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Abstract 

Title of Dissertation: COHERENT/INCOHERENT MAGNETIZATION DYNAMICS OF 

NANOMAGNETIC DEVICES FOR ULTRA-LOW ENERGY COMPUTING. 

By Md Mamun Al-Rashid 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University. 

Virginia Commonwealth University, 2017. 

Major Director: Jayasimha Atulasimha, Professor, Department of Mechanical and Nuclear 

Engineering, and Electrical and Computer Engineering. 

Nanomagnetic computing devices are inherently nonvolatile and show unique transfer 

characteristics while their switching energy requirements are on par, if not better than state of the 

art CMOS based devices. These characteristics make them very attractive for both Boolean and 

non-Boolean computing applications. Among different strategies employed to switch 

nanomagnetic computing devices e.g. magnetic field, spin transfer torque, spin orbit torque etc., 

strain induced switching has been shown to be among the most energy efficient. Strain switched 

nanomagnetic devices are also amenable for non-Boolean computing applications. Such strain 

mediated magnetization switching, termed here as “Straintronics”, is implemented by switching 

the magnetization of the magnetic layer of a magnetostrictive-piezoelectric nanoscale 

heterostructure by applying an electric field in the underlying piezoelectric layer.  The modes of 

“straintronic” switching: coherent vs. incoherent switching of spins can affect device performance 

such as speed, energy dissipation and switching error in such devices. There was relatively little 

research performed on understanding the switching mechanism (coherent vs. incoherent) in 



xiv 

 

straintronic devices and their adaptation for non-Boolean computing, both of which have been 

studied in this thesis. Detailed studies of the effects of nanomagnet geometry and size on the 

coherence of the switching process and ultimately device performance of such strain switched 

nanomagnetic devices have been performed. These studies also contributed in optimizing designs 

for low energy, low dynamic error operation of straintronic logic devices and identified avenues 

for further research. A Novel non-Boolean “straintronic” computing device (Ternary Content 

Addressable Memory, abbreviated as TCAM) has been proposed and evaluated through numerical 

simulations. This device showed significant improvement over existing CMOS device based 

TCAM implementation in terms of scaling, energy-delay product, operational simplicity etc. The 

experimental part of this thesis answered a very fundamental question in strain induced 

magnetization rotation. Specifically, this experiment studied the variation in magnetization 

orientation for strain induced magnetization rotation along the thickness of a magnetostrictive thin 

film using polarized neutron reflectometry and demonstrated non-uniform magnetization rotation 

along the thickness of the sample. Additional experimental work was performed to lay the 

groundwork for ultra-low voltage straintronic switching demonstration. Preliminary sample 

fabrication and characterization that can potentially lead to low voltage (~10-100 mV) operation 

and local clocking of such devices has been performed. 
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Chapter 1: Introduction 

Nanomagnetic devices, where binary information is encoded in stable magnetization orientations 

to perform memory and/or logic operations [1], [2] are promising alternatives to conventional 

CMOS based computing. Owing to the exchange interaction, electron spins in a nanomagnet tends 

to behave collectively which significantly lowers the theoretical limit of internal energy dissipation 

to “switch” the devices compared to charge based ones [3]. Apart from the potential to be 

extremely energy efficient, these devices are inherently non-volatile and can be used for both logic 

and memory applications leading to novel computational architectures [4], [5] with improved 

performance and energy efficiency. However, the energy dissipation required for switching 

critically depends on the external mechanism employed for reversing the magnetization orientation 

and an inefficient clocking mechanism can nullify the advantage of nanomagnetic devices. Among 

the different switching paradigms, strain induced switching is among the most energy-efficient 

techniques [6]–[9]. This work studies extensively, both theoretically and experimentally, the 

straintronic switching of magnetization and their applications in Boolean and non-Boolean 

computing. Detailed numerical simulations and state of the art experimental techniques have been 

utilized to study the magnetization dynamics at room temperature and its effects on device 

performance, to design and simulate novel devices, and to identify future research directions. This 

chapter introduces various nanomagnetic devices, the basic principles behind straintronic devices, 

macrospin and micromagnetic modeling of magnetization dynamics, examples of nanomagnetic 

computing and a special magnetic characterization technique- polarized neutron reflectometry 

(PNR) which can resolve magnetization variation along the thickness of a sample. 
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1.1. Nanomagnetic Devices 

The most common type of structure used to implement logic and memory operations using 

nanomagnets is the Magnetic Tunnel Junction (MTJ). A typical MTJ structure consists of a tunnel 

barrier (typically metallic oxides i.e. MgO) sandwiched between a magnetically fixed layer and a 

free layer as shown in Figure 1.1.a. A number of techniques to switch (or rotate) the magnetization 

of the free layer have been explored, such as,  external magnetic field induced switching [10], spin 

transfer torque (STT) induced switching implemented by passing an electrical current through a 

magnetic multilayer [11], [12], stress induced switching of a magnetostrictive nanomagnet brought 

about by applying an electric potential to an underlying  piezoelectric substrate [6], [7], [13], [14] 

(Figure 1.1.b) and spin torque mediated switching due to pure spin current generated by the giant 

spin Hall effect (SHE) in a heavy metal [15], [16] (Figure 1.1.c). Among these strategies, stress 

induced switching is possibly the most energy efficient. Simulations have shown that a stress 

clocked dipole coupled nanomagnetic NOT logic gate can be switched in ~1ns with energy 

dissipation as low as 0.6 aJ and dynamic error probability less than 10-8 [9]. However, in practice 

this is hard to attain due to lithographic variations and small magnetoelastic coupling which leads 

to low effective magnetic field due to strain. Estimates based on experimentally demonstrated 

stress-induced switching of ~200-300 nm lateral dimension elliptical Co and FeGa nanomagnets 

delineated on a piezoelectric PMN-PT substrate predict that the energy dissipated in the switching 

process could be as low as a few aJ if the nanomagnets are fabricated on a ~100 nm thin 

piezoelectric film [7], [17]. However, in all experimental demonstrations to date, voltages applied 

are typically in the kilovolts range as bulk piezoelectric substrates are used instead of thin films. 
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Figure 1.1. (a) Simplified schematic diagram of an MTJ. (b) local strain induced clocking of a magnetostrictive 

nanomagnet [18]. (c) SHE-ST switching of a nanomagnet, pure spin current is generated by passing electrical current 

through a heavy metal (i.e. β-Ta) which induces the switching [15]. (d) Magnetic domain wall Racetrack memory, 

image sourced from Parkin et al. Science 320.5873 (2008): 190-194. (e) Multilayer Co/Cu nanowire memory. 

Other structures include racetrack like memories [19] (Figure 1.1.d) and multilayered nanowires 

with multiple Ferromagnetic (FM)/Nonmagnetic (NM) bilayers [20], [21] (Figure 1.1.e).[20], [21]. 

These structures are very promising for high density memory applications. In racetrack memory, 

data is encoded in the domain magnetization of multi-domain magnetic nanowires [19]. Data is 

read by measuring tunnel magnetoresistance using MTJ like structures connected to the nanowire 

and written by fringing fields from domain walls (DW) in another perpendicular to the racetrack. 

Individual bits are accessed by moving the DWs using current pulses. Multilayered nanowire 

structures consists of multiple FM/NM bilayers i.e. Co/Cu. The FM layers typically have stable 

parallel (P) and anti-parallel (AP) orientation which encodes the binary data. The layers can be 

switched from P to AP or AP to P orientations using spin transfer torques and the resulting change 
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in giant magnetoresistance can be detected by passing a lower “sense” current in the read cycle. 

Multilayer nanowire structures can be fabricated using cheap electrodeposition techniques and 

have the potential to encode multiple bits in a single nanowire, further increasing the memory 

density. Table 1.1 shows the write energy consumption and write speed of different nanomagnet 

based memory devices. 

Table 1.1: Write energy and write speed in various nanomagnetic memory devices [15], [22]–

[28]. 

Nanomagnetic Device Write Energy Write Time (ns) 

Spin Transfer Torque ~100 fJ 1-10 

Giant Spin Hall Effect/ Spin Orbit Torque <1 fJ 1-10 

Domain Wall/ Racetrack <1 fJ ~10 

Magnetoelectric RAM based on Voltage Controlled 

Magnetic Anisotropy  and precessional switching 

< 10 fJ 1-10 

Straintronic Memory (estimated) ~10 aJ 1-10 

 

 

Figure 1.2: (a) Illustration of easy and hard crystal orientation, (b) Rotation of axis of spontaneous strain caused by 

domain magnetization rotation, image taken from [29].  
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1.2. Magnetostriction and Villari Effect 

A change in the shape/dimension of ferromagnetic materials occurs during magnetization. In a 

ferromagnetic material, it is energetically favorable for the magnetization to reside along certain 

crystal direction (easy axis, Fig. 1.2.a), a phenomenon known as magneto-crystalline anisotropy. 

Due to this coupling, when an external magnetic field is applied to a ferromagnetic material, the 

change in magnetization is accompanied by a change in the shape of the material. This is called 

magnetostriction. In magnetostrictive materials, there is strong coupling between the direction of 

magnetization vector in a unit cell and the length of the unit cell. In a positive magnetostrictive 

material, the unit cell expands in the direction of the magnetization vector (Fig. 1.2.b). The 

magnetostriction coefficient, l
l

  , l  is the length at zero magnetization and l  is the change 

in length as the magnetization reaches saturation. The magnetostriction coefficient is different for 

different crystal orientation. The saturation magnetostriction coefficient for a polycrystalline cubic 

material is –  

100 111

2 3

5 5
S                   (1.1) 

The opposite effect of magnetostriction is known as the Villari effect. Here, an external stress can 

cause a change in the magnetization of a ferromagnetic material. This effect is at the heart of 

straintronics, where stress is utilized to control the magnetization of nanomagnets enabling the 

implementation of various Boolean and non-Boolean “straintronic” computing devices. 

1.3. Single Domain Approximation Modeling of Magnetization Dynamics 

In Nanomagnets with sufficiently small (~100 nm lateral dimension) dimensions are expected to 

exhibit single domain behavior [30] due to exchange coupling penalty associated with forming a 
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multi-domain state. All the spins in these nanomagnets act as a giant single spin and rotate in 

unison. The spatial variation in magnetization in the nanomagnets can therefore be ignored. The 

behavior and magnetization dynamics of a nanomagnet under single domain approximation can 

be modeled using the Landau-Lifshitz-Gilbert equation [31]–[33] –  

 
          eff eff

S

dM t
M t H t M t M t H t

dt M


       

 
          (1.2) 

where  effH t  is the effective magnetic field.  In strain switched shape anisotropic 

magnetostrictive nanomagnet  effH t  includes effective fields due to stress, shape-anisotropy and 

dipole coupling with neighbor(s). It is given by the derivative of the total potential energy  E t

with respect to the magnetization ( )M t : 

 
 

 0

1

Ω
eff

E t
H t

M t



 
  ,                         (1.3) 

where 𝑀𝑆 is the saturation magnetization of  the nanomagnet, 𝜇0 is the permeability of vaccum, 𝛾 

is the gyromagnetic ratio, Ω is the volume of the nanomagnet, and 𝛼 is the Gilbert damping 

constant. The first term on the right hand side of equation (1.2) relates to the precessional torque 

and the second term to the damped-mode torque. 

The total energy E(t) in (1.3) is [8], [34]: 

          dipole stress anisotropy shape anisotropyE t E t E t E t             (1.4) 

where  dipoleE t is the dipole coupling energy due to interaction between the two nanomagnets,

  shape anisotropyE t is the shape anisotropy energy due to the elliptical or cylindrical shape of the 
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nanomagnet, and   stress anisotropyE t is the stress anisotropy energy due to the stress generated in the 

nanomagnet.   

The effect of thermal noise is incorporated by adding an equivalent field  thermalH t to the total 

effective field: 

 
 

 
 

0

1

Ω
eff thermal

E t
H t H t

M t



 
               (1.5) 

It is modeled as a random field [35]. 

    
0

2

ΩΔ
thermal

S

kT
H t G t

M t



 
                         (1.6) 

where  G t  is an independent Gaussian distribution with zero mean and unit variance in each 

Cartesian coordinate axis. 

 

Figure 1.3. Two neighboring magnetostrictive nanomagnets with a pitch of R along x direction in the co-ordinate 

system used in the LLG formalism. 

Equation (1.2) can be simplified by normalizing the magnetization vector with respect to the 

saturation magnetization sM . 

 
2 2 2/ ,  1s x y zm M M m m m                 (1.7) 
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where xm , 
ym and zm are the x, y and z component of the normalized magnetization vector m  

respectively that are given by: 

               sin cos ,    sin sin ,  cosx y zm t t t m t t t m t t                             (1.8) 

Using these relations, the vector LLG equation can be decomposed into two coupled scalar 

equations that describe the time evolution of the azimuthal () and polar () angles of the 

magnetization vector:    

2

2

( ) 1
[cos ( ){ ( ( ) ( ) ( ) ( )) ( ( ) ( ) ( )

cos ( )

( ) ( ) ( ) ( ) ( ))} sin ( ){ ( ( ) ( ) ( ) ( ))

( ( ) ( ) ( )

eff z y eff y z eff y x y eff x y

eff x z eff z x z eff x z eff z x

eff z y z eff

d t
t H t m t H t m t H m t m t H m t

dt t

H t m t H t m t m t t H t m t H t m t

H t m t m t H


  



 



   

   

 

    

    

  2 2( ) ( ) ( ) ( ) ( ) ( ) ( ))}]y z eff y x eff x x yt m t H t m t H t m t m t  

     (1.9) 

2

2

( ) 1
[sin ( ){ ( ( ) ( ) ( ) ( )) ( ( ) ( ) ( )

sin ( )

( ) ( ) ( ) ( ) ( ))} cos ( ){ ( ( ) ( ) ( ) ( ))

( ( ) ( ) ( )

eff z y eff y z eff y x y eff x y

eff x z eff z x z eff x z eff z x

eff z y z eff

d t
t H t m t H t m t H m t m t H m t

dt t

H t m t H t m t m t t H t m t H t m t

H t m t m t H


  



 



   

   

 

    

    

  2 2( ) ( ) ( ) ( ) ( ) ( ) ( ))}]y z eff y x eff x x yt m t H t m t H t m t m t  

        (1.10) 

Here, 
eff xH 

, 
eff yH 

and  eff zH 
are the x, y and z components of the effective magnetic field effH

that are evaluated using (1.5) and (1.6).  

Assuming the magnetizations of the two nanomagnets shown in Figure 1.3 have polar and 

azimuthal angles of  1 t ,  1 t and  2 t ,  2 t  respectively, the dipole interaction and shape 

contributions to the potential energy of the second nanomagnet can be expressed as: 

           

             

2 2

0
1 1 2 23

1 1 2 2 1 2

Ω
  [ 2

4

                ]

S
dipole

M
E t sin t cos t sin t cos t

R

sin t sin t sin t sin t cos t cos t


   



     

 

 

                                    (1.11) 
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                       ]

S
shape anisotropy d xx

d yy d zz

M
E t N sin t cos t

N sin t sin t N cos t


 

  



 



 

                 (1.12) 

Here d xxN  ,
d yyN 

and d zzN  are the demagnetization factors along the x, y and z directions and 

satisfy the condition 

1d xx d yy d zzN N N     .                      (1.13) 

The two type of shapes considered in this work are elliptical and circular cylinders. The 

demagnetization factors of these shapes can be calculated using the formalism described in 

Beleggia et al. [36].  

In all cases in this work, stress is considered uniaxial. The corresponding stress anisotropy energy 

for uniaxial stress along ith direction: 

   
2

  (3 / 2) Ωstress anisotropy s iE t m                             (1.14) 

where (3 / 2) s is the saturation magnetostriction and is the applied uniaxial stress. We can 

calculate the energies for the second nanomagnet in a similar manner. The resulting expressions 

for the effective fields of a dipole coupled nanomagnet (where ˆR Rx ) for a uniaxial stress applied 

along y direction are: 

             3

0

Ω 2
2sin cos sin cos

4 ΩΔ

i s
eff x j j s d xx i i x

S

M kT
H t t t M N t t G t

R M t


   

  
 

 
   
 

    

              

  

3

0

0

Ω 3
sin sin sin si( n ) sin sin

4

2
 

ΩΔ

i s s
eff y j j s d xx i i i i i

s

y

S

M
H t t t M N t t t t

R M

kT
G t
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   (1.15) 
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S
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1.4. Dipole Coupled Nanomagnetic Computing 

Figure 1.4 shows the total potential energy and corresponding magnetization direction of strain-

clocking of a dipole coupled pair of ellipsoidal nanomagnets to implement a Boolean NOT gate. 

The left nanomagnet’s magnetization encodes the input bit and the right nanomagnet’s 

magnetization encodes the output bit. The right nanomagnet is stressed locally to make its 

magnetization rotate. Upon withdrawal of the stress, the right nanomagnet’s magnetization 

preferentially assumes an orientation anti-parallel to that of the left’s because of dipole coupling 

with the left neighbor, thereby realizing the Boolean NOT operation (output is the logic 

complement of the input). The red ball in the energy profiles depicts the in-plane magnetization 

orientation of the magnetization vector of the right magnet during the clocking sequence. 

 

Figure 1.4. The energy profile shows the total potential energy vs. in-plane magnetization orientation of the right 

magnet: (a) before application of stress, (b) after application of critical stress and (c) after stress withdrawal. The 

critical stress is the stress that makes the stress anisotropy potential energy barrier equal to the shape anisotropy energy 

barrier of the right nanomagnet. Clocking sequence (top) and energy profile of the right magnet (bottom). 
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Effects of nanomagnet geometry and size on the magnetization dynamics and device performances 

including speed, reliability and energy dissipation is studied and discussed in detail in chapters 2 

and 4. 

 

Figure 1.5: Bennett clocking using dipole coupled nanomagnetic logic. 

Another example of straintronic dipole-coupled nanomagnetic logic is a “binary wire” that 

propagates a logic bit unidirectionally from one end of the wire to the other, also known as Bennett 

clocking [2], [6], [8], [37], [24], [38]. Figure 1.5 shows a binary logic wire implemented using a 

chain of dipole coupled nanomagnets. In the ground state, the neighboring nanomagnets have anti-

parallel magnetization due to the dipole-dipole interaction. Propagation of the input bit information 

to the output nanomagnet every time the input bit is switched can achieved by sequential 

application of stress. This “straintronic” Bennett clocking using shape anisotropic elliptical 

nanomagnets is discussed in detail in [39] and another implementation with circular nanomagnets 

which has a better scaling potential is studied in chapter 3.  

Although macrospin approximation simplifies the simulation of magnetization dynamics, it cannot 

capture spatial variation in spin texture (incoherent magnetization rotation). To understand the 

effects of incoherent magnetization dynamics on the performance of straintronic devices, 

micromagnetic modeling (which can capture incoherent rotation of spins) is necessary. 

1.5.  Micromagnetic Modeling of Magnetization Dynamics 

In micromagnetic modeling, the spins in the device are not considered as a single giant spin 
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anymore. The device geometry is segmented into smaller grids where each grid represents a single 

spin. The neighboring spins motions are dependent on each other through exchange interaction. 

The dimensions of these grids have to be much smaller than the exchange length (

2

0(2 ) ( )ex ex sl A M , where 
exA  is the exchange stiffness of the material).  Micromagnetic 

simulations have been performed using the open source software MuMax3 [40]. The explicit form 

for the Landau-Lifshitz torque used by MuMax3 is: 

2

1
( ( ( )))

1
LL LL eff eff

dm
m H m m H

dt
  


     


                      (1.16) 

Here, 
LL  is the gyromagnetic ratio (rad/Ts),   is the dimensionless Gilbert damping parameter 

and effH  is effective field,  

eff ext demag exch anis thermH H H H H H                                  (1.17) 

where, 
extH  is the externally applied field, demagH is the magnetostatic field, 

exchH is the exchange 

field, 
anisH is the magneto-crystalline anisotropy field (which includes uniaxial and cubic 

anisotropy) and, 
thermH is the random thermal field representing thermal noise. The major 

difference in the effective magnetic field in case of macrospin assumption with that of 

micromagnetic modeling as shown in equation 1.17 is the inclusion of the exchange field
exchH , 

which arises from the exchange interaction between neighboring spins. In the micromagnetic 

simulations, 
exchH is defined as [40], [41] –  

2 ex
exch

sat

A
H m

M
              (1.18) 

The corresponding exchange anisotropy energy density is defined as –  
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2

exch exA m               (1.19) 

The effect of this exchange interaction term is to minimize the variation in the magnetization 

directions of the neighboring grids. 

In dipole coupled nanomagnetic NOT logic as shown in Figure 1(a), the effective dipole field 

experienced by one magnet from another can be incorporated as an external field
extH [8]. The 

effective field due to an external uniaxial stress can be expressed as [34] 

0

3
( . )s

stress

sat

H s m s
M

 


                                      (1.20) 

where, (3 2) s is the saturation magnetostriction,  is the external stress (Pa) and s is the unit 

vector in the direction of the applied stress. To incorporate the effect of stress, the uniaxial 

anisotropy field has been exploited. Uniaxial magneto-crystalline anisotropy is modeled in 

MuMax3 using the following effective field term:   

31 2

0 0

2 4
( . ) ( . )u u

anis

sat sat

K K
H u m u u m u

M M 
                               (1.21) 

where, 
1uK and 

2uK are first and second order uniaxial anisotropy constants, 
satM is the saturation 

magnetization and u  is the unit vector in the direction of the anisotropy. If we assign
2 0uK  , 

Equation (1.21) reduces to a form similar to that of uniaxial stress, which can then be utilized to 

model stress induced magnetization rotation. For
2 0uK  , the uniaxial anisotropy field reduces to: 

1

0

2
( . )u

anis

sat

K
H u m u

M
                                        (1.22) 

Comparing Equations (1.20) and (1.22), the following equation can be used to find the value of 

1uK to effectively simulate the effect for a given uniaxial stress  applied in the same direction as 

the uniaxial anisotropy as: 
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1

3

2

s
uK

 
                                     (1.23) 

1.6. Polarized Neutron Reflectometry 

This section provides a brief introduction on Polarized Neutron Reflectometry (PNR), an unique 

magnetometry technique which can resolve magnetization variation along the thickness of a 

sample and is used to explore depth dependent magnetization variation in magnetostrictive thin 

films deposited on a piezoelectric substrate which will be described in chapter 6. In PNR, the 

sample of interest is bombarded by a highly collimated beam of neutrons. The resulting reflectivity 

profile as a function of scattering vector Q (Fig. 1.6) can then be utilized to extract important 

information about the sample such as the structure, thickness, density and surface roughness. Since 

neutron has a magnetic moment and neutrons can be generated with wavelengths comparable to 

interatomic distances, they are also sensitive to atomic magnetic moments.  

 

Figure 1.6: Elastic neutron scattering ( k k ) and scattering vector Q  (figure adapted from [42]). 

Typical magnetometry techniques can measure the average magnetization over the entire sample 

(such as VSM). Probing techniques like magnetic force microscopy (MFM) or scanning electron 

microscopy with polarization analysis (SEMPA) can resolve surface magnetization information 

with a high degree of spatial resolution but are unable to probe thickness dependent variation. For 



15 

 

example, MFM measures the stray magnetic field emanating from a magnetic specimen from 

which the average magnetization direction in the sample can be estimated. However, MFM cannot 

resolve the depth dependent magnetization rotation in a 100 nm film. Polarized Neutron 

reflectometry (PNR) is well suited for such depth dependent magnetization measurements. Like 

other reflectometry techniques, the neutron reflectivity is sensitive to changes in the scattering 

potential (can be pictured as equivalent to refractive index in optical reflectometry) along the 

depth/thickness of the sample. Different materials and magnetization states present the incident 

neutron beam with different scattering potentials. By measuring the specular reflectivity (coherent 

elastic scattering) as a function of the wavevector transfer/scattering vector, the average in-plane 

magnetization depth profile can be derived by fitting the obtained reflectivity data using 

mathematical models.  

 

Figure 1.7: (a) Reflectivity for magnetization (a) parallel, (b) perpendicular to neutron spin. 
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The scattering of spin polarized neutron by the magnetization of the material can be divided into 

two types, 1) spin flip (SF) scattering and 2) non-spin flip (NSF) scattering. If we denote the 

neutron up-spin as “+” and down spin as “-”, there can be four different combination of the input 

and output neutron spin, “++”, “--” which are NSF scattering and “+-”, “-+” which are SF 

scattering, where the first sign denotes incident and the second sign denotes reflected neutron spin. 

Fig. 1.7 shows neutron reflectivity for two situations in a PMN-PT/Ta(10nm)/Co(60nm) sample. 

Only NSF scattering (“++” and “--”) are present and they are split when the in-plane component 

of the magnetization vector is parallel to the neutron spin (Fig. 1.7.a). The SF scatterings are very 

small and out of range in the figure. Fig. 1.7.b shows the reflectivity profile when the in-plane 

component of the magnetization vector is perpendicular to the neutron spin. Here, both SF and 

NSF scattering are present and the splitting between the two NSF scatterings has vanished. The 

two NSF scatterings and the two SF scatterings are overlapping in this figure.  

1.7. Dissertation Outline 

This work investigates strain induced effects on magnetization, magnetization dynamics and 

switching mechanism of nanomagnetic devices for Boolean and non-Boolean computing 

applications. Chapter 2 discusses the effect of nanomagnet geometry on the speed, reliability and 

energy dissipation of dipole coupled nanomagnetic logic (DC-NML).  A scalable magnetic logic 

wire using circular magnetic nanodots is proposed and numerical simulation using single domain 

LLG approximation is presented in chapter 3. This chapter also briefly describes experiments 

performed by our collaborators to support the theoretically proposed paradigm. The effect of 

nanomagnet size on the coherence/incoherence of strain induced switching dynamics and 

consequences of incoherent switching on the reliability of DC-NML are presented in chapter 4. 

Chapter 5 includes the design and simulation of a straintronic magneto-tunneling junction device 
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for Ternary Content Addressable Memory (TCAM) application. Chapter 6 explores variation in 

strain transfer and magnetization orientation along the thickness of a magnetostrictive cobalt thin 

film on a PMN-PT substrate. Chapter 7 summarizes the thesis and proposes future research 

directions with preliminary experimental work and future plan to achieve low voltage local strain 

induced clocking on a PZT thin film. 
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Chapter 2: Geometry Effect on Performance of Strain 

Switched Dipole Coupled Nanomagnetic Logic 

The Achilles’ heel of strain-clocked DC-NML is its poor reliability due to high switching error 

rates at room temperature [43]–[46]. This chapter explore ways of mitigating the poor reliability, 

particularly through the use of appropriate geometry of the nanomagnets, and identify the metrics 

that have to be sacrificed to attain increased robustness. Two renditions of strain-clocked DC-

NML have been compared that are differentiated by the geometrical shapes of the nanomagnets 

used as the binary switches: (1) the nanomagnets are cylindrical pillars with two stable 

magnetization orientations along the two (mutually anti-parallel) orientations collinear with  the 

cylinder’s axis , and (2) the nanomagnets are elliptical discs (major and minor axes of the ellipse 

much larger than the thickness) and the two stable magnetization directions are along the major 

axis of the ellipse. 

 

Figure 2.1. Magnetization �⃗⃗�  in: (a) an elliptical and (b) a cylindrical nanomagnet. For the ellipse, the magnetization 

vector below and above the magnet’s plane and the corresponding direction of the precessional torque (clockwise and 

counterclockwise) resulting from the out-of-plane excursion of the magnetization vector are shown.   
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DC-NML of the latter variety (elliptical discs) is error-prone owing to the effect of the magnet 

geometry on switching dynamics. This can be understood by looking at the illustration in Figure 

2.1.a where the magnetization vector is represented in spherical coordinates with polar angle θ and 

azimuthal angle φ. The polar angle θ is a measure of the out-of-plane excursion of the 

magnetization vector; 𝜃<900and 𝜃>900 respectively imply that the magnetization is above/below 

the plane of the magnet. Whenever the magnetization vector leaves the magnet’s plane during 

switching, its out-of-plane component produces a demagnetization field in the out-of-plane 

direction which generates a torque on the magnetization which either assists or hinders switching 

depending on whether the magnetization vector is above or below the plane of the magnet (x-y 

plane) [47]. Failure to switch will constitute an “error”. If there are neighboring magnets that 

interact with the test magnet via dipole coupling, then the resulting dipole field can be utilized to 

counter the hindering torque at least partially and improve the switching error rate. However, the 

efficacy of this strategy may be limited by geometric constraints such the minimum allowable 

separation between neighboring magnets (which determines the dipole coupling strength) and the 

spread in the out-of-plane excursion of the magnetization vector at the operating temperature. 

Limiting the out-of-plane excursion by judicious choice of nanomagnet geometry therefore 

appears to be an appropriate route to reducing the frequency of error or probability of error. 

Cylindrical nanomagnet shown in Figure 2.1.b have a geometry that can quench or eliminate the 

offending precessional torque. The cylinder's axis is made the easy magnetization direction by 

making the ratio of the cylinder’s height to diameter larger than 0.91 [48]. When the magnetization 

is switched from the "up" (𝜃=0°) to the "down"(𝜃 = 180°) state, there is no "out-of-plane" or "in-

plane" direction perpendicular to the cylinder axis since the cross-section is circular and therefore 

perfectly symmetric in the plane perpendicular to the cylinder’s axis. While this could potentially 



20 

 

reduce switching error by eliminating the torque associated with the out-of-plane excursion, the 

downside is  that the absence of this torque would make  switching slow because the magnetization 

has to switch via the damped mode torque alone since the (much stronger) precessional mode 

torque associated with out-of-plane excursion no longer exists. This makes the comparison 

between the switching dynamics of the two types of NML, and the associated switching errors and 

switching delay, an interesting problem. 

Simulations have been performed for elliptical disks that are 58 nm in length (major axis), 40 nm 

in width (minor axis) and 12 nm in thickness, while the cylindrical nanomagnets are 35 nm tall 

and have a cross-sectional diameter of 28 nm. Therefore, they have similar volumes (21865 and 

21551 nm3 respectively) that are within 3% of each other. Tolerances of few nanometers in lateral 

dimensions may be hard to obtain, but this design is primarily intended for a theoretical comparison 

between two geometries and it is vitally important to ensure that the volume and shape anisotropy 

barriers are as close as possible to make a fair comparison.  These magnets have been designed 

such that the shape anisotropy energy barrier is approximately ~5.5 eV or ~220 kT at room 

temperature (k is the Boltzmann constant and T is the absolute temperature). In equilibrium, the 

magnetization vectors of these magnets are directed along the major axis (easy axis) of the ellipse 

(y-axis) and the axis of the cylinder (z-axis), respectively. Thermal noise will cause the 

magnetization to fluctuate around these positions, but these positions are the most probable 

orientations. The switching dynamics in both geometries is simulated by solving the Landau–

Lifshitz–Gilbert (LLG) equation under the macrospin (single domain) assumption. The validity of 

the single domain approximation at these dimensions has been confirmed by comparing with 

micromagnetic simulations for both geometries as shown in Figure 2.2. 
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The switching time as well as the switching error probability for both geometries for varying dipole 

strengths have been studied. An increase in dipole coupling energy (smaller separation between 

the nanomagnets) would produce a higher effective field and make the switching faster in both 

geometries. This corresponds to the steeper slope in the energy profile shown in Fig. 1.6.b. Further, 

stronger dipole coupling introduces a larger asymmetry in the potential profile shown in Fig. 1.6 

that improves the probability of switching to the correct state, even in the presence of thermal 

noise. While the above behavior is expected for both geometries, the interesting question is how 

the two geometries differ with respect to switching speed and error. This is discussed next after 

briefly explaining the simulation conditions and procedures. 

 

Figure 2.2. Comparison between magnetization dynamics predicted by micromagnetic simulations and single domain 

LLG for (a) elliptical, (b) cylindrical nanomagnets. 

 

2.1. Simulation Conditions: Stress Application 

A compressive stress exactly equal to the critical stress is applied in the elliptical (44.28 

MPa) and cylindrical (45.85 MPa) nanomagnets (see the caption of Fig. 1.6 for definition of the 

term “critical stress”). Previous work from our group had shown that for a given dipole coupling, 

the switching probability is highest (error probability least) when the stress applied is the critical 

stress [43]. 
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2.2. Switching Time Estimate 

The switching trajectories and the corresponding switching times are random in the 

presence of thermal noise. Because we are interested in the difference between the two geometries, 

the following strategy has been adopted. Stochastic LLG simulations in the presence of thermal 

noise has been performed to determine the thermal distribution of the magnetization vector around 

a stable orientation, and randomly pick a starting point from this distribution. The stress pulse is 

applied to kick the magnetization out of its initial stable orientation around  = 900 and set it off 

towards the intended final stable orientation around  = 2700. The temporal evolution of the 

magnetization orientation has been simulated and the time taken for the magnetization orientation 

to reach close to =270° (the switching is deemed to have occurred if the deviation of the final  

value 270° is within 1°) has been determined. This process is repeated to generate different 

switching trajectories. The fraction of the trajectories that fail to reach close to  = 2700 is the error 

probability. A similar methodology is used for the cylinder case. In both cases, switching occurs 

with highest probability because critical stress has been applied that just erodes the shape 

anisotropy barrier and does not force the magnetization to orient close to the hard axis, and 

thereafter makes the magnetization switch because of dipole coupling with the left neighbor (which 

prefers anti-ferromagnetic ordering). The mean switching time is calculated by averaging over the 

successful trajectories. We also find the longest switching time (from the slowest trajectory) to 

assess the worst case scenario. The calculated energy dissipation includes the internal dissipation 

in the magnet due to Gilbert damping and the (1/2)CV2 dissipation associated with charging the 

capacitor C formed by the piezoelectric layer, with V being the voltage needed to produce the 

electric fields in the piezoelectric to generate the stress.  
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In case of elliptic nanomagnets, the capacitance C is estimated assuming that two square 

electrodes of side ~50 nm are used to apply the voltage over a PZT layer of thickness ~50 nm in 

the manner of [18]. For applying stress to the cylindrical nanomagnet in the manner of [49], the 

PZT matrix is assumed to be ~ 70 nm thick and the capacitor plate is square with side dimension 

of ~70 nm. 

2.3. Comparison between the Elliptical and Cylindrical Geometries In Terms 

Of Switching Time or Switching Speed 

Figure 2.3.a and Figure 2.3.b show the switching times for elliptical and cylindrical geometries 

assuming comparable dipole coupling strengths. As expected, increased dipole coupling decreases 

the switching time in both cases. However, at any given dipole coupling strength, the switching 

time is ~10 to 50 times (1-2 orders of magnitude) longer for the cylindrical geometry compared to 

the elliptical one. This highlights the critical role played by the switching geometry in determining 

the switching speed and hence, ultimately, the clock speed in DC-NML. 

 

Figure 2.3. Switching time vs. dipole energy (determined by the center-to-center separation between neighboring 

nanomagnets) for (a) elliptical nanomagnets and (b) cylindrical nanomagnets. 

In the case of the elliptical magnet, when the magnetization rotates anticlockwise (or clockwise), 

the magnetization lifts out of the plane (or dips below the plane) [15, 20]. This produces a 

magnetization component in the positive and negative z-direction, respectively, that leads to an 
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effective field in the negative or positive direction. This z-directed field increases the anticlockwise 

(or clockwise) torque, thereby increasing the speed of the switching.  

However, in the case of the cylindrical geometry, as the magnetization switches from ~00 to 

~1800, the -component of motion does not produce any additional torque since the geometry is 

completely symmetric with respect to . Hence, the switching is primarily via the damped mode 

torque (unlike the elliptical geometry where the precessional mode torque plays a significant role 

in the switching process). Since most materials have a small Gilbert damping factor α, the damped 

mode torque is usually far weaker than the precessional mode torque. This explains the extremely 

slow switching times in the cylindrical geometry and the difference with the elliptical geometry. 

2.4. Switching Error Estimate 

The switching error probabilities in Figure 2.4.a and Figure 2.4.b were estimated by performing 

stochastic LLG simulations. The simulation was first run for 1 ns without applying any stress and 

the distribution of the magnetization orientation around the stable easy direction was obtained. 

Next, a switching trajectory was generated by solving (1.9) and (1.10). The starting point of this 

trajectory (at time t = 0) was picked from the distribution generated in the previous step with the 

corresponding weight. Thereafter, the stress was ramped up to the critical stress value for 1 ns, 

held for a period of time as described in the legends of Fig 2.4 and then removed in a 1 ns 

downward ramp. The system was given ~ 1 ns (ellipse) and ~27 ns (for the cylinder) to come to a 

steady state. The relaxation time was determined by the time it took all the magnetization 

trajectories to end up in one of the stable states. The fraction of the number of trajectories that had 

not switched to the correct state constituted the switching error probability. For most cases, 

100,000 trajectories were simulated at 300 K. However, in cases where we report error 

probabilities of ~10-6, 10-7 and 10-8, the number of trajectories simulated was 1 million, 10 million 
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and 100 million, respectively. Because simulation of so many trajectories is time consuming, such 

simulations were limited to a few cases where the dipole coupling strength was extremely high. 

The 1 to 100 million simulations cases were performed only on the elliptical geometry as it is 

computationally more tractable to do these simulations over a switching time ~10 ns as opposed 

~several 100 ns needed for the cylindrical geometry. 

 

Figure 2.4. (a) Representative stress profile. (b) and (c) Switching probability (PSW) vs. dipole coupling energy (or 

equivalently center to center separation between neighboring nanomagnets) for (b) elliptical nanomagnets and (c) 

cylindrical nanomagnets. The results are shown for two different switching times. Initial time before application of 

stress, stress ramp up and stress ramp down times are fixed at 1 ns each.  Final relaxation time, after stress in ramped 

down, is 1 ns for ellipse and 27 ns for the cylinder. The stress hold times are 1 and 3 ns for the two ellipse cases and 

70 ns and 270 ns for the two cylinder cases. The total time (ramp up, hold and ramp down, relaxation time) is indicated 

on the figure legends. 

2.5. Comparison between the Elliptical and Cylindrical Geometries in terms of 

Switching Error 

Fig. 2.4.b and Fig. 2.4.c respectively show the dynamic switching error vs. dipole coupling 

energy (which is ultimately the internal energy dissipated) for the elliptical and circular geometry. 

Despite the absence of the torque due to "out-of-plane" magnetization distribution in the 

cylindrical geometry, the switching error is not any better than the elliptical case where the 

detrimental effects of the "out-of-plane" magnetization distribution is successfully countered by 
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strong dipole coupling. The torque produced by the out-of-plane excursion of the magnetization 

orientation significantly shortens the switching time in the elliptical geometry but does not increase 

the switching error probability in the range of dipole energies and error rates we study. If the dipole 

coupling strength had been weaker, the elliptical geometry would surely have been more error-

prone than the cylindrical geometry because of the effect of the out-of-plane magnetization 

distribution, but in the limit of strong dipole coupling, the effect of the out-of-plane magnetization 

distribution is diminished to the point where the difference between the two geometries become 

nearly imperceptible.  

Clearly, stronger dipole coupling will reduce the error rates in dipole coupled nanomagnetic 

logic. However, the dipole coupling energy cannot be increased arbitrarily; it must never exceed 

the shape anisotropy energy barrier in the nanomagnets since that would then align their 

magnetizations along the minor axes of the ellipses (the line joining their centers) resulting in 

ferromagnetic ordering that does not implement the NOT logic functionality. Therefore, increasing 

the dipole coupling necessitates increasing the shape anisotropy energy barrier as well. For safe 

operation, the latter should be maintained at somewhat above the maximum dipole coupling 

energy. In our case, it was approximately ~220 kT (~ 5.5 eV). 

So, it is clear that increased dipole coupling strength results in lower error probability and faster 

switching, but obviously at the expense of higher energy dissipation since stronger dipole coupling 

causes larger dissipation [15].  Comparable error probabilities with comparable energy dissipation 

have been found but much faster switching speed for the elliptical geometry compared to the 

cylindrical geometry for the dipole coupling strengths considered. Thus, the elliptical geometry 

produces a very favorable energy-delay product for a given error rate, compared to the cylindrical 

geometry, as shown in Figure 2.6.a. From the case with 100 million simulations, it is estimated 
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that an error probability less than 10-8 in an elliptical magnet is achievable with an energy-delay 

product ~ 4.43×10-26 J-s. Current CMOS devices have energy-delay product ~ 1.35×10-25J-s [50] 

and switching error probability < 10-12.  

 

Figure 2.6. (a) Comparison between elliptical and cylindrical geometries and CMOS: Error probability vs. energy-

delay product. (b) Comparison between two different elliptical geometries and CMOS: Error probability vs. energy 

dissipation. Note: (i) Elliptical nanomagnet: major axis= 58 nm major axis, minor axis =40 nm and thickness = 12 nm 

(single domain approximation is good: see appendix: B). (ii) Elliptical nanomagnet-1: major axis= 110 nm major axis, 

minor axis =100 nm and thickness = 11nm (single domain behavior is still a good approximation). (iii). The CMOS 

energy-dissipation and the energy-delay product are taken from [50]. 

It is also very important to look at the error vs. energy dissipation plot (Figure 2.6.b). Here, the 

elliptical nanomagnet can switch with ~10-8 or lower dynamic error probabilities at room 

temperature with very little energy dissipation (~8.87 aJ). To reduce the energy dissipation, the 

energy barrier could be lowered while simultaneously increasing the nanomagnet volume by 

making the aspect ratio (major axis/minor axis) of the ellipse smaller as long as the single domain 

approximation is still valid. This significantly reduces the stress required and therefore, the voltage 

that must be applied to clock the nanomagnet.  “Elliptical nanomagnet-1” in Fig. 2.6.b is one such 

design that would dissipate even less energy (~0.6 aJ) while dynamic switching error probability 

remains smaller than 10-8. Thus, these strain clocked NML switches dissipate 2 to 3 orders of 
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magnitude less energy than  a state-of-the-art CMOS switch which dissipates ~440 aJ. However, 

the CMOS switch is also less error prone with dynamic switching error probability typically < 10-

12.  

2.6. Conclusion 

In general, a CMOS switch may outperform dipole coupled nanomagnetic logic in switching speed 

and error rates, but it is usually more dissipative and most importantly, it is volatile. The 

straintronic NOT gate studied here is non-volatile and can achieve switching error rates of ~10-8 

with optimized design while dissipating only 0.6 aJ/bit. This error rate is remarkable for 

nanomagnetic logic but still does not meet the stringent requirement for general purpose Boolean 

logic. Moreover, these theoretical error estimates assume that there are no fabrication defects such 

as variations in nanomagnet dimensions and misalignments between nanomagnets which can cause 

additional errors. It should be noted that these are not easily quantifiable and hence not addressed 

here. This chapter focuses only on intrinsic errors caused by thermal noise to estimate a theoretical 

limit on the reliability of dynamic switching. The nanomagnets are assumed to be nano-patterned 

Terfenol-D, which still has not been demonstrated experimentally. In practice, nanomagnets for 

straintronic devices are fabricated using low magnetostriction materials such as Nickel and Cobalt, 

which are more susceptive to switching errors due to lithographic variations. Their strain induced 

effective magnetic fields are very low compared to Terfenol-D and therefore, small changes in 

shape anisotropy due to variations in dimensions can have a large effect. 

However, with the rise of embedded electronics and internet of things, there exists a plethora of 

niche applications where energy is a premium, 10-8 error probability can be tolerated and clock 

speeds ~ 100 MHz are sufficient. There, dipole coupled nanomagnetic computing schemes, 
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clocked in an energy efficient manner (for example with strain) coupled with their inherent non-

volatility, may steal a march over traditional CMOS-based implementations. 

This work has been published in IEEE Transactions of Electron Devices [9]. 
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Chapter 3: Strain Clocked Scalable Nanomagnetic Logic Wire 

In logic applications, nanomagnets are typically designed with high magnetic anisotropy (either 

shape or perpendicular magnetic anisotropy) energy barriers ( 50 BU k T   , where kB is the 

Boltzmann constant and T =300 K).  This energy barrier is required for two reasons: first, the 

anisotropy produces two distinct stable magnetization orientations to encode the binary logic bits 

‘0’ and ‘1’.  Second, the energy barrier prevents the magnetization from randomly flipping between 

the two stable states in the presence of thermal noise (the probability of spontaneous flipping is ~ 

e-ΔUk
B

T). The latter feature expands the usefulness of ‘non-volatile’ nanomagnetic logic because 

now the same device can be used as both ‘logic’ and ‘memory’.  However, some nanomagnetic 

elements can be volatile for a device that implements non-volatile logic. Specifically, only the 

nanomagnets storing the output bits need to be non-volatile and require a thermal energy barrier (

50 BU k T  , where kB is the Boltzmann constant and T is 300 K) between the degenerate “0” and 

“1” states at room temperature. The other nanomagnetic elements in the logic devices merely carry 

out logic operations rather than store bits of information and thus may be volatile. Therefore, these 

other nanomagnets can be small, super-paramagnetic, and circular. Recent experimental studies 

have shown that anisotropy created by different methods can transform super-paramagnetic 

nanoparticles at room temperature to single domain non-volatile ferromagnets [51]–[53]. 

Specifically, it has been recently demonstrated that Ni nanoparticles can be switched between a 

super-paramagnetic state and a single-domain ferromagnetic state at room temperature by 

application of a voltage induced biaxial strain that changes the magnetic anisotropy [53].   This 

provides two distinct advantages.  First, this lowers the amount of energy required to propagate 

the information along the chain to the final non-volatile bit.  Second, the size of these elements 
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can be made ultra-small to increase processing density. This results in an extremely energy 

efficient nanomagnetic logic device that improves scalability to smaller feature sizes.  

 

Figure 3.1. Implementation of a logic wire.  (a) A multiferroic circular nanomagnet with diameter of 100 nm and 

thickness of 12 nm, and (b) Chain of dipole coupled nanomagnets with center to center separation of "R". The 

nanomagnets are delineated on top of a PZT layer and can be clocked sequentially using a local clocking scheme that 

generates local stress only under the selected nanomagnet [18].  

A critical component of the dipole-coupled nanomagnetic logic systems is a “binary wire” that 

propagates a logic bit unidirectionally from one end of the wire to the other [2], [6], [8], [37], [24], 

[38]. This chapter presents theoretical simulations of a binary wire implemented with a linear array 

of dipole-coupled circular nanomagnets subjected to room-temperature thermal noise.  In this 

simulation, voltage induced Bennett clocking [38] of the nanomagnets is achieved with strain 

produced by a piezoelectric thin film deposited onto a silicon substrate as shown in Figure 3.1. 

Here voltage is applied to electrode pairs to overcome the substrate clamping issues imposed on a 

thin film piezoelectric (~500 nm or less) as proposed by Cui et al. [18] to generate a bi-axial strain 

that is transferred to the nanomagnet.1. Here voltage is applied to electrode pairs to overcome the 

substrate clamping issues imposed on a thin film piezoelectric (~500 nm or less) as proposed by 

Cui et al. [18] to generate a bi-axial strain that is transferred to the nanomagnet.  By sequentially 
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applying a voltage, propagation of the information encoded in the magnetic moments of the 

nanomagnetic wire is achieved.   

Further, the ability to induce bistability with magnetic anisotropy induced by strain in dipole 

coupled circular Ni nanodots of 100 nanometer diameter deposited on a PMN-PT substrate has 

been experimentally demonstrated by collaborators which will also be briefly discussed. Note that 

these experiments use global clocking as the tests are performed on a bulk PMN-PT substrate 

rather than thin film PZT.  The strain mediated voltage control of magnetic anisotropy in circular 

nanomagnets may spawn a new genre of efficient nanomagnetic logic hardware implemented with 

ultra-small circular super-paramagnetic structures. 

3.1. Information Propagation in an Array of Circular Nanomagnets with 

Thermal Noise  

Here, information propagation without stress and then with sequential application of stress are 

presented to show how the latter in necessary to propagate information in circular nanomagnets in 

the presence of thermal noise. The binary wire consists of a linear array of dipole coupled 

nanomagnets. The stochastic magnetization dynamics of these nanomagnets in the array under the 

influence of dipole fields and stress was simulated using the Landau-Lifshitz-Gilbert (LLG) 

equation under single domain approximation. 

In this work, a chain of dipole coupled magnetoelastic nanomagnets are considered as shown in 

Figure 3.2.a.  The initial element is an elliptical nanomagnet representing the encoded input bit 

followed by circular nanomagnets. The elliptical nanomagnet has two in-plane stable states along 

the major axis – “up” (ϕ = 900) encoding binary bit ‘1’ and “down” (ϕ = -900) encoding binary bit 

‘0’. When the elliptical nanomagnet (element 1) input bit is ‘1’, i.e. the magnetization is pointing 
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“up” (ϕ =90o), its magnetic dipole influences the next circular nanomagnet (element 2) to point 

“down” (ϕ = -900). Furthermore, dipole-dipole coupling between element 2 and the next circular 

nanomagnet (element 3) causes the third element to rotate towards the down (ϕ = -900) horizontal.  

 

Figure 3.2. Information propagation in a binary wire composed of circular nanomagnets.  (a) Schematic view of dipole 

coupled circular nanomagnets forming a “logic wire” preceded by a high shape-anisotropy nanomagnet acting as the 

input bit host.  (b) Fluctuations of nanomagnet’s in-plane magnetization orientation about the mean orientation vs. 

time in the absence of stress. (c) Sequential clocking of the circular nanomagnets with compressive mechanical stress. 

(d) In-plane magnetization dynamics of dipole coupled nanomagnets versus time, showing that stress promotes “logic 

restoration” or near “up” or near “down” orientation of the magnetization in each nanomagnet.  

As the number of circular nanomagnets increases in the line, the dipole-dipole dictated by the first 

elliptical nanomagnetic producing the anti-parallel vertical ordering (“up”, “down”, “up”, “down” 

and so on) gives way to dipole-dipole coupling present between the circular nanomagnetic that 

dictates a horizontal orientation (parallel alignment) of the magnetization along the axis of the 
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chain of nanomagnets, i.e. ϕ = 0o). Thus, the ‘logic wire’ produced by the ellipse eventually fails. 

Figure 3.2.b shows the Landau Lifshitz Gilbert (LLG) simulation in the presence of thermal noise 

results for in-plane magnetization versus time for the configuration illustrated in Figure 3.2.a that 

represents the base state or magnetization orientation in the absence of a voltage induced strain. 

The results show the first elliptical nanomagnet’s magnetization oscillates (because of thermal 

fluctuations) but is stable around ϕ =90o.  In sharp contrast, the second element (i.e. circular 

nanomagnet) oscillates around ϕ = -30 while the third oscillates around ϕ = ~10o.  When the fourth 

element is reached the logic wire produced by the ellipse is non-existent with ϕ = ~0o.   Clearly, 

the influence of the input nanomagnet’s magnetic state (i.e. elliptical nanomagnetic) decays with 

distance and is virtually undetectable past the third element. Thus, all information is lost beyond 

the third element since all subsequent nanomagnets orient their magnetizations along the 

horizontal.  

Figure 3.2.c shows a schematic representation when a voltage (V) is applied sequentially to 

generate strain in each of the circular nanomagnets.  Prior to t=0, voltage is absent and the first 

“input” elliptical nanomagnet’s magnetization points at 90° (in the upward direction) while the 

other nanomagnets’ magnetization are assumed to point at 0° (to the right).  A sequential voltage 

is applied, starting at t=0 with 1ns delay onto each consecutive nanomagnet starting with the 

second element.  The voltage induces ~250 ppm compressive strain (we assume a very 

conservative value, instead of ~1000 ppm used in Cui et al.[18] and Wu et al.[54]) that can be 

generated in each circular nanomagnet producing an anisotropy favoring alignment with the y-axis 

shown in Figure 3.1.  The voltage induced anisotropy due to a compressive strain is caused by the 

negative magnetostrictive properties of Ni. 
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Figure 3.2.d shows the in-plane magnetization dynamics that result from the application of a 

sequential voltage to the elements.  For these results a voltage is applied at t=0 to the second 

element, at t=1ns to the third element, and at t=2ns to the fourth element. As can be seen, the 

second nanomagnet in the chain rotates toward -90° after the application of the voltage at t=0 and 

begins oscillations around -90° after about 0.5 ns.  This deterministic rotation, i.e. counter-

clockwise as contrasted with clockwise, is caused by the dipole-dipole interaction present with the 

adjacent elliptical nanomagnet. Here it is important to point out that the motion of this circular 

nanomagnetic also influences it neighbor, the third element rotates partially between t=0 and t=1ns.  

At t=1 ns a voltage is applied to the third element producing a rotation/stabilization toward the 90° 

direction.  The periodic oscillations in this element about this equilibrium point occurs at 

approximately t=1.3ns or within 0.3ns of the voltage applied. Here it is again important to point 

out that the motion of this circular nanomagnet also influences it neighbor, the fourth element 

which also rotates partially before a voltage is applied to it. The application of this voltage (i.e. t=2 

ns) stabilizes the fourth element with an orientation at -90°.  These results show that a chain of 

many nanomagnets can be clocked sequentially with a voltage to propagate logic along this chain.  

The results in Figure 3.2.d demonstrate that a voltage produces sufficient compressive strain to 

each nanomagnet to significantly lower the energy of the “up” and “down” states 0 0( 90 , 90 )   .  This 

essentially promotes anti-ferromagnetic ordering of magnetizations in the “up” and down” states 

This anti-ferromagnetic orders is the result of inter-magnet dipole coupling and the voltage induced  

stress anisotropy that make this configuration energetically more favorable than the magnetizations 

pointing horizontally. Furthermore, the results show that information can successfully be 

transferred along a chain of circular nanomagnets at the rate of 1 bit/nanosecond between two 

neighboring nanomagnets.  
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An important consideration in any logic scheme, is the reliability with which information is 

propagated in the presence of thermal noise. Magnetization dynamics in the presence of thermal 

noise have been simulated 105 times at each pitch (center-center distance) and the number of times 

propagation fails have been counted. We model failure owing to disruption of the switching due 

to thermal noise and not owing to other potential spoilers such as pinning of magnetization by 

defects or misalignment (magnet centers are not on the same straight line).  Figure 3.3 shows the 

switching probability of the chain of circular nanomagnets as a function of the center-center 

distance (pitch) between the 100 nm diameter and 12 nm thick circular nanomagnets clocked with 

a strain of ~250 micro-strain. Clearly, an increase in pitch leads to lower dipole coupling, making 

it easier for thermal noise to cause disruptions in the magnetization switching process. This leads 

to decreased switching probability with increasing pitch. For one particular case, the design 

presented in this work (pitch ~150 nm), there was no switching error in 106 simulations indicating 

the error probability is smaller than 10-6. 

 

Figure 3.3. Probability of switching in circular nanomagnets for different dipole coupling under the effect of thermal 

noise. The coupling increases with decreasing pitch (center-center) separation resulting in increased switching 

reliability. 
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The numerical simulations assume two mechanisms dominate the magnetization reorientation.  

These two effects are (1) dipole coupling between nanomagnets and (2) stress induced magnetic 

anisotropy through the magnetoelastic effect. To demonstrate that these are the two dominant 

mechanisms a series of experiments were designed to establish the dipole effect and stress induced 

uniaxial magnetic anisotropy in the same chain of nanomagnets.  These effects can be quantified 

by measuring the averaged M-H curves of an ensemble of nanomagnets and focusing on a large 

pitch array, a small pitch array (dipole coupled) without stress and a small pitch array subjected to 

stress.  By measuring the remanence changes along select directions specific conclusions can be 

drawn about the relative magnitudes and the ability to control dipole coupling in the proposed 

logic device supporting the analytical conclusions. These results are discussed below. 

3.2. Experimental Demonstration  

(Performed by collaborators, Wei-Yang Sun, P. Nordeen, A.C. Chavez, G.P. Carman, Department 

of Mechanical and Aerospace Engineering, Univ. of California, Los Angeles, CA 90095.) 

Two different samples were tested consisting of Nickel circular (100nm) nanodot arrays patterned 

on a 10mm x 10mm x 0.5mm single crystal (011) PMN-PT substrate sourced from TRS 

Technologies, Inc., USA. The arrays are 1x1 mm and isolated from each other with a 2mm 

separation as shown in Figure 3.4.a. The [100] in-plane crystallographic axis of the PMN-PT 

substrate is aligned with the sample’s y-direction while the [011] in-plane crystallographic axis is 

aligned with the x-direction. The nanodot pitch along the y-direction is 500nm for all arrays while 

the nanodot pitch along the x-direction is 250nm and 150nm for arrays 1 and 2, respectively.  
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Figure 3.4. (a) Schematic of tested sample with piezoelectric substrate crystallographic axes depicted. b-d, M-H curves 

for array configurations 1 and 2. (b) Magnetization data for configuration 1 (i.e., 250 nm spacing) at no electric field 

with applied magnetic field along both planar directions. (c) Magnetization data for configuration 2 (i.e., 150 nm 

spacing) at no electric field with applied magnetic field along both planar directions. (d) Magnetization data for 

configuration 2 at 0.6 MV/m electric field with applied magnetic field along both planar directions.  

Figure 3.4.b shows M-H curves for the 250nm spacing measured along both x & y directions 

without an electric field. The M vs. H curves for both x and y directions are similar indicating an 

isotropic in-plane magnetization response. All the nanodots are circular, and thus shape does not 

introduce any magnetic anisotropy.  Furthermore, since the measurement shows an absence of in-

plane magnetic anisotropy, one concludes that the spacing between nanodots is sufficiently large 

to eliminate any dipole coupling.  Specifically, 250 nm spacing is sufficiently large that the dipole-

dipole coupling range is trivial for these circular Ni nanodots. The estimated effective field due to 

this coupling is ~ 6 Oe even if both nearest neighbors are included. 
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Figure 3.4.c shows M-H loops measured along both x and y directions for the 150 nm spaced array 

without an electric field. When contrasting these measurements to those of Figure 3.4.b for the 250 

nm spaced array, distinct similarities and differences are noted.  First, there is a similarity in the 

Mr values measured in the x direction, in particular they are approximately 0.8.  Second, there is a 

dissimilarity in the Mr values measured in the y direction; specifically the Mr for the 150 nm array 

is 0.5 while for the 250 nm array it is 0.8.  The results for the 150 nm spacing clearly shows the 

presence of dipole-dipole coupling. Specifically dipole-dipole coupling along the y direction 

should produce anti-parallel magnetization alignment reducing the measured Mr values along the 

y direction. Figure 3.4.d shows M-H curves for the 150 nm spaced array with a 0.6 MV/m electric 

field applied.  The results show a distinct change in the M-H curves with the applied electric field 

as contrasted with the results without an electric field shown in Figure 3.4.c. Specifically, without 

an electric field the remnant magnetization in the x-direction is 0.8, but when a field is applied the 

remanence decreases to approximately 0.5. The remanence decreases as the easy axis is now being 

established along an axis perpendicular to the x-axis array.  This causes the easy magnetization 

direction to rotate toward the y-axis and away from x-axis, in spite of the dipole coupling. A change 

in Mr occurs for the y-direction as well. However, the remanence increases from 0.5 to about 0.8 

with an applied electric field.  The remanence increase in the y-direction is surprising given the 

dipole coupling favors an anti-parallel state in the y direction.  However, for this configuration the 

stress induced magnetic anisotropy is sufficiently large to mask the dipole effect and ensure the 

nanomagnets magnetization remains along the y-direction even after the magnetic field is 

withdrawn. This result clearly confirms that the magnetic easy axis of the nanomagnet is 

established along the y-direction when an electric field is applied. This change is attributed to the 

voltage induced magnetoelastic effect. Since Ni is negatively magnetostrictive, the magnetoelastic 
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response of the nanostructures causes the magnetization to favor alignment with the axis of 

compression implying that the chain axis is magnetically harder. It has also been established that 

the magnetoelastic energy is sufficiently larger than the dipole-dipole coupling that favors anti-

parallel alignment in the y-direction and parallel alignment in the x-direction. 

3.3. Conclusion 

The simulations and the experiments together demonstrate the feasibility of using circular 

magnetostrictive nanomagnets clocked with strain to propagate information. It has further been 

estimated theoretically that information can be transmitted along a circular nanomagnet chain 

clocked with stress with high reliability (error < 10-6 m) considering there are no defects that can 

pin the magnetization in such magnets.  It can also be extremely low energy < 1aJ/bit, provided it 

is implemented on thin film PZT. More importantly, this could provide a path to the ultimate 

scaling of nanomagnetic devices to implement Boolean operation and propagate logic at lateral 

dimensions below 20 nm, along with very little energy dissipation. However, the key to such 

scaling experimentally is to develop techniques to successfully nano-pattern high magnetostrictive 

materials like Terfenol-D while also having sufficient control over lithographic variations, 

misalignments and imperfections can be controlled at these scales. 

This work has been performed in collaboration with Professor Greg Carman and his graduate 

students Wei-Yang Sun, P. Nordeen and A.C. Chavez at Department of Mechanical and Aerospace 

Engineering, University of California, Los Angeles. They have performed the experimental part 

of this work (section 3.2) including sample preparation and MOKE measurements. This work has 

been published in Nanotechnology [55].  
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Chapter 4: Dynamic Error in Strain-Induced Magnetization 

Reversal of Nanomagnets Due to Incoherent Switching and 

Formation of Metastable States: A Size-Dependent Study 

 This chapter presents micromagnetic simulations using MuMax3 [40] for a comprehensive 

understanding of the strain induced switching dynamics i.e. coherency/incoherency of the 

switching process, its dependence on the nanomagnet dimension, and its influence on the switching 

reliability and energy dissipation. In this study, elliptical disk nanomagnets of three different 

dimensions have been simulated while keeping the aspect ratio (ratio of major to minor axis to the 

thickness) constant. A constant aspect ratio ensures constant demagnetizing factors across all 

dimensions, so the outcome of the simulations will be solely affected by the nanomagnet size. The 

simulated nanomagnet dimensions are listed in Table 4.1, where "length" is the dimension of the 

major axis and "width" is that of the minor axis.  

Table 4.1: Simulated nanomagnet dimensions. 

Nanomagnet Length (nm) Width (nm) Thickness (nm) 

Small 60 40 6 

Intermediate 120 80 12 

Large 150 120 15 

 

To observe the effect of incoherent reversal in strain induced switching, we use dipole coupling as 

shown in Figure 4.1.a to ensure complete magnetization reversal since strain, by itself, can produce 

no more than 90º rotation. This scheme, where a dipole field is utilized to implement the complete 

reversal under stress, actually represents a very important case, namely the operation of a NOT 

gate. The neighboring hard nanomagnet’s magnetization represents the input bit written into it by 
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some external agent (e.g. a local magnetic field or spin polarized current). The magnetization of 

the test (soft) nanomagnet represents the output bit. Dipole coupling between the two nanomagnets 

will prefer to align their magnetizations in mutually anti-parallel orientations, making the output 

bit the logic complement of the input bit (NOT operation).  

 

Figure 4.1. (a) Stress induced magnetization reversal in the presence of a dipole field caused by a neighboring (left) 

hard nanomagnet with fixed magnetization. (b) Schematic diagram of the switching set up. A nanomagnet is delineated 

on top of a piezoelectric substrate and a potential applied between two shorted top electrodes and a bottom electrode 

generates stress in the nanomagnet inducing its magnetization to rotate [18]. 

However, when the input bit is altered, the output bit does not respond and flip automatically to 

complete the NOT operation since dipole coupling is usually not strong enough to overcome the 

shape anisotropy of the test nanomagnet and cause magnetization reversal.  Therefore, stress is 

applied to the test nanomagnet by delineating it on top of a piezoelectric layer and applying an 

electrical voltage on the piezoelectric layer as shown in Figure 4.1.b. The generated stress 

overcomes the shape anisotropy and rotates the test nanomagnet’s magnetization by +90o. Later, 

after stress is withdrawn, the dipole coupling that is always present takes over and preferentially 

causes another +90o rotation (as opposed to -90o rotation) to flip the magnetization of the test 

nanomagnet with very high probability. The probability can be made higher by appropriately 

shaping the stress pulse [45] but those issues are beyond the scope of this work. This simple 

reversal process, however, is complicated by random thermal noise at room temperature and 

incoherency of the magnetization rotation. Stress can also spawn metastable magnetization states 
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in the test nanomagnet and the magnetization vector can get trapped in such a state. Once trapped, 

it cannot be dislodged by either additional stress or thermal noise. That would cause failure of 

reversal or switching error. We study all this as a function of nanomagnet size. 

Table 4.2: Material properties of Terfenol-D [56]–[59]. 

Magnetic properties Terfenol-D 

Exchange Stiffness (
exA ) 129 10 J/m 

Saturation Magnetization (
sM ) 58 10 A/m 

Magnetic Exchange Length (
exl ) 4.73 nm 

Gilbert Damping Constant (α) 0.1 

Saturation Magnetostriction (3 2 s ) 49 10  

 

Micromagnetic simulation of the switching phenomenon was performed using MuMax3 [40]. Cell 

sizes less than the magnetic exchange length have been used for discretization in the 

micromagnetic simulations. When studying stress-induced switching, we assume that the 

nanomagnets are composed of Terfenol-D which is among the materials with the highest 

magnetostriction and therefore preferred for straintronic applications since it requires lower stress 

for switching. The material parameters are listed in Table 4.2. This material is chosen to minimize 

the energy dissipation in stress-induced switching and has been grown successfully by others [59].  

4.1. Size Dependence of the Switching Coherency 

To observe the coherency/incoherency of stress mediated switching, micromagnetic simulations 

have been performed at room temperature (300 K) by including a random thermal field in the Heff 
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term. The switching coherency/incoherency is dependent on the size of the nanomagnet as can be 

seen in Figure 4.2.  

 

Figure 4.2: Strain mediated reversal. Nanomagnet dimensions, (a) Small, (b) Intermediate, (c) Large. 

The stress applied on the three nanomagnets of dimensions given in Table 4.1 is equal to the critical 

stress. Critical stress is defined as the stress for which the stress anisotropy energy equals the shape 

anisotropy energy. It is independent of the magnet’s volume, but depends on the magnet’s aspect 

ratio. Since all three nanomagnets has the same aspect ratio, they have equal shape anisotropy 

energy density and therefore, equal critical stress. The incoherency in the switching process clearly 
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increases with increasing dimension. Exchange interaction forces the spins to rotate together in 

unison in smaller nanomagnets resulting in a coherent rotation in the smallest nanomagnet as 

shown in Figure 4.2.a. The magnetization rotates completely to the opposite direction after stress 

withdrawal. Increasing the dimensions allows spins to reduce the exchange energy penalty be 

amortizing over a larger number of spins, resulting in incoherent rotation in nanomagnets with 

larger dimensions. Because of the incoherency in the switching process, two incoherent metastable 

states, namely the C-state and vortex state are found in the larger nanomagnets when stress is 

applied. The C-state is so named since in this state the spins seem to arrange themselves in the 

form of the letter C (the spin texture curls to form the shape of the letter C). In the intermediate 

sized nanomagnet, the possible outcomes after the application of stress as shown in Figure 4.2.b 

are: (1) the magnetization can go through a nearly coherent rotation and emerge in the opposite 

direction, thus completing the switching process, (2) the magnetization can go to the C-state until 

the stress is withdrawn and come back to the initial state after stress withdrawal or (3) the 

magnetization can enter the vortex state and remain there even after stress withdrawal. Among 

these two incoherent metastable states, the C-state is the most prominent in the intermediate sized 

nanomagnet while rarely entering the vortex state (< 1% probability). On the other hand, the C-

state is completely absent in the large nanomagnet. This magnet either switches successfully or 

enters the vortex state and remains there as shown in Figure 4.3.c. 

4.2. Switching Coherency Dependence of Dynamic Error 

Switching error calculation has been performed at room temperature (300 K). The thermal field 

causes erratic magnetization rotation and hence the magnetization may fail to rotate through 180o, 

resulting in a switching error. The switching error has been estimated from simulations of 1000 

switching trajectories (for each case). Stress is turned on at some time and we follow the temporal 
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evolution of the magnetization perturbed by a random thermal field (mimicking thermal noise) at 

every simulation time step. This generates a switching trajectory in MuMax3 simulation. The 

fraction of the trajectories that fail to switch by completing a ~180o rotation is the error probability. 

We deliberately chose parameters where the switching error is 1% or higher, so that only 1000 

micromagnetic simulations would suffice for generating the required statistics. To study switching 

error probabilities < 1% we would need to increase the number of trajectories but we do not study 

that regime as it is computationally prohibitive and more importantly the physics and trends 

observed at errors rates over 1% would also scale to that regime. Hence, studying the low error 

probability regime would have not only stretched our resources but also would have been 

superfluous within the scope of this work. 

 

Figure 3.3: Strain mediated switching. a) Stress profile in time domain. b) Dipole field strength vs. percentage of 

switching error in stress mediated switching. 

Figure 3.3.a shows the stress profile used in our simulations and was applied to all the 

nanomagnets. The voltage required to generate the applied stress (~28 MPa) for a 100 nm thick 

PZT thin film using the scheme shown in Fig. 1(b) is ~105 mV and the ferroelectric response can 

be considered instantaneous. (The ferroelectric response has been demonstrated to have a  
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characteristic switching time constant of ~70-90 ps [60]). Figure 3.3[60]). Figure 15.b shows the 

estimated switching error probability as a function of varying dipole coupling field. The results 

show that the switching error probability decreases with increasing dipole field for all nanomagnet 

dimensions. This is expected since the dipole field favors the +90o rotation (right) over the -90o 

rotation (wrong) after stress removal and hence increasing its strength would reduce error 

probability. However, the switching error probability also increases with increasing nanomagnet 

size and this is due to increasing incoherency in the switching process which makes magnetization 

dynamics increasingly vulnerable to thermal noise in larger nanomagnets. 

There is another effect that is responsible for making larger nanomagnets more error-prone.  In 

larger nanomagnets, stress spawns metastable states (C-state and vortex state) in the nanomagnet’s 

potential energy profile. They trap the magnetization and impede successful switching. Neither 

additional stress, nor thermal noise, can easily dislodge the magnetization from the metastable 

state. As shown in Figure 3.2, the metastable states can have a spin texture that is either C shaped 

(present only in the intermediate dimension) or a vortex state (present in both intermediate and 

large nanomagnets), both of which are highly incoherent states and therefore never present in the 

small nanomagnet. This explains the high switching error in the intermediate and large 

nanomagnets compared to the small one. 

It should be noted that the C-state, once formed, is sustained in the presence of stress but it still 

has net magnetization predominantly pointing in the initial direction. Hence, when stress is 

withdrawn, it always returns the magnetization to the initial state, i.e. the nanomagnet does not 

switch. The vortex state has a net magnetization equal to zero and has no memory of the initial 

state. However, it too prevents switching because it is so stable that the magnetization remains in 

this state even after stress is withdrawn. The difference is that that unlike the C-state, the vortex 
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state does not return the magnetization to the initial orientation upon stress withdrawal, but traps 

it into a different orientation. The energy barrier that surrounds the metastable vortex state cannot 

be overcome by the dipole coupling or thermal fluctuations at room temperature. Nor can stress 

(even ~200 MPa) destroy this state, once formed. Thus, the only way intermediate and large 

nanomagnets can reverse their magnetization successfully is by altogether avoiding the C- and 

vortex-states. That is why the switching error probabilities are very high for intermediate and large 

nanomagnets in Figure 3.3.b. 

In the larger nanomagnet, the probability of formation of the vortex state decreases with increasing 

dipole coupling that results in lower switching error as the dipole coupling is increased. This 

reduced probability of formation of the vortex state is also true in intermediate nanomagnets but 

the reduction in the probability of formation of the C-state is comparatively smaller in the range 

of dipole fields studied. Thus, the decrease in switching error with increasing dipole coupling is 

less pronounced in the intermediate sized nanomagnet compared to the large one as seen in Figure 

3.3.b. 

To verify that the observed trend in the switching error rates with respect to dipole field as shown 

in Figure 3.3.b continues to the regime with error rates of <1%, we have simulated 10000 

trajectories for the small (60nm - 40nm - 6nm) nanomagnet with dipole fields of 5.44mT and 7.23 

mT under the same stress profile as shown in Fig. 3.3.a. The simulations show 5 and 2 errors 

respectively out of the 10000 trajectories (0.05% and 0.02% error probability) whereas there were 

5 errors out of 1000 trajectories for a dipole field of 3.3 mT (0.5%). So, the error rates are indeed 

scaling. 
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4.3. Energy Dissipation Estimates 

To estimate the total energy dissipation in the stress mediated switching process, two energy 

dissipation mechanisms have been considered, 1) The internal energy dissipation within the 

nanomagnet due to Gilbert damping and 2) circuit energy dissipation in charging and discharging 

the capacitive PZT layer. These two energies are added together to get the total energy dissipation. 

The PZT film is considered to be 100nm thick. Total energy dissipation in the case of the smallest 

nanomagnet (60nm×40nm×6nm) for achieving 1% switching error has been estimated to be 5.5 

aJ. The estimated energy dissipation for stress mediated switching at different dipole fields is listed 

in Table 4.3. 

Table 4.3. Energy dissipation in stress mediated switching. 

Nanomagnet Size 

 

Energy dissipation (x10-18 J) for dipole fields (mT) 

1.7630 2.1400 2.6320 2.9 3.294 

Small 5.4860 5.4894 5.4938 5.4962 5.4998 

Intermediate 5.5976 5.6249 5.6605 5.6799 5.7084 

Large 5.7691 5.8330 5.9165 5.9619 6.0288 

 

The switching reliability can be increased significantly (switching error << 1%) in the case of the 

smallest nanomagnet by increasing the dipole field and/or increasing the stress application time. 

Increasing the dipole field causes very small increase in the energy dissipation in the form of 

damping as can be seen from Table III. Increasing the time over which stress is applied makes the 

device slower but does not change the energy dissipation. So, the switching reliability can be 

significantly improved with very small penalty in terms of energy dissipation. 
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4.4. Conclusion 

This study shows that strain based switching is coherent in small nanomagnets (~60 nm × 40 nm 

× 6 nm) and can be switched reliably. The switching gets more incoherent as the nanomagnets size 

increases, leading to large errors in switching. All this indicates that straintronic switching is best 

suited for small nanomagnets (lateral dimensions ~ 50 nm or smaller) that could result in reliable 

switching and extremely energy efficient operation. However, there is one caveat. Normally, the 

shape anisotropy barrier has to be sufficiently tall (~ 1.7 eV) to ensure enough thermal stability.  

The stress anisotropy energy has to equal or exceed the barrier height in order to cause the 900 

rotation that is necessary for the reversal. The stress anisotropy energy is the product of the stress, 

the magnetostriction coefficient, and the nanomagnet volume. In smaller nanomagnets, we will 

require either a larger stress (undesirable since it increases the switching voltage and energy 

dissipation and in some cases it is impossible to apply as the strain that the piezoelectric can 

generated is limited) or a larger magnetostriction coefficient. Terfenol-D with saturation 

magnetostriction of ~1500 ppm [61] can be used in fabricating small nanomagnets. While this 

material has indeed been sputtered to produce thin films with saturation magnetostriction of ~900 

ppm [58], fabricating small nanomagnets with this material proves to be challenging. On the other 

hand, materials like Co or Ni that have been used to demonstrate strain switched magnetostrictive 

nanomagnets [7], [62] have saturation magnetostriction of only ~ 30 ppm. Using Ni/Co 

nanomagnets, the stress anisotropy energy achievable at dimensions ~60 nm×40 nm×6 nm with a 

stress  as large as 100 MPa is a mere ~0.2 eV (~ 8kT at room temperature) which is way too low 

to ensure sufficient thermal stability. There is a limit on the amount of stress that can be generated 

or sustained. That precludes nanomagnets that are simultaneously small, amenable to switching by 

stress and possess high stability against thermal noise at room temperature. Larger nanomagnets 
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would solve this issue as increasing the nanomagnet volume while retaining the same stress 

anisotropy energy density allows the generation of larger stress anisotropy energy and hence a 

larger shape anisotropy barrier for better thermal stability. Unfortunately, as this study shows, 

larger nanomagnets are considerably more error-prone. This clearly demonstrates the challenges 

that one faces in straintronics, namely the design of nanomagnets with sufficient thermal stability 

and sufficient resilience against switching errors. A large magnetostriction is essential for scaling 

while maintaining thermal stability and hence there is an urgent need to develop processes and 

materials that yield high magnetostriction in nano-patterned structures. 

This study has been published in IEEE Transactions on Electron Devices [63]. 
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Chapter 5: Skewed Straintronic MTJ (ss-MTJ) for Ternary 

Content Addressable Memory 

This chapter studies the design of a skewed straintronic MTJ device and how its non-monotonic I-

V characteristics can be utilized to implement Ternary Content-Addressable Memory (TCAM) 

[64], [65]. As opposed to Random Access Memory (RAM) where the exact address is needed to 

retrieve stored data, data stored in Content Addressable Memory (CAM) can be accessed by 

performing a search for the data itself. The word “ternary” comes from the ability of a TCAM cell 

to search and store bits which have three states: “0,” “1,” and “X” (don’t care). Binary TCAM can 

search and store two states (0 and 1) and only perform exact match searches. The don’t care (x) 

state in a TCAM allows it to perform broader searches by enabling partial matching or masking, 

i.e., a match regardless of the storage and/or search data bit. The TCAM compares input search 

data against a table of stored data to return the memory address of entirely or partially matching 

data. TCAMs are useful for high-speed and parallel data processing and have been applied in 

network routers, IP filters, virus-detection processors, look-up tables, and many more applications. 

Key challenges in a large-scale TCAM are to achieve higher cell density, faster search speed, and 

lower power consumption. CMOS technology has been scaled to nanometer nodes for higher 

density and performance in CMOS-based TCAM cells. However, CMOS cannot be scaled down 

indefinitely; the primary threat to continued downscaling of CMOS devices, envisaged in Moore’s 

law [66], is the excessive energy dissipation that takes place in the devices during switching. 

Therefore, it is imperative to explore “Beyond CMOS” technologies, exhibiting higher energy-

efficiency in switching than CMOS for continued scalability of TCAM cells. Straintronic magneto 

tunneling junctions (s-MTJs) are among the most energy efficient three-terminal resistance 

switches extant [8], [34], [67]. Their tunneling resistances are programmed through their gate 
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potentials, which induce strain in the magnetostrictive free-layer of the device leading to 

magnetization switching that changes the tunneling current at a given voltage. Unfortunately, s-

MTJs are also relatively error-prone [9], [43], [45], [47], [63] and have low resistance ON/OFF 

ratios. The best case switching error probability, even theoretically is typically larger than 10−9 at 

room temperature, which makes it problematic to utilize them in Boolean logic. This has turned 

attention to non-Boolean computing paradigms [4], [5], [68]–[70], such as those employing 

TCAM, which may be more forgiving of errors and do not always demand high-resistance 

ON/OFF ratios. ss-MTJs will be ideal for such applications. In order to implement a high 

performance TCAM cell, a novel adaptation of s-MTJ is presented, henceforth mentioned as a 

skewed s-MTJ or an ss-MTJ, where the MTJ resistance can be controlled by two gate-terminals. 

The resistance through a skewed s-MTJ is maximum when the potentials at the first and second 

gate terminals (i.e., V2 and V3, respectively) follow V3 = V2 + VF, where VF is a fixed voltage that 

we call the “offset voltage.” Resistance in a skewed s-MTJ drops steeply when V2 and V3 deviate 

from the above “match” condition. Therefore, the current through a skewed s-MTJ characterizes 

similarity between the potentials at the two gate terminals, V2 and V3. This unique characteristic 

of the skewed s-MTJ is exploited to design one transistor, one trench capacitor, and a single ss-

MTJ-based dynamic TCAM cell. It is shown that the low ON/OFF ratio in skewed s-MTJ does not 

inhibit circuit operation, although a higher ON/OFF ratio would be desirable.  

5.1. Skewed Straintronic Magneto Tunneling Junction  

Similar to a standard MTJ, an s-MTJ also comprises a stack of fixed layer-spacer-free layer. 

However, unlike current based switching in MTJ, an s-MTJ switches by the action of gate-induced 

strain in the free-layer. The free layer in s-MTJ is a magnetostrictive nanomagnet in elastic contact 

with an underlying poled piezoelectric thin film of thickness a, as shown in Fig. 5.1(a). Square 



54 

 

electrodes of edge L (≈ a), separated by a distance d (L ≤ d ≤ 2L), are delineated on the piezoelectric 

surrounding the MTJ stack. The bottom of the conducting substrate is grounded. Electrode “1” is 

used to read the s-MTJ resistance by passing a current to ground.  

 

Figure 5.1: (a) Four-terminal skewed s-MTJ switch showing the MTJ stack, the piezoelectric layer, and the electrodes. 

(b) Top view of the free and fixed layers of the MTJ. The major axes of the two ellipses subtend an angle of 45° 

between themselves. 

Application of a voltage across the piezoelectric film using the shorted electrode pair “2” shown 

in Fig. 5.1.a generates biaxial strain in the film (compression along the line joining the electrode 

pair and tension perpendicular to it, or vice versa, depending on the polarity of the voltage), which 

is partially or fully transferred to the soft layer of the s-MTJ in elastic contact with the film. This 

rotates its magnetization through the Villari effect and changes the s-MTJ resistance, realizing the 

action of a switch. A tiny amount of voltage V (few mV) is required to rotate the magnetization 

through a large angle and change the s-MTJ resistance substantially if the piezoelectric film is 

∼100-nm thick, resulting in a switching energy dissipation CV2 (C is the capacitance associated 

with charging the piezoelectric, which is 1–2 fF) of a few tens of aJ [7], [71]. The internal energy 

dissipation within the magnetostrictive free layer due to Gilbert damping is negligible [67] as is 
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the mechanical energy dissipation due to strain. The s-MTJ operation has been experimentally 

demonstrated [72], [73].  

Here, we show that an s-MTJ can be engineered to produce very unusual device characteristics. 

This characteristics are then utilized by our collaborators at UIC to implement TCAM behavior 

which will also be briefly discussed. Consider a “skewed” s-MTJ where the major axes of the fixed 

and free layers subtend an angle of 45° between them, as shown in Fig. 5.1.b. The fixed layer is 

implemented with a synthetic antiferromagnet to reduce the dipole interaction with the free layer, 

but not completely eliminate it. Because of shape anisotropy, the magnetization orientations of 

both layers will lie along the respective major axes of the ellipses, but owing to the remnant dipole 

interaction, the angle between them will be obtuse rather than acute (see Fig. 5.1.b). In all 

simulations we assume the magnetization of the free layer initially makes an obtuse angle with the 

magnetization of the fixed layer. When the free layer is strained by the voltage applied to the 

electrode pairs “2,” its magnetization begins to rotate. The remnant dipole interaction will make it 

rotate clockwise in Fig. 5.1.b so as to always increase the angular separation between the 

magnetizations of the two layers. We have simulated the magnetization rotation under strain in the 

presence of thermal noise using stochastic Landau– Lifshitz–Gilbert (s-LLG) simulations (see later 

description). Out of 107 switching trajectories simulated, not a single one rotated anticlockwise, 

showing that the clockwise rotation is overwhelmingly preferred. This also indicates that the 

magnetization dynamics is robust and reliable with error probability < 10-7. 

Initially, before the application of strain, the magnetizations of the fixed and free layers subtend 

an angle θ = 135°, as shown in Fig. 5.1.b. Upon application of strain, the magnetization begins to 

rotate clockwise and θ gradually increases from 135° to 225°. The MTJ resistance depends on θ 

according to [74] 
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where 
( )P APR  is the MTJ resistance when the magnetizations of the fixed and free layers are parallel 

(antiparallel), ( )R   is the resistance when the angular separation between the magnetizations is   

, and ( ) /AP P PR R R   . Since   varies between 135° and 225°, the conductance of the MTJ (or 

current flowing through terminal “1” at a fixed bias) plotted as a function of the voltage applied to 

the terminal “2” (which generates the rotation) will exhibit a “valley.” The bottom of the valley 

corresponds to 180    when the MTJ resistance becomes maximum. 

We can alter the stress distribution in the free layer of the s-MTJ by applying an additional voltage 

across the piezoelectric with the third pair of electrodes “3” shown in Fig. 5.1.a. This will allow 

us to shift the position of the valley bottom in the transconductance characteristic I1 versus V2 (In 

is the current through the nth terminal at a fixed bias and Vn is the voltage applied to the nth 

terminal). Thus, we have a 4-terminal switch with terminals “1,” “2,” “3,” and ground, where the 

current between “1” and ground is changed with the voltage applied to “2” and the transfer 

characteristic associated with this change can be modulated by a voltage applied to the terminal 

“3.” When both electrode pairs “2” and “3” are activated, the strain distribution in the piezoelectric 

(and hence in the free layer of the s-MTJ) becomes complex. Exact strain profiles can be calculated 

with 3-D finite-element analysis (e.g., with COMSOL Multiphysics package) as in [73], [75]; 

however, to keep the analysis tractable, we will assume that activating an electrode pair generates 

only uniaxial stress along the line joining that pair. Note that if anything, this overestimates the 

stress required to produce a given rotation θ, and is hence conservative. The sign of the uniaxial 

stress (tensile or compressive) depends on the polarity of the voltage. If we activate electrode pair 

“2,” then we will generate uniaxial stress along the major axis of the elliptical free layer of the s-
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MTJ (compressive or tensile depending on the voltage polarity at “2”), whereas if we activate 

electrode pair “3,” we will generate uniaxial stress along the minor axis of the free layer. We have 

assumed that the free layer is made of Terfenol-D, which has a positive and large magnetostriction 

coefficient (600 ppm). Compressive stress along any direction in the free layer will rotate its 

magnetization away from that direction (maximum rotation is 90°), while tensile stress will keep 

it aligned along that direction. This allows us to control the angle θ with voltages at “2” and “3.” 

We have computed θ versus the voltage V2 (assuming V3 = 0) at 0 K temperature (no thermal 

noise) using the Landau–Lifshitz–Gilbert equation, which yields the magnetization orientation of 

the free layer as a function of time t under the influence of voltage generated stress 

 
( )

  ( ) ( ) ( ) ( ) ( )eff eff

s

dM t
M t H t M t M t H t

Mdt


       

 
    (5.2) 

where 
sM  is the saturation magnetization of the free layer material,   is the gyromagnetic ratio, 

  is the Gilbert damping constant in the free layer, and ( )effH t is the effective magnetic field 

experienced by the free layer at any time t and is given by  

( ) ( ) ( ) ( )eff dipole shape stress thermalH t H H t H t H t          (5.3) 

where 
dipoleH is the (constant) dipole field exerted by the fixed layer, ( )shapeH t  is the field due to 

shape anisotropy, ( )stressH t is the field generated by stress, and ( )thermalH t is the random field due 

to thermal noise, which has been discussed in chapter 1. Stress is generated in the piezoelectric 

substrate by activating a shorted electrode pair with a voltage V. The resulting stress is assumed 

to be uniaxial along the line joining the centers of the electrodes in the activated pair. The voltage 

V generates a vertical electric field of V/a in the piezoelectric substrate. Following [18], we will 
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assume that a vertical electric field of 37 kV/m is required to produce a uniaxial stress of 1 MPa 

in the substrate along the line joining the electrodes in the activated pair. This stress is assumed to 

be fully transferred to the soft magnetic layer of the MTJ resting on the top of the substrate.  

 

Figure 5.2: (a) Angle θ between the magnetizations of the free and fixed layers plotted as a function of the voltage V2 

applied to the electrode pair “2.” The voltage V3 = 0 V and the dipole field 
dipoleH  experienced by the free layer is 

assumed to be 7.05 mT directed along the major axis of the fixed layer. The results are plotted for two different 

temperatures. The dispersion in the 300 K curve is due to thermal noise. (b) Transfer characteristic I1 versus V2 for 

two different temperatures 0 and 300 K. The results are plotted for V3 = 0 and Hdipole = 7.05 mT directed along the 

major axis of the fixed layer. 

A negative voltage generates tensile stress and a positive voltage compressive stress because of 

the direction in which the piezoelectric film has been poled. Equation (5.2) is solved for various 

V-s until steady state is reached and that yields the orientation of the free layer’s magnetization as 

a function of the V-s, and hence θ versus V2 for a fixed V3. This result is plotted in Fig. 5.2.a for 

0 and 300 K temperatures, assuming V3 = 0 V and 7.05dipoleH  mT directed along the major axis 

of the fixed layer. The dispersion in the 300 K result is due to thermal noise. The parameters 
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assumed for the free layer (material Terfenol-D) are similar to the previous chapters. For the MTJ, 

we assumed the spacer layer to be made of MgO of thickness 1 nm. For this thickness, the 

resistance-area product of the MTJ is about 210 m [76]. If the thickness is increased to 2 nm, 

the resistance-area product increases to 28000 m .  

 

Figure 5.3: (a) Transfer characteristic plotted at 0 K temperature for three different values of the dipole field dipoleH

directed along the major axis of the fixed layer, assuming V3 = 0 V. (b) Current I1 through the skewed s-MTJ at 

varying search bit potentials V2. The dipole field 
dipoleH is assumed to be 7.05 mT directed along the major axis of the 

fixed layer. 

We then use (5.1) to extract the s-MTJ resistance ( )R  versus V2 from the θ versus V2 relation in 

Fig. 5.2.a and plot the transfer characteristic  1 1 / ( )I V R   versus V2 (at 0 and 300 K 

temperatures) in Fig. 5.2.b for two different values of V1. Note that this characteristic has a notch 

or valley. Note also that there is no significant difference between the 0 K and (average of) 300 K 

results. Therefore, in the rest of this work, we will present the 0 K results, noting that the 300 K 

results will not be significantly different. In Fig. 5.3.a, we show how the transfer characteristics 

depend on the dipole field strength, assuming that the temperature is 0 K. In Fig. 5.3.b, we plot the 
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transfer characteristic I1 versus V2 at 0 K temperature for three different values of V3. Clearly, the 

position of the notch can be shifted around with the voltage V3, which generates an additional 

uniaxial stress (negative voltage tensile and positive voltage compressive) along the line joining 

the electrode pads “3.” This makes it a 4-terminal switch. 

Table 5.1: Voltage levels used to encode store and search bits. 

Store Bit Search Bit 

Bit Value Voltage Level (V) Bit Value Voltage Level (V) 

1 0.24 X 0 

0 0.46 0 0.24 

X 0.68 1 0.46 

The unique characteristic of a skewed s-MTJ can significantly simplify the design and operation 

of a TCAM cell. In a skewed s-MTJ, the MTJ resistance can be controlled by the gate voltages V2 

and V3. The resistance of a skewed s-MTJ becomes maximum when V2 and V3 “match,” i.e., they 

differ only by a fixed amount, which we have called the “offset.” This associative property of the 

skewed s-MTJ has enabled the design of a one transistor, one trench capacitor, and a single ss-

MTJ-based dynamic TCAM cell. A CMOS-based static TCAM cell requires 16 transistors for each 

cell [77]. Likewise, a CMOS-based dynamic TCAM cell requires six transistors and two trench 

capacitors for each cell [78]. Power dissipation in CMOS-based TCAM cells is high due to a large 

number of transistors resulting in more parasitic nodes.  

Fig. 5.3.b and table 5.1 shows the encoding scheme for implementing the match operation of a 

TCAM cell through a single skewed s-MTJ. In Fig. 5.3.b, the ss-MTJ current (I1) is shown at 

varying search bit potentials (i.e., V2 potential) and at varying stored bits (i.e., V3 potential). The 
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search bits “X,” “0,” and “1” are encoded as 0, 0.24, and 0.46 V, respectively. The store bits “1,” 

“0,” and “X” center the ss-MTJ valley to 0.24, 0.46, and 0.68 V, respectively. In the encoding 

scheme, a high ss-MTJ current (i.e., a lower resistance in the ss-MTJ) indicates a match between 

the stored and the search bit. The I1–V2 valley in the ss-MTJ is programmed to the farthest right 

for the don’t care state (i.e., “X”) storage, as shown in Fig. 5.3.b. Therefore, the ss-MTJ current is 

high for all search bits (“0,” “1,” and “X”) denoting a match irrespective of the applied search bit. 

The search bit “X” is encoded as 0 V. Hence, at search bit “X,” the ss-MTJ current is high for all 

stored states (“0,” “1,” and “X”), denoting a match irrespective of the stored bit. Therefore, the 

skewed s-MTJ significantly reduces the complexity of match operation in a TCAM. 

5.2. TCAM Implementation 

 

Figure 5.4: ss-MTJ-based dynamic TCAM cell.  

In a skewed s-MTJ (ss-MTJ), the current I1 between the free and fixed layers can be controlled by 

the gate voltages at V2 and V3 (see Fig. 5.3b). At any given value of V1, I1 is lowest when V3 = V2 

+ VF, where VF is a fixed voltage (offset voltage). The current I1 increases steeply when V2 and 

V3 deviate from the “match” condition. In this section, we discuss an area/energy-efficient TCAM 

cell, exploiting this associative processing capability of skewed s-MTJ. The cell schematic for an 

ss-MTJ-based dynamic TCAM is shown in Fig. 5.4. The cell exploits high parasitic capacitance at 
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V3 node for a dynamic storage of the storage bit. Note that the capacitance at V3 is high due to an 

underlying high dielectric constant ( 1000  ) piezoelectric layer. The parasitic capacitance can 

be further enhanced by thinning down the piezoelectric layer, and/or by increasing the contact area 

of V3 electrode atop the piezoelectric layer. In addition to V3 node capacitance, a trench 

capacitance can be used for a stable storage. A net 30 fF capacitance is assumed here at the V3 

node. The capacitor is charged through the access transistor M1. However, due to charge leakage, 

refreshing of the stored potential at the capacitor (C) is necessary, which can be achieved by the 

refresh voltage VR. The detailed implementation of the ss-MTJ based TCAM cell circuitry and 

characteristics can be found in References [64], [65]. 

5.3. Comparison between ss-MTJ and CMOS based TCAM 

The TCAM cell implemented with the ss-MTJ device discussed here with further details in [64], 

[65], the operation is non-Boolean and single-ended, which minimizes dynamic power and routing. 

The power-performance analysis of a TCAM array based on ss-MTJ-TCAM cells shows that the 

proposed design possesses the potential to implement high-density, high-speed, and energy-

efficient large-scale TCAM systems. Exploiting the non-monotonic I-V characteristics of the 

proposed ss-MTJ device allows designing a dynamic TCAM cell with only one transistor, one 

trench capacitor, and a single ss-MTJ compared to a CMOS-based static static TCAM cell which 

requires 16 transistors for each cell [77] and dynamic TCAM cell which requires six transistors 

and two trench capacitors for each cell [78]. This significantly reduces the total area requirement 

for the TCAM. Compared with CMOS-based TCAM, the ss-MTJ-based design shows ∼10.8× 

lower minimum Energy Delay Product (EDP). Moreover, the frequency at minimum EDP in the 

discussed ss-MTJ-TCAM is ∼9.4× higher than the frequency of minimum EDP in CMOS-based 
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TCAM. At an operational frequency of ∼1 GHz, the extrapolated EDP of CMOS-TCAM is ∼100× 

larger than that of ss-MTJ-based TCAM. 

 

5.4. Conclusion 

The proposed ss-MTJ-TCAM also outperforms other state-ofthe-art MTJ-based-TCAM designs 

in terms of cell density, search delay, and search energy. Therefore, the ss-MTJ-based TCAM can 

meet the stringent density and performance requirements in the emerging computing platforms 

such as for routers in IoT. This shows that one of the key potential applications of straintronic 

devices in the future is in non-volatile computing. 

This study was performed in collaboration with Prof. Amit Trivedi and his graduate student Ms. 

Susmita Manasi who performed the TCAM implementation and associated circuit level design and 

analysis at University of Illinois at Chicago. The ss-MTJ device modeling and simulation was 

performed by Md Mamun Al-Rashid with inputs from Prof. J. Atulasimha and Prof. S. 

Bandyopadhyay) at Virginia Commonwealth University, Richmond, Virginia. This work has been 

published as two part paper in IEEE Trans. on Electron Devices [64], [65].   
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Chapter 6: Polarized Neutron Reflectometry Study of Depth Dependent 

Magnetization Variation in Co Thin Films 

Strain clocked nanomagnetic memory and logic devices have been experimentally demonstrated 

by a number of groups [7], [79]–[82] for energy efficient computing. These typically involve 

magnetostrictive nanomagnets delineated on top of piezoelectric substrates from which voltage 

induced strain is transferred to produce magnetization rotation in the nanomagnet. Strain induced 

magnetization rotation has been characterized using Magneto-Optic Kerr Effect (MOKE), 

Magnetic Force Microscopy (MFM), Photoemission Electron Microscopy (PEEM), 

magnetoresistance etc. However, all these techniques are unable to resolve magnetization variation 

at various depths from the sample surface. Variation in strain transfer and therefore the 

magnetization variation along the thickness of the nanomagnet has not been studied. Such 

variations can have important ramifications in the performance of such “straintronic” 

nanomagnetic devices and can lead to novel straintronic applications. We look at this depth 

dependent magnetization rotation due to strain in magnetic thin films using Polarized Neutron 

Reflectometry (PNR) at NIST, Maryland, which has the ability to resolve magnetization 

orientation at varying depths from the surface. A brief introduction of PNR has been provided in 

chapter 1. Detailed description and associated theoretical formulations of this technique are fairly 

complex and outside the scope of this work. Significant resources are available with 

comprehensive discussion on PNR and interested readers can look into the NCNR, NSIT website 

[83] and references [42], [84].  

6.1. Experimental Preparation 

In this chapter, we are going to explore magnetization variation along the depth of magnetostrictive 

Cobalt thin films deposited on piezoelectric PMN-PT substrates. The PMN-PT substrates have 
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lateral dimension of 1cm × 1cm and thickness of 0.5mm and a surface roughness of ~0.1 nm before 

applying any external voltage.  Aluminum (Al) was deposited on the unpolished side of the PMN-

PT substrate as bottom electrode. The samples were then poled by applying a voltage of 400V 

between the top surface and the bottom Al electrode. A 10nm Ta layer was then deposited on the 

polished side as adhesion layer followed by a 60nm Co layer and 10nm Ta capping layer using 

electron beam evaporation. After deposition of the layers and voltage application, the sample 

surface roughness increased to ~1nm. The sample schematic is shown in Fig. 6.1. 

 

Figure 6.1: (a) Sample schematic, (b) Typical reflectivity measurement using PNR. 

6.2. Investigation of Strain Effect on Coercive Field and Coherent vs. 

Incoherent Switching 

Measurements similar to hysteresis loops can be performed using PNR. A typical PNR 

measurement measures neutron reflectivity over a range of scattering vector Q . One such 

measurement at 1mT and 0V on the actual sample is shown in Fig. 6.1 (b). As discussed in chapter 

1, the difference between the two non-spin flip (NSF) scatterings (++ and --) is indicative of the 

magnetization component parallel to the applied magnetic field and the spin flip (SF) scatterings 

(+- and -+) arise from the magnetization component perpendicular to the applied magnetic field. 
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Typically the two SF scatterings coincide. We can also measure the reflectivity for a constant Q  

value over a range of applied magnetic field and estimate the coercive magnetic field of the sample. 

We have performed these “hysteresis” measurements at a single low Q  value ( 10.16 nm ) for 

different applied electric field to get the electric field dependence of coercivity. Fig. 6.2 shows the 

reflectivity (R) versus magnetic field measured at different electric voltages applied across the 

sample. The measurements are for magnetic field coming up from negative saturation. 

 

Figure 6.2: Reflectivity vs. applied magnetic field at 
10.16 Q nm coming up from negative saturation for applied 

voltages of  (a) 0V, (b) 150V, (c) 300V, (d) 400V.  
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The crossover points between the two non-spin flip scatterings in Fig. 6.2 indicate that the 

magnetization component parallel to the applied field is zero at those points. The peaks in spin flip 

scatterings indicate the maxima of perpendicular magnetization components.  

 

Figure 6.3: (a) Spin asymmetry vs. magnetic field and (b) spin flip scattering vs. magnetic field at different applied 

voltages. 

Fig. 6.3 shows a replotted version of the data shown in Fig. 6.2 which makes visualizing the voltage 

induced effects easier. Fig. 6.3(a) shows spin asymmetry    R R R R     vs. the applied 

magnetic field. Change of sign in spin asymmetry indicates switching in the parallel magnetization 

component. The field where spin asymmetry is zero can be defined as the coercive magnetic field

0H . Both Fig. 6.3(a) and 6.3(b) shows a rightward shift in the magnetic field where the spin 

asymmetry becomes zero and the peaks of the SF scattering reflectivities respectively with 

increasing electric voltage. These observations suggest that the stress anisotropy for a positive 

applied voltage induces a magnetization “easy axis” (energetically favorable direction) along the 

applied magnetic field and therefore, increasing the coercive magnetic field of the sample. Fig. 

6.3(a) shows a 1.57 mT increase in 0H when the applied voltage goes from 0 to 400V. Fig. 6.3(b) 
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shows about a 1mT shift in the peak perpendicular magnetization. These results show that although 

small, the magnetization of the sample is clearly affected by electric voltage induced stress. 

Apart from the increase in coercivity and therefore magnetic anisotropy parallel to the magnetic 

field, there are two additional trends that require attention. First, zeros in spin asymmetry and 

corresponding peak in spin flip scattering occurs at different magnetic fields. This suggests that 

the magnetization reversal occurs both through coherent rotation and domain nucleation. Second, 

the peak spin slip scattering reflectivity goes down with increasing voltage. In a system with high 

magnetic anisotropy, where the “easy axis” is along the applied magnetic field, it is energetically 

costly to rotate through forming domains with magnetization component perpendicular to the 

“easy” axis. As a result, with increasing anisotropy there is a higher likelihood of magnetization 

reversal through 180° domain formation. An illustration of this is shown in Fig. 6.4. With 

increasing applied voltage and therefore stress anisotropy, domains with perpendicular 

magnetization component become less energetically favorable, resulting in the observed decrease 

drop in the peak SF scattering reflectivities. 

 

Figure 6.4: Magnetization reversal scenarios for different anisotropy magnitude. 



69 

 

6.3. Depth Dependent Magnetization Rotation 

The polarized neutron reflectivity data have been collected under 3 different external magnetic 

fields – positive saturation (at 700 mT), remanence (at 1 mT after coming down from positive 

saturation) and coercive field (10 mT after coming up from negative saturation). Remanence and 

coercive field measurements were performed at applied voltages of 0V and 400V to observe the 

effects of electric field induced stress on the magnetization, totaling in 5 observations. By 

observing the trends in Fig 6.3, a larger stress induced effect is expected at coercive field. 

All reflectivity data were then fitted using 1D reflectivity modeling software refl1D. In the 

modeling, the Co layer is sliced into three slabs to capture magnetization variation along the 

thickness. The fitting has been performed with both uniform (single Co slab) and non-uniform 

magnetization (three Co slabs) along the thickness. The three slab model provides a much better 

fit for all cases, implying non-uniform depth dependent magnetization variation. The data from the 

five scenarios and their respective model fitting are as follows. 

 

Figure 6.5: Reflectivity data and model fitting for 700 mT, 0V. 

 



70 

 

1. Positive saturation (700 mT external magnetic field and 0V) 

The 700 mT field is enough to saturate the Co and we can consider the magnetization to completely 

point along the applied magnetic field. While fitting this data set, the magnetization is therefore 

assumed to be uniform and pointing towards the applied magnetic field direction (270°). Only the 

structural parameters were allowed to change during the fitting. The reflectivity data and the 

corresponding model fitting using refl1D are shown in Fig. 6.5. 

The various parameters extracted after fitting are summarized in table 6.1. 

Table: 6.1: Fitted model parameters in saturation. 

Layer Thickness (Å) SLD (10-6/Å2) 

Ta seed 132.9 3.714 

Co 575.4 2.265 

Ta capping 114.8 3.764 

 

2. Remanence (1 mT external magnetic field at 0V and 400V)  

The magnetic field is reduced from 700 mT to 1mT and the remanence magnetization is observed. 

The structural parameters remains the same as the saturation case. The parameters that was allowed 

to change during this fitting are the magnetizations of the three Co layer and their corresponding 

magnetic scattering length density. In the case of 400V applied voltage, a biaxial strain is generated 

in the PMN-PT substrate which is then transferred onto the Co layer. As already discussed, the 

nature of the strain is such that it facilitates magnetization orientation along the applied magnetic 

field. The reflectivity data and the corresponding fit are shown in Fig. 6.6. Please note that, the 

magnetization rotation is not purely coherent. As a result, the modeled magnetization orientations 
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are possibly the average over a number of domains, both laterally and along the thickness of a 

particular layer. The magnetization directions along the magnetic SLD give a measure of the 

average magnetization vectors length and orientation. 

 

Figure 6.6: Reflectivity data and corresponding fit at remanence (1 mT) for (a) 0V and (b) 400V. 

The magnetization direction of the three layers and the corresponding magnetic SLDs are shown 

in Table 6.2.  
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Table 6.2: Fitted model parameters at remanence. 
 

Rotation (raw 

angle) 

Magnitude of 

rotation from 270º 

Magnetic SLD 

(10-6/Å2) 

Thickness 

(Å) 

0V 400V 0V 400V 0V 400V 

Top Layer 283.8º 282.8º 13.8º 12.8º 3.013 3.03 100 

Mid Layer 292.4º 290.8º 22.4º 20.8º 3.102 3.227 175.4 

Bottom Layer 296.1º 292.8º 26.1º 22.8º 3.604 3.692 300 

In the 0V case, although there is no voltage induced stress, a residual stress is present in the Co 

film from poling of the underlying piezoelectric PMN-PT substrate. Fitting the reflectivity data 

with a 3 Co layer model, we can see from table 6.2 that the top, mid and bottom layer is rotated by 

13.8°, 22.4° and 26.1° from the saturation field direction after the field is withdrawn. Among the 

three layers, the bottom layer is deviated by the highest amount. This rotation is the result of the 

residual stress present in the Co film. The effect of this stress is the most on the bottom layer 

(closest to the PMN-PT substrate), which is what the fitting suggests with the bottom layer 

showing the highest amount of rotation. The Co film is more relaxed (less stress) as we go up, 

which is also supported by a monotonically decreasing angle of rotation in the middle and top 

layers. Now, when an electrical voltage of 400V is applied across the sample thickness, the 

resulting electric field generates a stress in the in the substrate. From table 6.2, the magnetizations 

of the 3 Co layers responds to this voltage generated stress by a rotation towards the applied 

magnetic field direction. The bottom layer shows 3° rotation compared to its 0V orientation. The 

rotation of magnetization towards the saturation field direction due to voltage induced stress 

matches the observations made in section 6.2. At both 0V and 400V, there is a clear difference in 

the amount of rotation between three layers, suggesting depth dependent variation in the layer 

magnetizations. 
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3. Coercive field (10 mT external magnetic field at 0V and 400V) 

The measurements and fitting at coercive field is quite similar to the measurements at remanence. 

The difference in measurement conditions is that the sample is first saturated in the negative 

direction (-700 mT applied magnetic field) which was then increased to 10 mT. As a result, the 

deviation in magnetization is calculated from 90° instead of 270°. The reflectivity data and the 

corresponding fit are shown in Fig. 6.7. 

 

Figure 6.7: Reflectivity data and corresponding fit at coercive field (10 mT) for (a) 0V and (b) 400V. 

The magnetization direction of the three layers and the corresponding magnetic SLDs are shown 

in Table 6.3. 
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Table 6.3: Fitted model parameters at coercive field. 

 
Rotation (raw 

angle) 

Magnitude of 

rotation from 90º 

Magnetic SLD  

(10-6/Å2) 

Thickness 

(Å) 

0V 400V 0V 400V 0V 400V 

Top Layer 110° 105.3° 20° 15.3° 2.47 2.547 100   

Mid Layer 115.3° 111.1° 25.3° 20.1° 2.61 2.828 175.4 

Bottom Layer 119.4° 113.3° 29.4° 23.3° 3.298 3.428 300 

The magnetization orientations for both 0V and 400V are again depth dependent as evident from 

the data in table 6.3. In the 0V case, again the effect of residual stress is the most in the bottom 

layer (deviation of 29.4°) and least in the top layer (deviation of 20°). From Fig. 6.3, for a small 

change in magnetic anisotropy, we can expect a larger change in the magnetization near the 

coercive field (10mT coming up from negative saturation) compared to the change at remanence 

(1mT coming down from positive saturation). So, the effect of voltage induced stress is expected 

to be larger near the coercive field compared to remanence. This is exactly what we see from the 

data in table 6.3. At this field, the bottom layer is rotated by 5° towards the saturation field direction 

due to voltage induced stress.  

The observations from both the remanence and coercive field cases can be summarized as follows: 

1. The effect of stress is the most at the bottom (closest to the substrate) and monotonically 

decreases upward. This demonstrates depth dependent variation in the magnetization 

orientation and strain transfer.  

2. Voltage induced stress clearly has a measurable effect on the magnetization rotation. 
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6.4. Repeatability 

Similar measurements have been performed on a second sample (PMN-PT/Ta (10nm)/Co (60nm)). The 

only difference between the two samples is that sample 2 did not have the Ta capping layer. 

Reflectivity measurements have been performed at (1) saturation (700mT, 0V) to get the structural 

parameters of the sample, (2) 1mT, 0V and (3) 1mT, 400V. The data from measurements 2 and 3 

are summarized in table 6.4. 

Table 6.4: Fitted model parameters at remanence. 

 
Rotation (raw 

angle) 

Magnitude of 

rotation from 270º 

Magnetic SLD 

(10-6/Å2) 

0V 400V 0V 400V 0V 400V 

Top Layer 282° 287° 12° 17° 2.484 2.424 

Mid Layer 291° 296° 21° 26° 3.126 3.1 

Bottom Layer 291° 299° 21° 29° 3.528 3.451 

 

The data in table 6.4 also shows a depth dependent magnetization orientation due to variation in 

strain transfer from the underlying PMN-PT substrate. In the 0V case, the effect of the residual 

stress is the most prominent on the bottom layer and subsequently reducing as we go to the upper 

layers. In the 400V case, the voltage induced stress forces the magnetization further away from the 

applied field direction, opposite to what we see for sample 1. This is because the exact compression 

and tension axes of the biaxial strain generated in the piezoelectric substrate is not known 

beforehand. The orientations of the two samples during loading were possibly different, causing 

the magnetization to move toward the applied field direction for sample 1 and away for sample 2. 

This shows that the observed variation in depth dependent magnetization orientation and strain 

transfer is repeatable over multiple samples. 
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6.5. Conclusion 

In conclusion, the reflectivity data and the subsequently fitted models clearly show that the voltage 

induced stress, although very small, has a measurable effect on the magnetization of the Co thin 

film. The strain induced anisotropy increases the incoherency in the magnetization rotation process 

as is evident from the “hysteresis-like” measurements performed in section 6.2. The most 

important observation in this study is the non-uniform magnetization rotation along the depth of 

the thin film. This study confirms magnetization variation along the thickness of a magnetostrictive 

thin film which appears to be related to relaxation in strain transfer from the piezoelectric substrate 

to the magnetostrictive layer as we go upwards from the piezoelectric-magnetostrictive 

heterostructure interface towards the surface of the thin film. It should be noted that the model did 

not account for the presence of defects and magnetization pinning sites which might be present in 

the sample. However, the fact that the strain induced rotation is the highest at the bottom and 

decreases towards the top strengthens the conclusion that the differential magnetization rotation 

along the thickness is due to a strain gradient across the thickness of the Co film. If the variation 

in magnetization was due to defects, the rotation should have been the smallest at the bottom 

(nearest to the PMN-PT/Co interface) since the defect density in a heterostructure is normally the 

highest at the interface. A detailed treatment of defects and pinning sites is outside the scope of 

this thesis. 

This depth dependent rotation may not be as evident in actual straintronic devices with thickness 

on the order of ~10 nm and lateral dimensions of ~100 nm. The sensitivity of PNR on the 

magnetization of the sample under study is highly dependent on the surface area of the sample 

with sensitivity increasing with increasing sample area. As a result, studying depth dependent 

variation in such nano-patterned devices (as opposed to a continuous thin film studied here) using 
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PNR requires pattering over a large area. For example, if we have devices with ~100 nm lateral 

dimension and we want sensitivity similar to the sample studied in this chapter (1mm × 1mm), a 

rough estimation of the required number of nanostructures is on the order of ~10 million requiring 

advanced lithographic techniques like nanoimprint or block copolymer nanolithography, which is 

outside the scope of this thesis. Nevertheless, the demonstration of depth dependent magnetization 

rotation in magnetostrictive thin films has not been done before and it is a key contribution of this 

thesis. 

This work has been performed in collaboration with Dr. Brian Kirby at NIST Center for Neutron 

Research, NIST, Maryland using the Polarized Beam Reflectometer located in the same facility.  
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Chapter 7: Summary and Future Directions 

7.1. Summary 

The simulations performed in chapter 2 and 4 show that straintronic devices are highly energy-

efficient. However, high dynamic error makes them unsuitable for general purpose Boolean logic 

applications. This error issue is further worsened by incoherent switching in comparatively large 

nanomagnets.  Nanomagnets with lateral dimensions of < 50 nm appear to be the best strategy for 

achieving low dynamic error rate. These ultra-low energy straintronic devices, when properly 

designed to maintain a low error, have exciting potential in specialized computing applications 

which are more error tolerant than general purpose computing and where energy is at a premium 

e.g. implanted medical devices, structural health monitoring etc. Their inherent non-volatility and 

non-monotonic transfer characteristics makes them better suited for memory and non-Boolean 

computing applications. For scaling below 50 nm and still maintaining thermal stability requires 

additional research for development and nano-pattering of high magnetostrictive materials. 

Chapter 3 proposed and studied an interesting approach in solving the scaling problem by 

exploiting the fact that not every component in a non-volatile logic scheme needs to be non-

volatile. Replacing intermediate states in binary logic wire with volatile circular magnets and 

utilizing strain induced bi-stability showed excellent scaling potentials while still maintaining 

overall non-volatility and ultra-low energy dissipation. The ability to switch between an all parallel 

to all antiparallel orientation of magnetizations in an array of circular magnetic nanodots by 

utilizing dipole coupling and strain induced anisotropy has potential application beyond 

computing, for example, controlling magnetic fields for applications in microfluidic devices for 

biological cell sorting. 
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The most promising application of straintronic devices is non-Boolean computing. Chapter 4 

showed the modeling of a skewed straintronic MTJ device and how its non-monotonic 

magnetoresistance can be utilized to implement TCAM which is better than conventional CMOS 

based TCAMs in almost all performance matrices including speed, energy dissipation, device area 

and simplicity of operation. Straintronic devices can be used to implement many other non-

Boolean computing schemes e.g. Bayesian networks [5], image processing [85]. 

The experimental work in chapter 6 has been dedicated to answer a fundamental question in strain 

induced magnetization rotation. There was no previous study on the variation in magnetization 

orientation along the thickness of a magnetostrictive device. By utilizing polarized neutron 

reflectometry, this chapter showed that there is indeed a depth dependent magnetization variation 

in magnetostrictive thin films. However, study of depth dependent magnetization variation in 

patterned nano-structures, possible ramifications of this variation on device performance and 

potential applications require further exploration. 

7.2. Future Directions 

In our studies and analyses in this thesis, two important future research directions have been 

identified for deploying practical low energy, scalable and low error straintronic devices. First, 

low voltage local strain induced clocking of nanomagnetic devices has not yet been demonstrated 

and some work has been performed as part of this thesis to lay the groundwork for such 

demonstration. The preliminary fabrication and characterization is discussed next. Second, growth 

nanopattering of high magnetostrictive materials like Terfenol-D for improved scaling and error 

rate of straintronic devices, which is beyond the scope of this thesis. 
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7.2.1. Foundations for low voltage switching 

Stress induced switching has already been demonstrated experimentally in many systems [7], [17], 

[62], [81], [82]. All these experiments have been performed on bulk piezoelectric substrates where 

strain generated by applying electric potential are global and therefore applied to all nanomagnets 

at once, which requires application of very high electric voltages [7], [17]. Nanomagnets can be 

clocked individually by locally generated strain using a thin film piezoelectric substrate [18], [62].  

However, low voltage ~10-100 mv local strain induced clocking is yet to be experimentally 

demonstrated.  

 

Figure 7.1: Local strain induced clocking of magnetostrictive nanomagnets. The nanomagnets can be clocked 

individually by applying an electric potential across the corresponding terminals. 

The scheme to generate local voltage induced strain [18], [62] is illustrated figure 7.1. The top 

electrodes are squares with lateral dimension equal to the thickness (t) of the piezoelectric film. 

The piezoelectric film is grown on a conducting substrate.  The spacing L between the top 

electrodes has to be 1 to 2 times of the thickness to maximize the strain [18]. 

For experimental demonstration, PZT (PbZr52Ti48O3) thin films of 100-150 nm thicknesses are 

being used. These films are being sourced from collaborators Université Paris-Sud, France and 

CNRS. The samples are being fabricated using conventional fabrication techniques following a 

three step lithography process as shown in Figure 7.2. 
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Figure 7.2: (a) Fabrication of large electrodes for external connection. (b) Fabrication of electrodes with lateral 

dimension equal to the PZT film thickness. (c) Fabrication of the magnetostrictive nanomagnets. 

In the first step, large electrodes (Au) are fabricated for external connection to apply electric 

voltage. Second step serves to fabricate the final electrodes (Au) for strain generation of lateral 

dimension equal to the PZT film thickness (100-150 nm) using electron beam lithography. In the 

third step, the magnetostrictive nanomagnets (Co/Ni) are deposited. A Ti seed layer of 5nm is also 

deposited under the nanomagnets for better adhesion and lift-off.  

 

Figure 7.3: Height and Magnetic phase image obtained via MFM. 
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Magnetic Force Microscopy (MFM) is being used to identify the strain induced rotation. Figure 

7.3 shows respectively the height and magnetic phase image of part of the sample shown in Figure 

7.2 before (left two) and after stress (right two) application. Attempt on in-situ imaging under 

stress is not successful yet. Future attempts are going to include additional structures to be able to 

measure the change in Anisotropic Magnetoresistance (AMR) to detect strain induced switching. 

7.2.2. Scaling to 50 nm & beyond and improved switching error 

As already discussed in the conclusion of chapter 4, another very important area that requires 

considerable effort to solve is the scaling, thermal stability and switching error in straintronic 

devices as devices are scaled below 50 nm. Research and development of highly magnetostrictive 

nano-patternable materials is essential to solve these problems. Terfenol-D has saturation 

magnetostriction of ~1500 ppm [61] in bulk and has been sputtered to produce thin films with 

saturation magnetostriction of ~900 ppm [58]. However, the part that appears to be the most 

challenging is to pattern nanostructures with similar magnetostriction. Even nanopattering the 

binary material FeGa (magnetostriction ~350 ppm) has been shown to be challenging due to 

varying Ga content across the film and presence of multiple phases [17], [71], which give rise to 

unwanted metastable states in the patterned devices, contributing additional error in switching. 

Therefore, extensive research is needed in this area which is outside the scope of this thesis.  
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