of cycles in the FFT interval as long as the delay is less than the 

guard time. 

At the receiver after Radio Frequency (RF) and Analog-to-Digital (A/D) 

conversion stages, time and frequency synchronization between the transmitter and 

receiver is very crucial to the performance of an OFDM link.  Next, a Fast Fourier 

Transform (FFT) operation is used to demodulate all subcarriers.  To demodulate the 

subcarriers using PSK or QAM modulation, the reference phase and amplitude of the 

constellation on each subcarrier are required.  To overcome the unknown phase and 

amplitude ambiguities, two techniques, coherent and differential detection, are used.  The 

complete block diagram of the transceiver for OFDM systems is given in Fig.16.  

In summary, the OFDM transmission scheme has the following key advantages: 

• OFDM is an efficient way to deal with multipath.  For a given delay spread, the 

implement complexity is significantly lower than that of a single-carrier system with an 

equalizer. 

• OFDM is robust against narrowband interference, since such interference affects 

only a small percentage of the subcarriers. 
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• In relatively slow time-varying channels, an OFDM system is capable of 

significantly enhancing the capacity by adapting the data rate per subcarrier according to 

the Signal-to-Noise Ratio (SNR) of that particular subcarrier. 

• OFDM makes single-frequency networks possible, which is especially attractive 

for broadcasting applications. 

On the other hand, OFDM also has drawbacks compared with single-carrier 

systems: 

• OFDM is more sensitive to frequency offset and phase noise.  

• OFDM has a relatively large peak-to-average power ratio, which tends to reduce 

the power efficiency of the RF amplifier. 

Much of the research focuses on the high efficient implementation of OFDM 

systems.  Weinsten and Ebert were the first to suggest using the Discrete Fourier 

Transform (DFT) and Inverse Discrete Fourier Transform (IDFT) to perform baseband 

modulation and demodulation.  The use of DFT and IDFT eliminates arrays of sinusoidal 

generators and coherent demodulation required in parallel data systems, making 

implementation of OFDM systems cost effective [124].  An efficient implementation of 

DFT and IDFT can be obtained by any available Fast Fourier Transform (FFT) algorithm.  

Recent advances in Very-Large-Scale Integration (VLSI) technology make high-speed, 

large-scale FFT chips commercially affordable.   

OFDM has been successfully applied to a wide variety of digital communications 

applications over the past several years.  Some applications of OFDM are: 

• Terrestrial Digital Audio Broadcasting (DAB) and Digital Video Broadcasting 

(DVB) in Europe [104]. 
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• Wireless Local Area Network (WLAN), such as IEEE 802.11a [131], High 

Performance Radio Local Area Networks type 2 (HiperLAN 2), and Mobile Multimedia 

Access Communications (MMAC) [117].   

• Wireless Metropolitan Area Networks (WMAN), such IEEE 802.16 [34, 39, 132] 

and 3G wireless communication systems.  The Wireless World Research Forum (WWRF) 

considers OFDM the most important technology for a future public cellular radio access 

technology.   

• High-bit-rate Digital Subcarrier Lines (HDSL) and Asymmetric Digital Subcarrier 

Lines (ADSL), and Very-high-speed Digital Subscriber Lines (VDSL) [10]. 

3.2 Existing Carrier Frequency Offset Estimation Approaches 

In an OFDM link, subcarriers are orthogonal only if the transmitter and the 

receiver use the exactly same frequencies.  However, CFO actually exists in a practical 

OFDM system.  CFO destroys orthogonality between subcarriers, and results in ICI.  

Consequently, CFO decreases the Signal-to-Noise Ratio (SNR) of the desired signal, and 

hence increases Bit Error Rate (BER) [94].  In order to achieve the acceptable 

performance, the CFO must be estimated and corrected.  

In practice, the value of CFO can be several times larger than the subcarrier 

spacing.  Thus, the CFO value is expressed as an integer part and a fractional part with 

respect to the subcarrier spacing.  The integer part of the CFO causes a circular shift of 

the desired signals, but does not introduce ICI, i.e., the orthogonality of the subcarriers is 

still maintained.  The fractional part, however, destroys orthogonality between 
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subcarriers, and causes ICI [74, 85].  In the literature, a few CFO estimation approaches 

can recover the CFO up to half the distance of the subcarriers.  If the CFO is larger, what 

they estimate is just the fractional part of the CFO, and an ambiguity of an integer 

number subcarrier intervals is left. 

A number of techniques have been proposed to estimate or correct the CFO in 

OFDM systems.  These existing CFO estimation techniques are categorized as data-aided 

estimation approaches [7, 51, 77, 103, 129] or blind estimation approaches [9, 11, 22, 25, 

37, 38, 58, 65, 78, 121, 122, 128], according to the requirement of training sequences.  

The data-aided technique requires a known pilot symbol.  The blind technique does not 

need any training sequence but need some statistical properties, such as independence 

and identically distribution of source signals.  The data-aided CFO estimator has two 

limitations: the reduction of the bandwidth efficiency and the introduction of additional 

system delay since estimators can only identify CFO after receiving the training sequence.  

The blind CFO estimator, however, is free from these two drawbacks.  It does not need 

training sequences, and is hence bandwidth efficient.  In addition, the blind CFO 

estimator can identify CFO in real-time from the received data.  In general, the blind 

estimation approach is more attractive than the data-aided estimation approach for future 

wireless communications. 

Data-Aided CFO Estimators 

The ICI self-cancellation scheme has been proposed to mitigate ICI effects [129].  

Its main idea is to modulate one data symbol into a group of subcarriers with predefined 

weight coefficients.  This results in cancellation of most ICI effects.  
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The windowing method has been presented to reduce ICI effects [7].  Hamming 

window and Kaiser window both are able to reduce sensitivity to the CFO.  However, 

these two approaches can correct only the fractional part of the CFO. 

The Maximum Likelihood algorithm, working on two identical OFDM symbols, 

has been developed to estimate CFO [84].  This estimate is conditionally unbiased and 

consistent.  Moreover, a method to resolve the integer part of the CFO is proposed, where 

ad hoc shortened symbols are periodically transmitted in the OFDM symbol stream, 

forcing the subcarrier spacing to be locally larger than twice the maximum CFO value.  

However, this method does not seem very attractive, since it requires a signal structure 

strictly matched to the range of possible CFO.  

In [105], a rapid synchronization method works on a two-symbols training 

sequence, which is placed at the start of the frame.  The CFO is found in two steps, by 

finding the fractional part and then the integer part.  The resulting CFO estimator is very 

accurate and provides a very wide acquisition range for the CFO. 

Blind CFO Estimators 
The blind CFO estimator identifies the CFO via two steps; first the fractional part 

of the CFO is estimated, and then the integer part of CFO is solved by using a slide 

window [85].  The resulting strategy is to compute the energy of the samples belonging to 

a sliding window that follows the FFT in the OFDM receiver, and to locate the relevant 

energy peak.  Considering the selectivity of the channel leads to the use of weighted 

window instead of a rectangular one [76]. 

The blind CFO estimator in [107] has two limitations, namely, the constellation 

on each subcarrier must have points equally spaced in phase, and the length of the guard 

time must be chosen from a subset of allowed values.   
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The Maximum Likelihood CFO estimator in [11] is proposed for flat channels, 

and is affected by the error floor in the case of multipath channels.   

The blind CFO estimation approach in [22] oversamples the received signals by a 

factor of two.  This blind CFO estimator improves the system performance at the expense 

of the hardware complexity.   

The techniques proposed in [9, 37, 38, 65, 121, 122] take advantage of virtual 

subcarriers existing in many OFDM systems.  These estimators are robust against 

multipath fading, but have relatively high computational costs. 

The blind CFO estimator in [25, 76, 128], called the YG-CFO estimator in this 

research work, utilizes fourth-order statistics to identify CFO.  Exploitation of fourth-

order statistics has proven to be beneficial to estimate the CFO in OFDM systems.  Thus, 

the YG-CFO estimator has low computational complexity, and is free from the 

limitations of other blind CFO estimators.  However, the YG-CFO estimator does not 

consider noise effects, and its performance suffers greatly from noise. 

3.3 OFDM System Model with Carrier Frequency Offset 

Forward Error Correction and Interleaving 
In OFDM systems, subcarriers arrive at a receiver with different amplitudes due 

to multipath fading.  In the worst case, some subcarriers may be completely lost.  Hence, 

even though most subcarriers may be detected without errors, the overall BER will be 

largely dominated by several subcarriers with small amplitudes.  To avoid the weak 

subcarriers from dominating performance, and to achieve an acceptable performance with 

a reasonable signal power level, Forward Error Correction (FEC) coding is essential [35, 
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130].  The goal of FEC coding is to improve the BER performance of power-limited 

and/or bandwidth limited channel by adding structured redundancy to the transmitted 

data. 

Convolutional coding is one commonly used FEC scheme.  In the convolutional 

coding, the input bits are convolved with a binary impulse response to produce the output 

bits.  The convolutional encoding can be implemented by simple shift registers and 

modulo-2 adders.  Decoding of convolutional codes is more often performed using the 

Viterbi algorithm, which is an efficient way to obtain the optimal maximum likelihood 

estimate of the encoded sequence.  The complexity of the Viterbi algorithm grows 

exponentially with the constraint length.  Hence, practical implementations of Viterbi 

algorithm do not go further than a constraint length of about 10. 

FEC coding is not designed to deal with error bursts.  Therefore, interleaving is 

applied to spread bit errors, which occur in bursts rather than being randomly scattered.  

Interleaving randomizes the occurrences of bit errors prior to decoding.  At the 

transmitter, the coded bits are arranged in a certain way such that adjacent bits are 

separated by several bits after interleaving.  At the receiver, the reverse permutation is 

performed before FEC decoding.  A commonly used interleaving scheme is block 

interleaving, where input bits are written in a matrix column by column and read out row 

by row.   

OFDM is a two-dimensional system, where interleaving can be performed in both 

time and frequency domains.  Applying time-frequency interleaving in OFDM systems 

distributes bit errors over the whole signal bandwidth and the time interleaving depth. 
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Figure 16: The block diagram of an OFDM system suffering Carrier Frequency Offset.  In the OFDM system, the modulated signals 

sndk )'(' , 1,...,1,0 −= Kk , are mapped to orthogonal subcarriers by an M-point IFFT operation.  The number of data-carrying 

subcarriers is generally fewer than the number of IFFT points, i.e., KM > .  The guard time is added between the OFDM symbols.  In 

practice, there exists a frequency offset Δf  between the local oscillators of the transmitter and the receiver 
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Modulation 

There are two modulation schemes in OFDM systems: coherent modulation and 

differential modulation.  In coherent modulation, the data symbols to be transmitted are 

directly mapped to the modulation symbols.  Differential modulation occurs when the 

transmitted information is contained in the quotient of two successive modulation 

symbols.  Since OFDM is a two-dimensional scheme, differential modulation can be 

applied either in time direction, embedded in different OFDM symbols, or in the 

frequency direction, inserted in different subcarriers [101, 102]. 

In differential modulation, no channel estimation procedure is necessary, and 

hence demodulation is quite simple to implement.  Due to its low complexity, differential 

modulation is widely employed in OFDM systems.  The main disadvantage associated 

with differential modulation is the performance loss in terms of SNR compared with 

coherent modulation. 

In [46], a novel two–dimensional differential demodulation scheme was proposed 

that for the most part overcomes the degrading effects of differential demodulation 

compared with coherent modulation.  For this scheme, neither a change in the transmitter 

nor knowledge about the transmitted information is necessary.  The efficiency of the 

algorithm can be adjusted by the iteration depth and the chosen criteria. 

Consider that the OFDM system has K  parallel information symbols, sndk )'( , 

1,...,1,0 −= Kk .  For the subcarrier k , the information symbol )(ndk  is differentially 

modulated to produce the transmitted signals )(' ndk  in time direction as: 

)()1(')(' ndndnd kkk ×−=                                                                                (3.1.a) 

or in the frequency direction as: 
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)()(')('1 ndndnd kkk ×=+                                                                                   (3.1.b) 

For differential modulation in time direction, the channel coherence time must be 

larger than the symbol duration to ensure the channel transfer factors are approximately 

equal in two successive symbols.  Thus, differential modulation in the time direction is 

suitable for slow-fading channels. 

For differential modulation in frequency direction, the channel coherent 

bandwidth has to be larger compared with the subcarrier spacing.  However, if there are a 

large number of subcarriers in OFDM systems, small difference exists between the 

respective attenuations and phase rotations of two successive subcarriers.  Differential 

modulation in the frequency direction works well for flat-fading channels. 

IFFT Operation 

In the OFDM system, the transmitted signals sndk )'('  are mapped to 

M orthogonal subcarriers by an M-point IFFT.  The number of the transmitted signal, K , 

is fewer than or equal to the number of orthogonal subcarriers, M , i.e.  

KM ≥                                                                                                                  (3.2) 

Without loss of generality, the sndk )'('  are modulated onto the first K  subcarriers, and 

the remaining KM −  subcarriers are virtual subcarriers.  Thus, the transmitted signals in 

the time domain, 1,...,1,0),( −= Mmnbm , are expressed as: 
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Inserting Guard Time 

The guard time, which is cyclically extended, is added in between adjacent 

OFDM symbols.  The length of the guard time is longer than the maximum delay of the 

fading channel in order to avoid Intersymbol Interference (ISI). 

The OFDM symbol duration is sT , and the guard time is gT .  The ADC sampling 

in Fig.15 is defined as T .  The following relations are valid. 

MTTs =                                                                                                            (3.4.a) 

and 

GTTg =                                                                                                            (3.4.b) 

where G  is the number of guard samples. 

Transmitted Signals 

The transmitted signal )(tu  is given by: 
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where )(twin  is the window function defined as: 
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Fading Channels 
The multipath fading channel is assumed to be quasi-stationary, i.e., channel 

variances are negligible during the transmission of one OFDM symbol, but channel 

variances are present at the successive OFDM symbols.  The fading channel is modeled 

as: 
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where P  is the total number of fading paths, and pρ  are independent Rayleigh-

distributed time-variant complex amplitude.   

The channel transfer factor is defined as: 
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Relative Carrier Frequency Offset 
Before an OFDM receiver can demodulate subcarriers, it has to perform at least 

two synchronization tasks.  First, it has to find out where the symbol boundaries are and 

what the optimal timing instants are, in order to minimize the effects of ISI.  Second, it 

has to estimate and correct for the Carrier Frequency Offset (CFO) of the receive signal, 

because any CFO introduces ICI.  In this dissertation, only CFO is discussed. 

In practice, there exists a frequency offset Δf  between the local oscillators of the 

transmitter and the receiver, as in Fig. 15.  The relative CFO with respect to the 

subcarrier spacing is defined as: 

sTfe Δ=                                                                                                                (3.9) 

Received Signals in the Time Domain 

The baseband received signal )(tz  is expressed as: 
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where )(tv  is white Gaussian noise. 

The received signals in the time domain before the FFT demodulation, snrm )'( , 

are given by: 
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where the snvm )'(  are the independent, complex circular, and white Gaussian noise. 

Since the guard time is longer than the maximum delay of the fading channel, expressed 

as: 

PG ≥                                                                                                                 (3.12) 

(3.11) can be simplified as: 
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Received Signals in the Frequency Domain 

The frequency-domain received signals after FFT processing, snxl )'( ,are given 

by: 
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Define the ICI coefficient kla .  as: 
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The independent Gaussian noise snvl )'('  are given by: 
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(3.14) can be rewritten as: 
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The received signal vector )(nX , the transmitted signal vector )(' nD , and the 

noise vector )(nV  are defined as: 

[ ]TMl nxnxnxnX )(),..,(),...,()( 10 −=                                                                (3.18.a) 

[ ]TKk ndndndnD )('),..,('),...,(')(' 10 −=                                                          (3.18.b) 

and 

[ ]TMl nvnvnvnV )('),...,('),...,(')(' 10 −=                                                            (3.18.c) 

respectively. 

The received signal vector )(nX  is expressed in term of the transmitted signal 

vector )(' nD  in matrix form as: 

)(')(')( nVnAHDnX +=                                                                                   (3.19) 

where H  is a K  by K  diagonal matrix as: 

( )10 ,...,,..., −= Kk hhhdiagH                                                                                (3.20) 
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and A  is the ICI matrix of the form as: 
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The desired signal vector )(nS  is defined as: 

[ ]
)('        

)(),...,(),...,()( 10

nHD
nsnsnsnS T

Kk

=
= −                                                                     (3.22) 

Substituting (3.22) into (3.19) yields 

)(')()( nVnASnX +=                                                                                        (3.23) 

3.4 Properties of Intercarrier Interference Coefficients 

If there are no frequency offsets, 0=e , the following properties are valid. 

kla kl ==    ,1.                                                                                                  (3.24.a) 

and  

kla kl ≠=    ,0.                                                                                                 (3.24.b) 

Thus, no ICI occurs.  On the other hand, if 0≠e , then 

kla kl =≤    ,1.                                                                                                 (3.25.a) 

and  

kla kl ≠≠    ,0.                                                                                                 (3.25.b) 

In this case, subcarriers are no longer orthogonal, and ICI exists.  It is necessary to study 

properties of the ICI coefficient kla ,  in order to develop the compensation approaches 

developed in chapter four and five. 
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Summations of ICI Coefficients 

The following formulae about kla ,  can be derived. 
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Refer to Appendix B for the detailed derivation of the above formulae.  In (3.26), 

the summation of 
2

,kla  equals one, a constant unrelated to the CFO.  In fact, the 

summations of 
4

,kla  and mkaa mlkl ≠,
2

,
2

,  are the unimode functions of CFO, shown in 

(3.27) and (3.28).  Intuitively, the properties in (3.27) and (3.28) indicate that the fourth-

order statistical properties can be used to estimate the CFO.   

ICI Matrix 
In the case of no virtual subcarriers in OFDM systems, i.e. MK = , the ICI matrix 

A  is square.  Let us define the first row of A as: 

[ ]1,0,00,01 ,...,,..., −= Mk aaaA                                                                                  (3.29) 

Note that the ( )kl,  entry of the A  is given by: 

( ) Mlkkl aa   mod  ,0, −=                                                                                                (3.30) 

Hence, the ICI matrix A  is circulant [44].  The eignvalues of the ICI matrix A , sm 'ψ , 

are given by: 
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It is clear that the sm 'ψ  are simply the DFT of the sequence ma .  The eignvectors of the 

ICI matrix A , sUm ' , are given by: 

( )( )TMMmMm
m eeMU 12221 ,...,,1 −−−−= ππ                                                            (3.32) 

Consequently, the ICI matrix A  can be expressed as: 

HUUA Ψ=                                                                                                         (3.33) 

where the matrix U  is given by: 
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and the matrix Ψ  is given by: 

( )10 ,...,,..., −=Ψ Mmdiag ψψψ                                                                            (3.35) 

As shown in (3.33), the A  is similar to a diagonal matrix.   

The inverse matrix of the A  is expressed as: 

( )
UU

UUA
H

H

1

11

      −

−−

Ψ=

Ψ=                                                                                                (3.36) 

[44] states that inverses, products, and sums of circulant matrices are also 

circulant.  Thus, the inverse matrix of A  is also circulant.  The conjugate transpose 

matrix of A  is given by: 
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( )
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UU
UUA
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                                                                                                (3.37) 

From (3.36) and (3.37), it is easy to obtain the following equation as: 

HAA =−1                                                                                                            (3.38) 

Thus, A  is unitary.  When 5.0<e , the magnitude of the diagonal element of A  is larger 

than any off-diagonal element as: 

0or   0for           ,,0,0 ≠≠> klaa kl                                                                    (3.39) 
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CHAPTER FOUR: A BLIND MAXIMUM LIKELIHOOD CARRIER 
FREQUENCY OFFSET CORRECTION APPROACH FOR OFDM 

SYSTEMS 

In this chapter, a Maximum Likelihood Carrier Frequency Offset Correction (ML-

CFOC) approach is proposed for Orthogonal Frequency Division Multiplexing (OFDM) 

systems.  The ML-CFOC exploits the independence between the desired signals, and is 

based on a simplified Independent Component Analysis (ICA) algorithm.  The proposed 

ML-CFOC approach is implemented successfully for OFDM systems over multipath 

fading channels without requiring a training sequence.  Computer simulations are given, 

which illustrate the optimal performance of the ML-CFOC [70-72]. 

This chapter is organized as follows.  Section 4.1 proposes the ML-CFOC, which 

can greatly enhance the system Signal-to-Noise Ratio (SNR).  In Section 4.2, the 

simplified natural-gradient ICA algorithm is used to compensate for the CFO.  

Simulation results are presented in Section 4.3.  Finally, conclusions are drawn in Section 

4.4. 

4.1 Proposed Maximum Likelihood Carrier Frequency Offset Correction Approach 

Maximum Likelihood Analysis 

In (3.17), the snvl )'('  are modeled as identically-distributed, independent 

Gaussian random variables with zero mean and variance 2
vσ .  Thus, the snxl )'(  are also 
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independent and Gaussian-distributed.  Consequently, the maximum likelihood function 

of the A  and the )(nS  is given by [61]: 
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              (4.1) 

Equivalently, the Maximum Likelihood estimate for )(nX  is the minimum of 

( ))(,' nXAL  with respect to )(nX , where  
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The derivation of ))(,(' nSAL  respect to )(nS  is given by: 

)(2)(2
)(

))(,(' nXAnS
nS

nSAL H−=
∂                                                                        (4.3) 

Let (4.3) to be zero, and the maximum likelihood estimate of )(nS  is computed as: 

)()( nXAnS H=                                                                                                    (4.4) 

It is clear that the maximum likelihood solution to (4.1) is to find HA .  However, (3.38) 

states 

1−= AAH                                                                                                              (4.5) 

Substituting (4.5) into (4.4) yields 

)()(ˆ 1 nXAnS −=                                                                                                    (4.6) 

The effectiveness of the ML-CFOC can be measured by the Signal-to-Noise Ratio 

(SNR) enhancement, which is described in the following. 
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SNR Enhancement Using the ML-CFOC 

The application of the ML-CFOC does not enhance noise power but increases the 

signal power.  Consequently, the system SNR increases greatly.  The desired signals 

snsk )'(  are assumed to have the same signal energy 2
sσ .  The SNR of the received signal 

)(nxl  at the input of the ML-CFOC block is given by: 
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After the ML-CFOC compensation, the signal power is 2
sσ , and the noise power 

is computed as: 
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The SNR at the output of the ML-CFOC block is given by: 

0

2

N
SNR s

out
σ

=                                                                                                         (4.9) 

Comparing the SNR in (4.7) with the SNR in (4.9), the SNR increases 

considerably since 1
2

0,0 <a .  This is because the ML-CFOC collects the interference 

from other subcarriers into the desired subcarrier.  This interference power becomes the 

signal power in the desired subcarrier.  In addition, the SNR in (4.9) is independent of 

CFO, and is the same as the SNR of the received signal )(nxl  for the system without 

CFO.  Thus, the ML-CFOC removes the deleterious effects of CFO. 

In summary, given the received signal vector )(nX , the maximum likelihood 

estimate of the )(nS  is to find the matrix 1−A .  In the next section, the well-known 
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natural-gradient ICA algorithm will be applied to obtain 1−A  to achieve maximum 

likelihood estimate as (4.6) shows. 

 

 

Figure 17: The proposed Maximum Likelihood Carrier Frequency Offset Correction 

(ML-CFOC) approach based on the simplified natural-gradient Independent Component 

Analysis (ICA) algorithm 

4.2 Simplified Natural-Gradient Independent Component Analysis Algorithm 

In most practical systems, the desired signals snsk )'(  are independent, complex-

valued, zero-mean, non-Gaussian, and stationary.  According to the Central Limit 

Theorem (CLT), the distribution of )(nxl , which is the linear combination of snsk )'(  due 

to CFO, is more Gaussian than the distribution of )(nsk .  This property provides the 
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foundation for applying ICA to estimate 1−A  from the snxl )'( .  Therefore, ICA 

algorithms can be employed to determine the separation matrix W , which transforms 

)(nX  into )(~ nS . )(~ nS  is the estimate signal vector of )(nS  and suffers from the 

permutation and gain ambiguities.  The separation matrix W  should be found such that 

[ ]
        )(          

)(~),...,(~),...,(~)(~
10

nWX
nsnsnsnS T

Ki

=
= −                                                                     (4.10) 

where W  is a K  by M  matrix, whose l th row and k th column element is denoted as 

klw , . 

The natural-gradient ICA algorithm specified at Table 2 can be used to estimate 

W .  Usually, a whitening preprocess is used in ICA algorithms.  This makes the 

combination matrix unitary, which accelerates the convergence of the subsequent ICA 

algorithm.  In this application, the ICI matrix A  is already unitary as shown in (3.38).  

Thus, the whitening step is eliminated, resulting in a simplified ICA algorithm.  The ML-

CFOC approach employing the simplified natural-gradient ICA algorithm is shown in 

Fig.17.   

Solving Permutation Ambiguity 

The estimated signal vector )(ˆ nS  without the permutation ambiguity is defined as: 

[ ]TKk nsnsnsnS )(ˆ),...,(ˆ),...,(ˆ)(ˆ
10 −=                                                                    (4.11) 

In each row l  of the matrix W , the element with the largest magnitude, klw , , is found.  In 

(4.10), the row l  of the matrix W  recovers )(~ nsl , which actually corresponds to the 

desired signal )(nsk .  Thus, the )(ˆ nsk  is given by: 
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)(~)(ˆ nsns lk =                                                                                                       (4.12) 

Solving Gain Ambiguity 

After the ML-CFOC compensation, the )(ˆ nsk  is expressed as: 

)('ˆ)(ˆ ndhns kkkk β=                                                                                             (4.13) 

where the unknown complex number kβ  denotes the gain ambiguity, and )('ˆ ndk  is the 

estimation of the transmitted signal )(' ndk . 

As expressed by (4.13), kβ  can be absorbed into the channel transfer factor kh .  

Thus, the gain ambiguity can be solved in the demodulation processing.  For coherent-

demodulation OFDM systems, the channel estimation can identify the value of kk hβ  [88].  

Differential-demodulation OFDM systems do not need channel knowledge, and the 

effects of kβ  are canceled in the demodulation process.  

The proposed ML-CFOC is summarized in Table 5. 
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Table 5 
Outline of the proposed ML-CFOC   

Task: Estimate the source signal vector )(nS  from their linear 

combination vector as: 

)(')()( nVnSnX += A . 

Step 1. Initialize the separation matrix W . 

Step 2. Obtain the )(~ nS  as: 

)()(~ nWXnS =  

Step 3. Obtain the nonlinear vector )(~ nSnon  as: 

[ ]TKknon nsfnsfnsfnS ))(~())),...,(~()),...,(~()(~
10 −=  

where )(~)(~))(~( 2 nsnsnsf kkk =  is used. 

Step 4. Use the natural-gradient ICA algorithm to update the separation 

matrix W . 

[ ]( )WnSnSEIWW H
non  )(~)(~

−+← μ  

Step 5. Normalize W  using 

( ) 21−
← WWWW H  

Step 6. Check the convergence of W .  If the convergence is not reached, 

go back to Step 3.  Otherwise, proceed to Step 7. 

Step 7. Solve the permutation ambiguity. 

Step 8.Solve the gain ambiguity. 
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4.3 Simulation Results 

In this section, simulation results are presented to confirm the effectiveness of the 

proposed ML-CFOC .  The simulation setting, shown in Table 6, is used throughout this 

chapter unless noted otherwise.   

Simulation Example 1: Figure 18 shows the crosstalk error learning curve of the 

ML-CFOC under two different SNR levels, dBSNR 10=  and dBSNR 30= .  Referring to 

Fig.18, the performance of the ML-CFOC degrades as the SNR decreases.  The ML-

CFOC converges after about 200 iterations.  For the general W  estimation case, the 

natural-gradient ICA algorithm converges in thousands of iterations.  Thus, the 

computation complexity of the ML-CFOC is relatively low.  This is because the 

separation matrix W  only depends on the value of the relative CFO. 

Simulation Example 2: Figure 19 shows the BER of the simulated OFDM 

system employing the proposed ML-CFOC for different values of relative CFO.  For 

comparison, the BER of the same system without CFO compensation is also plotted.  As 

expected, these two BER’s are identical in the case of 0=e .  This observation shows that 

the ML-CFOC does not degrade the system performance in the absence of CFO.  For 

4.04.0 ≤≤− e , the BER of the OFDM system employing the ML-CFOC is almost 

constant, and is the same as the BER in the case of 0=e .  This result shows that the 

proposed ML-CFOC technique successfully removes the undesirable effects of the CFO. 
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Simulation Example 3: For different SNR values, the BER of the simulated 

OFDM system employing the proposed ML-CFOC and no CFO compensation is shown 

in Fig. 20.  This figure illustrates that the ML-CFOC approach improves the system’s 

performance over a wide range of SNR.  

 

Table 6 
Simulation parameters for the proposed ML-CFOC   

Channel coding scheme Convolutional coding 

Coding rate ½ 

Decoding Viterbi hard decoding 

Modulation scheme Differential Quadrature Phase Shift Keying 

(DQPSK) 

The number of all subcarriers 8 

The number of virtual subcarriers 0 

The relative Carrier Frequency Offset 0.2 

The total bandwidth 10MHz 

Doppler frequency 100kHz 

The fading channel  Two Rayleigh-fading taps, whose average 

path power is 0.38 and 0.62. 

The number of processing OFDM symbols  10,000 

Signal to Noise Ratio (SNR) 20dB 

The number of Monte Carlo trial 100 
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Figure 18: Crosstalk error evolution versus iteration number employing the proposed 

ML-CFOC under dBSNR 10=  and dBSNR 30=  for the relative CFO 2.0=e  

 

 

Figure 19: BER of the simulated OFDM system employing the proposed ML-CFOC and 

no CFO compensation versus the relative CFO under dBSNR 20=  
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Figure 20: BER of the simulated OFDM system employing the proposed ML-CFOC and 

no CFO compensation versus SNR for the relative CFO 2.0=e  

4.4 Conclusions 

In this chapter, a novel Maximum Likelihood Carrier Frequency Offset 

Correction (ML-CFOC) approach based on Independent Component Analysis (ICA) is 

proposed.  Computer simulations illustrate that the proposed ML-CFOC successfully 

compensates for a wide range of Carrier Frequency Offset (CFO) under different noise 

levels and over multipath fading channels.  This performance improvement has been 

achieved at the expense of a modest increase in the computational requirements. 
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CHAPTER FIVE: HIGH-PERFORMANCE BLIND CARRIER 
FREQUENCY OFFSET ESTIMATOR FOR OFDM SYSTEMS  

In this chapter, a novel Blind Carrier Frequency Offset Estimator (BCFOE) is 

proposed to identify Carrier Frequency Offset (CFO) in Orthogonal Frequency Division 

Multiplexing (OFDM) systems.  The cost function in the proposed BCFOE is based on 

the fourth-order cumulant, Kurtosis.  Both the gradient method and the curve-fitting 

method are employed to find the minimum of the cost function, which corresponds to the 

estimating CFO.  Compared with the existing low-complexity blind CFO estimation 

technique [25, 78, 128], the BCFOE, for the same computational complexity, has better 

performance.  Simulation results confirm the high-performance of the proposed BCFOE 

[73, 74]. 

This chapter is organized as follows.  In Section 5.1, Kurtosis is used to construct 

the cost function of the BCFOE, which is optimized by the gradient method and the 

curve-fitting method.  The performance and the computational complexity of the 

proposed BCFOE are compared with the blind CFO estimator [25, 78, 128] in Section 5.2.  

Simulation results are presented in Section 5.3.  Finally, conclusions are drawn in Section 

5.4. 
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5.1 Proposed Blind Carrier Frequency Offset Estimator 

Estimation Scheme  

As shown in chapter three, CFO destroys the orthogonality between subcarriers in 

OFDM systems, and thus introduces Intercarrier Interference (ICI).  To recover the 

source signals snsk )'(  properly, the CFO, e , needs to be estimated and compensated 

before the Fast Fourier Transform (FFT) operation. 

 

 

Figure 21: The block diagram of the proposed Blind Carrier Frequency Offset Estimator 

(BCFOE) 
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The proposed BCFOE is shown in Fig. 21.  The snxl )'(  are fed into the proposed 

BCOFE to estimate e .  The BCFOE is comprised of a cost function based on Kurtosis 

and an optimizing operation to find ê  that minimizes the cost function.  Then, the ê  is 

used to correct the phase rotations caused by the e  in the snrm )'(  as shown in (3.13). 

The received signals snxl )'(  after FFT processing are given by: 
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where the kla .  is the ICI coefficient given by: 
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As shown in chapter three, intuitively, the fourth-order statistical properties can 

be used to estimate the CFO.  In the next section, Kurtosis, the fourth-order cumulant, is 

used to build the cost function of the BCFOE. 

The Cost Function of the Proposed BCFOE 

The variance and the fourth-order moment of the snsk )'(  are defined as: 

[ ] 22)( sk nsE σ=                                                                                                  (5.3a) 

and 

[ ] 44)( sk nsE γ=                                                                                                   (5.3b) 

In general, the snsk )'(  are sub-Gaussian signals with zero mean [5], and their Kurtoses 

are negative as: 
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Assume that the source signals, snsk )'( , are independent.  According to the 

Central Limit Theorem (CLT), the distribution of the linear combination of snsk )'(  is 

more Gaussian than the distribution of any individual )(nsk .  Thus, the distribution of 

)(nxl  tends to be more non-Gaussian when the ê  approaches the e .  When the perfect 

CFO estimation is achieved, i.e., ee =ˆ , the distribution of the )(nxl  is the most non-

Gaussian. 

According to [14], Kurtosis of a zero-mean, complex random variable is defined 

as: 

[ ] [ ]( ) [ ]22224 )()(2)( ))(( nxEnxEnxEnxKurt llll −−=                                         (5.5) 

It is preferable to use all snxl )'(  to estimate CFO.  The cost function of the proposed 

BCFOE is chosen as: 
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After mathematical manipulations, shown in Appendix C, (5.6) can be rewritten 

as: 

( )( ) beeaeJ +−= ˆ2cos )ˆ( π                                                                                   (5.7) 

where a  and b  are constants defined as:  
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and 
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From (5.4), it is clear that  

0<a                                                                                                                   (5.10) 

The cost function given by (5.7) has a global minimum at ee =ˆ .  In fact, the cost 

function is a nonlinear function of ê .   

In practice, the cost function given by (5.7) is evaluated over N  OFDM symbols 

as: 
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Proposed Gradient BCFOE 

The gradient method is used to find ê , which minimizes the cost function in 

(5.11).  If the initial value of ê  is chosen as zero, then the gradient method is guaranteed 

to converge such that the ê  approaches the e .  The gradient of the cost function in (5.11) 

is given by: 
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where 
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Thus, the proposed gradient BCFOC is summarized in Table 7. 
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Table 7 
Outline of the proposed gradient BCFOE  

Task: Estimate the CFO from the received signals in the frequency 

domain snxl )'( , which are linear combinations of the source signals 

snsk )'(  as: 

1,...,1,0     ),(')( )(
1

0
, −=+= ∑

−

=

Mlnvnsanx l

K

k
kkll  

Step 1. Choose the initial value 0ˆ =e . 
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e
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ˆ
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Step 3. Compute the gradient of the cost function as: 
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Step 4. Update ê  as  

e
eJuee
ˆ

)ˆ(ˆˆ
∂

∂
−←  

Step 5. Check for convergence of ê .  If so, go to step 2. Otherwise, stop 

the iteration. 
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Proposed Curve-Fitting BCFOE 

Based on the exact form of the cost function in (5.7), the minimum of the cost 

function can be found using the curve-fitting method.  Evaluate the cost function (5.11) at 

the points of 41ˆ =e , 41ˆ =e , and 41ˆ =e , respectively, as: 
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From (5.15), (5.16), and (5.17), the following two formulae are derived as: 
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From (5.18) and (5.19), the e  is obtained as follows: 
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The proposed curve-fitting BCFOC algorithm is summarized in Table 8.  The 

curve-fitting BCFOE has the lower computation complexity and is more attractive than 

the gradient BCFOE. 

5.2 Comparison with the YG-CFO Estimator 

In [25, 78, 128], the YG-CFO estimator exploits the fourth-order statistical 

properties of the snxl )'(  to estimate CFO.  The YG-CFO estimator can uniquely identify 

the e  in the range of -0.5 and 0.5.  The cost function of the YG-CFO estimator was 

proposed as: 
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The gradient of the cost function in (5.21) was given by: 
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The gradient YG-CFO estimator was derived as the same as the gradient BCFOE; 

the curve-fitting YG-CFO estimator takes the same form as curve-fitting BCFOE.  The 

computational cost of the YG-CFO estimator is low, and its performance is superior to 

the blind CFO estimator in [11].  However, the YG-CFO estimator does not consider 

noise effects.  In the following, it will be shown that the proposed BCFOE outperforms 

the YG-CFO estimator, for the same computational complexity. 
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Table 8 
Outline of the proposed curve-fitting BCFOE  

Task: Estimate the source signal vector )(nS  from their linear 

combination vector  

)(')()( nVnSnX += A . 

Step 1. Evaluate the cost function at the points of 41ˆ −=e , 41ˆ =e , and 

41ˆ =e  to obtain the corresponding cost function values, )41(−J , )0(J , 

and )41(J . 

Step 2. Compute two intermediate values as 
( ) ( )

2
4141 −−

=
JJχ  

and  

( ) ( ) ( )
2

41410 −+
−=
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Step 3. Compute the CFO estimate ê  as 
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1ê  

 If 0>γ  and 0<χ , then 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

γ
χ

π
1tan

2
15.0ê  
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Performance Comparison between the BCFOE and the YG-CFO Estimator  

In principle, all valid cost functions reach their minima when the model holds; in 

this sense, no one cost function is better than another.  In practice, however, cost 

functions are only evaluated from finite data samples, which are corrupted by noises.  

Thus, some cost functions are more subjected to noise effects than others. 

It is well known that Kurtosis of Gaussian noise is zero.  Thus, given a non-

Gaussian signal that is corrupted by additive Gaussian noise, applying Kurtosis in cost 

functions theoretically results in elimination of the noise effects.  This feature of Kurtosis 

means that using Kurtosis to estimate a Gaussian-corrupted signal leads automatically to 

noise reduction. 

Kurtosis is used in the cost function of the BCFOE algorithm as shown in (5.11).  

This is in contrast with the cost function of the YG-CFO estimator given by (5.21).  Thus, 

the performance of the YG-CFO estimator is more degraded by Gaussian noise than that 

of the proposed BCFOE.  That observation is confirmed by simulation results. 

Computational Complexity Comparison between the Gradient BCFOE and the 
Gradient YG-CFO Estimator 

The computational complexity here is measured in terms of real-number 

multiplications that a CFO estimator needs to optimize its cost function.  Since both 

estimators need the values of )(nxl  and/or 
e
nxl

ˆ
)(

∂
∂ , computation loads to obtain these two 

values are not taken into account.  Given the values of )(nxl  and 
e
nxl

ˆ
)(

∂
∂ , computing 
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2)(nxl and ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂∗

e
nxnx l

l ˆ
)()(Re  needs two real-number multiplications, respectively.  

Computing 4)(nxl  from 2)(nxl  needs one real-number multiplication. 

Computing the gradient of the BCFOE cost function in (5.12) needs MN5  real-

number multiplications.  Computing the gradient of the YG-CFO estimator’s cost 

function, shown in (5.22), also needs MN5  real-number multiplications.  Thus, the 

computational complexity of the gradient BCFOE is the same as the gradient YG-CFO 

estimator in terms of real-number multiplications. 

Computational Complexity Comparison between the Curve-Fitting BCFOE and the 
Curve-Fitting YG-CFO Estimator  

For the proposed curve-fitting BCFOE, computing )ˆ(eJ  at one specific point ê  

needs ( )MN 13 +  real-number multiplications, which approximately equals MN3 .  In the 

curve-fitting YG-CFO estimator, computing )ˆ(eJs  at one specific point ê  requires MN3  

real-number multiplications.  Thus, the computational complexity of the curve-fitting 

BCFOE approximates the curve-fitting YG-CFO estimator in terms of real-number 

multiplications. 
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Table 9 
Simulation parameters for the proposed BCFOE 

Channel Coding Scheme Convolutional Coding 

Channel Coding Rate 21  

Decoding Viterbi Hard Decoding 

Modulation scheme QPSK or 16QAM 

The total number of subcarriers 64 

The number of virtual subcarriers 12 

The relative Carrier Frequency Offset e  0.1 

The total bandwidth 20MHz 

Doppler frequency of the fading channel 200kHz 

Multipath of the fading channel  6 Rayleigh-fading paths with 

exponentially decaying power 

The number of processing OFDM symbols  20 

Signal to Noise Ratio (SNR) 20dB 

The number of Monte Carlo trial 1,000 

 

5.3 Simulation Results 

In this section, the performance of the proposed gradient and curve-fitting 

BCFOE is illustrated and compared with that of the corresponding YG-CFO estimators.  

The specification of the simulated OFDM system follows IEEE 802.11a [131].  The 
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simulated multipath fading channel has six independent, Rayleigh-fading paths.  The 

average path power, [ ]2
)(nhE p , 5,...,1,0=p , is the exponentially decaying function of 

the excess delay p , expressed as: 

[ ]
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−
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32
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q

q

p

p

e

enhE .                                                                                       (5.23) 

Quadrature Phase Shift Keying (QPSK) is used in simulation examples, which 

compute Mean Square Error (MSE) of the estimated CFO.  For Simulation examples 

showing the BER of the simulated OFDM system, the exact channel parameters are 

utilized in the coherent demodulation.  It was shown that the YG-CFO estimator can 

achieve almost optimal BER performance for QPSK-modulated OFDM systems [128].  

Thus, 16-Quadrature Amplitude Modulation (16QAM) is used to show the BER of the 

simulated OFDM system since 16QAM-modulated OFDM systems are more sensitive to 

the CFO than QPSK-modulated OFDM systems.  The simulation parameters shown in 

Table 9 are used throughout this chapter unless noted otherwise. 

Proposed Gradient BCFOE 

Simulation Example 1. Figure 22 shows the learning curves of the gradient 

BCFOE and the gradient YG-CFO estimator under two different SNR levels, dBSNR 0=  

and dBSNR 30= .  As shown in Fig.22, the gradient BCFOE has faster convergence 

properties.  The performance of both approaches is degraded as the SNR is decreased.  At 

the same noise level, the gradient BCFOE provides better performance. 
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Simulation Example 2. Figure 23 shows MSE of the gradient BCFOE and the 

gradient YG-CFO estimator versus the number of processing OFDM symbols.  For both 

approaches, the MSE is dependent on the number of processing OFDM symbols.  For the 

single OFDM symbol, MSEs of both estimators are the same, since the cost functions in 

(5.11) and (5.21) are equal when 1=N .  However, with numerous processing OFDM 

symbols, the performance improvement of the BCFOE is demonstrated. 

Simulation Example 3. The MSE of the gradient BCFOE and the gradient YG-

CFO estimator versus SNR is illustrated in Fig. 24.  Under different noise levels, the 

performance improvement employing the BCFOE is illustrated. 

Simulation Example 4: Figure 25 shows the BER of the simulated system 

employing the gradient BCFOE, the gradient YG-CFO estimator, and perfect CFO 

compensation over a wide range of CFO conditions.  Both algorithms can compensate 

CFO effects over a wide range of CFO.  In fact, the BER compensated by the BCFOE is 

lower than that by the YG-CFO estimator. 

Simulation Example 5: The BER of the simulated system employing the gradient 

BCFOE and the gradient YG-CFO estimator to retrieve and compensate for the CFO is 

given in Fig. 26.  For comparison, the BER of the same system with perfect CFO 

compensation and no CFO compensation are also plotted.  As expected, without CFO 

compensation, the system performance suffers serious degradation because of ICI.  

Better BER performance of the proposed BCFOE is maintained over a wide range SNR 

values, especially for high SNR values. 
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Figure 22: MSE evolution of the gradient BCFOE and the gradient YG-CFO estimator 

versus iteration number for the relative CFO 1.0=e  

 

Figure 23: MSE of the gradient BCFOE and the gradient YG-CFO estimator versus the 

number of processing OFDM symbols under dBSNR 20=  for the relative CFO 1.0=e   
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Figure 24: MSE of the gradient BCFOE and the gradient YG-CFO estimator versus SNR 

for the relative CFO 1.0=e  

 

Figure 25: BER of the simulated system with the gradient BCFOE compensation, the 

gradient YG-CFO estimator compensation, and perfect CFO compensation versus the 

relative CFO under dBSNR 20=  
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Figure 26: BER of the simulated system with the gradient BCFOE compensation, the 

gradient YG-CFO estimator compensation, perfect CFO compensation, and no CFO 

compensation versus SNR for the relative CFO 1.0=e  

 

Proposed Curve-Fitting BCFOE 

Simulation Example 1: Figure 27 shows the MSE of the proposed curve-fitting 

BCFOE and the curve-fitting YG-CFO estimator versus the number of processing OFDM 

symbols.  For one processing OFDM symbol, the MSE of both CFO estimators is the 

same.  This is because two cost functions shown in (5.11) and (5.21) are the same when 

1=N .  However, when processing more OFDM symbols, the performance improvement 

of the BCFOE is demonstrated in Fig.27. 
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Simulation Example 2: Figure 28 shows the MSE of the proposed curve-fitting 

BCFOE and the curve-fitting YG-CFO estimator versus SNR.  The results illustrate the 

performance improvement employing the curve-fitting BCFOE for different noise levels.   

Simulation Example 3: Figure 29 shows the BER of the 16QAM-modulated 

OFDM system employing the proposed curve-fitting BCFOE for different values of CFO.  

For comparison, the BER of the same system employing the curve-fitting YG-CFO 

estimator is also plotted.  Both CFO estimators can compensate for CFO effects over a 

wide range of CFO.  For the 16QAM-modulated OFDM system, perfect CFO 

compensation cannot be achieved by these two CFO estimators.  However, the BER 

employing the curve-fitting BCFOE is much lower than that obtained using the curve-

fitting YG-CFO estimator. 

Simulation Example 4: Figure 30 shows the BER of the 16QAM-modulated 

OFDM system employing the proposed curve-fitting BCFOE, the curve-fitting YG-CFO 

estimator, perfect CFO compensation, and no CFO compensation for different Signal to 

Noise Ratio (SNR) values.  It is clear that the proposed curve-fitting BCFOC outperforms 

the curve-fitting YG-CFO estimator over a wide range of SNR, especially at high SNR 

values.   
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Figure 27: MSE of the curve-fitting BCFOE and the curve-fitting YG-CFO estimator 

versus the number of processing OFDM symbols under dBSNR 20=  for the relative 

CFO 1.0=e   

 

Figure 28: MSE of the curve-fitting BCFOE and the curve-fitting YG-CFO estimator 

versus SNR for the relative CFO 1.0=e  
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Figure 29: BER of the simulated OFDM system employing the curve-fitting BCFOE, the 

curve-fitting YG-CFO estimator, and perfect CFO compensation versus the relative CFO 

under dBSNR 20=  
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Figure 30: BER of the simulated OFDM system employing the curve-fitting BCFOE, the 

curve-fitting YG-CFO estimator, perfect CFO compensation, and no CFO compensation 

versus SNR for the relative CFO 1.0=e  

5.4 Conclusions 

In this chapter, a high-performance Blind Carrier Frequency Offset Estimator 

(BCFOE) is proposed for OFDM systems.  The proposed BCFOE can identify the Carrier 

Frequency Offset (CFO) within the range of half subcarrier spacing.  The BCFOE is 

based on Kurtosis, and has the same attractive computational properties as the YG-CFO 

estimator in [25, 78, 128].  However, the BCFOE achieves superior performance to the 
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YG-CFO estimator in the presence of noise.  This has been confirmed by extensive 

simulations. 
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CHAPTER SIX: CONTRIBUTIONS AND FUTURE WORK 

The research work presented in this dissertation examined the application of Blind 

Source Separation (BSS) via Independent Component Analysis (ICA) to wireless 

communications.  This chapter summarizes key contributions of this research, and 

outlines some further research directions.  

6.1 Major Contributions 

The research presented in this dissertation contains the following key 

contributions. 

In chapter two, a novel Frequency-Domain ICA (ICA-F) approach is proposed to 

separate and deconvolve digitally modulated signals traveling through frequency-

selective, slow fading channels.  In the ICA-F, the convolutive combination in the time 

domain is converted to multiple instantaneous combinations in the frequency domain.  

Then, the natural-gradient ICA algorithm is employed to separate the frequency 

components.  Finally, the inherent permutation and gain ambiguities associated with ICA 

are successfully solved.  Compared with existing time-domain approaches, the ICA-F is 

computationally efficient and possesses fast convergence.  Simulation results confirm the 

effectiveness of the proposed ICA-F. 
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In chapter four, a novel Maximum Likelihood Carrier Frequency Offset 

Correction approach (ML-CFOC) is proposed for OFDM systems.  The performance 

improvement of the ML-CFOC is achieved at the expense of a modest increase in the 

computational requirements without sacrificing the system bandwidth or increasing the 

hardware complexity.  Simulation results illustrate the appreciable improvement in the 

Bit Error Rate (BER) over a wide range of CFO situations and noise levels employing the 

proposed ML-CFOC. 

In chapter five, a high-performance Blind Carrier Frequency Offset Estimator 

(BCFOE) is proposed to identify CFO within the range of half subcarrier spacing.  The 

cost function of the BCFOC is based on the fourth-order cumulant, Kurtosis.  Both the 

gradient method and the curve-fitting method are used to optimize this cost function.  The 

BCFOE achieves superior performance over the existing blind CFO estimator [25, 78, 

128], referred to as the YG-CFO estimator, without increasing the computational 

complexity, sacrificing the system bandwidth, or increasing the hardware complexity.  

Extensive simulation results verify the superior performance of the proposed BCFOE in 

comparison with the YG-CFO estimator and the ML-CFOC technique. 

6.2 Future Research Work 

This research can be extended in many directions.  The major topics are as 

follows.  
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Novel ICA Algorithms with Prior System Knowledge 

In wireless communications, the receiver has prior knowledge about the source 

signals.  This available information includes modulation scheme, discrete distribution, 

constant modulus, and Probability Density Function (PDF).  This prior information 

should be incorporated into ICA algorithms in a suitable way to achieve optimal 

performance. 

Frequency-Domain Fast-Convergent ICA Algorithms 

As noted in chapter one, there are four kinds of fading channels:  

 flat, slow fading channel  

 frequency-selective, slow fading channel 

 flat, fast fading channel 

 frequency-selective, fast fading channel 

Frequency-selective fading and fast fading are two major obstacles to applying 

ICA to wireless communications.  In frequency-selective, fast fading channels, the 

combination model is convolutive and time-variant.  This model is challenging and hard 

to solve.  It would be interesting and useful to develop a fast-convergence ICA algorithm 

in the frequency domain to solve this combination model.   

Blind Carrier Frequency Offset Estimation for MC-CDMA and MIMO-OFDM 

Recently, a new Code Division Multiple Access (CDMA) system based on a 

combination of CDMA and OFDM signaling, Multicarrier-CDMA (MC-CDMA) [47, 88], 

has been proposed.  Similar to an OFDM system, the MC-CDMA system is made up of a 
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series of orthogonal subcarriers.  Unlike OFDM systems, where each subcarrier transmits 

a different symbol, MC-CDMA transmits the same data symbol over several subcarriers.  

The MC-CDMA transmitter can be implemented by concatenating a Direct Sequence 

CDMA (DS-CDMA) spreader and an OFDM transmitter.  The input data sequence is first 

converted into a number of parallel data sequences.  Then, each data sequence is 

multiplied by a spreading code.  The data in the spreading bits are modulated into the 

baseband by IDFT and converted back to serial data.  At the receiver, a coherent 

detection method is employed to successfully despread the signal.  The received signal, 

after downconversion and digitization, is first coherently detected with DFT.  Then, the 

received signal is multiplied by a gain factor.  Equal Gain Combining (EGC) and 

Maximum Ratio Combining (MRC) are standard combining techniques used in MC-

CDMA receivers.   

In recent years, Multiple-Input Multiple-Output (MIMO) wireless technologies 

[93] have captured considerable research interest, given the capacity increase achievable 

with such schemes.  MIMO exploits multiple antennas in both the transmitter and the 

receiver.  In the transmitter, the high-speed data stream is encoded in time and space 

across multiple transmit antennas.  In doing so, the same carrier is reused at each antenna.  

Signal processing is then used to decode the composite signals at the receiver.  The 

spatial antenna processing is able to unravel the effects of complex multipath scattering, 

and fundamentally provides access to parallel independent propagation paths between the 

transmitter and the receiver.  Thus, instead of having access to a single data pipe as with a 
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conventional wireless system design, a wireless system exploiting MIMO is able to 

capitalize on the presence of multiple parallel pipes, improving both the data rate and 

system capacity.   

MIMO has now reached a certain level of maturity, and is being investigated in 

3G systems.  The combination of the two powerful techniques, MIMO and OFDM, 

results in MIMO-OFDM, which is very attractive, and has become a most promising 

broadband wireless technique [33, 116, 126]. 

Conventional OFDM, MC-CDMA, and MIMO-OFDM systems suffer from and 

require precise CFO estimation approaches.  The proposed blind CFO estimators in this 

research may be extended to be applied in MC-CDMA and MIMO-OFDM systems. 

Hybrid ICA Algorithm with Fast Convergence and High Accuracy 

In chapter one, two typical ICA algorithms were introduced; they are the Fast 

fixed-point ICA (FastICA) algorithm [55, 56, 57] and the natural-gradient ICA algorithm 

[2, 3, 4].  The FastICA algorithm converges fast but has low accuracy.  The natural-

gradient ICA algorithm converges slow but has high accuracy.  These two ICA 

algorithms are good candidates to compose a hybrid ICA algorithm, which is the 

combination of the FastICA algorithm and the natural-gradient ICA algorithm.  The 

principle of the hybrid ICA algorithm is straightforward.  In the hybrid ICA algorithm, 

the FastICA algorithm is first used to estimate the separating matrix W .  Then, the 

estimated value of W  is used as the initial value of the subsequent natural-gradient ICA 

algorithm.   
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The hybrid ICA algorithm inherits fast convergence of the FastICA algorithm and 

high accuracy of the natural-gradient ICA algorithm.  In addition, the hybrid ICA 

algorithm is robust to local extremum.  Even though the fixed-point ICA algorithm is 

trapped in a local extremum in some cases, the subsequent natural-gradient ICA 

algorithm can escape from this local extremum [75].   
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APPENDIX A:                                                                          
FREQUENCY COMPONENTS OF INDEPENDENT RANDOM 

VARIABLES 



 104

Theorem A.1: If the random variables x  and y  are independent, then the random 

variables  

)(xgz =                                                                                                               (A.1) 

and 

)(yhw =                                                                                                              (A.2) 

are also independent [91]. 

This theorem states that functions of independent random variables are also 

statistically independent.  In the proposed frequency-domain Independent Component 

Analysis (ICA-F), the source signals, snsl )'( , are independent, and their discrete Short-

Time Fourier Transform (STFT), skrsl )',( , are linear functions of the snsl )'(  as: 

KnrLkj

n
ll enrLwinnskrs )(2

0
)()(),( −−

+∞

=

−= ∑ π                                                         (A.3) 

Thus, these frequency components skrsl )',(  are also independent in each 

frequency bin, according to Theorem A.1. 
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APPENDIX B:                                                                          
SUMMATIONS OF SECOND-ORDER AND FOURTH-ORDER ICI 

COEFFICIENTS 
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Theorem B.1: In [36], summations of inverse second-power and fourth-power of 

sine functions are given by: 
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Theorem B.2: summation of inverse cross second-power of sine functions is 

given by: 
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where M is a power of 2 as: 

'

2MM =                                                                                                               (B.4) 

Proof: 
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Successively repeating the above maneuver 'M  times gives the final form as: 
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Since 1,0 −≤≤ Mkm , then 
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The second term in the right hand of (B.6) can be written as  
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Hence, (B.6) can be simplified as (B.3). 

Theorem B.3: Summation of ICI coefficients are given by: 
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APPENDIX C:                                                                          
THE COST FUNCTION OF THE PROPOSED BLIND CARRIER 

FREQUENCY OFFSET ESTIMATOR 
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Since the snsk )'(  and the snvl )'('  are mutually independent and zero mean, the 

following two conditions are valid. 

[ ]
⎩
⎨
⎧

≠
=

=∗

'     ,0
'   ,

)()(
2

' kk
kk

nsnsE s
kk

σ
                                                                              (C.1) 

and 

[ ] [ ] [ ]
0                         

)(')()(')(
=
= ∗∗ nvEnsEnvnsE lklk                                                                    (C.2) 

 

[ ] [ ]

[ ] [ ]

[ ] [ ])(')()(')(                    

)(')()()(                 

)(')()(')(                 

)()()(

1

0
,

1

0
.'

1

0

1

0'
'',.

1

0
.

1

0
.

2

nvnvEnvnsEha

nvnsEhansnsEhhaa

nvnshanvnshaE

nxnxEnxE

lllk

K

k
kkl

lk

K

k
kklkk

K

k

K

k
kkklkl

l

K

k
kkkll

K

k
kkkl

lll

∗∗
−

=

∗∗

∗
−

=

∗
−

=

−

=

∗∗

∗−

=

−

=

∗

+

++=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
+×⎟

⎠

⎞
⎜
⎝

⎛
+=

×=

∑

∑∑∑

∑∑
          (C.3) 

According to (C.1) and (C.2), (C.3) can be simplified as: 
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where 2
vσ  denotes the variance of the noise )(' nvl .   
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Substituting (C.7) into (C.6) yields 
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where 4
vγ  denotes the fourth-order moment of the )(' nvl .   

It is clear that  
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Since Kurtosis of a Gaussian noise equals zero, the following condition is valid. 
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From (C.5), (C.8), and (C.9), Kurtosis of )(nxl  can be expressed as: 
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Substituting (C.11) into (5.6) yields 

( )

( ) ( )( ) ( ) 2

21

0

444
2

21

0

444

1

0

4
1

0

4
,

44

3
122ˆ2cos

3
12

2)ˆ(

M
Mhee

M
Mh

haeJ

K

k
kss

K

k
kss

K

k
k

M

l
klss

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∑∑

∑∑
−

=

−

=

−

=

−

=

σγπσγ

σγ

(C.12) 

Thus, (5.7) is obtained. 
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