160 research outputs found

    Novel low power CAM architecture

    Get PDF
    One special type of memory use for high speed address lookup in router or cache address lookup in a processor is Content Addressable Memory (CAM). CAM can also be used in pattern recognition applications where a unique pattern needs to be determined if a match is found. CAM has an additional comparison circuit in each memory bit compared to Static Random Access Memory. This comparison circuit provides CAM with an additional capability for searching the entire memory in one clock cycle. With its hardware parallel comparison architecture, it makes CAM an ideal candidate for any high speed data lookup or for address processing applications. Because of its high power demand nature, CAM is not often used in a mobile device. To take advantage of CAM on portable devices, it is necessary to reduce its power consumption. It is for this reason that much research has been conducted on investigating different methods and techniques for reducing the overall power. The objective is to incorporate and utilize circuit and power reduction techniques in a new architecture to further reduce CAM’s energy consumption. The new CAM architecture illustrates the reduction of both dynamic and static power dissipation at 65nm sub-micron environment. This thesis will present a novel CAM architecture, which will reduce power consumption significantly compared to traditional CAM architecture, with minimal or no performance losses. Comparisons with other previously proposed architectures will be presented when implementing these designs under 65nm process environment. Results show the novel CAM architecture only consumes 4.021mW of power compared to the traditional CAM architecture of 12.538mW at 800MHz frequency and is more energy efficient over all other previously proposed designs

    Bridging the Gap: FPGAs as Programmable Switches

    Full text link
    The emergence of P4, a domain specific language, coupled to PISA, a domain specific architecture, is revolutionizing the networking field. P4 allows to describe how packets are processed by a programmable data plane, spanning ASICs and CPUs, implementing PISA. Because the processing flexibility can be limited on ASICs, while the CPUs performance for networking tasks lag behind, recent works have proposed to implement PISA on FPGAs. However, little effort has been dedicated to analyze whether FPGAs are good candidates to implement PISA. In this work, we take a step back and evaluate the micro-architecture efficiency of various PISA blocks. We demonstrate, supported by a theoretical and experimental analysis, that the performance of a few PISA blocks is severely limited by the current FPGA architectures. Specifically, we show that match tables and programmable packet schedulers represent the main performance bottlenecks for FPGA-based programmable switches. Thus, we explore two avenues to alleviate these shortcomings. First, we identify network applications well tailored to current FPGAs. Second, to support a wider range of networking applications, we propose modifications to the FPGA architectures which can also be of interest out of the networking field.Comment: To be published in : IEEE International Conference on High Performance Switching and Routing 202

    Design and measurement of fully digital ternary content addressable memory using ratioless static random access memory cells and hierarchical-AND matching comparator

    Get PDF
    A 36-bit × 32-entry fully digital ternary content addressable memory (TCAM) using the ratioless static random access memory (RL-SRAM) technology and fully complementary hierarchical-AND matching comparators (HAMCs) was developed. Since its fully complementary and digital operation enables the effect of device variabilities to be avoided, it can operate with a quite low supply voltage. A test chip incorporating a conventional TCAM and a proposed 24-transistor ratioless TCAM (RL-TCAM) cells and HAMCs was developed using a 0.18 µm CMOS process. The minimum operating voltage of 0.25 V of the developed RL-TCAM, which is less than half of that of the conventional TCAM, was measured via the conventional CMOS push–pull output buffers with the level-shifting and flipping technique using optimized pull-up voltage and resistors

    Low-Power High-Performance Ternary Content Addressable Memory Circuits

    Get PDF
    Ternary content addressable memories (TCAMs) are hardware-based parallel lookup tables with bit-level masking capability. They are attractive for applications such as packet forwarding and classification in network routers. Despite the attractive features of TCAMs, high power consumption is one of the most critical challenges faced by TCAM designers. This work proposes circuit techniques for reducing TCAM power consumption. The main contribution of this work is divided in two parts: (i) reduction in match line (ML) sensing energy, and (ii) static-power reduction techniques. The ML sensing energy is reduced by employing (i) positive-feedback ML sense amplifiers (MLSAs), (ii) low-capacitance comparison logic, and (iii) low-power ML-segmentation techniques. The positive-feedback MLSAs include both resistive and active feedback to reduce the ML sensing energy. A body-bias technique can further improve the feedback action at the expense of additional area and ML capacitance. The measurement results of the active-feedback MLSA show 50-56% reduction in ML sensing energy. The measurement results of the proposed low-capacitance comparison logic show 25% and 42% reductions in ML sensing energy and time, respectively, which can further be improved by careful layout. The low-power ML-segmentation techniques include dual ML TCAM and charge-shared ML. Simulation results of the dual ML TCAM that connects two sides of the comparison logic to two ML segments for sequential sensing show 43% power savings for a small (4%) trade-off in the search speed. The charge-shared ML scheme achieves power savings by partial recycling of the charge stored in the first ML segment. Chip measurement results show that the charge-shared ML scheme results in 11% and 9% reductions in ML sensing time and energy, respectively, which can be improved to 19-25% by using a digitally controlled charge sharing time-window and a slightly modified MLSA. The static power reduction is achieved by a dual-VDD technique and low-leakage TCAM cells. The dual-VDD technique trades-off the excess noise margin of MLSA for smaller cell leakage by applying a smaller VDD to TCAM cells and a larger VDD to the peripheral circuits. The low-leakage TCAM cells trade off the speed of READ and WRITE operations for smaller cell area and leakage. Finally, design and testing of a complete TCAM chip are presented, and compared with other published designs

    Translation Lookaside Buffer on the 65-nm STG DICE Hardened Elements

    Get PDF
    This paper presents the design of hardened translation lookaside buffer based on Spaced Transistor Groups (STG) DICE cells in 65-nm bulk CMOS technology. The resistance to impacts of single nuclear particles is achieved by spacing transistors in two groups together with transistors of the output combinational logic. The elements contain two spaced identical groups of transistors. Charge collection from particle tracks by only transistors of just one of the two groups doesn’t lead to the cell upset. The proposed logical element of matching based on the STG DICE cell for a content-addressable memory was simulated using TCAD tool. The results show the resistance to impacts of single nuclear particles with linear energy transfer (LET) values up to 70 MeV×cm2/mg. Short-term noise pulses in combinational logic of the element can be observed in the range of LET values from 20 to 70 MeV×cm2/mg

    Long-Term Memory for Cognitive Architectures: A Hardware Approach Using Resistive Devices

    Get PDF
    A cognitive agent capable of reliably performing complex tasks over a long time will acquire a large store of knowledge. To interact with changing circumstances, the agent will need to quickly search and retrieve knowledge relevant to its current context. Real time knowledge search and cognitive processing like this is a challenge for conventional computers, which are not optimised for such tasks. This thesis describes a new content-addressable memory, based on resistive devices, that can perform massively parallel knowledge search in the memory array. The fundamental circuit block that supports this capability is a memory cell that closely couples comparison logic with non-volatile storage. By using resistive devices instead of transistors in both the comparison circuit and storage elements, this cell improves area density by over an order of magnitude compared to state of the art CMOS implementations. The resulting memory does not need power to maintain stored information, and is therefore well suited to cognitive agents with large long-term memories. The memory incorporates activation circuits, which bias the knowledge retrieval process according to past memory access patterns. This is achieved by approximating the widely used base-level activation function using resistive devices to store, maintain and compare activation values. By distributing an instance of this circuit to every row in memory, the activation for all memory objects can be updated in parallel. A test using the word sense disambiguation task shows this circuit-based activation model only incurs a small loss in accuracy compared to exact base-level calculations. A variation of spreading activation can also be achieved in-memory. Memory objects are encoded with high-dimensional vectors that create association between correlated representations. By storing these high-dimensional vectors in the new content-addressable memory, activation can be spread to related objects during search operations. The new memory is scalable, power and area efficient, and performs operations in parallel that are infeasible in real-time for a sequential processor with a conventional memory hierarchy.Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 201

    COHERENT/INCOHERENT MAGNETIZATION DYNAMICS OF NANOMAGNETIC DEVICES FOR ULTRA-LOW ENERGY COMPUTING

    Get PDF
    Nanomagnetic computing devices are inherently nonvolatile and show unique transfer characteristics while their switching energy requirements are on par, if not better than state of the art CMOS based devices. These characteristics make them very attractive for both Boolean and non-Boolean computing applications. Among different strategies employed to switch nanomagnetic computing devices e.g. magnetic field, spin transfer torque, spin orbit torque etc., strain induced switching has been shown to be among the most energy efficient. Strain switched nanomagnetic devices are also amenable for non-Boolean computing applications. Such strain mediated magnetization switching, termed here as “Straintronics”, is implemented by switching the magnetization of the magnetic layer of a magnetostrictive-piezoelectric nanoscale heterostructure by applying an electric field in the underlying piezoelectric layer. The modes of “straintronic” switching: coherent vs. incoherent switching of spins can affect device performance such as speed, energy dissipation and switching error in such devices. There was relatively little research performed on understanding the switching mechanism (coherent vs. incoherent) in xiv straintronic devices and their adaptation for non-Boolean computing, both of which have been studied in this thesis. Detailed studies of the effects of nanomagnet geometry and size on the coherence of the switching process and ultimately device performance of such strain switched nanomagnetic devices have been performed. These studies also contributed in optimizing designs for low energy, low dynamic error operation of straintronic logic devices and identified avenues for further research. A Novel non-Boolean “straintronic” computing device (Ternary Content Addressable Memory, abbreviated as TCAM) has been proposed and evaluated through numerical simulations. This device showed significant improvement over existing CMOS device based TCAM implementation in terms of scaling, energy-delay product, operational simplicity etc. The experimental part of this thesis answered a very fundamental question in strain induced magnetization rotation. Specifically, this experiment studied the variation in magnetization orientation for strain induced magnetization rotation along the thickness of a magnetostrictive thin film using polarized neutron reflectometry and demonstrated non-uniform magnetization rotation along the thickness of the sample. Additional experimental work was performed to lay the groundwork for ultra-low voltage straintronic switching demonstration. Preliminary sample fabrication and characterization that can potentially lead to low voltage (~10-100 mV) operation and local clocking of such devices has been performed

    Memory Management for Emerging Memory Technologies

    Get PDF
    The Memory Wall, or the gap between CPU speed and main memory latency, is ever increasing. The latency of Dynamic Random-Access Memory (DRAM) is now of the order of hundreds of CPU cycles. Additionally, the DRAM main memory is experiencing power, performance and capacity constraints that limit process technology scaling. On the other hand, the workloads running on such systems are themselves changing due to virtualization and cloud computing demanding more performance of the data centers. Not only do these workloads have larger working set sizes, but they are also changing the way memory gets used, resulting in higher sharing and increased bandwidth demands. New Non-Volatile Memory technologies (NVM) are emerging as an answer to the current main memory issues. This thesis looks at memory management issues as the emerging memory technologies get integrated into the memory hierarchy. We consider the problems at various levels in the memory hierarchy, including sharing of CPU LLC, traffic management to future non-volatile memories behind the LLC, and extending main memory through the employment of NVM. The first solution we propose is “Adaptive Replacement and Insertion" (ARI), an adaptive approach to last-level CPU cache management, optimizing the cache miss rate and writeback rate simultaneously. Our specific focus is to reduce writebacks as much as possible while maintaining or improving miss rate relative to conventional LRU replacement policy, with minimal hardware overhead. ARI reduces writebacks on benchmarks from SPEC2006 suite on average by 32.9% while also decreasing misses on average by 4.7%. In a PCM based memory system, this decreases energy consumption by 23% compared to LRU and provides a 49% lifetime improvement beyond what is possible with randomized wear-leveling. Our second proposal is “Variable-Timeslice Thread Scheduling" (VATS), an OS kernel-level approach to CPU cache sharing. With modern, large, last-level caches (LLC), the time to fill the LLC is greater than the OS scheduling window. As a result, when a thread aggressively thrashes the LLC by replacing much of the data in it, another thread may not be able to recover its working set before being rescheduled. We isolate the threads in time by increasing their allotted time quanta, and allowing larger periods of time between interfering threads. Our approach, compared to conventional scheduling, mitigates up to 100% of the performance loss caused by CPU LLC interference. The system throughput is boosted by up to 15%. As an unconventional approach to utilizing emerging memory technologies, we present a Ternary Content-Addressable Memory (TCAM) design with Flash transistors. TCAM is successfully used in network routing but can also be utilized in the OS Virtual Memory applications. Based on our layout and circuit simulation experiments, we conclude that our FTCAM block achieves an area improvement of 7.9× and a power improvement of 1.64× compared to a CMOS approach. In order to lower the cost of Main Memory in systems with huge memory demand, it is becoming practical to extend the DRAM in the system with the less-expensive NVMe Flash, for a much lower system cost. However, given the relatively high Flash devices access latency, naively using them as main memory leads to serious performance degradation. We propose OSVPP, a software-only, OS swap-based page prefetching scheme for managing such hybrid DRAM + NVM systems. We show that it is possible to gain about 50% of the lost performance due to swapping into the NVM and thus enable the utilization of such hybrid systems for memory-hungry applications, lowering the memory cost while keeping the performance comparable to the DRAM-only system

    Memory Management for Emerging Memory Technologies

    Get PDF
    The Memory Wall, or the gap between CPU speed and main memory latency, is ever increasing. The latency of Dynamic Random-Access Memory (DRAM) is now of the order of hundreds of CPU cycles. Additionally, the DRAM main memory is experiencing power, performance and capacity constraints that limit process technology scaling. On the other hand, the workloads running on such systems are themselves changing due to virtualization and cloud computing demanding more performance of the data centers. Not only do these workloads have larger working set sizes, but they are also changing the way memory gets used, resulting in higher sharing and increased bandwidth demands. New Non-Volatile Memory technologies (NVM) are emerging as an answer to the current main memory issues. This thesis looks at memory management issues as the emerging memory technologies get integrated into the memory hierarchy. We consider the problems at various levels in the memory hierarchy, including sharing of CPU LLC, traffic management to future non-volatile memories behind the LLC, and extending main memory through the employment of NVM. The first solution we propose is “Adaptive Replacement and Insertion" (ARI), an adaptive approach to last-level CPU cache management, optimizing the cache miss rate and writeback rate simultaneously. Our specific focus is to reduce writebacks as much as possible while maintaining or improving miss rate relative to conventional LRU replacement policy, with minimal hardware overhead. ARI reduces writebacks on benchmarks from SPEC2006 suite on average by 32.9% while also decreasing misses on average by 4.7%. In a PCM based memory system, this decreases energy consumption by 23% compared to LRU and provides a 49% lifetime improvement beyond what is possible with randomized wear-leveling. Our second proposal is “Variable-Timeslice Thread Scheduling" (VATS), an OS kernel-level approach to CPU cache sharing. With modern, large, last-level caches (LLC), the time to fill the LLC is greater than the OS scheduling window. As a result, when a thread aggressively thrashes the LLC by replacing much of the data in it, another thread may not be able to recover its working set before being rescheduled. We isolate the threads in time by increasing their allotted time quanta, and allowing larger periods of time between interfering threads. Our approach, compared to conventional scheduling, mitigates up to 100% of the performance loss caused by CPU LLC interference. The system throughput is boosted by up to 15%. As an unconventional approach to utilizing emerging memory technologies, we present a Ternary Content-Addressable Memory (TCAM) design with Flash transistors. TCAM is successfully used in network routing but can also be utilized in the OS Virtual Memory applications. Based on our layout and circuit simulation experiments, we conclude that our FTCAM block achieves an area improvement of 7.9× and a power improvement of 1.64× compared to a CMOS approach. In order to lower the cost of Main Memory in systems with huge memory demand, it is becoming practical to extend the DRAM in the system with the less-expensive NVMe Flash, for a much lower system cost. However, given the relatively high Flash devices access latency, naively using them as main memory leads to serious performance degradation. We propose OSVPP, a software-only, OS swap-based page prefetching scheme for managing such hybrid DRAM + NVM systems. We show that it is possible to gain about 50% of the lost performance due to swapping into the NVM and thus enable the utilization of such hybrid systems for memory-hungry applications, lowering the memory cost while keeping the performance comparable to the DRAM-only system
    • …
    corecore