
MEMORY MANAGEMENT FOR EMERGING MEMORY TECHNOLOGIES

A Dissertation

by

VIACHESLAV FEDOROV

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, A. L. Narasimha Reddy
Committee Members, Paul V. Gratz

James Caverlee
Jean-Francois Chamberland

Head of Department, Miroslav M. Begovic

August 2016

Major Subject: Computer Engineering

Copyright 2016 Viacheslav Fedorov

ABSTRACT

The Memory Wall, or the gap between CPU speed and main memory latency, is

ever increasing. The latency of Dynamic Random-Access Memory (DRAM) is now of

the order of hundreds of CPU cycles. Additionally, the DRAM main memory is expe-

riencing power, performance and capacity constraints that limit process technology

scaling. On the other hand, the workloads running on such systems are themselves

changing due to virtualization and cloud computing demanding more performance

of the data centers. Not only do these workloads have larger working set sizes, but

they are also changing the way memory gets used, resulting in higher sharing and

increased bandwidth demands. New Non-Volatile Memory technologies (NVM) are

emerging as an answer to the current main memory issues.

This thesis looks at memory management issues as the emerging memory tech-

nologies get integrated into the memory hierarchy. We consider the problems at

various levels in the memory hierarchy, including sharing of CPU LLC, traffic man-

agement to future non-volatile memories behind the LLC, and extending main mem-

ory through the employment of NVM.

The first solution we propose is “Adaptive Replacement and Insertion” (ARI), an

adaptive approach to last-level CPU cache management, optimizing the cache miss

rate and writeback rate simultaneously. Our specific focus is to reduce writebacks as

much as possible while maintaining or improving miss rate relative to conventional

LRU replacement policy, with minimal hardware overhead. ARI reduces writebacks

on benchmarks from SPEC2006 suite on average by 32.9% while also decreasing

misses on average by 4.7%. In a PCM based memory system, this decreases energy

consumption by 23% compared to LRU and provides a 49% lifetime improvement

ii

beyond what is possible with randomized wear-leveling.

Our second proposal is “Variable-Timeslice Thread Scheduling” (VATS), an OS

kernel-level approach to CPU cache sharing. With modern, large, last-level caches

(LLC), the time to fill the LLC is greater than the OS scheduling window. As a

result, when a thread aggressively thrashes the LLC by replacing much of the data

in it, another thread may not be able to recover its working set before being resched-

uled. We isolate the threads in time by increasing their allotted time quanta, and

allowing larger periods of time between interfering threads. Our approach, compared

to conventional scheduling, mitigates up to 100% of the performance loss caused by

CPU LLC interference. The system throughput is boosted by up to 15%.

As an unconventional approach to utilizing emerging memory technologies, we

present a Ternary Content-Addressable Memory (TCAM) design with Flash tran-

sistors. TCAM is successfully used in network routing but can also be utilized in

the OS Virtual Memory applications. Based on our layout and circuit simulation

experiments, we conclude that our FTCAM block achieves an area improvement of

7.9× and a power improvement of 1.64× compared to a CMOS approach.

In order to lower the cost of Main Memory in systems with huge memory demand,

it is becoming practical to extend the DRAM in the system with the less-expensive

NVMe Flash, for a much lower system cost. However, given the relatively high

Flash devices access latency, naively using them as main memory leads to serious

performance degradation. We propose OSVPP, a software-only, OS swap-based page

prefetching scheme for managing such hybrid DRAM + NVM systems. We show that

it is possible to gain about 50% of the lost performance due to swapping into the

NVM and thus enable the utilization of such hybrid systems for memory-hungry

applications, lowering the memory cost while keeping the performance comparable

to the DRAM-only system.

iii

To my dearest mother, father, and sister.

iv

ACKNOWLEDGEMENTS

I sincerely and wholeheartedly thank Dr. Narasimha Reddy for his tremendous

support, guidance and patience during my years at Texas A&M. I admire his knowl-

edge and, more importantly, the ability to think outside the box, easily combining

concepts from multiple disciplines to produce elegant solutions to tricky problems.

I thank Dr. Paul Gratz for his invaluable help and mentorship throughout the

work.

I appreciate my committee members, Dr. Jean-Francois Chamberland and Dr.

James Caverlee, for their valuable questions, comments, and hints that helped im-

prove this work.

I also thank Dr. Sunil Khatri for his friendship, relentless energy and enthusiasm,

as well as great academic and life advice.

Finally, I wholeheartedly thank my parents and my sister for their support

throughout this journey, for always being there, encouraging me through the toughest

times and celebrating with me during the times of triumph.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES . xii

1. INTRODUCTION . 1

2. ARI: ADAPTIVE LLC-MEMORY TRAFFIC MANAGEMENT 6

2.1 Introduction . 6
2.2 Design . 8

2.2.1 Adaptive Replacement . 10
2.2.2 Dynamic Insertion . 12

2.3 Implementation Details . 14
2.4 Evaluation . 18

2.4.1 Methodology . 18
2.4.2 Performance . 19
2.4.3 Memory Bandwidth Reduction 19
2.4.4 Application Speedup . 20
2.4.5 Energy and Lifetime . 21
2.4.6 Multiprocessors . 23

2.5 Analysis . 24
2.5.1 Dynamic Behavior . 24
2.5.2 Cache Size and Set-Associativity 26
2.5.3 Impact of Insertion Policies 28
2.5.4 Minimizing Hardware Overhead 29

2.6 Related work . 30
2.7 Summary . 33

3. VATS: VARIABLE AGGREGATION TIMESLICE SCHEDULING 35

vi

3.1 Introduction . 35
3.2 Motivation . 38
3.3 Design . 44
3.4 Evaluation . 45

3.4.1 Methodology . 45
3.4.2 Performance Improvement . 46
3.4.3 Effect of LLC Size on Optimal Timeslice Length 48
3.4.4 Performance vs. Application Count 50

3.5 Discussion . 50
3.5.1 LLC Miss Reduction . 51
3.5.2 Cache Partitioning vs. Timeslice Aggregation 52
3.5.3 Fairness . 55
3.5.4 Dynamic Timeslice Extension 55
3.5.5 Even Larger LLCs . 56

3.6 Summary . 57

4. FTCAM: AN AREA-EFFICIENT FLASH-BASED TERNARY CAM . . . 58

4.1 Introduction . 58
4.2 Previous Work . 60
4.3 Our Approach . 62

4.3.1 Definitions . 62
4.3.2 Overview . 63
4.3.3 TCAM Architecture . 63
4.3.4 TCAM Block Implementation 67

4.4 Evaluation . 75
4.4.1 Lifetime Estimation . 78

4.5 Summary . 81

5. OSVPP: OS VIRTUAL-MEMORY PAGE PREFETCHING 83

5.1 Introduction . 83
5.2 Background . 85
5.3 Motivation . 89
5.4 Design . 92

5.4.1 To Prefetch or Not? . 92
5.4.2 Prefetch Support for NVM Devices 93
5.4.3 When to Prefetch . 95
5.4.4 What to Prefetch . 99
5.4.5 How Many Pages to Prefetch 104

5.5 Evaluation . 105
5.5.1 Methodology . 105
5.5.2 Performance Improvement . 106

vii

5.5.3 Analysis . 111
5.6 Related Work . 115
5.7 Summary . 119

6. CONCLUSION . 120

REFERENCES . 122

viii

LIST OF FIGURES

FIGURE Page

1.1 Typical memory hierarchy in computer systems, and the role of the
emerging NVM technology. 1

2.1 Distribution of total number of hits across a 16-way, 2MB LLC for
mcf application (0 - MRU, 15 - LRU). 10

2.2 Eviction candidates for various static policies. 13

2.3 Insertion point for 8H16 static policy, for low-locality blocks. 14

2.4 Baseline CMP. 15

2.5 L3 bank with shadow tags array. 16

2.6 Writebacks improvement, normalized to LRU. 20

2.7 Misses improvement, normalized to LRU. 20

2.8 IPC improvement with ARI, DIP, and DBLK, normalized to LRU. . . 21

2.9 Writebacks for the PARSEC applications, normalized to baseline LRU. 23

2.10 Cache misses for the PARSEC applications, normalized to baseline
LRU. 24

2.11 Adaptivity graph for soplex application. 25

2.12 Writeback curves for mcf, ARI vs. static policies. 26

2.13 Normalized writebacks and misses decrease under varied cache sizes,
SPEC2006 (higher is better). 27

2.14 Normalized writebacks and misses decrease under varied associativity
(higher is better). 27

2.15 Comparison of the schemes with various insertion policies. 28

ix

3.1 Worst-case slowdown of benchmarks running concurrently with cache
aggressive microkernels, with conventional scheduler, normalized to
solo run. 39

3.2 Number of LLC misses between reschedulings, as a percentage of LLC
lines replaced. 41

3.3 Misses/ms for an extended timeslice, sampled every 3ms. 43

3.4 A comparison of the conventional CFS timeslices vs. proposed aggre-
gated timeslices. 45

3.5 Runtime improvement versus CFS baseline in a dual-core system with
16MB LLC. Geomean across sixteen application mixes, four applica-
tions per core. 47

3.6 Runtime improvement versus CFS baseline in a quad-core system with
16MB LLC. Geomean over six application mixes, four per core. . . . 48

3.7 Runtime improvement over CFS baseline in a dual-core system with
4MB LLC. Geomean across sixteen application mixes, four applica-
tions per core. 49

3.8 Runtime improvement over CFS baseline with 2, 4, and 8 applications
per core, in a quad-core system. 50

3.9 Detailed runtime improvement, 45ms aggregated timeslices versus CF-
S baseline in a quad-core system with 16MB LLC. Four applications
per core, sixteen total. 51

3.10 LLC misses with aggregated timeslices, normalized to CFS in a quad-
core system with 16MB LLC. 52

3.11 CDF functions for cold cache effect, and estimated LLC miss improve-
ment beyond 15ms aggregation scheme. 53

4.1 Floorplan and block arrangement of our TCAM. 64

4.2 TCAM block organization. 66

4.3 TCAM row split into 32 sections. 67

4.4 Pipelined implementation of lookup functionality. 70

4.5 Flash-based TCAM cell. 71

x

4.6 TCAM cell logical construction. 72

4.7 Flash-based port cell. 74

4.8 Sense amplifier used in CMOS port array. 75

4.9 FTCAM utilization over one day (with and without CMOS shadow
blocks). 80

5.1 A diagram explaining the virtual memory concept. 86

5.2 OS readahead accuracy with one application running, tunkrank app. . 90

5.3 OS readahead accuracy with three applications running in parallel,
tunkrank apps. 91

5.4 OS readahead latencies, normalized to no-readahead, on an emulated
NVMe device. 96

5.5 Secondary queue for the prefetch requests. 97

5.6 Temporal and spatial schemes illustration. 100

5.7 SparkBench suite running time improvement with OS readahead, and
the offloaded readahead technique. 107

5.8 SparkBench suite running time improvement with various prediction
schemes. 108

5.9 SparkBench suite number of page faults with various prediction schemes.110

5.10 Prefetch utilizations for the combination prefetch algorithm, spark-
bench suite. 112

5.11 Final utilizations for the combination prefetch algorithm. 113

5.12 Prediction lifetime in the proposed scheme. 114

5.13 Prediction distribution for the combination prefetch algorithm. 115

5.14 SparkBench suite running time improvement with various prediction
schemes, 10 µs NVM device latency. 116

xi

LIST OF TABLES

TABLE Page

2.1 Baseline cache configurations. 15

2.2 DRAM and PCM characteristics for 1GB chip. 18

4.1 Comparing delay, area and power of CMOS TCAM and FTCAM blocks. 75

xii

1. INTRODUCTION

The Memory Wall, or the gap between CPU speed and main memory latency,

is ever increasing. The latency of DRAM is now on the order of hundreds of CPU

cycles. Furthermore, traditional DRAM-based main memory is now hitting hard

power, performance and capacity constraints that will limit process technology scal-

ing [28]. Typically, this gap has been mitigated by the use of cache hierarchies in

the CPU which would hide the high latency for the localized, frequently-used ap-

plication data sets. Increasing data sets and higher number of applications running

on a processor due to virtualization are making caches less effective [17]. Alternate

memory technologies, are emerging that promise to alleviate main memory capacity

and scalability concerns [19, 59]. These emerging NVM technologies drive changes

to the memory/storage organization that force us to revisit the common assumptions

that have been relied upon in the modern systems.

Caches
(SRAM)

Main Memory
(DRAM)

Storage
(Flash)

Lo
w

er
 L

at
en

cy
H

ig
he

r C
os

t

La
rg

er
 C

ap
ac

ity

R
ep

la
ce

d
by

E

m
er

gi
ng

 N
V

M

Figure 1.1: Typical memory hierarchy in computer systems, and the role of the
emerging NVM technology.

1

Historically, there have been several types of memory available, that fit specific

niches in the memory hierarchy (refer to Figure 1.1). Flash, a non-volatile, tightly-

integrated and volume-produced memory, has been used in data storage. Volatile

memory, typically represented by SRAM and DRAM technologies, has been used for

enabling faster, random access to the frequently used data. DRAM memories, due

to being compact, efficient in production, and lower-power than SRAM, have been

ideal for utilization in Main Memory application. SRAM cells, because of their high

speed and relatively high costs and power consumption, have been typically utilized

in CPU caches which are orders of magnitude smaller than the Main Memory and

where low access latency is critical.

The distinction between storage and memory is getting erased with the drive

to operate on large data sets in modern applications, which in turn exerts greater

pressure on the memory system, both in terms of performance and capacity. At

the same time, power and energy constraints in current process technologies are

imposing new limits on off-chip bandwidth. Traditional DRAM-based main memory

is now hitting hard power, performance and capacity constraints that limit process

technology scaling [28].

NVM (typically represented by Flash memory) used to be much slower than

DRAM and thus only suitable for longer-term storage (such as a replacement for

the spinning disks). On the other hand, the modern emerging NVM technologies

such as PCM, MRAM, Memristors, etc. [59] outperform Flash in both access latency

and the rewrite performance (they do not need to erase the whole block of data as is

done in Flash, thus they present byte-granularity similar to DRAM). These emerging

technologies are approaching the performance of DRAM, with larger capacity, higher

scalability, and non-volatility, making them the ideal candidates for the novel class

of Storage-Class Memory [19].

2

As compared to the conventional memory hierarchy, the emerging NVM has sev-

eral different key characteristics which challenge many of the traditional assumptions

about the design of memory architectures on both the hardware and the software

level. The characteristics include:

• Low latency random access capability compared to spinning disks.

• Relatively low endurance compared to DRAM.

• High write energy and latency compared to DRAM.

In this work, we address the issues related to the adoption of NVM on both the

architecture and the software levels. We look into the roles of NVM for complete

DRAM replacement as well for DRAM extension.

In Chapter 2 we address the challenges related to utilization of NVM for replac-

ing DRAM as Main Memory. In particular, the limited endurance and high write

latencies of NVM need to be exposed to the CPU caches for optimal performance

and maximum NVM lifetime. It is vital to control the amount of writebacks from

the Last-Level Cache (LLC) to Main Memory. We propose an adaptive LLC man-

agement policy that modifies replacement as well as insertion policies in the cache,

in response to the changing program behavior, so as to optimize the writebacks to

NVM main memory and at the same time improve the cache miss-rate.

In Chapter 3 we notice that the growing working sets of modern applications and

the increased degree of memory sharing between CPU cores, exert increasing pressure

on the cache system. Combined with the conventional decade-old assumptions in the

Operating System about the typical cache sizes and application working sets, this

leads to suboptimal performance with increased amount of unnecessary cache misses

and writebacks. These OS effects on the caches have not been considered in the

3

cache management literature previously. We analyze the degree of the OS influence

on caching performance and propose a software-only, adaptive approach to mitigating

such influence with minimal overheads.

For large machines in the data centers the capacity and latency of pure NVM

as main memory might prove insufficient. An alternative approach to utilizing the

NVM presented in the literature is to expose both the devices on the memory bus.

In such systems, not only does the memory controller hardware need to support both

the device types, but it also has to be modified in order to adaptively move the data

between the two types of memory based on the usage patterns, i.e., the frequently-

updated data would be placed into the faster DRAM, while the more static data can

reside in NVM. In Chapter 5 we explore an alternative approach. We propose the use

of PCIe-attached NVM [91] (based on the NVMe standard) for transparent DRAM

extension as a software-only approach, using the OS swapping subsystem as a base.

We show that the OS swapping support of NVMe devices is inefficient since it is based

on the old assumptions about the high-latency, sequential-access spinning disks. In

particular, the OS fetches extra pages of data beyond what the application demands,

while the application is waiting. While the overhead of doing such work is effectively

hidden with higher-latency disks, using NVMe memory exposes such bottlenecks in

the OS design. In our work, we address the issues with OS swapping, and build a

framework for managing the DRAM+NVMe hybrid system by adopting a predictive

page fetching algorithm, providing an impression of large memory capacity with the

effective latency of DRAM.

As an unconventional approach to utilizing emerging memory technologies, in

Chapter 4 we present a Ternary Content-Addressable Memory (TCAM) design with

Flash transistors. Such design could be utilized in Virtual Memory accelerator ap-

plications, allowing faster operation when employing NVM for data storage. Instead

4

of increasing the TLB sizes, which would induce additional delay on the critical path

of CPU reads, for instance, TCAM could be leveraged for storage of the Page Table

and hence fast Virtual-to-Physical address translations, obviating the need of the

costly Page Table walks on TLB misses.

5

2. ARI: ADAPTIVE LLC-MEMORY TRAFFIC MANAGEMENT ∗

2.1 Introduction

The working sets of modern applications keep increasing, which in turn is placing

greater pressure on the memory system, both in terms of performance and capacity.

At the same time, power and energy constraints in current process technologies

are imposing new limits on off-chip bandwidth. Furthermore, traditional DRAM-

based main memory is now hitting hard power, performance and capacity constraints

that will limit process technology scaling [28]. Alternate memory technologies, such

as Phase-Change Memory (PCM), have been proposed to alleviate main memory

capacity and scalability concerns, however these technologies impose further costs

on off-chip writes in terms of power consumption and wear-out. In this chapter we

present an adaptive approach, leveraging program phase behavior, to address all

of these challenges. In particular, we propose to adaptively modify Last-level Cache

(LLC) management policy to simultaneously reduce writebacks while improving miss-

rate, addressing both power and performance concerns. Although there has been

considerable prior work exploring LLC management policies to reduce miss-rate and

improve performance and some prior work examining policies to reduce writebacks

for optimized bandwidth consumption, we present the first work to our knowledge

to simultaneously address both.

To mitigate the greater memory system pressure placed by applications on their

memory systems to maintain data and instruction stream needs, current chips em-

ploy memory system hierarchies with several levels of cache prior to main memory

∗Viacheslav V. Fedorov, Sheng Qiu, A. L. Narasimha Reddy, and Paul V. Gratz. 2013. ARI:
Adaptive LLC-memory traffic management. ACM Trans. Archit. Code Optim. 10, 4, Article
46 (December 2013). DOI=http://dx.doi.org/10.1145/2543697 c©2013 ACM, Inc. Reprinted by
permission.

6

[63]. Last-level Caches (LLCs) are optimized towards capacity rather than speed,

and are often highly associative. LLCs typically employ Least Recently Used (LRU)

or approximations of LRU policies to choose which victim block is to be replaced

when a cache miss occurs. If the victim block is dirty, it must be written to memory

before the new incoming block may be written to cache. These writebacks consti-

tute an increase in off-chip bandwidth consumption, particularly for cache-lines that

ping-pong back and forth between the LLC and main memory. Furthermore, for

alternate memory technologies such as PCM, this writeback cost is particularly high

and undesirable.

Considering the high costs of writebacks, it is better to replace a clean cache

block in the LRU stack rather than the dirty LRU one, however, the replaced clean

cache block should not generate more misses otherwise overall system performance

might suffer. We observed that the number of hits often distributes unevenly among

cache ways of the LRU stack in the LLC (see Figure 2.1). Most of hits accumulate

on the first few MRU ways, with a much lower, flat distribution among other parts of

the LRU stack. Based on this observation, we can avoid generating writeback traffic

by replacing those clean blocks in the LRU stack which have less (or comparable)

hits relative to the dirty LRU ones without introducing additional misses.

In exploring LLC hit distribution across applications, we find they vary greatly

from application to application and even from program phase to program phase

within a given application. A one-size-fits-all approach to LLC management either

imposes a significant cost on miss-rate for some applications or does not reduce

writebacks sufficiently. In this work we propose an LLC management policy which

adapts to program phases such that both writebacks and miss-rate are improved.

The primary contributions of this work are as follows:

7

• An adaptive cache management scheme, ARI, that simultaneously reduces both

the miss-rate and writeback rate compared to LRU, to accommodate the be-

havior of different applications and different phases of an application.

• Our design reduces main memory energy consumption, while increasing IPC

by 4.9% on average over traditional LLC cache design.

• When used in conjunction with PCM-based main memory, ARI improves sys-

tem lifetime on average by 49% beyond a randomized wear-leveling baseline

[73, 86].

The remainder of the chapter is organized as follows: In Sections 2.2 and 2.3

we provide design and implementation details on ARI which is then evaluated in

Section 2.4. We present further analysis on our design in Section 2.5. We then

discuss prior work in cache replacement and PCM-based main memory in Section 2.6.

Section 2.7 concludes the chapter.

2.2 Design

Our goal is to reduce the writebacks as much as possible, while simultaneously

keeping the miss rate at least equal or better than conventional LRU policy, to avoid

the performance loss. Since our scheme has comparable or better miss rate than LRU

as well as writeback reduction, it produces a significant main memory bandwidth

reduction and improves the system performance. Therefore, the proposed scheme,

Adaptive Replacement and Insertion (ARI) is potentially useful for a broad range of

future memory systems, including DRAM-only systems, and hybrid memory systems

employing both PCM and DRAM.

In this section, we discuss static replacement policies which favor writeback reduc-

tion, followed by our adaptive replacement and adaptive insertion techniques which

8

together form the proposed ARI LLC cache management policy.

As the cache hit distribution across ways in the LRU stack is nearly bimodal, we

mentally divide the LRU stack into two partitions. We call these partitions the “High-

hit” and “Low-hit” partitions, reflecting the number of hits in cache ways belonging

to a given partition. To distinguish between different applications’ varying Stack

Distances, we refer to the partitioning as nHm where n is the number of cache ways

belonging to the High-hit partition and m is the cache associativity (i.e., Figure 2.1

gives an example of a 4H16 partitioning: mcf benchmark has the majority of its

cache hits in the four MRU ways, whereas twelve other ways receive a relatively low

number of hits).

The items in the High-hit partition should obviously stay in the cache as long

as possible since they are being frequently accessed. On the other hand, the items

in Low-hit partition are accessed much less frequently and, importantly, at nearly

the same rate, thus evicting a line in any position in the Low-hit partition has

approximately the same effect on miss rate as any other. Therefore, evicting any

clean block within the Low-hit partition is more beneficial than evicting a dirty LRU

block (reducing writebacks). Thus upon a cache miss, we use a policy within the

Low-hit partition which first tries to find a least recently used clean block. As an

example, Figure 2.2 depicts potential eviction candidates within one cache set, for

various hit distributions within the set (cf. Figure 2.1). In the case there are no

clean blocks, the least recently used dirty block is replaced. If there are no Low-hit

blocks (i.e., 16H16), the block in LRU position is evicted. By doing this, we greatly

reduce the writeback traffic to memory without degrading overall performance of the

system.

In our initial experiments we found that any given static policy, while decreasing

writeback rate, will typically sacrifice miss rate relative to LRU on average across

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0%

2%

4%

6%

8%

10%

12%

14% 67.5%

Relative position in LRU stack

%
 o

f h
its

Figure 2.1: Distribution of total number of hits across a 16-way, 2MB LLC for mcf
application (0 - MRU, 15 - LRU).

a suite of benchmarks. This is because it is difficult, if not impossible, to statically

tune a single one-size-fits-all policy since different applications exhibit varying Stack

Distance distribution. Furthermore, applications have execution phases where the

cache accesses follow different patterns, hence the Stack Distance distribution and

optimal cache partitioning varies by phase. As a result, in some applications the

miss rate increases by up to 3× relative to LRU, while the writeback count is only

marginally decreased when a static policy is used.

2.2.1 Adaptive Replacement

We propose to adapt to application behavior, as well as to the execution phases

inside applications by extracting run-time information about the program execution

from the cache itself. In particular, we propose sampling a small number of cache

sets to estimate the current application behavior under different partitionings of the

cache and choose the best cache partitioning according to that data, balancing miss

rate against writeback benefit.

While it is possible to extract the stack distance distribution directly from cache

10

and use this information to adapt the cache policy, the stack distance is a function

of the replacement policy and is therefore effected by the policy currently in use.

Instead, to account for the impact of the policy on cache metrics, we plan to adopt

a direct measurement approach, implementing various sample partition schemes on

selected sets, using shadow tags, rather than trying to measure the stack distance of

the cache as a whole to guide the policy.

Our approach employs p static sample partition policies, where each policy par-

titions the ways in a set at a particular stack distance. Among our sampled policies,

we always include two extremes, one being LRU and the other 0H16. The other

policies partition their sets at different locations. To improve the accuracy of the

modeling, we implement the sample policies in shadow tags, i.e. for a sampled cache

set, we have additional p tag sets which implement the p static policies.

For each sampled policy i, where i = 1...p, we maintain two performance counters.

The first counter measures the number of misses, the second counter measures the

number of writebacks. These performance counters are used to compare the different

sample policies at the end of an epoch. Based on the comparison of the performance

counters, a policy for the entire cache is chosen for the next epoch. Rather then

resetting the counters to zero at the end of each epoch, we adopt a decaying average

similar to that used in RTT calculation in TCP/IP protocol.

The cache controller maintains an epoch countdown timer which counts down

the epoch length before triggering the decision logic. Once the epoch has ended, the

miss counts, mr(i), and writeback counts, wb(i), are summed together for each of

the sampled sets, and the policy(i) with the lowest sum is chosen.

The intuition for considering the sum of mr(i) and wb(i) is that it provides a

rough guideline for the savings in memory bandwidth relative to LRU, if this policy

is adopted. If a policy provides a pronounced decrease in writeback rate, it may be

11

tolerable to allow some increase in miss rate, still keeping the memory traffic lower

than LRU, and vice versa. If all the sampled policies perform the same as LRU (or

there are no accesses to the sampled sets), the main cache policy is not changed.

After the decision hardware has picked the best policy for the current epoch, the

cache controller applies it toward the whole cache.

We also tried varying the weights of mr(i) and wb(i) in the sum, to see if this

could lead to a better trade-off. Our results indicate that writebacks can be further

reduced, by up to 2%, when misses are not considered. Similarly, misses can be

reduced by up to 2% if writebacks are ignored. The equal weights used in our work

yield the best writeback improvement without negatively affecting performance.

We note that the power of sampling lies in its simplicity. More intelligent schemes

might yield a better low- vs. high-hit partitioning, but would require more informa-

tion than what can be extracted just from the LLC. IPC counts or an address of

current load/store instruction are the examples. LLC is typically very distant from

the main core, so providing such additional information to the cache controller would

not only complicate the controller, but also disturb the core (i.e., stronger drivers

are needed to support long wires, etc.).

2.2.2 Dynamic Insertion

In conventional replacement policies, when a block is brought into the cache, it

is typically inserted as an MRU element in the stack; however, prior work has shown

that this is not optimal for miss rate in the presence of reference streams with varying

amounts of locality [72]. Earlier work used set dueling to choose the insertion point

between the MRU or LRU position, depending on the expected locality of the inserted

cache line. We also propose to adopt a dynamic insertion policy, however, we leverage

our characterization of the LRU stack into low-hit and high-hit partitions to better

12

0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377

ISCA

#39

ISCA

#39
ISCA 2012 Submission #39. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

be used in the High-hit partition, while a custom policy might be introduced for the Low-hit partition without

affecting the cache miss rate severely.

The items in the High-hit partition should obviously stay in the cache as long as possible since they are being

frequently accessed. On the other hand, the items in Low-hit partition are accessed much less frequently and,

importantly, at nearly the same rate, thus evicting a line in any position in the Low-hit partition has approximately

the same effect on miss rate as any other. Therefore, evicting any clean block within the Low-hit partition is more

beneficial than evicting a dirty LRU block (reducing writebacks). Thus upon a cache miss, we use a policy within

the Low-hit partition which first tries to find a least recently used clean block. In the case there are no clean

blocks, the least recently used dirty block is replaced. If there are no Low-hit blocks (i.e., 16H16), the block in

LRU position is evicted. By doing this, we greatly reduce the writeback traffic to PCM-based memory without

degrading overall performance of the system.

We name a set of static policies according to the Stack Distance cache partitioning they are optimized for. For

example, a 6H16 policy keeps the 6 High-hit blocks in the set, while it may replace data in the 10 Low-hit blocks

to reduce writebacks. A 0H16 policy assumes that all the ways in a set have the same hit rates so the choice of

a victim block on a miss does not influence the cache performance. As an example, figure 2b depicts potential

eviction candidates within one cache set, for several static policies where figure 2a shows the hit distributions

within the set (cf. figure 1).

(a) Hit distribution

Low-Hit partition for 8H16

Low-Hit partition for 0H16

No Low-Hit partition for 16H16

Clean block

Dirty block

Eviction candidate

(b) Eviction candidates

Figure 2: Eviction candidates for various static policies.

In our initial experiments we found that any given static policy, while decreasing writeback rate, will typically

sacrifice miss rate relative to LRU on average across a suite of benchmarks. This is because it is difficult, if not

impossible, to statically tune a single one-size-fits-all policy since different applications exhibit varying Stack

Distance distribution. Furthermore, applications have execution phases where the cache accesses follow different

7

Figure 2.2: Eviction candidates for various static policies.

place low locality cache blocks (effectively yielding p + 1 insertion locations instead

of just 2 as we will show). Set dueling utilizes a single bimodal misses counter, and

picks one of the two policies to use based on that counter. If the number of misses for

both policies is similar, the counter might get stuck, or it might oscillate around the

threshold, switching the policies even if it actually were beneficial to keep the certain

policy. ARI uses miss- and writeback counts in making decisions for a number of

policies for every epoch, which allows a faster and more precise adaptation. The

phases in set-dueling are those when the miss rate of one policy gets sufficiently

better/worse than the other as to bias the counter and trigger the policy change (i.e.

if one policy initially experiences a lot of misses and then performs better compared

to the other policy, it may not be chosen until the bimodal counter gets to the

threshold). Phases in our work are when the application’s high-hit and low-hit way

distribution changes, so the appropriate policy is chosen as soon as possible.

We propose inserting clean data with expected low locality at the top of the low-

hit partition, as illustrated in Figure 2.2, under the expectation that this will yield a

lower miss rate than LRU insertion in the event our speculation is wrong. Clean data

with expected high locality is always inserted in the MRU location. The intuition

is, if data has low locality and we correctly insert it in the low-hit partition, we are

13

Low-Hit partition for 8H16

Low-Hit partition for 0H16

No Low-Hit partition for 16H16
Figure 2.3: Insertion point for 8H16 static policy, for low-locality blocks.

likely to see a reduction in writebacks and misses as we don’t disturb the elements

belonging to the high-hit partition that are receiving significantly more hits.

Again, we take a measurement approach to decide which insertion location re-

duces writebacks and misses best for the current phase of the running application.

For each partitioning policy, we consider insertion at both MRU and the top of the

assumed low-hit partition, and choose the insertion policy for the next epoch based

on the observed behavior in the current epoch. As a result, a direct implementa-

tion of both the replacement and insertion policies, we need to double the number

of shadow tags and associated counters. We will show later that this overhead can

be reduced to a smaller number of tags while keeping the performance nearly the

same as a full-scale implementation. We note that ARI may be used to control non-

stack-based cache management policies, provided that the sample sets employ LRU

to estimate the high- vs. low-hit distribution in the LLC.

2.3 Implementation Details

The proposed scheme is relatively easy to implement; it requires little additional

hardware, and the decision-making delay is insignificant relative to our epoch length.

Figure 2.4 shows the baseline 8-node CMP with three levels of cache hierarchy,

and Figure 2.5 depicts the ARI design implemented in the CMP L3 cache banks. L1

and L2 caches are assumed private to each core, with each node having a single bank

of shared L3 cache. Our scheme assumes that the LLC is non-inclusive. Although

14

Table 2.1: Baseline cache configurations.

System Single core
L1 cache 32KB L1I + 64KB L1D, 2-way,

LRU, 64B block
L2 cache 256KB, 8-way, LRU, 64B block
L3 cache 2MB, 16-way, LRU, 64B block

Main memory 4GB, DDR3-1333 DRAM, 32-
entry write buffer

System Multicore
L1 cache (Private) 64KB L1I + 64KB L1D, 2-way,

LRU, 64B block
L2 cache (Private) 256KB, 8-way, LRU, 64B block
L3 cache (Shared) 16MB, 16-way, LRU, 64B block

Main memory 4GB, DDR3-1333 DRAM, 32-
entry write buffer

L1I$ L1D$

L2$
private

L3$ bank

Shadow tag array
Samples-

MRU
Samples-

LH
Cache controller

Counters &
decision logic

Tag array Data array
Figure 2.4: Baseline CMP.

inclusivity simplifies cache coherency, prior work has explored cache coherency in

non-inclusive caches [107, 30, 22].

We randomly pick 8 of each L3 cache bank’s sets to shadow. For each selected set

we create p× 2 (p partition policies times two insertion policies) shadow tag sets to

be sampled. Each of the p shadow tags for a given set implements one of the sample

partitioning policies. These sample sets are doubled to include one sample set for

each insertion policy: at the top of the low-hit partition (LH), and standard MRU.

For example, given p = 3, 8 sets of sample tags will be maintained for 0H16-MRU,

0H16-LH, 8H16-MRU, 8H16-LH, 16H16-MRU (traditional LRU), and 16H16-LH per

15

Shadow tags Tags Data array

Counters &
Decision logic

0H16 8h16 16H16

Figure 2.5: L3 bank with shadow tags array.

L3 cache bank.

Assuming a 16MB (2MB per core), 16-way L3 with 64-byte lines, there are 16384

total sets in the cache. The storage overhead for ARI is thus 1152, 640, and 384 tag

sets, or 7%, 4%, and 2% of L3 tag array (14kB, 7.5kB, and 4.6kB of storage, using the

hashed tags approach, as discussed later) with p = 9, 5, and 3, respectively. As we

will show later, these overheads can be lowered without impacting the performance.

In a single-core configuration with a 2MB LLC, ARI induces 7kB of storage over-

head; in comparison, sampling Dead-block predictor (DBLK) [38] has 13kB storage

overhead for a 2MB LLC, and requires additional communication circuitry from CPU

core to the LLC.

We note that no modification to the main cache memory structures is needed.

Only the cache controller needs to be modified. The shadow sample sets are col-

located with the L3 cache banks that contain the sets they shadow such that the

addresses matching the shadow sets are sent to both the set itself and the shadow

(Figure 2.5). Shadow tags are independent of the main cache structures and do not

16

affect the cache operation.

On an epoch boundary the cache controller examines the sample sets to determine

the best policy. The epoch timer counts up to a maximum of 25 thousand LLC

references and thus requires 15 bits. The performance counters for each sample

policy can be made 15-bits wide, to ensure no counter overflows. Basing the epoch

on reference count rather than cycle count allows adaptation of the epoch’s resolution

to the relative activity of the memory system at that time. The epoch length was

determined experimentally. Once the epoch size has been set, no further tuning is

necessary, as ARI dynamically adapts to the runtime phases regardless of the nature

of the phases (e.g., one application using the cache in a single-core CPU, or several

applications competing for multi-bank cache).

To increase the accuracy, we maintain some history in the performance counters.

At the end of each epoch, we compute the performance measure as both a function of

the previous history and the current sample obtained during the current epoch. This

smooths the sampled data and allows better adaptation. We compute each sample

according to the following formula: new value = 0.9375×previous value+0.0625×

current value. The fractions are chosen for ease of implementation.

To compute the miss and writeback sums, we propose using a low-power, pipelined

adder. We expect the time to compute the sums and comparisons and change policy

should be on the order of 100-200 cycles, insignificant relative to epoch size. To ensure

we never use policies that increase misses excessively, we remove from consideration

policies with positive miss deltas above the preset threshold. If the threshold is

chosen carefully, (say as 6.25% or 1/16), then this threshold check can be performed

with simple shift operations.

17

2.4 Evaluation

In this section we examine the performance of ARI under various workloads. We

also compare ARI to the LLC management schemes from previous work.

2.4.1 Methodology

For single-core as well as single-processor multitasking simulations we use the

gem5 simulator [6] paired with the DRAMSim2 main memory simulator [82], run-

ning the compiled code from SPEC CPU2006 benchmark suite utilizing the single

SimPoint methodology [69]. We picked applications from SPEC 2006 package that

provide good representation of the whole suite in terms of stack distance behavior

and cache demands.

For multi-core and multi-threaded simulations, the gem5 simulator running the

PARSEC suite is utilized. We used nVidia Tegra-like system with a dual-issue out-

of-order processor, as the baseline for single-core benchmarks, and a multiprocessor

system for multicore benchmarks. The cache configurations used are shown in Ta-

ble 2.1. The implementation only impacts the L3 cache, the LLC of the system. We

simulated three levels of caches, but all the techniques presented in this work can be

applied to any last-level cache.

Table 2.2: DRAM and PCM characteristics for 1GB chip.

Power DRAM PCM

Row read 210 mW 78 mW
Row write 195 mW 773 mW
Activate 75 mW 25 mW
Standby 90 mW 45 mW
Refresh 4 mW 0 mW

Latency DRAM PCM

Initial row read 15 ns 28 ns
Row write 22 ns 150 ns

Same row read/write 15 ns 15 ns

18

The latency and power estimates for DRAM and PCM shown in Table 2.2 are

adopted from Dhiman et al. [14].

2.4.2 Performance

In single-core configuration, ARI samples k = 9 distinct policies (including 0H16

and LRU) evenly distributed over the range of possible stack distances, with 32 sets

for each sample policy. Figures 2.6 and 2.7 present the miss- and writeback gains

for ARI as well as 4H16 static policy, DIP [72], Dead Block Prediction (DBLK) [38],

and DRRIP [31]. The results are normalized to LRU.

We see that ARI performs well, achieving 33% LLC writeback improvement on

average. ARI never causes misses to increase by more than 5% (milc, sjeng), and on

average improves them by 4.7%. In comparison, DIP, DBLK, and RRIP decrease

writebacks on average by 11%, 18%, and 13%, respectively. DIP improves misses by

6%, DBLK by 11%, and RRIP by 8%, on average. Note how for astar application,

ARI identifies the fact that there is little gain to be exploited and reverts to LRU,

while DBLK and RRIP increase misses by 10%. The 4H16 static policy achieves 25%

writeback improvement but increases misses by 5% on average. Note that for bzip2

and astar 4H16 miss rate is 80% and 30% greater than with LRU. Our simulations

show that as we go from 0H16 toward 16H16, the negative effect on misses declines,

but so does the writeback improvement. ARI dynamically tunes the replacement

policy to achieve significant improvement in writebacks and misses.

2.4.3 Memory Bandwidth Reduction

Decreasing the traffic from CPU LLC to main memory is important in mod-

ern systems. ARI yields the main memory bandwidth reduction of up to 39% (for

h264ref), and 8.3% on average. In comparison, our simulations show that DIP, aimed

at reducing LLC miss traffic, reduces the main memory bandwidth by 4.6%. RRIP

19

 1.25 1.09

gcc bzip2
bwaves

mcf
milc

zeusmp

gromacs

cactusADM

leslie3d
namd

gobmk
soplex

hmmer
sjeng

GemsFDTD

h264ref

astar
sphinx3

avg
0.0

0.2

0.4

0.6

0.8

1.0

4H16 DIP DBLK RRIP ARI

N
or

m
al

iz
ed

 W
B

Figure 2.6: Writebacks improvement, normalized to LRU.

gcc bzip
bwaves

mcf
milc

zeusmp

gromacs

cactusADM

leslie3d
namd

gobmk
soplex

hmmer
sjeng

GemsFDTD

h264ref

astar
sphinx3

avg
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

4H16 DIP DBLK RRIP ARI

N
or

m
al

iz
ed

 M
is

se
s

 1.8 1.3

Figure 2.7: Misses improvement, normalized to LRU.

decreases the bandwidth by 7.4%. Sampling dead block prediction scheme achieves

10% bandwidth reduction, although with twice the storage overhead.

2.4.4 Application Speedup

The improvement in misses and writebacks, and thus the decreased main memory

traffic, leads to IPC improvement and program speedup. Note that IPC is mostly

dependent on cache misses reduction. We conclude that the writebacks are absorbed

in the write buffer. They only affect the performance when write traffic congests the

memory bus, or when the write buffer gets full and the CPU core is forced to wait for

20

Лист3

Страница 1

DIP DBLK RRIP ARI
1%

3%

5%

7%

%
 IP

C
 im

pr
ov

em
en

t

Figure 2.8: IPC improvement with ARI, DIP, and DBLK, normalized to LRU.

a write to commit. ARI decreases the number of writebacks substantially, so there

is less congestion on the bus, and more opportunities to free the entries in the write

buffer for the incoming blocks.

Figure 2.8 presents IPC improvement over the SPEC applications simulated,

normalized to baseline LRU. ARI achieves a 4.9% speedup on average, outperforming

DIP and RRIP, and nearly equivalent to DBLK.

2.4.5 Energy and Lifetime

In order to understand the impact of reduced writebacks and misses on the mem-

ory system, we simulated three different memory architectures. The first consists

entirely of DRAM, the second consists entirely of PCM, and the third employs a

256MB DRAM cache [77] in front of PCM.

Note that we do not include the energy overhead introduced by ARI sampling

structures in LLC, since it is negligible compared to the main memory power con-

sumption. We estimate that ARI structures use less than 5% of the total L3 power.

Taking into account that a typical LLC consumes 2.75W peak power [38], ARI adds

less than 150mW of power overhead - this is half of 1GB DRAM bank read power.

Furthermore, to be completely fair in reporting total system power, we would have to

21

analyze the reduction in memory bus power, power savings due to less cache misses

and faster application runtime, etc., in addition to sampling overhead. This is a

matter of a separate paper.

With DRAM-only memory, the total energy is mostly dependent upon application

running time, as write energy consumption is not significant compared to standby

and refresh energy. The average energy savings in a system employing ARI are thus

4.9%.

Because ARI is aimed at reducing writebacks, more prominent energy savings

can be achieved when memory technologies with expensive write accesses, such as

PCM, are employed. Applications such as mcf, h264ref and hmmer experience more

than 10% savings. The average energy savings across the simulated applications are

8.9% compared to the baseline LRU.

As the baseline for PCM lifetime comparison, we use randomized wear leveling,

where the cells receive equal number of writes, and thus lifetime is essentially the

number of writes a cell can sustain until it is burned out. The simulations suggest that

PCM-only system with ARI-managed LLC sees an average lifetime improvement of

49%, with some workloads attaining up to 2.5× lifetime extension. In contrast, DIP

yields 12%, DBLK 23%, and RRIP a 15% PCM lifetime improvement on average.

However, in a system implementing DBLK or RRIP, PCM lifetime decreases by a

negligible amount for gcc, zeusmp and astar applications.

With DRAM cache in front of PCM, the cache absorbs all the memory read

and write requests (with the exception of bwaves, GemsFDTD, and zeusmp). The

energy reduction is limited to 0.96% on average, because the 256MB DRAM cache

uses much less energy than 4GB DRAM memory. In low power systems, e.g. phone

and tablet systems, however, DRAM caches may be too expensive.

22

vips
ferret

fluidanimate

swaptions

facesim
freqmine

dedup
x264

canneal

avg
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
0H16 4H16 6H16 ARI

N
or

m
al

iz
ed

 W
B

vips
ferret

fluidanimate

swaptions

facesim
freqmine

dedup
x264

canneal

avg
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

0H16 4H16 6H16 ARI

N
or

m
al

ze
d

M
is

se
s

 2 1.6 1.44

Figure 2.9: Writebacks for the PARSEC applications, normalized to baseline LRU.

2.4.6 Multiprocessors

We ran nine PARSEC applications to explore ARI’s performance in a multipro-

cessor configuration with a 16MB LLC. The results are presented in Figures 2.9 and

2.10 below, with the rates normalized to baseline LRU. The last three bars are ge-

ometric mean over the 9 applications. Once again, we observed that ARI does not

increase miss rate by more than 4% for any single application, while reducing the

writeback rate by 20% on average and keeping the average miss rate same as LRU

policy. In contrast, the 4H16 static policy reduces writebacks by 29% on average,

but allows miss rate to increase by 26% in the worst case, and by 9% on average.

We also varied the size of the L3 cache, and found the writeback and miss rates

improvement to be 27% and 0.9% on average for an 8MB cache utilizing ARI, and

9% and 3.3% on average for 32MB cache. The results for multiprocessor simulation

are consistent with the single-core results (Figures 2.6, 2.7).

We expect that multi-program workloads, where distinct applications run on

23

vips
ferret

fluidanimate

swaptions

facesim
freqmine

dedup
x264

canneal

avg
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
0H16 4H16 6H16 ARI

N
or

m
al

iz
ed

 W
B

vips
ferret

fluidanimate

swaptions

facesim
freqmine

dedup
x264

canneal

avg
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

0H16 4H16 6H16 ARI

N
or

m
al

ze
d

M
is

se
s

 2 1.6 1.44

Figure 2.10: Cache misses for the PARSEC applications, normalized to baseline
LRU.

different cores, will behave similar to muti-threaded workloads. ARI generally adapts

to the phase behavior observed in the shared last-level cache. This should hold true

if the behavior is due to a single application, or the aggregate of many applications.

2.5 Analysis

In this section we first discuss the dynamic behavior of the proposed scheme.

Next, we discuss the effect of several parameters on the performance of the proposed

scheme. Finally we discuss various means to reduce the hardware overhead of the

technique.

2.5.1 Dynamic Behavior

Figure 2.11 shows how ARI adapts to program phases in soplex application; for

each epoch, we plot the best stack distance distribution High-hit ways number (the

n in our nHm notation) and the insertion policy used (the higher marks denote

24

 0

 2

 4

 6

 8

 10

 12

 14

 16

 100 200 300 400 500

Partitioning point

 Insertion pointLRU

MRU

Epoch number

Figure 2.11: Adaptivity graph for soplex application.

Low-hit insertion is used, and lower marks - conventional MRU insertion). As the

figure shows, the best policy changes frequently over the execution of a program.

ARI adapts the policy based on these observed program phases.

Figure 2.12 shows the writeback rate curves for mcf application (the X axis shows

the period number, where we picked the data in intervals of 1 million LLC accesses

for this graph; and Y axis shows the number of writebacks for the corresponding

period). We observe that the program behavior can change fairly fast from one

epoch to the next epoch. We see that ARI achieves lower writeback rate than the

best static policy, 0H16, because it adapts insertion and replacement policy to the

most beneficial stack distance distribution for the current phase. Our simulations

show that using dynamic insertion in ARI yields an 8% writeback reduction on

average compared to the static MRU insertion.

25

 0

 50000

 100000

 150000

 200000

 0 10 20 30 40 50 60 70 80 90

ARI
 0H16
 6H16

LRU

Figure 2.12: Writeback curves for mcf, ARI vs. static policies.

2.5.2 Cache Size and Set-Associativity

We varied the L3 cache size to determine the scalability of ARI. Figure 2.13 shows

results for different cache sizes, in single-core configuration. The miss and writeback

counts are normalized to the counts of the respective LRU-managed caches. It is

clear that ARI scales well. We observed that (a) at 1MB cache size, misses are more

frequent, data does not stay in the cache long enough to benefit from another write

hitting in the cache before getting evicted; (b) at 8MB, it is more difficult to improve

on LRU since due to the larger cache capacity, writebacks are becoming relatively

infrequent; (c) ARI works the best with L3 caches 2-4MB in size, for the workloads

considered in the analysis, yielding a decrease in writebacks of 33.3% on average,

and a decrease in misses of 6.8% on average, as compared to baseline LRU.

We simulated 2MB LLCs with associativity from 4 up to 32 ways as shown in

Figure 2.14. The number of policies per sample set is, respectively, 3, 5, 9, and

17. The larger number of ways provide more potential eviction candidates in Low-

Hit ways according to the stack distance, thus more opportunities to gain from the

26

Лист1

Страница 1

1MB 2MB 4MB 8MB
0%

5%

10%

15%

20%

25%

30%

35%
wb miss

No
rm

ali
ze

d W
B

an
d m

iss
 de

cre
as

e

Figure 2.13: Normalized writebacks and misses decrease under varied cache sizes,
SPEC2006 (higher is better).

4-way 8-way 16-way 32-way
0%

5%

10%

15%

20%

25%

30%

35% wb miss

%
 im

pr
ov

em
en

t v
s L

RU

Figure 2.14: Normalized writebacks and misses decrease under varied associativity
(higher is better).

27

18policies

Страница 1

only INS p MRU p LH p+1 ARI

5%

15%

25%

35%
wb miss

%
 im

pr
ov

em
en

t v
s

LR
U

1MB 2MB 4MB 8MB
0%

5%

10%

15%

20%

25%

30%

35%

1MB 2MB 4MB 8MB
0%

5%

10%

15%

20%

25%

30%

35%

0%

Figure 2.15: Comparison of the schemes with various insertion policies.

sampling scheme. We noticed that the improvements in writeback reduction are

around 3% when doubling the LLC associativity.

2.5.3 Impact of Insertion Policies

Applications with constrained hardware budgets may halve the shadow tag hard-

ware by adopting a simpler version of ARI, with relatively low impact on perfor-

mance.

We performed three experiments with the following policies: 1) “Insertion-only”

policy (no adaptive replacement) where sample sets are used to determine the best

partition sizes, but then only the incoming cache blocks are inserted dynamically,

while evicting only from LRU position; 2) ARI with fixed insertion, i.e. only MRU-,

or only LH-insertion; 3) a ’p + 1 scheme’ which implements 9 sample policies with

alternating insertion (i.e. 0H16-MRU, 2H16-LH, ..., 16H16-MRU) and one additional

’flipped’ policy which assumes the same stack distance distribution as the best policy

for a given epoch, but the insertion is inverted, i.e. if the best policy is 2H16-LH, then

the corresponding flipped policy will be 2H16-MRU. The intent is to allow coverage

28

of the entire space of 2× p policies using only p+ 1 actual samples.

Insertion-only policy does not perform well, only improving misses by 1%, while

increasing writebacks by 1.5% beyond LRU. This is because the sampling is done with

adaptive ARI policies, which may have different best partition sizes than conventional

LRU eviction policy.

We found that using ARI with LH-insertion yields an 8% writeback reduction

compared to ARI with static MRU-insertion.

The p + 1 scheme reduces writebacks as well as ARI, although it sacrifices 2%

miss reduction. These results indicate that the adaptive insertion provides a small

but significant boost in ARI in terms of both miss rate and writebacks, though it

comes at the cost of doubling the number of sample sets.

2.5.4 Minimizing Hardware Overhead

We examined a number of options to minimize the hardware overhead. We sum-

marize the results here.

1. We examined a simple hashing of the tag bits in the sampled sets, such that

the top six bits of the tag is XOR’ed with the bottom six bits, generating a tag

of 1/2 the original size (i.e. 6 bits instead of 12 bits). This technique impacted

writebacks and misses by < 1% and is used for all results in Sections 2.4 and 2.5.

2. Another way to reduce overhead is to utilize live sampled sets [72], each of which

implements a static policy, instead of shadow tags as we propose. Simulations

show this approach to increase writebacks by 5% and misses by 0.8% comparing

to the shadow-tag approach.

3. We varied the number of sampled sets used between 72 and 9, keeping the

number of sample static policies at 9. We found that the difference is within

29

1.5% for writebacks and 2% for misses. Using 9 sampled sets instead of 72

yields an 8× decrease in the shadow tag storage.

4. We varied the sampling epoch length between 10k and 40k cache references.

Though the difference in performance was not significant, we found the max-

imum reduction in both miss rate and writebacks occurred for epochs of 25K

references.

5. We evaluated an interpolation approach where we only sample the data for

p/2 policies each half-epoch, and then reconstruct the interpolated data for

the full p policies. This reduces the sampling hardware by 50%. We found this

approach to be inferior to the fixed LH insertion scheme.

6. We varied the number of sample policies from p = 9, to 5, and to 3. We

found that, compared to p = 9, the scheme with 5 policies is only 2% behind

in writebacks and 1.2% behind in misses on average, while the scheme with

3 policies is 6% and 3.2% behind, respectively, which we believe is reasonable

considering the 3× reduction in the number of sample policies.

2.6 Related work

A number of studies have been dedicated to improving the performance of cache

replacement policies [35, 45, 95, 31]. [21] dynamically select two variants of Segment-

ed LRU algorithm with insertion bypassing. Michaud [62] modified the DIP scheme

for use with the CLOCK algorithm [11], and used 4 dueling policies as opposed to

2 in DIP. Khan and Jimenez [37] extended the DIP scheme to multilevel dueling,

decreasing the number of leader sets. But this requires several “rounds” of dueling

and switching the policies in the leader sets. Ishii et al. proposed to vary the in-

sertion positions of incoming lines in the LRU stack based on their observed reuse

30

possibility [29]. This scheme utilizes set dueling and has an additional overhead of

8kB beyond DIP, and requires communication circuitry from CPU core to the LLC.

RRIP [31] “predicts” the reuse interval. It uses set dueling to choose between two

NRU-based policies and gains 4% speedup on average. In contrast, our scheme uses

sampling between 2p policies and has 4.9% average speedup. We compared ARI

against one of the best-performing LLC schemes, the Deadblock-predictor [38], and

showed that our scheme is superior in reducing the writebacks, which is very im-

portant in PCM-based systems. These recent works mostly disregard the effect of

writebacks on the DRAM, and put focus on reducing cache misses. In contrast, our

scheme aims at reducing writebacks while simultaneously decreasing the cache miss

rate.

With the embedded designs placing greater pressure on the memory system hi-

erarchy, this focus will have to change as off-chip bandwidth becomes a highly con-

strained commodity. Additionally, writes in the main memory can interfere with

reads [44]. Furthermore, as power consumption becomes an important issue in pro-

cessor design, the extra power required by main memory writes makes reducing

writebacks advantageous regardless of the main memory implementation technology.

Goodman discussed the impact of writebacks on memory system bandwidth [24].

Clean First LRU (CFLRU) replacement policy for page cache of SSDs [67], has similar

motivation with ours in reducing expensive writes. However, our focus is on appro-

priate last-level, on-die cache, block replacement policies for main memory. Further,

if CFLRU were mapped to CPU LLC, it would roughly correspond to our nH16

static policy; we showed that ARI outperforms all static policies in reducing misses

and writebacks. Wang et al. proposed a Last-Write prediction LLC policy [101]

where the dirty blocks predicted to not receive any more writes are speculatively

written back to memory before they reach the LRU position. This scheme can be

31

incorporated into ARI low-hit partition to give two benefits: 1) more intelligent way

of breaking the ties in case the partition is full with dirty blocks; 2) more clean blocks

in the low-hit partition allows for more room to store other low-hit dirty blocks.

The idea of set sampling has been fruitfully used in the literature [34, 38, 32].

Hybrid cache insertion uses set dueling [72] to dynamically choose between multiple

insertion policies. The previous set sampling policies examine the LRU stack inser-

tion points for new lines, while we attempt to determine the best region in the set

for replacement as well as insertion.

DRAM-aware LLC management policies have been proposed [46, 44, 43, 94].

Eager writeback [46] writes dirty cache blocks to memory during idle cycles, to

provide more clean blocks as eviction candidates, effectively shifting the writes in

time. Virtual write-queue [94] uses a fraction of the LLC as a write queue for the

memory, and the writebacks from the cache are governed by DRAM-controller. Lee et

al. [44, 43] exploit row-buffer locality to guide the eviction decisions and minimize the

write-caused interference. The memory-aware schemes can be easily integrated with

ARI in the following way. The high-hit partition can be left managed by LRU, while

memory-aware policies can be utilized in the low-hit partition to further decrease

the bandwidth consumption and write interference in DRAM systems. While these

techniques can be adopted in DRAM-based main memory, they are detrimental to

the lifetime of PCM-based systems as they increase the number of writebacks by an

average of 5-10% beyond the conventional LRU scheme [94]. Write interference in

PCM memories has been shown to be a minor issue as the writes can be paused to

give way to reads [71].

PCM is receiving significant attention for use within memory hierarchy. Hybrid

DRAM+PCM memory architectures have been investigated [103, 14]. Wear leveling

algorithms have been proposed to distribute writes uniformly [73, 86]. Write reduc-

32

tion techniques [71] and techniques for improving PCM lifetime [42, 41, 18] have been

proposed for hardware implementation. Ramos et al. [80] and Yoon et al. [106] have

presented smart page placement techniques for hybrid memory, based on “popular-

ity” and row buffer hit ratios, respectively. [55], Meza et al. [61], and Qureshi and

Loh [75] explored hardware support for large-size, fine-granularity DRAM caches,

where conventional architecture is impractical due to huge SRAM tag storage over-

head. By storing tags in the DRAM itself, they decrease the cache access latency,

thus boosting the performance. However, large DRAM caches may be inefficien-

t in mobile applications due to high static power consumption. ARI implemented

in L3 cache helps reduce the number of accesses to such DRAM cache, which may

help reduce the energy consumption and boost the performance of hybrid architec-

tures. These works on DRAM+PCM hybrid architectures are largely orthogonal

and possibly complementary to the work presented here, as we focus upon reducing

writebacks from the lower levels in the memory system. Furthermore, by adapting

insertion policy as well as replacement policy, ARI further reduces writebacks while

reducing misses.

2.7 Summary

In this chapter we presented ARI, a technique for dynamic cache management

capable of reducing the memory system bandwidth, by optimizing both misses and

writebacks at the same time. We have shown ARI to perform well under various

workloads, such as single-threaded and multithreaded applications in a CMP. ARI

provides 33% LLC writeback reduction and 4.7% miss rate reduction on average,

yielding 8.9% memory bandwidth improvement, and 4.9% IPC speedup. We find

that a PCM-based system with an LLC utilizing our scheme uses 8.9% less energy,

and enjoys a 49% lifetime improvement on average, as compared to conventional

33

LRU.

In the future we plan to explore further adaptation schemes and optimize the

stack distance estimation. Also, it seems possible to employ different metrics in

selecting a cache replacement policy through sampling.

34

3. VATS: VARIABLE AGGREGATION TIMESLICE SCHEDULING ∗

Memory performance is important in modern systems. Contention at various

levels in memory hierarchy can lead to significant application performance degrada-

tion due to interference. Further, modern, large, last-level caches (LLC) have fill

times greater than the OS scheduling window. When several threads are running

concurrently and time-sharing the CPU cores, they may never be able to load their

working sets into the cache before being rescheduled, thus permanently stuck in the

“cold-start” regime. We show that by increasing the system scheduling timeslice

length it is possible to amortize the cache cold-start penalty due to the multitasking

and improve application performance by 10–15%.

3.1 Introduction

Last-level cache (LLC) sizes have grown substantially with the continued march

of Moore’s Law, with LLC sizes up to 45 MB for recent Intel [27] and 32 MB for

IBM [90] processors. These large LLC sizes, however, are beginning to challenge

commonly held assumptions in operating system (OS) timeslice scheduling behavior.

In particular, fill times for large LLCs have grown to the point that they are a signif-

icant portion of the application’s scheduled timeslice, resulting in lost performance

and efficiency, particularly in highly loaded, multi-process, multi-core environments.

This problem promises to be exacerbated as new technologies, such as 3D stack-

ing, make extremely large LLCs feasible [54]. In this chapter we examine how OS

scheduling can be adapted for the large LLC sizes found in today’s processors, to

∗Viacheslav V. Fedorov, A. L. Narasimha Reddy, and Paul V. Gratz. 2015. Shared
Last-Level Caches and The Case for Longer Timeslices. In Proceedings of the 2015 In-
ternational Symposium on Memory Systems (MEMSYS ’15). ACM, New York, NY, USA.
DOI=http://dx.doi.org/10.1145/2818950.2818968 c©2015 ACM, Inc. Part of this chapter is reprint-
ed by permission.

35

reduce contention between applications and improve performance in multi-process,

and multi-core environments.

In typical computer systems, the OS coordinates application access to system

resources, from I/O devices to time on the processor cores themselves. Current OSes

have developed fair scheduling algorithms, such as the “completely fair scheduler”

(CFS) in the Linux OS, which ensures all running applications’ timeslices together

constitute an equal share of running time on the processor(s). To provide the illusion

that each application has sole ownership of the processor, timeslices are kept fairly

short, with 1–5ms being a typical timeslice interval in current systems. Although,

in current multi-processor (multi-core) systems, more than one application or thread

can actually run simultaneously on different cores, in many situations, particularly

server and cloud implementations, many more processes must execute than there are

physical processors available so timeslice scheduling persists.

The concept of timeslices emerged long before the era of modern huge LLCs.

Historically, it was safe to assume the cache-fill time for a thread would be insignifi-

cant because it constituted only a small fraction of the whole timeslice. While this

was a reasonable assumption with LLC sizes ≤256KB, with current LLC sizes in the

Megabytes, this assumption ceases to be valid. Consider a case where each main

memory access takes 200 CPU cycles. Assuming random accesses to memory (not

streaming), filling a 4MB LLC with 64-byte lines would require fetching 65,536 lines.

This would take about 13M cycles, or 6.5ms for a 2GHz CPU. Comparing this time

to a typical OS scheduling timeslice length of 1–5ms, it is clear that modern short

timeslices might lead to the performance degradation through LLC interference -

the threads just do not have enough time to load their working set into the cache.

Moreover, the modern workloads exhibit growing working sets which demand more

cache space, further amplifying the effect. The larger numbers of threads found in

36

multicore systems exacerbate the problem since a thread may not be scheduled until

all other threads have been scheduled in round-robin fashion, thus increasing the

chances that the entire working set of a thread is knocked out of the LLC, even

at larger size LLCs. Virtualization contributes to this trend of higher number of

simultaneous threads sharing the LLC.

In summary:

• Large modern LLCs require significant time to fill the cache;

• Large numbers of threads in a multicore system lead to cache contention among

parallel threads as well as across threads time-sharing the cores;

• Large working sets in modern workloads require more cache space thus take

longer to fill the LLC;

• OS scheduling timeslices have traditionally been kept short to provide system

interactivity.

These factors unleash severe performance degradation in system workloads. As

a result, in real world situations where more threads are being scheduled than there

are cores available, each distinct thread (a) experiences a significant cache cold-start

effect every time it is scheduled on a CPU; (b) is further slowed down by more

aggressive, cache-thrashing threads running in parallel; (c) suffers low IPC due to

LLC cache misses during the majority of its timeslice.

Others have studied the mitigation of this type of contention and interference in

shared LLCs. There has been some research on characterization of the misses caused

by OS context switches in relation to the CPU cache sizes [52, 53]. The mitigation

techniques predominantly rely upon hardware modifications, such as modified cache

replacement policies [35, 39, 45, 95] and cache partitioning schemes [76, 78, 84, 96, 98].

37

Software techniques mainly deal with thread placement [108]. We note that with

conventional (16 to 32-way set-associative) cache designs, it is challenging to ensure

fair partitioning in many-core systems. Even in an 8-core system with two threads

per core, a total of 16 threads share the cache. This leaves about 2–4 ways per thread

on average, and requires costly hardware and repartitioning of the cache every several

milliseconds due to the OS context-switching in new threads which may have different

cache demands.

Further, much of the prior work does not even consider the effect of the OS time-

sharing the cores, and instead assumes that each thread has a permanently dedicated

core with ample time to reach an LLC steady state (often 1–10 billion instructions

simulated with no time-sharing). In the real time-sharing systems, threads run for

1–5ms (∼10 million instructions executed per timeslice), or up to 100× less, before

another thread is scheduled on that core. While this behavior is of little consequence

for instruction and data access streams of individual threads, the LLC utilization

and hit-miss patterns are greatly affected by the fact that several threads contend in

the cache in time per core as well as across cores.

Unlike prior work which focuses on hardware techniques to deal with LLC con-

tention, in this chapter we explore a different approach. We aim to minimize LLC

contention via a purely systems software approach. We look at OS scheduling as a

possible approach to improving the system performance.

3.2 Motivation

Cache sharing leads to interference in the LLC. To show the worst-case perfor-

mance degradation due to this sort of interference, Figure 3.1 presents the throughput

degradation of a set of benchmarks taken from the SPEC, PARSEC, and SPLASH

benchmark suites, running under the conventional CFS scheduler concurrently with

38

barne
s

fre
qm

ine fft
ferre

t
dedup

facesim vip
s

bodyt
rack

water.n x264
water.s

str
eamclu

ste
r
sople

x

canne
al

mcf

omnetpp

xalancb
mk

raytr
ace

SATSolver

Geomean
0%

5%

10%

15%

20%
Pe

rc
en

t s
lo

w
do

w
n

w
ith

 C
FS

,
no

rm
al

ize
d

to
 s

ol
o

ru
n

 37%

Figure 3.1: Worst-case slowdown of benchmarks running concurrently with cache
aggressive microkernels, with conventional scheduler, normalized to solo run.

a cache interference inducing microbenchmark each, as compared to running solo.

The microbenchmark has a significantly larger working set than the LLC size and it

has a high enough access rate that a large fraction of the LLC will be flushed during

its timeslice. Under these conditions, we see that the applications experience up to

37% slowdown, and 8% on average, due to the LLC interference.

With modern multi-core systems, not only is the cache shared across the threads

running in parallel, but it is also time-shared by the threads sharing each distinct

core. As a result, the interference is amplified. In an 8-core system with only 4

threads per core, each distinct thread will experience the accumulated effects of

interference from 31 other threads when it is scheduled on the core again.

Just how severe is this penalty? If we can estimate what percentage of the

LLC gets overwritten during the time a thread is off the CPU, it is possible to tell

approximately how much of the thread’s working set is retained in the cache between

context switches, and thus predict its performance.

39

Figure 3.2 presents the cumulative LLC misses, as a fraction of the total LLC size,

caused by interfering threads during the interval while an observed thread is off the

CPU. E.g. in a system with four threads per core, this interval would amount to three

timeslices. The X axis depicts the samples (every interval between reschedulings),

and the Y axis shows the percentage of the cache lines overwritten since the thread’s

previous timeslice. This data was obtained using the CPU performance counters, for

a SATSolver application between consecutive context switches 1. The experiment

was performed on a 2-core system with a 4MB LLC (65K cache lines). Results are

presented for both two threads per core and four per core (4 threads and 8 threads

total, respectively).

The figures indicate that with as little as two applications per core, the whole LLC

is effectively fully replaced, with 84% of the cache lines being overwritten on average

between thread’s rescheduling. Worse, with four applications per core (Figure 3.2b),

the LLC is fully replaced in all of the cases. Even taking into account the possibility

of cache interference (when several threads have misses on the same cache line), the

observation that 170% of the LLC lines are overwritten, enables us to expect with

high confidence that once a thread is context-switched off the CPU, it then returns

to a cold cache.

Further analysis, using data access traces obtained with the PIN toolkit [57],

shows that, between two consecutive schedulings, each thread re-accesses an average

of about 75% of the data it touched during the preceding timeslice. These results

indicate that (a) every thread starts with a cold cache after every context switch,

and (b) by increasing timeslice length, we could allow threads enough time to more

effectively utilize the cached portion of their working set, thus amortizing the cold

1Here we measure the amount of cache thrashing due to all the other threads in the system,
thus application choice is irrelevant.

40

7
259

511
763

1015
1267

1519
1771

2023
2275

2527
2779

3031
3283

Timeslice Number

Fr
ac

tio
n

of
 L

LC
 L

in
es

 R
ep

la
ce

d

 400%

 350%

 300%

 250%

 200%

 150%

 100% Avg

 50%

 0%

(a) Dual-core system with 2 applications/core.

3 114 225 336 447 558 669 780 891
1002

1113
1224

1335

Timeslice Number

Fr
ac

tio
n

of
 L

LC
 L

in
es

 R
ep

la
ce

d

Multicore, 4 apps per core, cumulative misses before an app is rescheduled, from both cores (~10 sec of data)

 400%

 300%

 200% Avg

 100%

 0%

(b) Dual-core system with 4 applications/core.

Figure 3.2: Number of LLC misses between reschedulings, as a percentage of LLC
lines replaced.

41

cache effect. An alternative approach of partitioning the cache to keep the working

sets from getting thrashed, requires extra hardware and, as we show later, does

not provide a substantial performance gain beyond what timeslice aggregation can

achieve.

The LLC interference is aggravated by short OS scheduling timeslices. Once

context-switched out, and then rescheduled back onto a core, a thread does not

execute long enough to fully load its working set into the cache and is thus forced to

run with high cache miss rate (low IPC). Figure 3.3 illustrates this point. Figure 3.3a

shows the LLC Misses per ms for a thread running the Raytrace application in a

time-shared multicore system inside a single, extended time slice. Figure 3.3b shows

analogous data for a thread running Xalancbmk application. The data was sampled

every 3ms using the CPU performance counters. We note that, during the first

3ms of execution (which is approximately the normal OS timeslice length in this

case), each thread experiences a high number of misses due to the cold cache effect

described. Note, after the working set is filled into the LLC (from 6ms on), the thread

experiences a much lower and stable miss rate. Thus at least 3− 5 ms of execution

is required before cold misses become insignificant for every timeslice. At least

2–3× that time is needed to amortize the high initial miss rate. Unfortunately, in

a conventional system, the threads would be de-scheduled from the core after ∼5ms

of execution. Utilizing longer OS timeslices, however, the system can amortize the

cold cache effect of context switches, allowing it to more effectively leverage the LLC

space, boosting the thread performance and decreasing the memory bus contention

due LLC misses.

One potential side-effect of increased time slices is that threads will more thor-

oughly fill the LLC, which in turn, increases the temporal cache thrashing with

respect to all the other threads which run later. However, because the cache data

42

0 3 6 9 12 15 18 21 24 27
0

500

1000

1500

2000

2500

3000

3500

4000

ms

Av
er

ag
e

 m
is

se
s/

m
s

 OS
Timeslice

(a) Raytrace.

0 3 6 9 12 15 18 21 24
7000

8000

9000

10000

11000

12000

13000

14000

15000

ms

A
ve

ra
ge

m
is

se
s/

m
s

 OS
 Timeslice

(b) Xalancbmk.

Figure 3.3: Misses/ms for an extended timeslice, sampled every 3ms.

43

retention for each distinct thread between schedulings is very low to begin with (i.e.

<10%), this side-effect is far outweighed by the improvement in LLC miss rate.

3.3 Design

Our design is illustrated on the Figure 3.4. The figure shows a snapshot of the

three types of OS schedules on one core, with two threads being scheduled. We

start from a conventional CFS timeslice schedule, as shown in the top of the figure.

Note how after each context switch, threads are paying the cold cache penalty, hence

suffering degraded performance.

The näıve approach to increasing the OS timeslice length (illustrated in the mid-

dle of Figure 3.4) is to tweak the constants in the Linux kernel. Note that the cold

cache penalty is amortized across the longer thread running times. This approach

is, however, imprecise and requires frequent re-tuning in order to maintain the de-

sired timeslice length. The scheduler constants only provide an upper bound for

the scheduling slices, and when the system load changes, the kernel automatically

shortens the timeslices in response to the increasing number of threads in the system.

An alternative approach, presented in the bottom of Figure 3.4, which we call

timeslice aggregation, is to modify the scheduler code in such a way that it would

consecutively reschedule a given thread for a set amount of time before switching to

the next thread (selected utilizing the long-run time sharing fairness of the Linux CFS

scheduler). In such a scheme, instead of having one long, monolithic timeslice, several

timeslices are effectively aggregated. This allows precise timeslice control, as well as

allowing the scheduler to switch to a higher-priority thread (such as an interrupt

bottom-half), if needed, without having to wait for the current low-priority thread

to finish its full extended timeslice. Aggregation guarantees low impact on system

interactivity, although it may provide lower performance boost in highly-interactive

44

A B A B A B

Typical CFS Schedule

5ms 10ms 15ms 20ms 25ms 30ms

A B

A A A B B B

“Naive” Long-TS CFS Schedule

Aggregated TS Schedule
A

LLC Cold Miss
Penalty

Thread A
Timeslice

Figure 3.4: A comparison of the conventional CFS timeslices vs. proposed aggregated
timeslices.

systems with frequent interrupts.

3.4 Evaluation

3.4.1 Methodology

We implemented our proposed the timeslice aggregation scheme in the Linux

kernel. Standard Linux timeslice length was used as a baseline. Note, in Linux,

timeslice length varies between 1ms and 15ms dependent on system load (number of

threads running) and number of CPUs in the system, with shorter time slices as the

load increases.

We ran our experiments on an an Intel Xeon E5 with 16MB LLC and 90GB of

RAM. We emulated double- and quad-core configurations by pinning the threads to

specific cores. Additionally, we ran experiments on a smaller system, an Intel Core

2 duo E6550 processor with 4MB last-level cache, and 8GB of RAM, in order to

gain some insight on how the LLC size affects the performance degradation due to

thread contention. We utilized memory-oriented applications from the PARSEC 2.1,

45

SPLASH-2x, and SPEC CPU 2006 suites [5, 4, 26] running with their native (or

equivalent) input sets. Namely, barnes, bodytrack, canneal, dedup, facesim, ferret,

fft, freqmine, mcf, omnetpp, raytrace, soplex, streamcluster, vips, water.nsquared,

water.spatial, x264, and xalancbmk. Additionally, we used a SATSolver benchmark

with an input set from a SAT contest [2]. For these experiments, we selected those

applications which have working sets larger than the L2 cache, i.e. those which show

at least 3% performance degradation when co-scheduled with a memory-intensive

microbenchmark. For two-core experiments, we arranged 16 mixes of four threads

per core, with a total of eight threads per mix. In four-core experiments, we utilized

four threads per core for a total of sixteen threads per mix.

3.4.2 Performance Improvement

Threads running in a multi-core multi-process system experience severe LLC

interference. One of the major implications of this interference is that each thread

starts each timeslice with a cold cache. By allowing threads to run longer before a

context switch, we can effectively amortize the performance lost due to cold cache

startup, thus boosting the system throughput without any hardware modifications.

We present two sets of experiments on a quad-core machine with 16MB LLC.

First set consists of 16 mixes of 4 applications per core, run on two cores, for a total

of 8 applications per mix (applications are pinned so two cores are held idle). The

second set consists of 6 mixes of 4 apps per core, run on four cores, for a total of 16

applications per mix. In both experiments, we compare the geometric mean runtime

improvement of the applications with four aggregated timeslices (15ms, 30ms, 45ms,

and 70ms) versus the conventional CFS scheduler short timeslice (∼4ms).

Figure 3.5 shows the geometric mean runtime improvement figures for application

mixes in two-core experiments, normalized to a system with conventional timeslices.

46

15ms 30ms 45ms 70ms
0%

2%

4%

6%

8%

10%

12%

Aggregated Timeslice Length

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t

15ms 30ms 45ms 70ms
0%

2%

4%

6%

8%

10%

12%

14%

Aggregated Timeslice Length

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t

Figure 3.5: Runtime improvement versus CFS baseline in a dual-core system with
16MB LLC. Geomean across sixteen application mixes, four applications per core.

The error bars depict the variance in performance across the applications (±1 stan-

dard deviation). We observe a gain of 8–11% on average. With the large 16MB LLC,

it takes a considerable amount of time for applications to load their working sets in

the cache, thus the performance improvement increases from 15ms to 30ms timeslice

length due to the increased amount of time to amortize LLC cold start cache misses.

However, beyond 30–45ms timeslices, there is only marginal performance improve-

ment since the applications’ working set data is then loaded in the LLC and the cold

start penalty amortized.

Figure 3.6 presents the runtime improvement figures for application mixes in

a quad-core system, normalized to a system with conventional scheduler. The er-

ror bars depict ±1 standard deviation. Again, we observe diminishing returns on

throughput improvement beyond 45ms timeslices. Here the benefit is slightly larger

than in the dual-core case, in part due to the more thorough replacement caused by

47

15ms 30ms 45ms 70ms
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

Aggregated Timeslice Length

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t

Figure 3.6: Runtime improvement versus CFS baseline in a quad-core system with
16MB LLC. Geomean over six application mixes, four per core.

running more simultaneous applications.

3.4.3 Effect of LLC Size on Optimal Timeslice Length

Intuitively, larger caches take longer to fill than smaller ones, so the threads need

longer timeslices when running with a larger LLC, in order to amortize the cold cache

penalty. We conducted the same set of two-core experiments as in Section 3.4.2 in

a true two-core system with 4MB cache. Figure 3.7 presents the geometric mean

runtime improvement figures, for sixteen application mixes in a dual-core system

with aggregated timeslice lengths from 5 to 30ms. Each bar reflects the performance

improvement normalized to running the mixes on a system utilizing the conventional

CFS Linux scheduler with standard timeslices (∼2ms in this case due to a smaller

number of cores in the system and initial CFS settings). Again, the error bars depict

±1 standard deviation.

48

5ms 10ms 15ms 30ms
0%

2%

4%

6%

8%

Aggregated Timeslice Length

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t

Figure 3.7: Runtime improvement over CFS baseline in a dual-core system with 4MB
LLC. Geomean across sixteen application mixes, four applications per core.

In the figure we see that here timeslice aggregation with 5ms-long timeslices yield-

s about 4% geomean runtime improvement, while 15ms-long timeslice aggregation

boosts the performance by 6.2%. Versus the previous results with a large LLC (Sec-

tion 3.4.2), we note that: (a) the overall performance improvement is less, and (b) the

performance benefit saturates at a shorter relative timeslice length. The differences

primarily derive from the fact that a smaller cache takes less time to refill on cold

restart than a larger cache, thus the total performance penalty is less and it takes

less time to amortize (about 15ms versus 30-45ms with larger LLC). We conclude

that the optimal timeslice length for a given system depends on the size of the LLC.

With caches getting larger and the number of threads increasing, the data seems

to suggest that longer timeslices are needed to amortize the cold start penalty and

improve the system performance.

49

UPDATED graphs::

2 4 8
0%

5%

10%

15%

20% 15ms 30ms 45ms 70ms

Number of Threads per Core

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Im
pr

ov
em

en
t

2 4 8
0%

5%

10%

15%

20%
15ms 30ms 45ms 70ms

Number of Threads per Core

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Im
pr

ov
em

en
t

Figure 3.8: Runtime improvement over CFS baseline with 2, 4, and 8 applications
per core, in a quad-core system.

3.4.4 Performance vs. Application Count

Here we examine sensitivity to the number of applications per core. Figure 3.8

shows the results for experiments with two, four, and eight applications per core.

Across all experiments, the performance improvement saturates at ∼15% for aggre-

gated timeslices larger than 30ms. This is in line with our reasoning that shorter

timeslices are not quite sufficient to amortize the cold cache penalty. The slightly

better results in 8 thread-per-core experiments can be explained by the fact that

additional threads more thoroughly replace the contents of the LLC, leading to more

performance loss on cold restart.

3.5 Discussion

Figure 3.9 presents the per-application runtime improvement for one application

mix in a quad-core system, with 45ms aggregated timeslices. The figure shows that

all the applications benefit from longer timeslices, with an average improvement for

this particular mix of ∼12%.

50

Sat
xalan
freqmine

water.n
barnes

raytra
ce
soplex

xalan
barnes

x264
omnetpp mcf Sat

bodytra
ck

omnetpp
water.s

 GEOMEAN
0%

5%

10%

15%

20%

25%

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t

 Core 0 Core 1 Core 2 Core 3

Figure 3.9: Detailed runtime improvement, 45ms aggregated timeslices versus CFS
baseline in a quad-core system with 16MB LLC. Four applications per core, sixteen
total.

3.5.1 LLC Miss Reduction

Figure 3.10 presents the total number of LLC misses for one mix of applications

with aggregated timeslices, as a fraction of misses with conventional CFS. We ob-

serve that timeslice aggregation helps alleviate about 15% to 18% of the total LLC

misses. Note that these misses are forced cold cache misses due to multitasking,

hence reducing them leads to pronounced improvement in system throughput, as we

have seen in Section 3.4.2. The geometric mean LLC miss reduction per application

is 30% (we do not present the figures for brevity). Again, we observe that about 30-

45ms timeslice length is enough to amortize the cold start penalty, and beyond that

we hit diminishing returns (i.e. the rest of the misses are conflict and compulsory

misses intrinsic to the application mix running in the system).

51

LLC miss statistics for one 16-application mix. 4 threads per core.

x264
raytra

ce
xalan

streamcl Sat
water.s

soplex

omnetpp
dedup

canneal

omnetpp mcf
dedup

xalan
xalan fft

GMEAN
0%

10%

20%

30%

40%

50%

60%

LLC Misses Reduction per application

15ms
30ms
45ms
70ms

N
or

m
al

iz
ed

 M
is

se
s

R
ed

uc
tio

n

15ms 30ms 45ms 70ms
79%

80%

81%

82%

83%

84%

85%

86%

Total LLC Misses per Whole Mix

Timeslice Length

N
or

m
al

iz
ed

 L
LC

 M
is

se
s

Figure 3.10: LLC misses with aggregated timeslices, normalized to CFS in a quad-
core system with 16MB LLC.

3.5.2 Cache Partitioning vs. Timeslice Aggregation

We notice that timeslice aggregation scheme improves the application perfor-

mance by 10–15% in multi-core systems. The interesting question is, can this tech-

nique be augmented by partitioning the cache? Longer timeslices help to amortize

the cold cache effect, but they do not prevent it. With cache partitioning, each thread

would retain its cache contents across timeslices thus avoiding the cold-start effect

completely. The catch here is that it is challenging to effectively partition a 16-way

cache among 10–20 threads. Further, a partitioned cache gives a fraction of its space

to each application, while with timeslice aggregation, all the cache is available to the

application once it has been refilled. Intuitively, splitting applications into groups

based on their cache size demands, one would need to enforce partitioning for a much

smaller number of threads at a time (i.e. partition the cache into 4 pieces where 3

applications get 1 full piece each, while the rest of the applications share a single

partition; rotate the partition assignment every 200ms).

Here we analyze an ideal case, assuming that the cache is equipped with a parti-

52

20%

30%

40%

50%

60%

70%

80%

0.0 0.2 0.4 0.6 0.8 1.0

Fr
ac

tio
n

of
 T

im
es

lic
es

Drop in Misses, Normalized to First Sample

freqmine

15%

20%

25%

30%

0.0 0.2 0.4 0.6 0.8 1.0

M
is

se
s e

 E
lim

in
at

ed

Drop in Misses, Normalized to First Sample

freqmine (a) Freqmine cold cache effect.

0%

10%

20%

30%

40%

50%

60%

0.0 0.2 0.4 0.6 0.8 1.0

Fr
ac

tio
n

of
 T

im
es

lic
es

Drop in Misses, Normalized to First Sample

soplex

0%
1%
2%
3%
4%
5%
6%
7%
8%

0.0 0.2 0.4 0.6 0.8 1.0

M
is

se
s E

lim
in

at
ed

Drop in Misses, Normalized to First Sample

soplex (b) Soplex cold cache effect.

20%

30%

40%

50%

60%

70%

80%

0.0 0.2 0.4 0.6 0.8 1.0

Fr
ac

tio
n

of
 T

im
es

lic
es

Drop in Misses, Normalized to First Sample

freqmine

15%

20%

25%

30%

0.0 0.2 0.4 0.6 0.8 1.0

M
is

se
s e

 E
lim

in
at

ed

Drop in Misses, Normalized to First Sample

freqmine

(c) Freqmine miss improvement beyond
15ms aggregation scheme.

0%

10%

20%

30%

40%

50%

60%

0.0 0.2 0.4 0.6 0.8 1.0

Fr
ac

tio
n

of
 T

im
es

lic
es

Drop in Misses, Normalized to First Sample

soplex

0%
1%
2%
3%
4%
5%
6%
7%
8%

0.0 0.2 0.4 0.6 0.8 1.0

M
is

se
s E

lim
in

at
ed

Drop in Misses, Normalized to First Sample

soplex

(d) Soplex miss improvement beyond
15ms aggregation scheme.

Figure 3.11: CDF functions for cold cache effect, and estimated LLC miss improve-
ment beyond 15ms aggregation scheme.

tioning scheme which is able to split the cache among all the threads in the system,

based on cache utility or working set sizes, etc., such that each thread achieves the

maximum benefit. We gathered the statistics of the Miss rate fall-off behavior among

four mixes of applications. Looking at Figure 3.3a as an example, let us take the

first data point (at 3ms) as the maximum (100%). Now, the fifth data point (at

15ms) in this example is α = 0.42 of the maximum miss rate. We are interested

in the fraction of misses that could be avoided if a perfect partitioning scheme was

implemented in the cache. Let us assume a best-case scenario where the number of

misses is high during the first 3ms, but rapidly drops and stays at the level of the

15ms point. We can approximate the total number of misses the thread encountered

in 15ms as follows: 3ms×Xmisses+ 12ms× αXmisses = (3ms+ 12ms× α)×X.

Now with perfect partitioning, there would be no spike in misses during the first

53

3ms, thus in this case the number of misses in 15ms is: 15ms× αXmiss/ms.

The improvement in cache misses with cache partitioning beyond 15ms aggregat-

ed timeslices can be thus calculated as follows: 1 − 15α
3+12α

= 1− 5α
1+4α

= 1−α
1+4α

. Note

that the multiplier 4 in the denominator increases with the increase of aggregated

timeslice length, thus the maximum miss rate improvement with long timeslices is

decreased.

Figure 3.11 depicts the CDF functions for the two most representative applica-

tions from our application mixes. The two charts on the top show, for each α, the

fraction of timeslices that the thread experienced a corresponding drop in misses

from the 3ms to the 15ms data point. For instance, with Freqmine benchmark (Fig-

ure 3.11a), the miss rate drop is smaller than α = 0.6 for 40% of the timeslices, and

smaller than α = 0.9 for 30% of the timeslices. The charts on the bottom reflect

the corresponding estimated improvement in total number of misses with the data

obtained from the top charts. Continuing the Freqmine example: with partitioning,

we would alleviate 90% misses (α=0.1 drop in Figure 3.11a), which is 1−α
1+4α

= 0.64×

better than 15ms aggregated scheme, for 25% of timeslices. The timeslices with

α=0.1 drop with partitioning would contribute to 16% misses alleviation beyond the

15ms scheme (Figure 3.11c). Then, 80% misses (0.44× better than 15ms scheme)

for additional 10% of timeslices, which would contribute to additional 6% misses

alleviation beyond the 15ms scheme. In other words, we integrate the upper graph

with the 1−α
1+4α

multiplier, obtaining a total of about 27% Misses reduction beyond

the 15ms scheme. Similarly, Soplex application would achieve 7% Misses reduction

with cache partitioning, beyond the 15ms scheme. The more timeslices exhibit the

larger drop in miss rate, the more can be gained with partitioning.

Our estimates show that for most of the applications, partitioning provides only

about 5–10% additional benefit beyond 15ms aggregated timeslices. With longer

54

timeslices, the added gains rapidly drop. Our results thus indicate that partition-

ing does not seem to offer substantial additional benefit beyond longer time slices.

We further note that time slice aggregation is a purely software solution without

any additional hardware support, thus the overhead of implementing this scheme

is much lower than partitioning. With partitioning, however, there is no cross-core

interference, i.e. the steady state miss rates in Figures 3.2a and 3.2b would be lower

with cache partitioning. Generally we find these applications are not particularly

sensitive to inter-core interference, with only a ∼5% miss rate increase when run

simultaneously with other applications.

3.5.3 Fairness

Since our scheme is based on the Completely Fair Scheduler, by increasing the

timeslice length, the system fairness should not be affected. We observe that by ag-

gregating the timeslices, the system achieves similar fairness among the applications.

Note however that the aggregated timeslices allow fairness over longer time scales

than the original CFS, while potentially being unfair over timescales smaller than

the aggregated scheduling times.

3.5.4 Dynamic Timeslice Extension

A natural extension of our approach is to dynamically control the timeslice length,

adapting to the application execution phases. The intuition is that overlong times-

lices can cause more LLC interference where applications on different cores will fight

for the cache space. We implemented a dynamic scheme as a modification of the

CFS scheduler in Linux Kernel.

The basic idea of our dynamic scheduler was to monitor the threads’ LLC fill

rate and individually adjust the timeslice aggregation so that each thread is only

able to fill a preset fraction of the cache. We leveraged the kernel interface to the

55

CPU performance counters to compute the MPTS (misses per timeslice) metric. The

overhead of accessing the counters is approximately 2 µsec per read. Compared to the

time one scheduler invocation and context switch takes, this overhead is negligible.

Because the dynamic scheme is an extension of CFS, regardless of each thread’s

timeslice length, all threads are given a fair share of CPU time. All runnable threads

are stored in a tree where the key is their virtual runtime length, vruntime. After

a thread has been scheduled and finished its timeslice, the vruntime variable is in-

cremented by the timeslice length, and the thread gets put back into a tree. A new

thread with the lowest vruntime is picked from the tree. When we are aggregating

the timeslices for a thread, after one scheduling of such thread, its vruntime variable

will get much larger than other threads’ vruntimes. As a result the thread will re-

main unscheduled for a longer time. Thus the scheduler automatically takes care of

fairness.

Our experiments show that, while the dynamic scheme is adapting to individual

applications’ behavior, it does not provide any noticeable performance improvement

beyond the Systemwide aggregation. We calculated the average timeslice lengths

produced by the dynamic scheme, and based on that data, it is marginally better

than Systemwide (by about 0.7–1% on average) when the timeslices are shorter than

6 ms, but beyond that, there appears to be no gain from adaptivity.

3.5.5 Even Larger LLCs

It is tempting to think that with larger LLCs multiple working sets might be able

to fit simultaneously and hence the benefits from longer timeslices may not persist.

First, our results show that longer timeslices benefit both 4MB and 16MB LLCs,

with the trend towards more benefit in larger LLCs. Second, application sizes and

data sets tend to grow as larger systems become available. Virtualization and server

56

consolidation continues the trend of increasing resource sharing and the resultant

contention at the LLC. As we have seen (Figures 3.2a and 3.2b), four applications

in a system are able to overwrite a 4MB LLC leaving each thread with a cold cache

every timeslice. Similarly, in an 8-core system, with four threads per core, a 32MB

cache may easily be overwritten. Note that, with larger cache sizes come longer refill

latencies, aggravating the cold start penalty. We thus expect the timeslice length

required to efficiently amortize the cold cache penalty in systems with large LLCs to

be even greater.

3.6 Summary

System performance in time-shared, multitasking systems is degraded by the cold

restart fill time after every context switch seen in modern, large, last-level caches.

Modern cache sizes have grown so large, and the OS scheduling timeslices so small,

that the cache fill time is greater than the scheduling window. It is possible to

amortize the cold cache penalty by allowing the applications to run longer between

reschedulings. Here we present a simple scheme for timeslice aggregation, and show

that it is possible mitigate the system slowdown due to the multitasking, boosting

the throughput while observing fairness.

57

4. FTCAM: AN AREA-EFFICIENT FLASH-BASED TERNARY CAM ∗

As an unconventional approach to utilizing emerging memory technologies, we

present a Ternary Content-Addressable Memory (TCAM) design with Flash transis-

tors. TCAM is important in modern high-speed network routing. We have chosen

internet routing application as a demonstration of the applicability of our design,

however, such design could be utilized in Virtual Memory accelerator applications.

For instance, TCAM could be leveraged for storage of the Page Table and hence

fast Virtual-to-Physical address translations, obviating the need of the costly Page

Table walks. Adoption of this scheme would require significant modifications to the

existing processor architectures. Also the limited re-write endurance of Flash in such

an application would need to be addressed. We leave this for the future work.

4.1 Introduction

For routers that serve the internet core, the routing lookup operation needs to

be performed on data that arrives on optical interfaces operating at a few 100 Gb/s.

As a result, it is imperative that the routing table lookups for these routers be done

in hardware, in parallel, rather than in software. The circuit of choice for hardware

routers is Ternary Content Addressable Memory (TCAM) [58, 68, 99]. TCAMs

ideally store an entire routing table, and perform a simultaneous comparison for all

routing entries against the destination address of the packet being routed. A TCAM

is a variant of a cache (which is also referred to as a CAM [79]), with the added ability

to disregard a subset of address bits while performing the lookup. The address bits

that are disregarded during a routing table lookup operation correspond to the mask

∗ c©2014 IEEE. Reprinted, with permission, from V. Fedorov; M. Abusultan; S. Khatri, ”FT-
CAM: An Area-efficient Flash-based Ternary CAM Design,” in IEEE Transactions on Computers,
October 2015.

58

bits of the routing table entry (which have 0 values).

Traditionally, TCAMs are implemented using CMOS integrated circuits (ICs), in

which each TCAM cell requires 17 transistors, and each SRAM cell (which stores

the interface or next hop port) requires 6 transistors. In our work, we realize each

TCAM cell using 2 flash transistors, and each ”SRAM” cell (we refer to it as a port

cell) requires 1 flash transistor. As a consequence, our flash-based TCAM (FTCAM)

block [16] is significantly more dense than the traditional CMOS-based TCAM block

(by a factor of about 7.9×), with a lookup delay which is 2.5× larger, and a power

consumption which is 1.64× lower than the CMOS-based TCAM.

The key contributions of this work are:

• To the best of our knowledge, this is the first work that utilizes flash technology

to realize a Ternary CAM design.

• We implemented the flash-based TCAM block in HSPICE [60], using a 45nm

PTM [70] CMOS technology, and a 45nm flash technology, yielding accurate

delay and power, compared to a CMOS-based TCAM block [20], which was

also implemented.

• The layout of the flash-based TCAM was generated. The TCAM block area of

the flash-based design was compared with that of a CMOS based design [20],

and we demonstrate that the flash-based design is about 7.9× more dense.

• Our FTCAM was simulated using a real trace of a backbone internet router, to

evaluate the system lifetime and to ensure no packets were lost during real-time

operation.

The remainder of this chapter is organized as follows. Section 4.2 discusses some

previous work in this area. In Section 4.3 we briefly describe the architecture of our

59

envisioned flash-based TCAM, and provide details of the flash-based TCAM block

we employ. In Section 4.4 we present experimental results comparing our flash-

based TCAM block with an implementation of an existing CMOS TCAM block.

Conclusions are discussed in Section 4.5. A brief background on internet routing

and TCAM operation, as well as a discussion of Flash transistor basics, erase and

program operations of the proposed cells, and the cell layouts of our design can be

found in the Appendix.

4.2 Previous Work

A good overview of existing TCAM approaches can be found in [58, 65]. Most

TCAM implementations store routing entries in blocks [87, 99], where each block

contains routing entries of a particular mask length. This allows for fast lookups,

since the IP address would be looked up in all blocks, and only the match from the

block with the highest match length would be selected. Another implementation [40]

allows routing table entries to be stored at any locations in the TCAM, but require

two cycles to perform a lookup. Routing table lookup in this approach is done in a

non-pipelined, two stage manner. In the first phase, the TCAM performs the lookup

and performs a bitwise OR of the matching entries’ masks. This produces the longest

mask, which is fed back to the TCAM and further constrains the original matching

entries to produce the entry with the longest prefix. The main drawback of this

approach is that in lowering the cost of insertion, the cost of each lookup is doubled.

Most TCAM designs utilize a priority encoder [100] circuit to perform the Longest

Prefix Match (LPM). The LPM computation is usually done in hardware, either using

dedicated hardware [40], or by arranging the routing table entries in a specific order

as described in [87].

In [50], the authors discuss techniques for reducing power in a TCAM, including

60

3D stacking and the use of programmable vias to save area in the port memory.

As such, the techniques described are orthogonal to the ideas we present in this

work. STT-based TCAM circuits were proposed [105], however due to the resistance

variation of the magnetic junctions their design utilizes three memory elements per

cell, as well as 3 + 11 CMOS devices, whereas our FTCAM cell utilizes only two flash

transistors. Our FTCAM uses 0.6 fJ/bit/search while the TCAM in [105] requires

7.1 fJ/bit/search. The lookup energy ratio roughly tracks the number of devices per

TCAM cell. Memristor-based CAM utilizes two memory elements and three CMOS

transistors [15]. However, the focus of their paper is not on TCAMs, but rather on

the cell design of a memristor-based CAM. The authors of [25] present a resistive

TCAM cell, to be integrated with the virtual memory, making the physical address

space content-addressable. In general, the focus of this paper is at a higher level of

abstraction, unlike our work.

In [20], the authors implemented an efficient TCAM, in which routing table entries

are stored in any order, thus eliminating the large worst-case insertion cost of typical

TCAM implementations, as described in [87]. In addition, they used an efficient

Wired-NOR based LPM circuit, whose delay scales logarithmically with n, thus

improving over the linear complexity (in the size of the TCAM) of priority encoder

based circuits. All the above approaches utilize a CMOS implementation of the

TCAM.

There have been several research efforts which study the flash devices and their

use in memory. A shortened list includes [47, 1, 66, 10, 89]. These papers report

details of flash devices and their characterization. However, they do not describe the

use of flash transistors for TCAM like circuits. To the best of our knowledge, there

has been no prior work that uses flash devices to realize TCAM structures.

In our approach, we utilize flash transistors to realize the TCAM cells. We

61

assume that the TCAM is realized in blocks (with 256 entries per block). Each entry

consists of 256 TCAM bits (thereby supporting IPv6 routing tables), and 512 data

bits. Although the focus of our work is on the design of a TCAM block, we also

discuss the architecture of the entire TCAM, discussing how routing updates and

route flaps would be handled. The flash-based TCAM block is compared in terms

of layout area, delay and power with an efficient CMOS TCAM design [20], which

was re-implemented in the 45nm PTM [70] technology for a fair comparison with our

flash-based TCAM block.

4.3 Our Approach

4.3.1 Definitions

We first provide the definitions of terms used in this work. The proposed design

consists of TCAM blocks, each block containing a number of Flash TCAM cells and

Port cells.

Definition 1. TCAM block: A block consisting of 256 rows of 256 flash TCAM

cells and 512 flash port cells per row.

Definition 2. Shadow TCAM block: A CMOS TCAM block consisting of 512

rows of 256 CMOS TCAM cells and 512 SRAM (port) cells per row.

Definition 3. LPM block: A special block performing the Longest Prefix Match

operation among multiple matching flash TCAM blocks.

Definition 4. Flash TCAM cell: A circuit consisting of two flash transistors,

capable of storing a ternary value and comparing against the stored value.

Definition 5. Flash Port (Memory) cell: A single flash transistor circuit holding

one bit of port (next hop) information.

62

4.3.2 Overview

In the next two sections, we discuss the design of out FTCAM router following a

top-down approach.

In Section 4.3.3, we discuss the architecture of the TCAM at the chip level, along

with a discussion of how insertions and deletions are handled. In the proposed design,

the routing entries are stored in blocks of a fixed size.

The focus of this work, however, is the design of the TCAM block. The design

of each block is discussed in Section 4.3.4. This section covers the design of the

TCAM cell and the port cell. The FTCAM block in our approach was simulated in

HSPICE [60] , with wiring parasitics extracted via Raphael [81]. The layouts of the

FTCAM and port cells were generated as well. The delay, area and power of the

FTCAM block were compared with those of a CMOS TCAM block [20].

In existing flash memory ICs (which are used in SDCards, memory sticks, and

SSDs), both CMOS and Flash transistors co-exist on the same die. The CMOS tran-

sistors are used for control operations, pulse generation, and readout management.

Similarly, our FTCAM based router also uses CMOS and flash devices together, on

the same die.

Whenever a TCAM based router comes online, a protocol called the BGP (Bor-

der Gateway Protocol) is run to announce its routes to neighboring routers, and,

conversely, to discover new routes from them.

4.3.3 TCAM Architecture

Our design stores routing entries in blocks, with each block used for the storage

of entries with a specific mask length M . For each mask length M , a fixed number

of blocks NM are employed, based on the mask length statistics of the routing table

entries being stored in the router.

63

Clocking
and control

TCAM blocks
(flash)

blocks (CMOS)

LPM block

Shadow TCAM

N x N Blocks

Fig. 1. Floorplan and Block Arrangement of our TCAM

such that ΣM=128
M=1 NM = N2 − 1. The largest mask length is

128 (assuming IPv6 IP addresses). A single central block is
used as an LPM block, to select one entry with the longest
prefix, from all the matching entries from several TCAM
blocks. The LPM block can be implemented as a priority
encoder [12], or a wired-NOR based circuit of [8], which
exhibits a logarithmic delay instead of a delay that is linear
in IP address length.

In our TCAM, as in the scheme of [10], memory man-
agement was performed external to the TCAM, in software.
The flash TCAM entries can be thought of as NAND flash
memory, but with extremely short device stacks (we utilize
two devices in series, unlike a NAND flash memory in
which there are typically 100s of series devices in a NAND
stack). Each short stack corresponds to a TCAM entry, and
can be erased and programmed independently. However,
flash devices have long erase and program times (in the
100s of microseconds [23]. Therefore, our flash-based TCAM
has shadow blocks which are implemented using CMOS
cells (see Figure 1). These CMOS TCAM shadow blocks
are used to perform lookups while flash TCAM blocks are
being modified (and are consequently off-line). The CMOS
TCAM shadow blocks are implemented in a manner similar
to [8], with each block being able to store entries of variable
mask lengths. As we show later, 48 512-entry CMOS shadow
blocks are sufficient to support the operation of our TCAM.

The router firmware contains the golden state of each
block of the flash-based TCAM, in its DRAM memory. The
DRAM is not used for lookup (this would be prohibitively
slow), but rather as a means to ensure consistency of TCAM
entries. We next discuss how route additions and deletions
are performed, using the DRAM, shadow TCAM blocks
and flash-based TCAM blocks. The following discussion
assumes that each TCAM block has a pointer indicating an
unused entry (a hole), and each TCAM entry has a flag to
indicate whether it’s contents are valid or invalid (this flag
is implemented in CMOS, and can be written at the speed
of the TCAM clock).

The hole pointer would require a small amount of mem-
ory per TCAM block. Each pointer requires one byte as there
are 256 potential hole positions. This translates into a total of
6 KB of memory (since we can accommodate 6000 FTCAM
blocks in a 1.5 cm × 1.5 cm die). This amount of memory
would fit into an area corresponding to one FTCAM block.

Invalid/valid information is stored as a single bit in the
FTCAM array, and utilizes 2% of the FTCAM block area.

Flash transistors typically have a finite (10k - 100k)
number of times they can be written [24]. In traditional
flash memory, wear leveling is performed at the architectural
level to spread the wear of the cells. In our approach, the
same wear leveling techniques would be used for blocks of
a particular prefix size.

3.3.1 Route Addition
When a new route R with mask length M is to be added, it
is first written by the firmware to the appropriate location
in DRAM. This location corresponds to a vacant position in
a flash-based TCAM block which stores entries with mask
length M . The entry R is then copied to a CMOS shadow
block which is on-line and available to do lookups.

This technique filters route flaps and reduces write-stress
and wearout of the flash-based blocks. Once the CMOS
block is full, the process of copying to flash-based TCAM is
initiated. The corresponding flash-based TCAM blocks are
now taken off-line, the contents of the DRAM blocks with
the new route entries from the CMOS shadows are copied to
the corresponding flash-based TCAM blocks, and the flash-
based blocks are then again brought on-line. At this time,
the CMOS shadow block is reset.

TCAM

rows
128

rows
128

control
circuitry

Port
information
memory

256 cells 512 cells

Fig. 2. TCAM Block Organization

3.3.2 Route Deletion
When a route with a mask length M is to be deleted, we
first do a lookup. Assuming that the route is present in
the TCAM, there is a match from one of the flash TCAM
blocks which store routes of mask length M. Note that this
route may be present in a CMOS shadow TCAM block
as well, and the next steps are identical in that case. The
row number of the route entry is hard-wired in the port
memory, and is recorded along with the match. Now, we
invalidate this entry, and update the hole pointer to this
invalid row in the flash-based (or CMOS shadow) TCAM
block. Simultaneously, the deleted route is removed from
the appropriate location(s) in the DRAM as well.

In this way, the latency of writes to the flash-based
TCAM blocks is hidden, and consistent operation is ensured
at the router level. Note that the number of CMOS shadow
TCAM blocks is significantly smaller than the number of
flash-based TCAM blocks.

3.4 TCAM Block Implementation
In existing flash memory designs, flash as well as CMOS
transistors are used on the same die [25]. Our work assumes
that both flash and CMOS devices are present on the same
die.

Figure 4.1: Floorplan and block arrangement of our TCAM.

The floorplan of our proposed TCAM design is shown in Figure 4.1. The total

number of flash TCAM blocks in this design is N2− 1, and these are divided among

mask lengths, such that ΣM=128
M=1 NM = N2 − 1. The largest mask length is 128

(assuming IPv6 IP addresses). A single central block is used as an LPM block, to

select one entry with the longest prefix, from all the matching entries from several

TCAM blocks. The LPM block can be implemented as a priority encoder [100], or

a wired-NOR based circuit of [20], which exhibits a logarithmic delay instead of a

delay that is linear in IP address length.

In our TCAM, as in the scheme of [87], memory management was performed

external to the TCAM, in software. The flash TCAM entries can be thought of as

NAND flash memory, but with extremely short device stacks (we utilize two devices

in series, unlike a NAND flash memory in which there are typically 100s of series

devices in a NAND stack). Each short stack corresponds to a TCAM entry, and can

be erased and programmed independently. However, flash devices have long erase

and program times (in the 100s of microseconds [13]. Therefore, our flash-based

64

TCAM has shadow blocks which are implemented using CMOS cells (see Figure 4.1).

These CMOS TCAM shadow blocks are used to perform lookups while flash TCAM

blocks are being modified (and are consequently off-line). The CMOS TCAM shadow

blocks are implemented in a manner similar to [20], with each block being able to

store entries of variable mask lengths. As we show later, 48 512-entry CMOS shadow

blocks are sufficient to support the operation of our TCAM.

The router firmware contains the golden state of each block of the flash-based

TCAM, in its DRAM memory. The DRAM is not used for lookup (this would be

prohibitively slow), but rather as a means to ensure consistency of TCAM entries.

We next discuss how route additions and deletions are performed, using the DRAM,

shadow TCAM blocks and flash-based TCAM blocks. The following discussion as-

sumes that each TCAM block has a pointer indicating an unused entry (a hole), and

each TCAM entry has a flag to indicate whether it’s contents are valid or invalid

(this flag is implemented in CMOS, and can be written at the speed of the TCAM

clock).

The hole pointer would require a small amount of memory per TCAM block. Each

pointer requires one byte as there are 256 potential hole positions. This translates

into a total of 6 KB of memory (since we can accommodate 6000 FTCAM blocks in a

1.5 cm × 1.5 cm die). This amount of memory would fit into an area corresponding to

one FTCAM block. Invalid/valid information is stored as a single bit in the FTCAM

array, and utilizes 2% of the FTCAM block area.

Flash transistors typically have a finite (10k - 100k) number of times they can be

written [36]. In traditional flash memory, wear leveling is performed at the architec-

tural level to spread the wear of the cells. In our approach, the same wear leveling

techniques would be used for blocks of a particular prefix size.

65

4.3.3.1 Route Addition

When a new route R with mask length M is to be added, it is first written

by the firmware to the appropriate location in DRAM. This location corresponds

to a vacant position in a flash-based TCAM block which stores entries with mask

length M . The entry R is then copied to a CMOS shadow block which is on-line and

available to do lookups.

This technique filters route flaps and reduces write-stress and wearout of the

flash-based blocks. Once the CMOS block is full, the process of copying to flash-

based TCAM is initiated. The corresponding flash-based TCAM blocks are now

taken off-line, the contents of the DRAM blocks with the new route entries from the

CMOS shadows are copied to the corresponding flash-based TCAM blocks, and the

flash-based blocks are then again brought on-line. At this time, the CMOS shadow

block is reset.

Clocking
and control

TCAM blocks
(flash)

blocks (CMOS)

LPM block

Shadow TCAM

N x N Blocks

Fig. 1. Floorplan and Block Arrangement of our TCAM

such that ΣM=128
M=1 NM = N2 − 1. The largest mask length is

128 (assuming IPv6 IP addresses). A single central block is
used as an LPM block, to select one entry with the longest
prefix, from all the matching entries from several TCAM
blocks. The LPM block can be implemented as a priority
encoder [12], or a wired-NOR based circuit of [8], which
exhibits a logarithmic delay instead of a delay that is linear
in IP address length.

In our TCAM, as in the scheme of [10], memory man-
agement was performed external to the TCAM, in software.
The flash TCAM entries can be thought of as NAND flash
memory, but with extremely short device stacks (we utilize
two devices in series, unlike a NAND flash memory in
which there are typically 100s of series devices in a NAND
stack). Each short stack corresponds to a TCAM entry, and
can be erased and programmed independently. However,
flash devices have long erase and program times (in the
100s of microseconds [23]. Therefore, our flash-based TCAM
has shadow blocks which are implemented using CMOS
cells (see Figure 1). These CMOS TCAM shadow blocks
are used to perform lookups while flash TCAM blocks are
being modified (and are consequently off-line). The CMOS
TCAM shadow blocks are implemented in a manner similar
to [8], with each block being able to store entries of variable
mask lengths. As we show later, 48 512-entry CMOS shadow
blocks are sufficient to support the operation of our TCAM.

The router firmware contains the golden state of each
block of the flash-based TCAM, in its DRAM memory. The
DRAM is not used for lookup (this would be prohibitively
slow), but rather as a means to ensure consistency of TCAM
entries. We next discuss how route additions and deletions
are performed, using the DRAM, shadow TCAM blocks
and flash-based TCAM blocks. The following discussion
assumes that each TCAM block has a pointer indicating an
unused entry (a hole), and each TCAM entry has a flag to
indicate whether it’s contents are valid or invalid (this flag
is implemented in CMOS, and can be written at the speed
of the TCAM clock).

The hole pointer would require a small amount of mem-
ory per TCAM block. Each pointer requires one byte as there
are 256 potential hole positions. This translates into a total of
6 KB of memory (since we can accommodate 6000 FTCAM
blocks in a 1.5 cm × 1.5 cm die). This amount of memory
would fit into an area corresponding to one FTCAM block.

Invalid/valid information is stored as a single bit in the
FTCAM array, and utilizes 2% of the FTCAM block area.

Flash transistors typically have a finite (10k - 100k)
number of times they can be written [24]. In traditional
flash memory, wear leveling is performed at the architectural
level to spread the wear of the cells. In our approach, the
same wear leveling techniques would be used for blocks of
a particular prefix size.

3.3.1 Route Addition
When a new route R with mask length M is to be added, it
is first written by the firmware to the appropriate location
in DRAM. This location corresponds to a vacant position in
a flash-based TCAM block which stores entries with mask
length M . The entry R is then copied to a CMOS shadow
block which is on-line and available to do lookups.

This technique filters route flaps and reduces write-stress
and wearout of the flash-based blocks. Once the CMOS
block is full, the process of copying to flash-based TCAM is
initiated. The corresponding flash-based TCAM blocks are
now taken off-line, the contents of the DRAM blocks with
the new route entries from the CMOS shadows are copied to
the corresponding flash-based TCAM blocks, and the flash-
based blocks are then again brought on-line. At this time,
the CMOS shadow block is reset.

TCAM

rows
128

rows
128

control
circuitry

Port
information
memory

256 cells 512 cells

Fig. 2. TCAM Block Organization

3.3.2 Route Deletion
When a route with a mask length M is to be deleted, we
first do a lookup. Assuming that the route is present in
the TCAM, there is a match from one of the flash TCAM
blocks which store routes of mask length M. Note that this
route may be present in a CMOS shadow TCAM block
as well, and the next steps are identical in that case. The
row number of the route entry is hard-wired in the port
memory, and is recorded along with the match. Now, we
invalidate this entry, and update the hole pointer to this
invalid row in the flash-based (or CMOS shadow) TCAM
block. Simultaneously, the deleted route is removed from
the appropriate location(s) in the DRAM as well.

In this way, the latency of writes to the flash-based
TCAM blocks is hidden, and consistent operation is ensured
at the router level. Note that the number of CMOS shadow
TCAM blocks is significantly smaller than the number of
flash-based TCAM blocks.

3.4 TCAM Block Implementation
In existing flash memory designs, flash as well as CMOS
transistors are used on the same die [25]. Our work assumes
that both flash and CMOS devices are present on the same
die.

Figure 4.2: TCAM block organization.

66

M

Data Lines

cells
8 TCAM 8 TCAM

cells

Data Lines Data Lines

8 TCAM
cells

Data Lines

To port

. circuit

8 TCAM
cells

K K K

M M

MATCH3MATCH1 MATCH2 MATCH32

Fig. 3. TCAM Row Split into 32 Sections

As discussed in the previous section, the flash-based
TCAM consists of N2 − 1 TCAM blocks. Each block (il-
lustrated in Figure 2) consists of 256 routing table entries
(split into an upper group of 128 entries, and a lower
group of 128 entries). In order to minimize wire lengths, the
control circuitry (bitline drivers and keepers) are situated
between the upper and lower groups of entries, a technique
employed in most high-speed memories. The number of
TCAM cells per routing table entry was chosen to be 256,
which is twice the length of an IPv6 address. By disabling
all but 32 TCAM cells, backward compatibility with IPv4 is
also supported. The number of port cells per routing table
entry is 512. Eight hard-wired bits are used to store the row
number of each entry (required during route deletion, as
previously described). Other bits can be used to store port
(next hop) information, QoS (quality of service) data, etc.

The number of entries per block was arrived at after
significant circuit level optimizations, using HSPICE [6].
For the TCAM block design, we generated the layout of
the flash-based TCAM and port cells, and based on layout
dimensions, extracted accurate 3-D wiring parasitics (R and
C) using Raphael [22], for the HSPICE simulations. We held
the number of FTCAM cells fixed at 256 to support IPv6
address lookups (with 2× over-provisioning), and varied
the number of rows. Beyond 256 rows, the lookup delay
(our metric for optimality) gets drastically higher. This is
because in the worst case, one port cell has to pull down an
entire column in the TCAM block. We found that 256 rows
present a reasonable compromise in size versus speed.

Each TCAM block performs a parallel lookup of the
applied destination address among the 256 routing entries
stored in it. Because all the routing entries have the same
mask length, it is guaranteed that exactly 0 or 1 entry will
match the applied destination address. The TCAM block
has 256 match lines, with each precharged match line being
pulled down if one or more TCAM cells mismatch the des-
tination address. As a consequence, each match line spans
256 TCAM cells horizontally. However, this results in a fairly
long MATCH line, resulting in a large match computation
delay for any row. The parasitic resistance and capacitance
of the MATCH line are proportional to its length, and
therefore its RC time constant increases quadratically with
length. In order to minimize this delay the MATCH line
is split into p smaller sections, as illustrated in Figure 3.
In this figure, the match line is shown as 32 smaller lines.
If any section i determines a mismatch condition, it pulls
down its MATCHi signal, which turns on device M for
section i + 1, which pulls down the MATCHi+1 signal for
section i+1. This effect cascades, until MATCH32 is pulled
down. There is also a keeper device K in each section, and
it serves to speed up the pulldown of the MATCHi signal
once a mismatch condition is detected. In other words, if
the MATCHq signal of section q (1 < q < 32) is pulled low,

then sections r > q (q < r ≤ 32) are automatically pulled
low by the NMOS devices labeled M, in each of the sections
with index r.

We performed several SPICE simulation sweeps to de-
termine the optimal number of sections p for the match line,
and found this number to be 32 (with 8 TCAM cells per sec-
tion). For the CMOS TCAM block we use for comparisons,
the value of p was found to be 4.

Each TCAM block performs a parallel search on the
applied destination address, independent of all other blocks.
The pipelining of the operation is illustrated in Figure 4.
The duration for the TCAM lookup (T2) is larger than
that for port memory lookup (T1), and the total cycle time
T = T1 + T2 is one of the figures of merit of our design.

port data

Precharge
MATCH line

Drive data
to TCAM

CLK

TCAM

memory
Port Drive Precharge

TCAM
Evaluate

port memory

T1 T2

Fig. 4. Pipelined Implementation of Lookup Functionality

3.4.1 Flash-based TCAM Cell
For a primer on Flash transistor operation the reader is
referred to the Appendix.

Our flash-based TCAM cell is illustrated in Figure 5. This
figure refers to a cluster of four TCAM cells. Cells in row j
(j + 1) are all connected to the match(j) (match(j + 1))
match line as shown. Each match line illustrates two TCAM
cells connected to it. Each TCAM cell consists of two flash
FETs connected in series to the match line. The match line is
precharged, and the control gates of the two flash FETs are
connected to signals ai and bi, respectively.

b(i)

a(i + 1)

b(i + 1)

cell(i, j)

cell(i, j + 1)

M2

M1

match(j)

match(j + 1)

a(i)

Fig. 5. Flash-based TCAM Cell

We now describe the encoding of the signals ai and bi

that are used to perform a routing table lookup, along with
the corresponding threshold voltage settings for the two
flash FETs in each TCAM cell. Consider cell(i, j) in Figure 5.
The control gate of transistor M1 (M2) is connected to ai (bi).

Figure 4.3: TCAM row split into 32 sections.

4.3.3.2 Route Deletion

When a route with a mask length M is to be deleted, we first do a lookup.

Assuming that the route is present in the TCAM, there is a match from one of the

flash TCAM blocks which store routes of mask length M. Note that this route may

be present in a CMOS shadow TCAM block as well, and the next steps are identical

in that case. The row number of the route entry is hard-wired in the port memory,

and is recorded along with the match. Now, we invalidate this entry, and update the

hole pointer to this invalid row in the flash-based (or CMOS shadow) TCAM block.

Simultaneously, the deleted route is removed from the appropriate location(s) in the

DRAM as well.

In this way, the latency of writes to the flash-based TCAM blocks is hidden, and

consistent operation is ensured at the router level. Note that the number of CMOS

shadow TCAM blocks is significantly smaller than the number of flash-based TCAM

blocks.

4.3.4 TCAM Block Implementation

In existing flash memory designs, flash as well as CMOS transistors are used on

the same die [97]. Our work assumes that both flash and CMOS devices are present

on the same die.

67

As discussed in the previous section, the flash-based TCAM consists of N2 − 1

TCAM blocks. Each block (illustrated in Figure 4.2) consists of 256 routing table

entries (split into an upper group of 128 entries, and a lower group of 128 entries).

In order to minimize wire lengths, the control circuitry (bitline drivers and keepers)

are situated between the upper and lower groups of entries, a technique employed in

most high-speed memories. The number of TCAM cells per routing table entry was

chosen to be 256, which is twice the length of an IPv6 address. By disabling all but

32 TCAM cells, backward compatibility with IPv4 is also supported. The number of

port cells per routing table entry is 512. Eight hard-wired bits are used to store the

row number of each entry (required during route deletion, as previously described).

Other bits can be used to store port (next hop) information, QoS (quality of service)

data, etc.

The number of entries per block was arrived at after significant circuit level opti-

mizations, using HSPICE [60]. For the TCAM block design, we generated the layout

of the flash-based TCAM and port cells, and based on layout dimensions, extracted

accurate 3-D wiring parasitics (R and C) using Raphael [81], for the HSPICE simu-

lations. We held the number of FTCAM cells fixed at 256 to support IPv6 address

lookups (with 2× over-provisioning), and varied the number of rows. Beyond 256

rows, the lookup delay (our metric for optimality) gets drastically higher. This is

because in the worst case, one port cell has to pull down an entire column in the T-

CAM block. We found that 256 rows present a reasonable compromise in size versus

speed.

Each TCAM block performs a parallel lookup of the applied destination address

among the 256 routing entries stored in it. Because all the routing entries have the

same mask length, it is guaranteed that exactly 0 or 1 entry will match the applied

destination address. The TCAM block has 256 match lines, with each precharged

68

match line being pulled down if one or more TCAM cells mismatch the destina-

tion address. As a consequence, each match line spans 256 TCAM cells horizontally.

However, this results in a fairly long MATCH line, resulting in a large match compu-

tation delay for any row. The parasitic resistance and capacitance of the MATCH

line are proportional to its length, and therefore its RC time constant increases

quadratically with length. In order to minimize this delay the MATCH line is split

into p smaller sections, as illustrated in Figure 4.3. In this figure, the match line is

shown as 32 smaller lines. If any section i determines a mismatch condition, it pulls

down its MATCHi signal, which turns on device M for section i + 1, which pulls

down the MATCHi+1 signal for section i+ 1. This effect cascades, until MATCH32

is pulled down. There is also a keeper device K in each section, and it serves to speed

up the pulldown of the MATCHi signal once a mismatch condition is detected. In

other words, if the MATCHq signal of section q (1 < q < 32) is pulled low, then

sections r > q (q < r ≤ 32) are automatically pulled low by the NMOS devices

labeled M, in each of the sections with index r.

We performed several SPICE simulation sweeps to determine the optimal number

of sections p for the match line, and found this number to be 32 (with 8 TCAM cells

per section). For the CMOS TCAM block we use for comparisons, the value of p

was found to be 4.

Each TCAM block performs a parallel search on the applied destination address,

independent of all other blocks. The pipelining of the operation is illustrated in

Figure 4.4. The duration for the TCAM lookup (T2) is larger than that for port

memory lookup (T1), and the total cycle time T = T1 + T2 is one of the figures of

merit of our design.

69

M

Data Lines

cells
8 TCAM 8 TCAM

cells

Data Lines Data Lines

8 TCAM
cells

Data Lines

To port

. circuit

8 TCAM
cells

K K K

M M

MATCH3MATCH1 MATCH2 MATCH32

Fig. 3. TCAM Row Split into 32 Sections

As discussed in the previous section, the flash-based
TCAM consists of N2 − 1 TCAM blocks. Each block (il-
lustrated in Figure 2) consists of 256 routing table entries
(split into an upper group of 128 entries, and a lower
group of 128 entries). In order to minimize wire lengths, the
control circuitry (bitline drivers and keepers) are situated
between the upper and lower groups of entries, a technique
employed in most high-speed memories. The number of
TCAM cells per routing table entry was chosen to be 256,
which is twice the length of an IPv6 address. By disabling
all but 32 TCAM cells, backward compatibility with IPv4 is
also supported. The number of port cells per routing table
entry is 512. Eight hard-wired bits are used to store the row
number of each entry (required during route deletion, as
previously described). Other bits can be used to store port
(next hop) information, QoS (quality of service) data, etc.

The number of entries per block was arrived at after
significant circuit level optimizations, using HSPICE [6].
For the TCAM block design, we generated the layout of
the flash-based TCAM and port cells, and based on layout
dimensions, extracted accurate 3-D wiring parasitics (R and
C) using Raphael [22], for the HSPICE simulations. We held
the number of FTCAM cells fixed at 256 to support IPv6
address lookups (with 2× over-provisioning), and varied
the number of rows. Beyond 256 rows, the lookup delay
(our metric for optimality) gets drastically higher. This is
because in the worst case, one port cell has to pull down an
entire column in the TCAM block. We found that 256 rows
present a reasonable compromise in size versus speed.

Each TCAM block performs a parallel lookup of the
applied destination address among the 256 routing entries
stored in it. Because all the routing entries have the same
mask length, it is guaranteed that exactly 0 or 1 entry will
match the applied destination address. The TCAM block
has 256 match lines, with each precharged match line being
pulled down if one or more TCAM cells mismatch the des-
tination address. As a consequence, each match line spans
256 TCAM cells horizontally. However, this results in a fairly
long MATCH line, resulting in a large match computation
delay for any row. The parasitic resistance and capacitance
of the MATCH line are proportional to its length, and
therefore its RC time constant increases quadratically with
length. In order to minimize this delay the MATCH line
is split into p smaller sections, as illustrated in Figure 3.
In this figure, the match line is shown as 32 smaller lines.
If any section i determines a mismatch condition, it pulls
down its MATCHi signal, which turns on device M for
section i + 1, which pulls down the MATCHi+1 signal for
section i+1. This effect cascades, until MATCH32 is pulled
down. There is also a keeper device K in each section, and
it serves to speed up the pulldown of the MATCHi signal
once a mismatch condition is detected. In other words, if
the MATCHq signal of section q (1 < q < 32) is pulled low,

then sections r > q (q < r ≤ 32) are automatically pulled
low by the NMOS devices labeled M, in each of the sections
with index r.

We performed several SPICE simulation sweeps to de-
termine the optimal number of sections p for the match line,
and found this number to be 32 (with 8 TCAM cells per sec-
tion). For the CMOS TCAM block we use for comparisons,
the value of p was found to be 4.

Each TCAM block performs a parallel search on the
applied destination address, independent of all other blocks.
The pipelining of the operation is illustrated in Figure 4.
The duration for the TCAM lookup (T2) is larger than
that for port memory lookup (T1), and the total cycle time
T = T1 + T2 is one of the figures of merit of our design.

port data

Precharge
MATCH line

Drive data
to TCAM

CLK

TCAM

memory
Port Drive Precharge

TCAM
Evaluate

port memory

T1 T2

Fig. 4. Pipelined Implementation of Lookup Functionality

3.4.1 Flash-based TCAM Cell
For a primer on Flash transistor operation the reader is
referred to the Appendix.

Our flash-based TCAM cell is illustrated in Figure 5. This
figure refers to a cluster of four TCAM cells. Cells in row j
(j + 1) are all connected to the match(j) (match(j + 1))
match line as shown. Each match line illustrates two TCAM
cells connected to it. Each TCAM cell consists of two flash
FETs connected in series to the match line. The match line is
precharged, and the control gates of the two flash FETs are
connected to signals ai and bi, respectively.

b(i)

a(i + 1)

b(i + 1)

cell(i, j)

cell(i, j + 1)

M2

M1

match(j)

match(j + 1)

a(i)

Fig. 5. Flash-based TCAM Cell

We now describe the encoding of the signals ai and bi

that are used to perform a routing table lookup, along with
the corresponding threshold voltage settings for the two
flash FETs in each TCAM cell. Consider cell(i, j) in Figure 5.
The control gate of transistor M1 (M2) is connected to ai (bi).

Figure 4.4: Pipelined implementation of lookup functionality.

4.3.4.1 Flash-based TCAM Cell

For a primer on Flash transistor operation the reader is referred to the Appendix.

Our flash-based TCAM cell is illustrated in Figure 4.5. This figure refers to a

cluster of four TCAM cells. Cells in row j (j + 1) are all connected to the match(j)

(match(j + 1)) match line as shown. Each match line illustrates two TCAM cells

connected to it. Each TCAM cell consists of two flash FETs connected in series to

the match line. The match line is precharged, and the control gates of the two flash

FETs are connected to signals ai and bi, respectively.

We now describe the encoding of the signals ai and bi that are used to perform

a routing table lookup, along with the corresponding threshold voltage settings for

the two flash FETs in each TCAM cell. Consider cell(i, j) in Figure 4.5. The control

gate of transistor M1 (M2) is connected to ai (bi).

Consider the Karnaugh-map [100] for the state of M1 in Figure 4.6 a). When RH

is applied on ai, transistor M1 conducts regardless of the threshold voltage of M1,

since RH > TH and RH > TL. When RL is applied to ai, M1 conducts only when

the threshold voltage of M1 is TL, since TH > RL > TL.

70

M

Data Lines

cells
8 TCAM 8 TCAM

cells

Data Lines Data Lines

8 TCAM
cells

Data Lines

To port

. circuit

8 TCAM
cells

K K K

M M

MATCH3MATCH1 MATCH2 MATCH32

Fig. 3. TCAM Row Split into 32 Sections

As discussed in the previous section, the flash-based
TCAM consists of N2 − 1 TCAM blocks. Each block (il-
lustrated in Figure 2) consists of 256 routing table entries
(split into an upper group of 128 entries, and a lower
group of 128 entries). In order to minimize wire lengths, the
control circuitry (bitline drivers and keepers) are situated
between the upper and lower groups of entries, a technique
employed in most high-speed memories. The number of
TCAM cells per routing table entry was chosen to be 256,
which is twice the length of an IPv6 address. By disabling
all but 32 TCAM cells, backward compatibility with IPv4 is
also supported. The number of port cells per routing table
entry is 512. Eight hard-wired bits are used to store the row
number of each entry (required during route deletion, as
previously described). Other bits can be used to store port
(next hop) information, QoS (quality of service) data, etc.

The number of entries per block was arrived at after
significant circuit level optimizations, using HSPICE [6].
For the TCAM block design, we generated the layout of
the flash-based TCAM and port cells, and based on layout
dimensions, extracted accurate 3-D wiring parasitics (R and
C) using Raphael [22], for the HSPICE simulations. We held
the number of FTCAM cells fixed at 256 to support IPv6
address lookups (with 2× over-provisioning), and varied
the number of rows. Beyond 256 rows, the lookup delay
(our metric for optimality) gets drastically higher. This is
because in the worst case, one port cell has to pull down an
entire column in the TCAM block. We found that 256 rows
present a reasonable compromise in size versus speed.

Each TCAM block performs a parallel lookup of the
applied destination address among the 256 routing entries
stored in it. Because all the routing entries have the same
mask length, it is guaranteed that exactly 0 or 1 entry will
match the applied destination address. The TCAM block
has 256 match lines, with each precharged match line being
pulled down if one or more TCAM cells mismatch the des-
tination address. As a consequence, each match line spans
256 TCAM cells horizontally. However, this results in a fairly
long MATCH line, resulting in a large match computation
delay for any row. The parasitic resistance and capacitance
of the MATCH line are proportional to its length, and
therefore its RC time constant increases quadratically with
length. In order to minimize this delay the MATCH line
is split into p smaller sections, as illustrated in Figure 3.
In this figure, the match line is shown as 32 smaller lines.
If any section i determines a mismatch condition, it pulls
down its MATCHi signal, which turns on device M for
section i + 1, which pulls down the MATCHi+1 signal for
section i+1. This effect cascades, until MATCH32 is pulled
down. There is also a keeper device K in each section, and
it serves to speed up the pulldown of the MATCHi signal
once a mismatch condition is detected. In other words, if
the MATCHq signal of section q (1 < q < 32) is pulled low,

then sections r > q (q < r ≤ 32) are automatically pulled
low by the NMOS devices labeled M, in each of the sections
with index r.

We performed several SPICE simulation sweeps to de-
termine the optimal number of sections p for the match line,
and found this number to be 32 (with 8 TCAM cells per sec-
tion). For the CMOS TCAM block we use for comparisons,
the value of p was found to be 4.

Each TCAM block performs a parallel search on the
applied destination address, independent of all other blocks.
The pipelining of the operation is illustrated in Figure 4.
The duration for the TCAM lookup (T2) is larger than
that for port memory lookup (T1), and the total cycle time
T = T1 + T2 is one of the figures of merit of our design.

port data

Precharge
MATCH line

Drive data
to TCAM

CLK

TCAM

memory
Port Drive Precharge

TCAM
Evaluate

port memory

T1 T2

Fig. 4. Pipelined Implementation of Lookup Functionality

3.4.1 Flash-based TCAM Cell
For a primer on Flash transistor operation the reader is
referred to the Appendix.

Our flash-based TCAM cell is illustrated in Figure 5. This
figure refers to a cluster of four TCAM cells. Cells in row j
(j + 1) are all connected to the match(j) (match(j + 1))
match line as shown. Each match line illustrates two TCAM
cells connected to it. Each TCAM cell consists of two flash
FETs connected in series to the match line. The match line is
precharged, and the control gates of the two flash FETs are
connected to signals ai and bi, respectively.

b(i)

a(i + 1)

b(i + 1)

cell(i, j)

cell(i, j + 1)

M2

M1

match(j)

match(j + 1)

a(i)

Fig. 5. Flash-based TCAM Cell

We now describe the encoding of the signals ai and bi

that are used to perform a routing table lookup, along with
the corresponding threshold voltage settings for the two
flash FETs in each TCAM cell. Consider cell(i, j) in Figure 5.
The control gate of transistor M1 (M2) is connected to ai (bi).

Figure 4.5: Flash-based TCAM cell.

In a similar manner, we construct the Karnaugh-map for the state of M2 in

Figure 4.6 b), as a function of bi and the threshold voltage of M2. Note that the

rows (columns) of Figure 4.6 b) have values in the reverse order as compared to the

rows (columns) of Figure 4.6 a).

Now consider Figure 4.6 c). This figure is the logical intersection of Figures 4.6

a) and b). The row (column) labels of Figure 4.6 c) are the concatenation of the

row (column) labels of Figures 4.6 a) and b). In other words, the top left box in

Figure 4.6 c) corresponds to the situation when RL is applied on ai and RH is applied

on bi, when M1’s threshold value is TL and M2’s threshold value is TH . The meaning

of the other 3 boxes in Figure 4.6 c) can be derived similarly.

Since M1 and M2 are connected in series, the entry in any box of Figure 4.6 c) is

ON iff the entries in both the corresponding boxes of Figures 4.6 a) and b) are ON.

71

This yields the logic function of the cell state in Figure 4.6 c).

Now let us correlate the above discussion to the TCAM cell operation. Consider

the threshold voltage of the {M1,M2} pair. Assume that a value of {TL, TH} refers

to a ”1” value being stored in the TCAM, {TH , TL} refers to a ”0” value being stored

in the TCAM and {TH , TH} refers to a ”X” value being stored in the TCAM. Now

assume that {ai, bi} value of {RL, RH} refers to the ”lookup 0” value of the applied

destination IP address, and {RH , RL} refers to the ”lookup 1” value of the applied

destination IP address.

Before a lookup is performed, the matchline is precharged to (RL). When a

”lookup 0” value is applied to the TCAM cell, the cell state is ON only when a ”1”

value is stored in the TCAM (thereby pulling down the precharged match line, and

declaring a mismatch condition). When the ”0” or ”X” value is stored in the TCAM,

the cell state is OFF, and the match line is not pulled down, as required. Similarly,

when a ”lookup 1” value is applied to the TCAM cell, the cell state is ON only when

a ”0” value is stored in the TCAM (thereby pulling down the precharged match

line, and declaring a mismatch condition). When the ”1” or ”X” value is stored

in the TCAM, the cell state is OFF, and the match line is not pulled down. This

discussion describes the construction of the TCAM cell, and simultaneously serves

as a proof-by-construction of correct operation of the TCAM cell.

Consider the Karnaugh-map [12] for the state of M1

in Figure 6 a). When RH is applied on ai, transistor M1

conducts regardless of the threshold voltage of M1, since
RH > TH and RH > TL. When RL is applied to ai, M1

conducts only when the threshold voltage of M1 is TL, since
TH > RL > TL.

In a similar manner, we construct the Karnaugh-map for
the state of M2 in Figure 6 b), as a function of bi and the
threshold voltage of M2. Note that the rows (columns) of
Figure 6 b) have values in the reverse order as compared to
the rows (columns) of Figure 6 a).

Now consider Figure 6 c). This figure is the logical
intersection of Figures 6 a) and b). The row (column) labels
of Figure 6 c) are the concatenation of the row (column)
labels of Figures 6 a) and b). In other words, the top left
box in Figure 6 c) corresponds to the situation when RL is
applied on ai and RH is applied on bi, when M1’s threshold
value is TL and M2’s threshold value is TH . The meaning of
the other 3 boxes in Figure 6 c) can be derived similarly.

Since M1 and M2 are connected in series, the entry in
any box of Figure 6 c) is ON iff the entries in both the
corresponding boxes of Figures 6 a) and b) are ON. This
yields the logic function of the cell state in Figure 6 c).

Now let us correlate the above discussion to the
TCAM cell operation. Consider the threshold voltage of the
{M1,M2} pair. Assume that a value of {TL, TH} refers to
a ”1” value being stored in the TCAM, {TH , TL} refers to
a ”0” value being stored in the TCAM and {TH , TH} refers
to a ”X” value being stored in the TCAM. Now assume that
{ai, bi} value of {RL, RH} refers to the ”lookup 0” value of
the applied destination IP address, and {RH , RL} refers to
the ”lookup 1” value of the applied destination IP address.

Before a lookup is performed, the matchline is
precharged to (RL). When a ”lookup 0” value is applied to
the TCAM cell, the cell state is ON only when a ”1” value is
stored in the TCAM (thereby pulling down the precharged
match line, and declaring a mismatch condition). When the
”0” or ”X” value is stored in the TCAM, the cell state is
OFF, and the match line is not pulled down, as required.
Similarly, when a ”lookup 1” value is applied to the TCAM
cell, the cell state is ON only when a ”0” value is stored
in the TCAM (thereby pulling down the precharged match
line, and declaring a mismatch condition). When the ”1” or
”X” value is stored in the TCAM, the cell state is OFF, and
the match line is not pulled down. This discussion describes
the construction of the TCAM cell, and simultaneously
serves as a proof-by-construction of correct operation of the
TCAM cell.

ON

ON OFF

ON

ON OFFON ON

ONOFF OFFON

{M1, M2} ThresholdM1 Threshold

THTL

RH

a) M1 state

M2 Threshold

TLTH

RL

b) M2 state

RL RH

biai

c) Cell state

RL, RH

RH , RL

{ai, bi}

TL, TH TH , TL

Fig. 6. TCAM Cell Logical Construction

Theorem 3.1. The proposed flash-based TCAM cell correctly
performs a ternary lookup

Proof: Follows from the construction of the TCAM cell
described above

The traditional CMOS TCAM cell utilizes 17 transistors
(instead of 2 flash transistors in our design) [8]. This CMOS
TCAM cell consists of 2 6-T SRAM cells. One SRAM cell
stores the prefix bit, and the other SRAM cell stores the mask
bit.

3.4.2 Flash-based Port Cell

Our flash-based port cell is illustrated in Figure 7. This
figure refers to a cluster of four port cells. Each port cell
consists of a single flash FET. The control gate terminals of
the cells in row j (j + 1) are all connected to the match(j)
(match(j + 1)) match line. Each match line in the figure
illustrates two port cells connected to it. Hence, when the
match signal of any row is high, the corresponding port cells
for that row are read out on the bitlines of the port memory.

The flash FET of each port cell is programmed with one
of two threshold voltages TH or TL (the same threshold
voltages were used for the flash FETs of the TCAM cell)
and driven with one of two voltages 0 or RL depending on
whether there is a match (RL) or no match (0). To perform a
read, all bitlines are first precharged to VDD. Now, assume
that match(i) is driven to a value RL, indicating that the ith

row of the port memory is to be read out. If cell(i,j) has a
threshold of TH , the flash FET in this cell will not turn on,
and bitline(i) will stay precharged. If cell(i,j), on the other
hand, has a threshold of TL, the flash FET in this cell will
turn on, and bitline(i) will be discharged to ground.

bitline(i + 1)

match(j)

match(j + 1)

bitline(i)

cell(i, j + 1)

cell(i, j)

Fig. 7. Flash-based Port Cell

Our HSPICE simulations of the port memory indicated
that it was faster than the TCAM cells of the TCAM block,
and hence we did not split the bitlines of the port memory
into sections. Also, to assist in the discharge of the port
memory, each bitline had a single inverter which drove a
NMOS keeper transistor. The flash-based port memory does
not use a traditional sense amplifier. The structure utilized
is identical to the keeper circuit employed in each section
of the matchline (shown in Figure 3), and is located in the
control circuitry bay between rows 128 and 129 of the TCAM
block (see Figure 2).

The corresponding port cell for the CMOS TCAM block
is a standard 6T SRAM cell, and is not shown for brevity.
Note that the port cell of our flash-based TCAM block uses
just one flash FET, as opposed to 6 CMOS FETs for the
CMOS TCAM block.

Figure 4.6: TCAM cell logical construction.

72

Theorem 4.3.1. The proposed flash-based TCAM cell correctly performs a ternary

lookup

Proof. Follows from the construction of the TCAM cell described above

The traditional CMOS TCAM cell utilizes 17 transistors (instead of 2 flash tran-

sistors in our design) [20]. This CMOS TCAM cell consists of 2 6-T SRAM cells.

One SRAM cell stores the prefix bit, and the other SRAM cell stores the mask bit.

4.3.4.2 Flash-based Port Cell

Our flash-based port cell is illustrated in Figure 4.7. This figure refers to a cluster

of four port cells. Each port cell consists of a single flash FET. The control gate

terminals of the cells in row j (j+1) are all connected to the match(j) (match(j+1))

match line. Each match line in the figure illustrates two port cells connected to it.

Hence, when the match signal of any row is high, the corresponding port cells for

that row are read out on the bitlines of the port memory.

The flash FET of each port cell is programmed with one of two threshold voltages

TH or TL (the same threshold voltages were used for the flash FETs of the TCAM

cell) and driven with one of two voltages 0 or RL depending on whether there is a

match (RL) or no match (0). To perform a read, all bitlines are first precharged to

VDD. Now, assume that match(i) is driven to a value RL, indicating that the ith

row of the port memory is to be read out. If cell(i,j) has a threshold of TH , the flash

FET in this cell will not turn on, and bitline(i) will stay precharged. If cell(i,j), on

the other hand, has a threshold of TL, the flash FET in this cell will turn on, and

bitline(i) will be discharged to ground.

Our HSPICE simulations of the port memory indicated that it was faster than

the TCAM cells of the TCAM block, and hence we did not split the bitlines of the

port memory into sections. Also, to assist in the discharge of the port memory, each

73

Consider the Karnaugh-map [12] for the state of M1

in Figure 6 a). When RH is applied on ai, transistor M1

conducts regardless of the threshold voltage of M1, since
RH > TH and RH > TL. When RL is applied to ai, M1

conducts only when the threshold voltage of M1 is TL, since
TH > RL > TL.

In a similar manner, we construct the Karnaugh-map for
the state of M2 in Figure 6 b), as a function of bi and the
threshold voltage of M2. Note that the rows (columns) of
Figure 6 b) have values in the reverse order as compared to
the rows (columns) of Figure 6 a).

Now consider Figure 6 c). This figure is the logical
intersection of Figures 6 a) and b). The row (column) labels
of Figure 6 c) are the concatenation of the row (column)
labels of Figures 6 a) and b). In other words, the top left
box in Figure 6 c) corresponds to the situation when RL is
applied on ai and RH is applied on bi, when M1’s threshold
value is TL and M2’s threshold value is TH . The meaning of
the other 3 boxes in Figure 6 c) can be derived similarly.

Since M1 and M2 are connected in series, the entry in
any box of Figure 6 c) is ON iff the entries in both the
corresponding boxes of Figures 6 a) and b) are ON. This
yields the logic function of the cell state in Figure 6 c).

Now let us correlate the above discussion to the
TCAM cell operation. Consider the threshold voltage of the
{M1,M2} pair. Assume that a value of {TL, TH} refers to
a ”1” value being stored in the TCAM, {TH , TL} refers to
a ”0” value being stored in the TCAM and {TH , TH} refers
to a ”X” value being stored in the TCAM. Now assume that
{ai, bi} value of {RL, RH} refers to the ”lookup 0” value of
the applied destination IP address, and {RH , RL} refers to
the ”lookup 1” value of the applied destination IP address.

Before a lookup is performed, the matchline is
precharged to (RL). When a ”lookup 0” value is applied to
the TCAM cell, the cell state is ON only when a ”1” value is
stored in the TCAM (thereby pulling down the precharged
match line, and declaring a mismatch condition). When the
”0” or ”X” value is stored in the TCAM, the cell state is
OFF, and the match line is not pulled down, as required.
Similarly, when a ”lookup 1” value is applied to the TCAM
cell, the cell state is ON only when a ”0” value is stored
in the TCAM (thereby pulling down the precharged match
line, and declaring a mismatch condition). When the ”1” or
”X” value is stored in the TCAM, the cell state is OFF, and
the match line is not pulled down. This discussion describes
the construction of the TCAM cell, and simultaneously
serves as a proof-by-construction of correct operation of the
TCAM cell.

ON

ON OFF

ON

ON OFFON ON

ONOFF OFFON

{M1, M2} ThresholdM1 Threshold

THTL

RH

a) M1 state

M2 Threshold

TLTH

RL

b) M2 state

RL RH

biai

c) Cell state

RL, RH

RH , RL

{ai, bi}

TL, TH TH , TL

Fig. 6. TCAM Cell Logical Construction

Theorem 3.1. The proposed flash-based TCAM cell correctly
performs a ternary lookup

Proof: Follows from the construction of the TCAM cell
described above

The traditional CMOS TCAM cell utilizes 17 transistors
(instead of 2 flash transistors in our design) [8]. This CMOS
TCAM cell consists of 2 6-T SRAM cells. One SRAM cell
stores the prefix bit, and the other SRAM cell stores the mask
bit.

3.4.2 Flash-based Port Cell

Our flash-based port cell is illustrated in Figure 7. This
figure refers to a cluster of four port cells. Each port cell
consists of a single flash FET. The control gate terminals of
the cells in row j (j + 1) are all connected to the match(j)
(match(j + 1)) match line. Each match line in the figure
illustrates two port cells connected to it. Hence, when the
match signal of any row is high, the corresponding port cells
for that row are read out on the bitlines of the port memory.

The flash FET of each port cell is programmed with one
of two threshold voltages TH or TL (the same threshold
voltages were used for the flash FETs of the TCAM cell)
and driven with one of two voltages 0 or RL depending on
whether there is a match (RL) or no match (0). To perform a
read, all bitlines are first precharged to VDD. Now, assume
that match(i) is driven to a value RL, indicating that the ith

row of the port memory is to be read out. If cell(i,j) has a
threshold of TH , the flash FET in this cell will not turn on,
and bitline(i) will stay precharged. If cell(i,j), on the other
hand, has a threshold of TL, the flash FET in this cell will
turn on, and bitline(i) will be discharged to ground.

bitline(i + 1)

match(j)

match(j + 1)

bitline(i)

cell(i, j + 1)

cell(i, j)

Fig. 7. Flash-based Port Cell

Our HSPICE simulations of the port memory indicated
that it was faster than the TCAM cells of the TCAM block,
and hence we did not split the bitlines of the port memory
into sections. Also, to assist in the discharge of the port
memory, each bitline had a single inverter which drove a
NMOS keeper transistor. The flash-based port memory does
not use a traditional sense amplifier. The structure utilized
is identical to the keeper circuit employed in each section
of the matchline (shown in Figure 3), and is located in the
control circuitry bay between rows 128 and 129 of the TCAM
block (see Figure 2).

The corresponding port cell for the CMOS TCAM block
is a standard 6T SRAM cell, and is not shown for brevity.
Note that the port cell of our flash-based TCAM block uses
just one flash FET, as opposed to 6 CMOS FETs for the
CMOS TCAM block.

Figure 4.7: Flash-based port cell.

bitline had a single inverter which drove a NMOS keeper transistor. The flash-based

port memory does not use a traditional sense amplifier. The structure utilized is

identical to the keeper circuit employed in each section of the matchline (shown in

Figure 4.3), and is located in the control circuitry bay between rows 128 and 129 of

the TCAM block (see Figure 4.2).

The corresponding port cell for the CMOS TCAM block is a standard 6T SRAM

cell, and is not shown for brevity. Note that the port cell of our flash-based TCAM

block uses just one flash FET, as opposed to 6 CMOS FETs for the CMOS TCAM

block.

For the CMOS port memory, sense amplifiers [102] are inserted at the ends of the

bitlines, between rows 128 and 129 of each block.

These sense amplifiers are used to sense the value driven out of the SRAM during

a read operation, and reduce the delay of the read operation. The sense amplifier

74

For the CMOS port memory, sense amplifiers [26] are
inserted at the ends of the bitlines, between rows 128 and
129 of each block.

ENABLE

out

in

out

in

Fig. 8. Sense Amplifier used in CMOS Port Array

These sense amplifiers are used to sense the value driven
out of the SRAM during a read operation, and reduce the
delay of the read operation. The sense amplifier used is
shown in Figure 8. The in and in terminals of the sense
amplifier are connected to bitline and bitline of the port
memory array respectively. The bitlines of the CMOS port
memory are precharged to VDD/2 before a read.

We refer the readers to the Appendix for erase and
program operations on the proposed Flash-based cells.

4 EVALUATION

We implemented the FTCAM block in HSPICE, using ac-
curate resistive and capacitive parasitics obtained from a
3-D parasitic extraction tool, Raphael [22]. A 45nm process
was used for our simulations. We started by generating a
layout of the TCAM and port cells, and used these layouts
to estimate the wire lengths and spacing for the bitlines
and matchlines, which were then fed into Raphael for 3-D
parasitic extraction.

For CMOS devices, we used a 45nm PTM process [7],
while for flash devices, we derived our model card from the
device-level measurements presented in [17], [18]. The basic
idea is to emulate the states of a floating-gate device with
two separate PTM model cards, one that models the flash
FET in the low VT state (we call this value TL), and the other
for the flash FET in the high VT state (we call this value TH).
We used the gate and oxide thicknesses, and doping levels
from [17], [18]. We then took a base 45nm PTM CMOS model
card and modified it so that the threshold voltages of the
two derived model cards would be TH and TL, respectively,
and the Ids-Vgs curve slopes matched in [17], [18].

In our experiments, VDD was set to 1.1V, and TH and TL

were 760 mV and 210 mV respectively. Our RH was VDD,
while RL was selected to be 600 mV. The values of RL,
TH and TL were chosen based on several HSPICE sweeps
which aimed at minimizing TCAM lookup delay primarily,
and overall power consumption secondarily.

The number of sections per match line was chosen to be
32. The output of the 32nd section was buffered, registered
and then driven to the port memory array with a buffer
chain. The port memory bitlines were not split into sections.
The bitlines of the port memory, as well as the match lines
of the TCAM cells were precharged to VDD.

The FTCAM block occupied an area of 190.72 µ × 187.44
µ. About 46% of this area was used by the port memory. We

refer the reader to the Appendix for flash-based TCAM and
port cell layouts.

For the CMOS TCAM block, we used the same specifi-
cations as for the FTCAM block (256 entries, 256-bit wide
TCAM entries and 512 bit wide port entries). We imple-
mented the CMOS TCAM block in HSPICE, with resistive
and capacitive parasitics obtained from Raphael [22]. A
45nm PTM process [7] was used for our simulations. The
cell layouts for the TCAM and SRAM blocks were obtained
from [8], and were scaled to obtain an estimate of the
wire lengths for the matchlines and bitlines. These wire
dimensions were used for 3-D parasitic extraction for the
HSPICE simulations of the CMOS TCAM block.

The number of sections per match line was chosen to
be 4, based on HSPICE experiments which were aimed at
minimizing TCAM lookup delay. The output of the fourth
section was buffered, registered and then driven to the port
memory array with a buffer chain. The match lines of the
TCAM cells were precharged to VDD. The port memory
transitions were sped up by using a sense amplifier for
each port memory cell. The port memory bitlines were
not split into sections. The bitlines of the port memory
were precharged to VDD/2 and equilibrated before the port
memory read operation.

The CMOS TCAM block occupied an area of 311.04 µ
× 921.6 µ, with ∼55% used by the port memory. These
numbers were obtained from the layouts in [8], after scaling
to a 45nm fabrication process.

The results of our comparison of the FTCAM block with
the CMOS TCAM block are presented in Table 1. We note
that our FTCAM block occupies about 8× less area than the
CMOS TCAM block, with a power reduction of about 1.64×.
The speed of the FTCAM block is about 2.5× lower than the
CMOS TCAM block, but it can sustain the line rates of the
fastest current routers in the internet core, as we will see
next. The FTCAM cells delay (679 ps) shown in the table
constitutes the critical part of the total delay, since it is 69%
of the total (985 ps).

The increase in FTCAM block delay compared to a
CMOS TCAM does not pose a problem at the system level
since our FTCAM can support ∼400 Gb/s link speeds, as
we show next in the paper. The current backbone routers
need to operate at ∼100 Gb/s. We conclude that, despite the
2.5× larger delay, the proposed design is fast enough to be
utilized in modern systems.

To compute the highest serial line rate supported by our
TCAM, we assume a 48 byte packet, and that the FTCAM
operates at ∼1 GHz clock speed (based on the total delay
of 985 ps from Table 1). The system is able to perform 1
billion lookups per second, which translates to a 109 × 48 ×
8 = 384 Gb/sec link speed. Further, if the FTCAM lookups
were pipelined, a clock speed of ∼1.4 GHz is achievable
(based on the cycle time of 679 ps, the larger of the FTCAM
cells and the Port memory delays in Table 1), allowing a
1.4 × 109 × 48 × 8 = 537 Gb/sec link speed.

Thus, our FTCAM supports link speeds of 384–537
Gb/sec (which is an undefined standard as of yet). This
allows our FTCAM to do about 10–13 OC-768 (whose data
rate is 38.4 Gb/sec) lookups in a clock cycle.

We also computed the sensitivity of the delay and power
to variations in the TH and TL values. Both TH and TL were

Figure 4.8: Sense amplifier used in CMOS port array.

used is shown in Figure 4.8. The in and in terminals of the sense amplifier are

connected to bitline and bitline of the port memory array respectively. The bitlines

of the CMOS port memory are precharged to VDD/2 before a read.

We refer the readers to the Appendix for erase and program operations on the

proposed Flash-based cells.

4.4 Evaluation

TCAM cells Port memory Total

Delay Power Area Delay Power Area Delay Power Area

CMOS TCAM block 218 ps 96 mW 127402.0 µ2 174 ps 33 mW 159252.5 µ2 393 ps 129 mW 286654.5 µ2

FTCAM block 679 ps 65.2 mW 19398.6 µ2 306 ps 14.1 mW 16731.3 µ2 985 ps 79.3 mW 36129.9 µ2

Ratio (Flash-based/CMOS) 2.51× 0.61× 0.126×

Table 4.1: Comparing delay, area and power of CMOS TCAM and FTCAM blocks.

We implemented the FTCAM block in HSPICE, using accurate resistive and

capacitive parasitics obtained from a 3-D parasitic extraction tool, Raphael [81]. A

45nm process was used for our simulations. We started by generating a layout of

the TCAM and port cells, and used these layouts to estimate the wire lengths and

75

spacing for the bitlines and matchlines, which were then fed into Raphael for 3-D

parasitic extraction.

For CMOS devices, we used a 45nm PTM process [70], while for flash devices, we

derived our model card from the device-level measurements presented in [47, 1]. The

basic idea is to emulate the states of a floating-gate device with two separate PTM

model cards, one that models the flash FET in the low VT state (we call this value

TL), and the other for the flash FET in the high VT state (we call this value TH). We

used the gate and oxide thicknesses, and doping levels from [47, 1]. We then took a

base 45nm PTM CMOS model card and modified it so that the threshold voltages

of the two derived model cards would be TH and TL, respectively, and the Ids-Vgs

curve slopes matched in [47, 1].

In our experiments, VDD was set to 1.1V, and TH and TL were 760 mV and

210 mV respectively. Our RH was VDD, while RL was selected to be 600 mV.

The values of RL, TH and TL were chosen based on several HSPICE sweeps which

aimed at minimizing TCAM lookup delay primarily, and overall power consumption

secondarily.

The number of sections per match line was chosen to be 32. The output of the

32nd section was buffered, registered and then driven to the port memory array with

a buffer chain. The port memory bitlines were not split into sections. The bitlines

of the port memory, as well as the match lines of the TCAM cells were precharged

to VDD.

The FTCAM block occupied an area of 190.72 µ × 187.44 µ. About 46% of

this area was used by the port memory. We refer the reader to the Appendix for

flash-based TCAM and port cell layouts.

For the CMOS TCAM block, we used the same specifications as for the FTCAM

block (256 entries, 256-bit wide TCAM entries and 512 bit wide port entries). We

76

implemented the CMOS TCAM block in HSPICE, with resistive and capacitive

parasitics obtained from Raphael [81]. A 45nm PTM process [70] was used for

our simulations. The cell layouts for the TCAM and SRAM blocks were obtained

from [20], and were scaled to obtain an estimate of the wire lengths for the matchlines

and bitlines. These wire dimensions were used for 3-D parasitic extraction for the

HSPICE simulations of the CMOS TCAM block.

The number of sections per match line was chosen to be 4, based on HSPICE

experiments which were aimed at minimizing TCAM lookup delay. The output of

the fourth section was buffered, registered and then driven to the port memory array

with a buffer chain. The match lines of the TCAM cells were precharged to VDD.

The port memory transitions were sped up by using a sense amplifier for each port

memory cell. The port memory bitlines were not split into sections. The bitlines

of the port memory were precharged to VDD/2 and equilibrated before the port

memory read operation.

The CMOS TCAM block occupied an area of 311.04 µ × 921.6 µ, with ∼55%

used by the port memory. These numbers were obtained from the layouts in [20],

after scaling to a 45nm fabrication process.

The results of our comparison of the FTCAM block with the CMOS TCAM block

are presented in Table 4.1. We note that our FTCAM block occupies about 8× less

area than the CMOS TCAM block, with a power reduction of about 1.64×. The

speed of the FTCAM block is about 2.5× lower than the CMOS TCAM block, but

it can sustain the line rates of the fastest current routers in the internet core, as we

will see next. The FTCAM cells delay (679 ps) shown in the table constitutes the

critical part of the total delay, since it is 69% of the total (985 ps).

The increase in FTCAM block delay compared to a CMOS TCAM does not pose

a problem at the system level since our FTCAM can support ∼400 Gb/s link speeds,

77

as we show next. The current backbone routers need to operate at ∼100 Gb/s. We

conclude that, despite the 2.5× larger delay, the proposed design is fast enough to

be utilized in modern systems.

To compute the highest serial line rate supported by our TCAM, we assume a 48

byte packet, and that the FTCAM operates at ∼1 GHz clock speed (based on the

total delay of 985 ps from Table 4.1). The system is able to perform 1 billion lookups

per second, which translates to a 109 × 48× 8 = 384 Gb/sec link speed. Further, if

the FTCAM lookups were pipelined, a clock speed of ∼1.4 GHz is achievable (based

on the cycle time of 679 ps, the larger of the FTCAM cells and the Port memory

delays in Table 4.1), allowing a 1.4× 109 × 48× 8 = 537 Gb/sec link speed.

Thus, our FTCAM supports link speeds of 384–537 Gb/sec (which is an undefined

standard as of yet). This allows our FTCAM to do about 10–13 OC-768 (whose data

rate is 38.4 Gb/sec) lookups in a clock cycle.

We also computed the sensitivity of the delay and power to variations in the TH

and TL values. Both TH and TL were varied by ± 20 mV independently, to simulate

variations in the floating gate charge that occur during the flash programming step.

With these variations in TH and TL, the delay numbers reduced (increased) by 2.8%

(3.8%). The power consumption varied by ± 0.2%.

4.4.1 Lifetime Estimation

We estimate the flash-based part of our chip to have the area of 1.5cm×1.5cm.

This allows us to have 6000 FTCAM blocks, for a total FTCAM size of 1.5 million

entries. We assume that there are 32 + 15 CMOS shadow blocks (32 for each prefix,

and 15 for double/triple buffering). The area of shadow CMOS blocks is estimated

at 0.52cm×0.52cm, using the area numbers reported in Table 4.1. (By increasing the

CMOS shadow block capacity further, it is possible to boost the FTCAM lifetime,

78

but at the expense of the total chip area.) Hence the total chip area is about 4cm2,

including the area of the control circuitry. The interconnect is accounted for by

arranging extra chip area to realize wiring. We assume that 37% of the total die

area (4 cm2) is used by the interconnect and control logic. There is no performance

impact of the interconnect, since the pipelined nature of TCAM lookup and Port

memory lookup allows us to hide the interconnect delay.

We conducted an experiment to estimate the lifetime of our TCAM under re-

al workloads. For this purpose, we developed and used an in-house TCAM-based

router simulator based on the architecture described in Section 4.3. The contents of

the routing table were populated using the Routing Information Base (RIB) snap-

shots [83] of a real internet router on July 1, 2014. The size of the internet routing

table was about 500K entries. We “replayed” the UPDATE traces for one full day

following the RIB dump and recorded the number of writes to each FTCAM block.

We also tracked the CMOS shadow block utilization.

Figure 4.9 shows the number of flash entries that are used over the duration of

one day, as a function of their prefix length. “Base Size” refers to the number of

entries in the FTCAM at the start of the day. “UPDATES” refers to the number of

entries updated (with and without shadow CMOS blocks). Prefixes with less than

2000 entries are not shown.

The results show that CMOS shadow blocks (without double/ triple buffering)

filter about 61% of all the UPDATEs to the FTCAM, which increases its lifetime.

There were 45 cases when a CMOS shadow block was flushed twice within one second,

and for the prefix length of 24, there were two cases when the CMOS shadow block

was flushed 7 times in one second. The average time between consecutive flushes was

290 seconds. We estimate the erase/write delay of the FTCAM blocks to be similar

to the traditional flash storage, meaning that they would support up to 3-5 writes

79

TCAM cells Port memory Total
Delay Power Area Delay Power Area Delay Power Area

CMOS TCAM block 218 ps 96 mW 127402.0 µ2 174 ps 33 mW 159252.5 µ2 393 ps 129 mW 286654.5 µ2

FTCAM block 679 ps 65.2 mW 19398.6 µ2 306 ps 14.1 mW 16731.3 µ2 985 ps 79.3 mW 36129.9 µ2

Ratio (Flash-based/CMOS) 2.51× 0.61× 0.126×

TABLE 1
Comparing Delay, Area and Power of CMOS TCAM and FTCAM blocks

varied by ± 20 mV independently, to simulate variations
in the floating gate charge that occur during the flash
programming step. With these variations in TH and TL,
the delay numbers reduced (increased) by 2.8% (3.8%). The
power consumption varied by ± 0.2%.

4.1 Lifetime Estimation

We estimate the flash-based part of our chip to have the area
of 1.5cm×1.5cm. This allows us to have 6000 FTCAM blocks,
for a total FTCAM size of 1.5 million entries. We assume that
there are 32 + 15 CMOS shadow blocks (32 for each prefix,
and 15 for double/triple buffering). The area of shadow
CMOS blocks is estimated at 0.52cm×0.52cm, using the
area numbers reported in Table 1. (By increasing the CMOS
shadow block capacity further, it is possible to boost the
FTCAM lifetime, but at the expense of the total chip area.)
Hence the total chip area is about 4cm2, including the area
of the control circuitry. The interconnect is accounted for by
arranging extra chip area to realize wiring. We assume that
37% of the total die area (4 cm2) is used by the interconnect
and control logic. There is no performance impact of the
interconnect, since the pipelined nature of TCAM lookup
and Port memory lookup allows us to hide the interconnect
delay.

We conducted an experiment to estimate the lifetime
of our TCAM under real workloads. For this purpose,
we developed and used an in-house TCAM-based router
simulator based on the architecture described in Section 3.
The contents of the routing table were populated using the
Routing Information Base (RIB) snapshots [27] of a real
internet router on July 1, 2014. The size of the internet
routing table was about 500K entries. We “replayed” the
UPDATE traces for one full day following the RIB dump
and recorded the number of writes to each FTCAM block.
We also tracked the CMOS shadow block utilization.

�� �� �� �� �� �� �� �� �	
�

�

���

�
�

���

�
�

���

�
�

������

��������

������������������

�������������������

��� ���!�"#$�

%
&
'

��
 �

�
"
$�

��
��

�
 �

(
)�

��
�$
�
�
$�
�
��

�&
*
�
�
$�

�

Fig. 9. FTCAM Utilization over One Day (with and without CMOS
Shadow Blocks)

Figure 9 shows the number of flash entries that are
used over the duration of one day, as a function of their

prefix length. “Base Size” refers to the number of entries in
the FTCAM at the start of the day. “UPDATES” refers to
the number of entries updated (with and without shadow
CMOS blocks). Prefixes with less than 2000 entries are not
shown.

The results show that CMOS shadow blocks (without
double/ triple buffering) filter about 61% of all the UP-
DATEs to the FTCAM, which increases its lifetime. There
were 45 cases when a CMOS shadow block was flushed
twice within one second, and for the prefix length of
24, there were two cases when the CMOS shadow block
was flushed 7 times in one second. The average time be-
tween consecutive flushes was 290 seconds. We estimate the
erase/write delay of the FTCAM blocks to be similar to the
traditional flash storage, meaning that they would support
up to 3-5 writes per second [28]. Thus, in case we did not use
double buffering, prefix 24 would not be possible to update
correctly. Hence we use double/triple buffering.

Since some prefixes are written more frequently than 3
times a second (prefix 24 in our example), we need a pool
of extra CMOS shadow blocks to double-buffer (or triple-
buffer) the UPDATEs to such prefixes. From our simulation,
the total number of CMOS shadow blocks required is about
32 + 15 (as explained before). With this choice, no UPDATEs
are lost. The minimum number of shadow blocks necessary
to sustain the FTCAM operation from our simulation was 32
+ 5. With less than 37 shadow blocks the system experienced
packet loss due to insufficient flash write bandwidth. We
over-provision the double-buffering blocks by 3× (with a
total of 32 + 15 shadow blocks) to provide a safety margin.

The observed number of UPDATEs to FTCAM blocks
was 210K per day (out of a total of 500K per day). To
estimate the lifetime of the proposed scheme, we made the
following assumptions: (1) The FTCAM has 1.5M entries,
with 500K of them occupied by the routing table. (2) In the
worst case, rewriting each entry needs to erase and copy the
whole 256-entry block. (3) Flash endurance is 100K write
cycles [29]. (4) Randomized wear leveling techniques are
used in flash-based blocks [30], [31].

In our FTCAM, 500K out of 1.5M entries are occupied.
The remaining 1M entries correspond to 4000 FTCAM
blocks of 256 entries. The FTCAM experiences 210K UP-
DATEs, which in the worst case requires 210K block writes
per day. Assume any block out of the pool of unoccupied
blocks can be used for (uniform) wear leveling, thus the free
blocks will be fully overwritten 210K

4000 = 52.5 times a day.
With the flash endurance of 100K rewrite cycles, the FTCAM
lifetime is therefore 100K

52.5 = 5.2 years until wear-out. If we
now assume that FTCAM blocks are statically allocated for
the life of a router, it is easy to notice (see Figure 9) that the
prefix 24 will be the most stressed. Hence it is reasonable
to allocate more entries to that prefix. If we were to allocate
500K free entries (2000 blocks) to prefix 24 (i.e. about 750K
entries total), then the estimated lifetime would be com-

Figure 4.9: FTCAM utilization over one day (with and without CMOS shadow
blocks).

per second [48]. Thus, in case we did not use double buffering, prefix 24 would not

be possible to update correctly. Hence we use double/triple buffering.

Since some prefixes are written more frequently than 3 times a second (prefix 24

in our example), we need a pool of extra CMOS shadow blocks to double-buffer (or

triple-buffer) the UPDATEs to such prefixes. From our simulation, the total number

of CMOS shadow blocks required is about 32 + 15 (as explained before). With this

choice, no UPDATEs are lost. The minimum number of shadow blocks necessary

to sustain the FTCAM operation from our simulation was 32 + 5. With less than

37 shadow blocks the system experienced packet loss due to insufficient flash write

bandwidth. We over-provision the double-buffering blocks by 3× (with a total of 32

+ 15 shadow blocks) to provide a safety margin.

The observed number of UPDATEs to FTCAM blocks was 210K per day (out

of a total of 500K per day). To estimate the lifetime of the proposed scheme, we

80

made the following assumptions: (1) The FTCAM has 1.5M entries, with 500K of

them occupied by the routing table. (2) In the worst case, rewriting each entry

needs to erase and copy the whole 256-entry block. (3) Flash endurance is 100K

write cycles [7]. (4) Randomized wear leveling techniques are used in flash-based

blocks [3, 74].

In our FTCAM, 500K out of 1.5M entries are occupied. The remaining 1M entries

correspond to 4000 FTCAM blocks of 256 entries. The FTCAM experiences 210K

UPDATEs, which in the worst case requires 210K block writes per day. Assume any

block out of the pool of unoccupied blocks can be used for (uniform) wear leveling,

thus the free blocks will be fully overwritten 210K
4000

= 52.5 times a day. With the

flash endurance of 100K rewrite cycles, the FTCAM lifetime is therefore 100K
52.5

= 5.2

years until wear-out. If we now assume that FTCAM blocks are statically allocated

for the life of a router, it is easy to notice (see Figure 4.9) that the prefix 24 will

be the most stressed. Hence it is reasonable to allocate more entries to that prefix.

If we were to allocate 500K free entries (2000 blocks) to prefix 24 (i.e. about 750K

entries total), then the estimated lifetime would be computed as follows. For prefix

24, there are 150K UPDATEs per day (see Figure 4.9), requiring 150K block writes

per day in the worst case. There are 2000 free blocks for prefix 24. Hence the free

blocks will be overwritten 150K
2000

= 75 times a day. Assuming a flash endurance of

100K cycles, the FTCAM lifetime can be estimated as 100K
75

= 3.65 years until wear-

out. By adding uncommitted spare replacement FTCAM blocks, this lifetime can

be further increased.

4.5 Summary

Ternary Content-addressable Memories are commonly used for high-speed IP

packet routing applications in the internet core. We present a flash transistor based

81

design of a TCAM block. Our FTCAM cell utilizes only 2 flash transistors, while

our flash-based port memory cell utilizes a single flash transistor. In comparison, the

traditional CMOS TCAM cell requires 17 transistors, while the CMOS port memory

cell requires 6 transistors. Based on our layout and circuit simulation experiments,

we conclude that our FTCAM block achieves an area improvement of 7.9× and a

power improvement of 1.64× compared to a CMOS approach. The estimated lifetime

of such FTCAM implementation is about 5 years. The speeds accomplished by our

flash-based TCAM can meet current (∼400 Gb/s) data rates that are encountered

in the internet core.

82

5. OSVPP: OS VIRTUAL-MEMORY PAGE PREFETCHING

5.1 Introduction

Modern computing trends are increasingly turning towards Big Data, Cloud Com-

puting, and Virtualized Systems. Tremendous computation and storage power is

required to support the existing applications, with the demand growing as the use

of virtualization is expanding. With the backing store orders of magnitude slow-

er than the Main Memory, applications demand more DRAM in order to execute

completely inside the memory, avoiding the costly disk or network reads and writes.

Several applications at Facebook, for example, run in memory, using such tools as

memcached [64]. Main Memory capacity has become a major bottleneck.

Conventional data center architectures rely on the use of DRAM, which is costly

and wastes energy [23]. We aim to reduce the costs and energy expenditure by ex-

tending the expensive DRAM with a cheaper alternative, such as NVMe Flash [104].

Historically, storage devices used to be much slower than DRAM and thus on-

ly suitable for longer-term storage (such as a replacement for the spinning disks).

On the other hand, the modern Non-Volatile Memory technologies (NVM) [59] have

significantly improved performance and are now steadily approaching the speed of

DRAM. However, only NVMe Flash devices are currently widely available in large

capacities, and their latencies are still several orders of magnitude higher than the

traditional Main Memory. We note that naively replacing a portion of DRAM with

such NVMe devices will, while reducing the system cost, lead to a significant per-

formance loss which will be unacceptable.A mechanism is thus needed to actively

manage such DRAM + NVM combinations in order to successfully lower the costs

but keep the performance at a competitive level.

83

In current systems, when data does not fit in the main memory, it is swapped

out to a storage device behind the memory. OS manages the DRAM and the stor-

age device to create the impression of a larger memory. However, the application

performance is significantly impacted by the slower storage devices. OS in current

systems employs “demand paging” to bring pages from the swap device to memory

on a “page fault”. With emerging NVM devices, the performance gap between main

memory and the swap devices will be much smaller, potentially enabling other ap-

proaches to managing the swap space. Second, the emerging NVM devices exhibit

much higher parallelism than magnetic disks. These characteristics warrant revisit-

ing the problem of managing the swap devices behind the main memory. We propose

a prefetching approach, i.e. a scheme that predicts the application’s demand for cer-

tain memory addresses and actively fetches those addresses into the faster memory

in the background, so the application is operating as if the whole memory were fast

DRAM while in fact only a portion of the memory is DRAM.

We chose to base our approach on the OS page swapping mechanism. There are

several considerations for this:

• The swapping is simple, i.e. the support is already built-in to the hardware

and software, thus there is no implementation penalty and the approach can

be quickly adopted by the industry;

• The OS already manages the page loading and unloading from the swap device,

hence no need to come up with a custom system that would be compatible and

portable;

• However, the conventional OS mechanisms are not proactive enough, and are

based on old assumptions about slow spinning disks and small application

working sets.

84

To the best of our knowledge, this is the first work to address the OS Page

prefetching with low-latency NVM storage. The main contributions of this work are

as follows:

• We implemented a framework in the Linux kernel for swap page prefetching,

• We augmented the Linux RAMDisk driver to emulate high-speed low-latency

backing store NVM devices,

• We proposed a collection of approaches to page prediction, based on the ob-

served Page Fault patterns, without any extra overhead (i.e. the predictors

themselves are not increasing the number of Page Faults), and evaluated them

on a real system,

• We built a mechanism of ranking the prediction algorithms on-the-fly and

choosing a combination thereof for the best performance.

Our approach reduces the application running time by 18% on average, compared

to the conventional OS swapping. We are able to achieve 50% of the maximum

potential speedup.

5.2 Background

Virtual Memory (VM) is a powerful abstraction used in practically every modern

Operating System (OS) [12]. It is attractive from many points, but some of the main

advantages are:

• VM allows dynamic and efficient sharing of Main Memory among applications

in the system;

• By abstracting Main Memory and Backing Storage (hard disk) capacity, VM

85

creates an illusion of “infinite main memory” available to each application1 (see

Figure 5.1), while the Physical Main Memory capacity may be several orders

of magnitude lower;

• Since applications generally use only a fraction of their full working set at any

given time, VM allows more applications to run in the system without adding

the Main Memory capacity to the machine;

• VM guarantees protection for the applications’ memory contents from each oth-

er. Each application is provided with a contiguous block of “virtual” memory

addresses and thus it cannot access the addresses of other applications.

Virtual Memory Physical Memory

Backing Store /
Swap File

Figure 5.1: A diagram explaining the virtual memory concept.

1In the current x86-64 CPUs, the total amount of available virtual memory is limited by the
implementation at 248 = 256TB.

86

Here we are going to briefly explain the operation of Virtual Memory at a basic

level necessary for understanding the following discussion. For more detailed infor-

mation the reader is referred to the Linux Kernel books [8, 56]. In x86 systems

family, Virtual Memory is implemented as a hardware-software system where the

OS manages the Virtual-to-Physical address mapping for each distinct application,

while the CPU is responsible for actually translating Virtual Memory addresses into

Physical Main Memory addresses. The granularity of such mappings is 4 kB and in

x86 each such region is called a Page. The interface between the OS and the CPU

is provided through a Page Table (PT) and is standardized in x86 systems to enable

the hardware page table walker in the CPU core to traverse the entries and get vir-

tual address translations without the OS intervention. The PT is indexed with the

36 high-order bits of the Virtual Address (excluding the lowest 12 bits as they index

within the 4 kB page itself). When the OS needs to establish a relationship between

a given Physical memory page and its Virtual address in VM, it sets up an Entry in

the PT to contain a translation to the Physical address in question. The CPU then

performs the PT lookup for every memory operation, and if there is no write protec-

tion violation and the translation is valid, the operation is carried on. Conversely,

in the case of a violation, a Page Fault is triggered and the OS is responsible to deal

with the fault, whether by terminating the application or allocating a translation,

respectively.

The mechanism by which the Hard Disk capacity is abstracted in VM is called

Page Swapping (or just Swapping). The OS maintains up to 32 swap regions, or

“swap files” where the memory pages can be stored. When swapping, a 4 kB page

is written (swapped out) from Physical Memory to the swap file in Backing Store,

freeing space for some other Virtual Page. Note that the new Virtual Page will

now have the same Physical address as the swapped-out one. The original Virtual

87

Page is not lost, however. Rather, the application still has full access to it. The OS

makes sure to catalog into the PT entry, the swapped page’s location in the backing

store instead of the previous physical memory address. The bet is that this freshly

swapped-out page will not be needed in the near future. If the bet is wrong and the

application tries to operate on the swapped-out page, it has to be read back from

the disk and into the Physical Memory. The CPU will try to translate the Virtual

Address, but upon reading the relevant PT entry will discover that the page is not

in Physical Memory anymore, and the Page Fault will be triggered. The OS will

once again check the PT entry, find out where and in which swap file the page is

residing, then it swap the page back in to the physical memory, and update the PT

entry with the new translation. (Note that this time the page’s Physical Address will

most definitely be different than previous address, which is now occupied by another

page, and it will be reflected in the appropriate PT entry.)

We are thus starting to see the main drawback of this capacity abstraction, name-

ly, page Access Latency degradation: an access that usually takes nanoseconds (as-

suming data is in the cache), now costs several milliseconds, in the worst case a 10

orders of magnitude increase (if a page is only accessed once after being swapped in).

Even amortized across 4K accesses to the page (accessing every byte as a separate

transaction), the effective latency of each access is still 1–2 orders of magnitude worse

than if the page were in the Main Memory in the first place.

To control this effect, the OS tries to be smart when choosing which pages to

swap out as well as swap in. All the pages in the system are accounted for in a

type of an ordered list which in theory gives the OS information about the frequency

and recency of page usage and allows it to pick the least recently/frequently used

pages for swap-out. In Linux, there are two lists, the Active List and the Inactive

List which represent, respectively, a collection of “more-recently used” pages and

88

“less-recently used” ones. The OS periodically samples the hardware flag within

each page to determine whether it was recently accessed, for the purpose of moving

pages between the two lists. There is no effort made at keeping the relative recency

information within each list, other than the fact that pages from the Inactive list, if

touched again, are placed at the top of the Active list.

Conversely, when swapping-in, if the OS is able to bring several extra pages to-

gether with the demanded page back into the Main Memory, and if those pages

happen to be required by the application, the extra latency is mitigated. This mech-

anism is called Swap Readahead in the Linux Kernel.

Overall, it is reasonable to admit that the conventional spinning disks are so

slow that VM Swapping when Main Memory is severely overcommitted is more of

a crutch, and a guarantee that the system will drag along instead of completely

crashing due to memory exhaustion, and the question remains whether the former is

more beneficial for the operator.

5.3 Motivation

In order to lower the cost of Main Memory in systems with huge memory demand,

it is becoming practical to substitute less-expensive NVM for some of the DRAM in

the system, for a much lower system cost. The main challenge with NVM, however,

is its relatively high access latency. We want to give applications the impression

of having huge amounts of DRAM while seamlessly swapping pages back and forth

between DRAM and NVM, with minimal performance degradation if possible.

In the case of Virtual Memory Page swapping, the application performance is

largely driven by a combination of two factors:

• the number of Page Faults (which lead to swap-ins from the storage device),

and

89

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350 400

Ac
cu

ra
cy

Number of Readaheads, x 10k

Figure 5.2: OS readahead accuracy with one application running, tunkrank app.

• the penalty, or cost, of each Page Fault (which is the latency of a swap-in

operation).

Additionally, any overhead from the prefetching algorithm and the swap pressure

from the speculative pages should also be taken into account.

These factors must be carefully considered together in order to maximize the

performance in the presence of Page swapping due to insufficient RAM in the system.

Consider the OS Readahead mechanism. By blocking the faulting application

and scheduling a number of speculative swap-ins on every Major Page Fault, it

guarantees that the number of further Page Faults is significantly decreased. This

is assuming that the utilization of those speculative pages is reasonably high, which

is the case when only a few applications (i.e. 1–2) are running in the system, as

our experiments show. Figure 5.2 depicts the running accuracy (i.e. how many of

the read-ahead pages were useful) of the OS Readahead scheme with the Tunkrank

application. At the beginning (first ∼900 k readaheads) the application exhibits

linear pattern in page faults and the readahead is 100% accurate. However, as the

90

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 200 400 600 800 1000 1200 1400 1600 1800

Ac
cu

ra
cy

Number of Readaheads, x 10k

Figure 5.3: OS readahead accuracy with three applications running in parallel,
tunkrank apps.

application continues running, the prediction accuracy of the readahead scheme drops

to 40–45% on average.

On the contrary, as shown in Figure 5.3, with three or more applications, the

OS mechanism is not only inaccurate (we observed down to 10% utilization on the

read-ahead pages), but also, by filling the RAM with wasteful pages it increases the

swapping activity, which in turn leads to the rising latencies of swap requests. We

also note from the Figure that the total number of read-ahead pages is 4.5× greater

as compared to the single application case, due to the increased number of faults.

This inaccuracy can be explained if we refer to the mechanism of page swapping

in the kernel. With many applications in the system, the LRU lists will contain a

thorough mix of pages from every application, so the adjacent pages in the swap

file now may not belong to the same application, and thus the temporal relationship

between such pages will generally not hold anymore.

In both of the above cases, the pressure on the swap device request queue is

91

artificially increased. While this was not an issue with traditional spinning disks, as

we will show it can become quite severe when NVM devices are used as swap devices.

In short, if there are 7 readahead requests ahead of the demand request, the effective

swap-in latency observed by this request would be up to 7× the NVM device latency.

Referring back to the performance as a product of the number of faults and their

latencies, it is easy to see that just to break even vs. no extra swap-ins on Page

Faults, the Readahead mechanism has to eliminate at least 85% of Faults. This is

not taking into account the overhead that the mechanism introduces by blocking the

application while it is scheduling those extra swap-ins.

With the observed OS Readahead prefetch accuracies of 35–50%, it is easy to see

that this approach limits the potential performance achievable when using NVM swap

devices. Our goal then is to attack both problems simultaneously, i.e. implement

algorithms accurate enough to reduce the number of Faults, and to build up a smart

framework that would allow us to carefully inject speculative requests so as to not

disturb the demand requests and thus to keep their effective latency low.

5.4 Design

In this section we describe the considerations for OS Page prefetching and provide

high-level design explanation. In order to improve the performance, the prefetches

must be accurate, timely, and must incur minimal interference with the Demand

requests.

5.4.1 To Prefetch or Not?

Unlike CPU caches where the block size is quite small (typically 64 Bytes [27, 63])

and thus temporal and spatial locality patterns are more apparent, the OS page sizes

(4 kB pages are common) and allocation policies (on-demand, controlled by the OS

memory allocator) make it challenging to detect and exploit locality. Pages adjacent

92

in virtual memory, when swapped out, may end up totally separate on the storage

device. Moreover, pages that have been accessed together at some point in time may

not end up swapped out together (e.g. if one of the pages were accessed shortly before

the swap-out was triggered). This is particularly true in situations when multiple

applications are running in the system, exerting high memory pressure.

As hinted before, in swapping situations, the conventional OS readahead mecha-

nism in many cases leads to poor performance. It is even inferior to an approach of

not prefetching at all. However, as we will show next, by adapting to the peculiarities

of NVM devices and better exploiting macroscopic locality patterns in page accesses,

it is possible to achieve a solid performance boost when the system is under memory

pressure and swapping.

5.4.2 Prefetch Support for NVM Devices

In this work we focus mostly on swap-ins (reading pages from the swap device

back into RAM). The Linux OS page swapping mechanism is developed with the

assumption that spinning disk is used as a swap device, and while this is of little

consequence to page swap-outs on an NVM device (since its performance far surpasses

that of the traditional disk), page swap-in performance of this mechanism can be

negatively impacted by such optimizations.

The three critical assumptions made in the Kernel are as follows:

• The latency of a swap-in request is as large as several milliseconds (driven by

the spinning disk access times);

• For a penalty of one seek latency, multiple pages can be read from the disk

with minimal extra overhead;

• The random-read performance is so low that it only makes sense to fetch se-

93

quential blocks of pages from the storage device.

Based on these assumptions, the OS implements a simple, effective readahead

mechanism. On a demand page fault, a whole block of pages (typically 8 pages,

but it can be adjusted via the sysctl mechanism during runtime) is requested from

the disk. OS only requests aligned blocks, which means the demand page is not

necessarily the first one to be read from the disk. This is done in the context of the

original application. The application is suspended until the main demand page has

been read, then it may continue. The extra pages are placed in the Swap Cache (i.e.

readahead pages are not installed into the application’s address space until there is

a demand for them), and may even be swapped-out again without a chance to be

used, if there is high memory pressure or of the readahead was inaccurate.

Obviously, with NVMe devices, none of the above assumptions is true. The read

latencies of such devices are in low 100 µs [104], and if multiple pages are to be read,

the latency penalty is added for each page. Additionally, due to their architecture,

NVM devices perform as well on random reads as on sequential reads. It is easy

to see how the latency for the demand request can exceed 500 µs if it happens to

fall toward the end of an aligned block. When memory pressure is high, certain

memory-intensive commercial applications will experience a large number of page

faults (which means very short times between page faults – we observed as low as

100 µs). Note that the readahead requests from previous demand fault will still be

residing in the device queue, and the effective latency for the next demand request

could grow even further. With such implications, simply disabling the OS readahead

might yield a considerably better application performance due to much lower effective

demand fault latencies (our experiments show up to 6% performance improvement

with readahead disabled, and ∼1% average improvement – see Figure 5.7).

94

It is thus critical that the readahead mechanism be modified with the view of

NVM swap devices. The following fundamental changes are necessary:

• Utilizing a NOOP request scheduler. By default, Linux sorts the requests and

uses the elevator mechanism to optimize the spinning disk performance. As

discussed above, this can lead to increased latencies seen by demand requests.

NOOP scheduler simply executes the requests in the order they arrive, allowing

to retrieve data in the order intended by the prefetching mechanism.

• Critical-Page-First (CPF) demand page fetching. Instead of requesting the

whole aligned block from the device, we first request the demand page and let

the application continue as fast as possible.

• Separating readahead/prefetch logic from demand fetch logic. Since scheduling

the read requests may easily take dozens of microseconds, it is necessary to

perform them outside of the faulting application’s context. We are using a

different CPU core in this work, however, a hardware approach can be used.

• In order to keep the demand request latency as low as possible, we maintain

two separate queues, one for demand requests and one for prefetches, and give

higher priority to the demand queue. We schedule the prefetches only when

there are no demand requests waiting.

• Prioritizing demand requests. The incoming demand request “jumps ahead”

of any prefetch/readahead requests in the queue.

5.4.3 When to Prefetch

The OS Readahead mechanism injects 8 pages (the demand page plus 7 readahead

pages) into the swap device queue on every Page Fault. This works well if the time

95

0

0.5

1

1.5

2

2.5

3

3.5

2-pg 4-pg 8-pg

N
or

m
al

ize
d

la
te

nc
y

in
cr

ea
se

Degree of OS Readahead

latency for demand requests total effective latency

Figure 5.4: OS readahead latencies, normalized to no-readahead, on an emulated
NVMe device.

to fetch the pages is shorter than the time between faults. In other words, this

only works when the memory pressure is low and not much swapping activity is

going on in the system. Lower-latency devices will help, but only to an extent of

tolerating somewhat higher swapping activity. It is easy to note that the readahead

approach may lead to a backlog in the swap device queue, and in turn cause the

Page Fault latencies to increase. Figure 5.4 presents a comparison of demand page

fault latencies and total effective request latencies between a baseline system with

no readahead (i.e. where only the faulted page is swapped-in) and a system with

various degrees of readahead (varied from 1 extra page to 7 extra pages per fault).

For no-readahead case, these latencies are essentially the same as the device latency.

We observe that the more speculative pages fetched per page fault, the higher the

effective fault latency, which in turn affects the application running time. Schemes

with very high prediction accuracy might benefit from injecting prefetches directly

into the device queue, but as we show in Section 5.3, the OS readahead accuracy is

on the order of 40%.

96

All is not lost, however. Assuming the 40% utilization rates of the readahead

swap-ins (see Figure 5.2, assuming we can isolate the applications’ pages into separate

swap files), we simply need to find a way to keep the demand request latencies low,

and the total latency will automatically be improved. (Recall that if a readahead

request is accurate and completed in time, the latency of a potential demand fault

for the given page is reduced to zero.)

7x the device latency

Low latency

Secondary Queue

Main Queue

Demand Request

Prefetch Request

OS Readahead

Our Approach

Figure 5.5: Secondary queue for the prefetch requests.

From Figure 5.4, the lowest latency for demand requests is achieved when there

is no readahead pressure on the device. We note, however, that the application page

fault behavior is bursty, with periods of high rates of page faults followed by phases

97

of relatively lower rates. The key observation here is that during the low phases we

can issue more speculative prefetch requests, and back off of prefetching during the

higher-demand phases. The best way to achieve this is by prioritizing the demand

requests with respect to the prefetches. We implement a “secondary queue” to hold

the prefetch requests, and the driver schedules requests from this queue only if there

are no demand pages waiting in the main swap queue. Figure 5.5 illustrates the

concept. Note how in the conventional OS approach the incoming demand request

is forced to wait for all the prefetches to finish, which increases its effective latency,

whereas with the secondary queue, this latency is minimal.

Now, the Linux OS prefetches speculative pages together with the demand page.

Any new faults and prefetches have to wait until the older ones are executed. In

other words, such policy favors old prefetches instead of the recent ones. However,

with two separate queues for demand and speculative requests, we have a choice as

to which prefetches to prioritize, based on which ones we believe have greater utility

to the application. Intuitively, the prefetch requests from the past will be more out-

of-sync with what the application is doing, than the fresh prefetches. It thus makes

more sense to give priority to the new prefetches instead of the older ones. This is

achieved by using a LIFO (last-in-first-out) request management policy instead of

the FIFO (first-in-first-out) utilized by the conventional readahead.

Note that in Linux, before a swap request is enqueued, it has to be fully pre-

pared for the swapped-in page. Namely, a fresh free Physical Page frame must be

allocated and locked, the relationship between the swap file offset and the physical

page established, and the page must be inserted into the OS Swap Cache. The en-

queued request may be further decomposed and/or merged with adjacent requests

by the I/O scheduler. Thus we are paying a penalty for the requests we may never

issue! Because prefetches are speculative in nature, they require a means of reorder-

98

ing and/or canceling, or “rolling-back”. It is easy to see how such roll-back makes

canceled prefetches twice as expensive. In our experiments we have thus adopted a

secondary queue which is one level higher than the main queue. I.e. the entities in

the secondary queue are hints to the fetch mechanism, and are not allocated physical

memory until the moment they are actually issued to the swap device. This allows

nearly “free” roll-back (by simply erasing the entry in question), and only the actual

prefetches get through the process of allocating physical memory.

In summary, to keep the Demand fault latency low, any demand requests must

be fetched before the prefetches. The recent faults are more important than the

past ones, consequently, priority among the prefetches must be given to the prefetch

requests induced by the recent demand faults. We fulfill both these requirements by

implementing a secondary queue for prefetch requests, with LIFO ordering.

5.4.4 What to Prefetch

A good prefetch algorithm should strive to predict pages that are soon to be

utilized by the application, based on the recent history of page accesses. (Note

that the prediction is somewhat complicated in that we can only observe the page

faults, not the successful page accesses, without significant overhead. This is different

from, say, CPU cache prefetching, where the full stream of accesses is visible to the

prefetcher.)

Traditionally, there have been two approaches to such prediction: one based

on temporal locality of accesses and the other one based on spatial locality. For

our purposes, two pages are said to have temporal locality if, having been accessed

together in the past, when in the future the first page is faulted, the second one is

also faulted. Conversely, spatial locality implies that if a page is faulted, then a page

adjacent to it in the virtual address space will also be faulted.

99

5.4.4.1 OS Readahead

Since the OS mechanisms are based on the assumption of the spinning disk as

the main swap device which favors reading large contiguous chunks, it is only logical

for the OS to exploit the physical space locality in the swapfile, in its readahead

mechanisms. The physical locality in the swapfile is based on the temporal locality

in evictions of pages from memory. The inactive pages are swapped out in larger

blocks, moreover, the OS keeps the list of memory pages in an approximate LRU

order which is known to capture temporal behavior.

A
A+1
A+2
A+3
A+4
A+5
A+6
A+7

Virtual Addresses

Swap Addresses

Fetched by Temporal scheme

Fetched by Spatial scheme

Fetched by both schemes

Figure 5.6: Temporal and spatial schemes illustration.

100

5.4.4.2 Temporal Prefetch

Based on the observation that the pages adjacent in the swap file were swapped

out together, and thus were likely used together at some point in the past, it is

reasonable to bet that they are likely to be again demanded together in the future.

Our temporal approach thus prefetches pages surrounding the current faulting page

in the swap file. The two main distinctions from Readahead mechanism are that

our temporal prefetches have lower priority than the demand page faults, and the

more recent temporal predictions have priority over the older ones. This reduces the

latency of the demand requests, as well as avoids the potentially inaccurate stale

prefetch requests from getting executed. Refer to Figure 5.6 for an illustration.

5.4.4.3 Spatial Prefetch

We tested a spatial approach which predicts that certain consecutive page ad-

dresses will be faulted following the current page fault. Figure 5.6 illustrates the

concept. In the figure, following a page fault to address A, addresses A+1 ... A+8

are prefetched. In an ideal case, if the application exhibits such spatial patterns, the

temporal prefetcher should also be able to capture them. However, due to the in-

ability to precisely track the page access patterns beyond the first usage of any given

page, the Linux’ LRU mechanism is imprecise which leads to deviations in which

pages are swapped out. Thus the temporal approach may not be able to capture the

relationships between pages with adjacent Virtual Addresses.

5.4.4.4 Delta-Pattern Driven Prefetch

A delta pattern is a stream of differences between adjacent page addresses, e.g.

if pages with addresses 0x4, 0x6, 0x9 and 0x8 were accessed, the corresponding

delta-pattern would look like this: “+2, +3, -1”. Our predictor is based on the

101

observation that the delta-patterns between page fault addresses are repeating over

time. By keeping a history of such delta-patterns and the following deltas, we can

look up any pattern and predict which page is likely to be faulted next. Moreover,

by using the newly-predicted delta, we can loop around and speculatively predict

the second page that is likely to be faulted, and so forth. These predictions have

diminishing values, so it makes sense to have a decay mechanism in place that would

stop infinite lookahead. We are using the observed accuracy of the scheme to discount

each subsequent speculative prediction, and stop when such discount falls below a

specific threshold. The approach is based on the “Variable length delta predictor”

(VLDP) [88].

5.4.4.5 Combination Prefetch Scheme

We notice from our experiments that applications exhibit changing execution

phases where different predictors achieve varying accuracies. It would thus be benefi-

cial to combine several predictors into one scheme to take advantage of their strengths

and amortize the shortcomings. We observed that the predictions from the Temporal

and Spatial algorithms have a rather small intersection (i.e. about 10% of all the

predictions are to the same pages for both algorithms). These intersecting predic-

tions have a very high accuracy. We thus propose the following scheme of combining

the predictors. First, find the intersection of all the predictions and add to the queue

(again, refer to Figure 5.6). Then, merge the remaining predictions into the queue

weighing the predictors by the observed accuracy in the preceding period.

We shall now describe the approach used to merge such remaining predictions,

after the intersecting ones were taken care of. Let P1 be the utilization (accuracy)

of the first scheme, and P2 the accuracy of the second one, also let n be the total

number of the non-intersecting predictions that need to be inserted in the secondary

102

queue. The following formulas describe the relative weights, and the numbers of

predictions that are added to the queue.

W1 = n× p1

p1 + p2

, (5.1)

W2 = n× p2

p1 + p2

. (5.2)

We note that in the theoretical ideal case, it is best to give a 100% preference

to the more-accurate scheme. Clearly, if the utilizations were constant across the

predictions within each scheme, we could expect that the total utilized prefetches for

the combination scheme would be:

Uc = W1× p1 +W2× p2 = n× p1

p1 + p2

× p1 +n× p2

p1 + p2

× p2 = n× p2
1 + p2

2

p1 + p2

. (5.3)

Assuming p2 > p1, i.e. the second scheme is more accurate, and comparing the

number of utilized pages with the combination scheme above vs. just the second

scheme, we get:

Uc − U2 = n× p2
1 + p2

2

p1 + p2

− n× p2 = n× p2
1 − p1p2

p1 + p2

< 0. (5.4)

However, in practice the accuracy of the predictions is not constant and diminishes

towards the tail of the queue. Diminishing total page utilizations would thus be

observed if only the predictions of the scheme with higher average accuracy were

prefetched. Additionally, we want to keep fetching at least a few predictions from

every scheme to be able to track utilizations. The weighted merging is thus a rea-

sonable approach. In this manner, the more accurate predictions from both schemes

get a higher chance of being prefetched, and we are constantly adapting to the appli-

103

cation behavior by leveraging a variety of predictors and choosing the best possible

prediction approach.

We also experimented with an “overweighting” approach where the predictor

with higher accuracy is assigned an additional 10% heavier weight, i.e. if the second

scheme is more accurate, the weights are redistributed as follows:

W
′

1 = 0.9×W1, (5.5)

W
′

2 = W2 + 0.1×W1. (5.6)

This approach provides an additional 0.8% performance improvement on average,

and it is used in our proposed schemes.

5.4.5 How Many Pages to Prefetch

It is challenging to balance between the number of prefetched pages, given the

limited bandwidth due to the demand faults having higher priority, and the dimin-

ishing utilization (the farther ahead we prefetch, the more the likelihood that the

pages would not be utilized and/or would be already in the Main Memory). We

have experimented with throttling the number of prefetches issued per demand fault

based on the occupancy of the secondary queue. The intuition was that the num-

ber of entries waiting in the secondary queue directly correlates with the demand

fault pressure in the system (since the secondary queue does not issue requests until

the main queue is empty). However, our experiments show that this approach does

not yield any significant improvement in performance. The major reason is that by

throttling the newer, more useful prefetches we are in essence giving more weight to

the older, potentially less useful, ones.

We have arrived at an optimal static number of 16 prefetches queued in the

104

secondary queues per demand fault. The actual number of prefetched pages is thus

automatically controlled by the main queue occupancy. The more demand faults

an application experiences, the less prefetches will reach the swap file. Additionally,

the LIFO scheme of selecting prefetch requests across multiple page faults makes the

actual number of queued requests not so critical.

5.5 Evaluation

In this section we evaluate the application performance improvement due to our

proposed schemes. We also analyze the contributing aspects to the operation of our

algorithms.

5.5.1 Methodology

We evaluated our schemes on a real system with 96GB DRAM and Intel Xeon

six-core 1.9 GHz processor. We implemented our approaches in the Linux Kernel

3.13.0. We used applications from SparkBench suite [49]. The applications were

configured with large working sets/memory footprints (8 GB for SparkBench). The

conventional RAMDisk driver (BRD) was augmented to emulate an NVM device

with a standard request queue and pre-settable operation latency2. We configured

10 RAMDisks to utilize a total of 92 GB of system RAM thus leaving about 4 GB

for the applications , and set the devices as the system’s “NVM swap devices”. In

that way, we induced memory pressure forcing the OS to swap the pages into the

emulated NVM devices. The baseline run was done with one emulated NVM device,

thus with a parallelism of 1 request per operation, and using the conventional OS

readahead, like a freshly-installed system would be configured.

2We used 50 µs and 10 µs emulated device latencies for our experiments.

105

5.5.2 Performance Improvement

We show what performance can be achieved with the conventional OS techniques

and compare that with our approaches. Figure 5.7 compares the baseline OS Reada-

head with 1 swap device to the OS Readahead with 10 swap devices available. One

important technical contribution of our work is the technique of “prefetch offloading”.

This technique is first applied in Concurrent device Offloaded Readahead Prefetch

(CORP) scheme, utilizing 10 swap devices, employing the readahead predictor, and

offloading to a separate core in order to allow application to continue running as

soon as possible after the demand page fault has been serviced (“CORP” bars in the

Figure), which provides a significant performance boost. Note that this technique

inherently contains the critical-page-first approach. The rest of this work assumes

such mechanism of prefetch offloading utilizing concurrent devices in every proposed

scheme. We note that the higher concurrency of NVM devices can be better exploited

by this mechanism.

As shown in the figure, we also compared the performance of the OS readahead

scheme utilizing the traditional “deadline” I/O scheduler vs. a “noop” scheduler.

The main difference between the two is that the deadline scheduler uses an elevator

algorithm for scheduling the requests in a manner optimized for a spinning disk (i.e.

the requests are sorted, and executed in the ascending/descending order so as to

minimize disk seek times etc.). The noop scheduler executes the requests in the

exact order as they arrive, thus allowing for a faster operation on NVM devices,

with minimal scheduling overhead. In our experiments, uting the deadline scheduler

impedes the performance by 3% on average, compared to the noop scheduler. In

the rest of the work, the noop scheduler is used. Next, we note that by completely

disabling the OS readahead (“OS no readahead” bars in the Figure) it is possible to

106

-10%

-5%

0%

5%

10%

15%

20%

25%

30%
N

or
m

al
ize

d
to

 B
as

el
in

e

Wall clock time improvement
OS readahead, 1 swpfile - BASELINE OS readahead, deadline i/o sched OS no readahead OS readahead, 10 swpfiles CORP

Figure 5.7: SparkBench suite running time improvement with OS readahead, and
the offloaded readahead technique.

gain up to 6% application performance (depending on the application memory access

patterns, the readahead requests increase the latency for the demand requests and

tie the storage device bandwidth), and increase the performance by 1% on average.

Note that due to the way the OS is managing multiple swap devices using a

round-robin mechanism, the adjacent pages in the LRU list get swapped out into

consecutive swap files. Consequently, with ten swap files, on page faults we have

a 10× boost in bandwidth, which allows the OS schemes to perform better with

more swap files. However, the figure shows that modifications to the OS readahead

mechanism are needed to extract this performance potential out of the fast devices.

In the figure, the conventional OS readahead mechanism with 10 swap files is only

able to increase the performance by 7% on average, compared to the baseline with

107

1 swap file. On the other hand, the proposed CORP approach achieves a higher

performance gain of 16% on average. We note also that increasing the number of

swap devices is in principle only limited by the NVM parallelism available.

-5%

0%

5%

10%

15%

20%

25%

30%

35%

W
al

l C
lo

ck
 T

im
e

N
or

m
al

ize
d

to
 B

as
el

in
e

Base OS Offloaded Readahead SPATIAL TEMPORAL COMBO VLDP Full RAM

 56% 46% 37%

CORP

Figure 5.8: SparkBench suite running time improvement with various prediction
schemes.

Figure 5.8 presents a comparison of the SparkBench applications with various

proposed prefetching schemes vs. the baseline OS readahead. The bars represent the

wall clock running time, normalized to the baseline wall clock time. The “AVG” bars

are geometric mean averages of the respective schemes across the applications. We

also include the “Full RAM” bar which depicts the maximum practical performance

improvement if the full 96GB of Main Memory were available to each application.

108

Note that for KMeans, ConnectedComponent, and StronglyConnectedComponent,

the prefetch algorithms come within 70-85% of the maximum achievable speedup.

On average, our schemes are able to gain 50% of the lost performance.

In the figure, we compare the following schemes: SPATIAL means the spatial

scheme, TEMPORAL denotes the temporal scheme. COMBO stands for the combi-

nation of the spatial and temporal schemes, with the intersecting predictions having

the highest priority and the rest of the respective predictions being capped according

to the observed accuracies of the underlying schemes. VLDP represents the delta-

stream predictor. The above mentioned schemes employ the offloading mechanism

with a separate CPU core queueing the prefetch requests into the secondary queue,

out of the way of the demand faults. As described earlier, the secondary queue is

utilized by the swap device only when the main queue is empty. Conversely, CORP is

offloaded to a separate CPU core, but is injecting the prefetch requests into the main

device queue. I.e. instead of blocking the application while scheduling the prefetches,

just the faulted page is scheduled in the original fault, while the prefetched pages

are scheduled in the background, after the faulted page.

Overall, the running time is improved by up to 30% (KMeans) and no worse than

2% (DecisionTree), and 18% on average. We note that our combination approach

does not degrade the performance, unlike CORP. For DecisionTree and SVDPlus-

Plus the CORP approach incurs a 1-3% performance hit. This is due to somewhat

low utilization of readahead pages, paired with bursty behavior of page faults, when

injecting extra requests into the device queue leads to the increased page fault la-

tencies for legitimate requests, and in turn lower application performance. Note

that StronglyConnectedComponent application achieves the best performance with

CORP, owing to the higher prefetch utilization and the fact that the predictions are

executed with a lower delay compared to the secondary queue approaches.

109

100000

400000

1600000

6400000

N
um

be
r o

f P
ag

e
Fa

ul
ts

Base OS CORP SPATIAL TEMPORAL COMBO VLDP

Figure 5.9: SparkBench suite number of page faults with various prediction schemes.

We observe that the spatial and temporal predictors are approximately equal in

performance improvement, while behaving differently with various applications (cf.

KMeans, PregelOps, and TriangleCnt). On the other hand, CORP, while enjoying

an instant request scheduling to the main queue, falls short of the other schemes due

to the request latency effect described above.

5.5.2.1 Page Fault Reduction vs. Performance Improvement

Figure 5.9 presents the number of Page Faults in the applications, on a logarithmic

scale. Note that in the figure, the lower the bars are, the better, i.e. the base

OS readahead reduces the most page faults of the schemes evaluated (the minimal

number of page faults, close to zero, is observed when there is enough DRAM in the

system to fully contain the applications’ working sets). Note, however, how poorly

the baseline performs compared to the other schemes (Figure 5.8). This effect is due

110

to the increased latency of each swap request caused by the filling of the main swap

queue. It is very important to take into account this effect on page fault latency,

rather than only observing the raw numbers of page faults, of one is to accurately

assess the performance of various schemes. Since we conduct our experiments on a

real system, the wall clock time accurately reflects the total performance.

5.5.3 Analysis

In this section we analyze the schemes. Recall that in order to improve the

application performance under page swapping, we must lower the page fault latency.

One way of achieving this is utilizing a faster device (clearly, if the swap device were

as fast as DRAM, the performance under swapping would equal to that of the system

with enough RAM). The other way is page prefetching. If the prediction is correct

and the prefetched page is utilized, the effective latency of the respective page fault

is reduced to zero. However, by issuing too many prefetches, or prefetches with

low accuracy, we would unnecessarily keep the swap device and the main memory

busy, which would lead to higher page fault latencies. It is thus the balance between

the accuracy and the number of prefetch requests issued that leads to the optimal

application performance.

Figures 5.10 and 5.11 present the prefetched page utilizations for the constituents

of the Combination Prefetch scheme, and the final utilizations, respectively. Recall

that the scheme gives the first priority to intersecting predictions, and then merges

the rest of the predictions according to the observed utilizations of the respective

schemes. We note from Figure 5.10 that the Spatial scheme is superior to the Tem-

poral, except in TriangleCnt application. The final utilization numbers are generally

good, except for SVDpp and TriangleCnt, at about 30%. Intersecting predictions

show very high accuracy, which reinforces the correctness of our design approach of

111

20%

30%

40%

50%

60%

70%

80%

Pr
ef

et
ch

 U
til

iza
tio

n

Temporal

Spatial

Intersection

Figure 5.10: Prefetch utilizations for the combination prefetch algorithm, sparkbench
suite.

prioritizing them in the combination scheme. However, our experiments show that

the number of prefetches from intersecting predictions is 15% of the total prefetches,

on average, thus their high accuracy does not contribute significantly to the overall

prefetched page utilization and performance improvement.

Since the OS readahead and the Temporal scheme are based on the same principle

of operation, we can see that the OS readahead accuracy is low. By injecting the

prefetches directly into the main swap queue it is able to prefetch more total pages

and thus more useful pages than the schemes with higher accuracy (Figure 5.9).

However, it suffers from the increased page fault latency, and overall the performance

is lower (Figure 5.8).

Figure 5.12 presents the breakdown of the lifetime of predictions made by the

Combination algorithm. The predicted pages are first checked against the Page

Table and the Swap Cache and the ones present in those are not considered further

(“Filtered before queue” in the figure). The rest of the predictions are placed into

the secondary queue where a fraction of them are wiped away due to pressure from

112

20%

30%

40%

50%

60%

70%

U
til

iza
tio

n
pe

rc
en

ta
ge

O

f C
om

bi
na

tio
n

Pr
ef

et
ch

es

Figure 5.11: Final utilizations for the combination prefetch algorithm.

incoming predictions on one side, and insufficient bandwidth for prefetches on the

other (“Wiped from queue”). Before the remaining predictions from the secondary

queue are considered for prefetch, they are checked against the Swap Cache once

again to ensure no duplicates (“In Memory”). The prefetched pages are placed in

the swap cache. Figure 5.13 presents this breakdown as fractions of the total number

of predictions made. We observed approximately 50% of the predictions make it to

the secondary queue. Further, only about 20% of the total predictions are considered

for prefetch. We note that NVM devices with more parallelism and/or lower latencies

will help provide more bandwidth for prefetches and allow for increased performance.

5.5.3.1 Future NVMe Devices

We experimented with faster NVM devices by setting the emulated latency to

10 µs, which is about 1.6× the latency of a page read from DRAM (assuming that

fetching a 64-byte cache block from DRAM takes on the order of 100 ns, the full

4 KB page will take approximately 6.5 µs to fetch). The results are presented in

113

Predicted Pages

Pages in
Secondary Queue

Pages requested
from Device

Utilized

Non-Utilized

Filtered before queue In Memory

Wiped
from Queue

Prefetched
Pages

Figure 5.12: Prediction lifetime in the proposed scheme.

Figure 5.14. First, we note that the maximum practical performance improvement

(Base OS readahead vs. Full DRAM) is only 21%, on average, with the faster devices

(cf. Figure 5.8 at 34%). Theoretically, if the NVM device were as fast as DRAM,

there should be no difference in performance when using either type of memory.

However, the OS swapping approach is slower due to the bookkeeping overheads.

Second, with the lower NVM device latencies, the distances between page faults are

shrinking since the applications are able to run faster. For reference, we observed

a 16% geometric mean speedup under the Base OS Readahead of the SparkBench

applications with 10-µs devices vs. the 50-µs ones. Further, there is less opportunity

for prefetching and the overheads of the more complex algorithms may start to

negatively affect the performance. We note that the SPATIAL prefetcher achieves

7.7% performance improvement on average, while the Combination scheme boosts

the performance by 7%. CORP scheme does as well as the TEMPORAL prefetcher,

114

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
To

ta
l P

re
di

ct
io

ns
 C

on
si

de
re

d

Filtered before queue

Wiped from queue

In Memory

Prefetched

Figure 5.13: Prediction distribution for the combination prefetch algorithm.

however, both schemes fall about 1.5% short of the best prefetchers on average.

Overall, our proposed approach adapts to the underlying NVM device characteristics

by leveraging the high-accuracy predictions, and is able to achieve about 35% of the

potential maximum performance improvement.

5.6 Related Work

Hybrid memory architectures have been investigated in the past [14, 103]. To

our knowledge, our work is the first to consider the swap prefetching approach for

DRAM + NVM memory. Similar to our two-level approach, schemes using DRAM

as a cache for slower NVM memory were proposed [55, 61, 75]. These approaches

require additional hardware modifications and are thus less flexible with respect to

115

-5%

0%

5%

10%

15%

20%

25%

30%

35%
W

al
l C

lo
ck

 T
im

e
N

or
m

al
ize

d
to

 B
as

el
in

e

Base OS CORP SPATIAL TEMPORAL COMBO Full RAM
 41%

Figure 5.14: SparkBench suite running time improvement with various prediction
schemes, 10 µs NVM device latency.

the NVM technology utilized.

Apart from managing DRAM + NVM memory as a two-tier architecture, it is

possible to have the two memory types on the same level. Adaptive page placement

based on data usage patterns was proposed by Ramos et al. [80]. They looked at

PCM as complementary technology, but their approach can be extended to other

fast memory technologies as well.

A great amount of research has been devoted to prefetching for CPU caches [9,

33, 93]. Smomgyi et al. proposed spatial memory streaming prefetcher [92]. They

noticed that access patterns to similar application data structures are repetitive and

it is thus possible to apply the information about past accesses to predict the future

ones. Their approach, however, does not scale well to the page level. First, the

116

“spatial region generations” need to span dozens of OS pages, thus the time it takes

to capture such generation grows by several orders of magnitude as compared to

tracking the cache blocks. Second, the vast majority of such generations end up full,

i.e. the scheme reduces to a simple next-page predictor, this observation inspired our

Spatial scheme.

These approaches are a level lower than our proposed approach, are mostly im-

plemented in hardware, and can be utilized independent of our schemes for further

speedup. Our approach, being fully software-based, allows for more sophisticated

prediction algorithms with higher accuracy. The drawback of page-level prediction

is the low amount of feedback available at the OS level, making it harder to determine

and prefetch the application page access patterns.

Ferdman et al. show that, while CPU cache prefetching is useful for high-

performance scientific applications, modern scale-out workloads are too large for

the conventional caches and thus higher-level techniques are needed to boost their

performance [17]. They also show that the available memory bandwidth exceeds

the requirements of such workloads, which is one of the motivators for us to pursue

memory page prefetching.

ScaleMP vSMP Foundation for FLash eXpansion (FLX) [85] is aiming to extend

the DRAM with Flash devices. Their approach is based on the shared RAM algo-

rithms, where the remote RAM is replaced with local Flash. However, the system is

proprietary and closed-source. Additionally, it is implemented inside a hypervisor,

which might negatively affect the system performance. Our approach is running as

an integral part of the OS with the maximum possible performance.

Some effort has been devoted to page prefetching in the Linux kernel in the

past [51]. The schemes assume a DRAM-only system, need ample free main memory

and take care to only operate during idle periods in system activity. They fetch

117

pages back from the swap device and thus boost the performance for background

applications where the OS proactively swaps out the working sets even when no

memory pressure exists in the system. As such, these approaches are orthogonal

to our schemes because we aim at helping the actively-running applications in a

DRAM + NVM system with restricted amounts of DRAM.

118

5.7 Summary

In order to lower the cost of Main Memory in systems with huge memory de-

mand, it is becoming practical to substitute less-expensive NVM for some of the

DRAM in the system, for a much lower system cost. The main challenge with NVM,

however, is its relatively high access latency. We presented OSVPP, a software-only,

OS swap-based page prefetching approach to managing hybrid DRAM and NVM

systems. We show that it is possible to gain about 55% of the lost performance

due to swapping into the NVM and thus enable the utilization of such hybrid sys-

tems for memory-hungry applications, lowering the memory cost while keeping the

performance comparable to the DRAM-only system.

119

6. CONCLUSION

In this dissertation, we addressed some of the challenges related to the adoption

of NVM on both the architecture and the software levels. We looked into the possi-

bilities of using NVM for complete DRAM replacement as well for DRAM extension.

In Chapter 2 we addressed the issues related to utilization of NVM for replac-

ing DRAM as Main Memory. We showed that it is vital to control the amount of

writebacks from the Last-Level Cache (LLC) to Main Memory. We proposed ARI,

an adaptive LLC management policy that modifies replacement as well as insertion

policies in the cache, in response to the changing program behavior, so as to opti-

mize the writebacks to NVM main memory and at the same time improve the cache

miss-rate. Our evaluation indicates that the proposed scheme provides a 49% N-

VM lifetime improvement through the reduction in the cache writeback rates, while

sustaining high application performance by reducing the miss rates at the same time.

In Chapter 3 we revisited the conventional decade-old assumptions in the Oper-

ating System about the typical cache sizes and application working sets, which have

led to suboptimal performance with increased amount of unnecessary cache misses

and writebacks which are critical with NVM. These OS effects on the caches have

not been considered in the cache management literature previously. We analyzed the

degree of the OS influence on caching performance and presented a software-only,

adaptive approach to mitigating such influence with minimal overheads. This ap-

proach decreases up to a 100% of the cold cache misses, lowers the overall miss-rates

by 15-18% on average across a diverse set of benchmarks, boosting the application

performance by up to 15%.

In Chapter 5 we explored the potential of NVMe Flash as main memory. We

120

proposed the use of PCIe-attached Flash NVM [91] for transparent DRAM exten-

sion as a software-only approach, using the OS swapping subsystem as a base. We

showed that the OS swapping support of NVMe devices is inefficient since it is based

on the old assumptions about the high-latency, sequential-access spinning disks. We

presented the solutions to the issues with OS swapping, and built a framework for

managing the DRAM+NVMe hybrid system by adopting a predictive page fetching

algorithm, providing an impression of large memory capacity with the effective la-

tency of DRAM. Our results indicate that up to 55% of the performance of the full

DRAM capacity can be achieved utilizing only a fraction of DRAM extended with

NVMe, with the proposed software approach.

As an unconventional approach to utilizing emerging memory technologies, in

Chapter 4 we presented a Ternary Content-Addressable Memory (TCAM) design

with Flash transistors. We showed an area improvement of 7.9× and a power im-

provement of 1.64× compared to conventional approaches. Such design could be

utilized in Virtual Memory accelerator applications, allowing faster operation when

employing NVM for data storage. Instead of increasing the TLB sizes, which would

induce additional delay on the critical path of CPU reads, for instance, TCAM could

be leveraged for storage of the Page Table and hence fast Virtual-to-Physical address

translations, obviating the need of the costly Page Table walks on TLB misses.

121

REFERENCES

[1] H. An, K. Kim, S. Jung, H. Yang, K. Kim, and Y. Song. The threshold voltage

fluctuation of one memory cell for the scaling-down NOR flash. In 2nd IEEE

International Conference on Network Infrastructure and Digital Content, Sept

2010.

[2] Gilles Audemard and Laurent Simon. Glucose 2.1: Aggressive, but reactive,

clause database management, dynamic restarts (system description). In Prag-

matics of SAT 2012 (POS’12), jun 2012. dans le cadre de SAT’2012.

[3] Avraham Ben-aroya and Sivan Toledo. Competitive analysis of flash-memory

algorithms. Technical report, Tel Aviv University, 2006.

[4] C. Bienia, S. Kumar, and K. Li. Parsec vs. splash-2: A quantitative compari-

son of two multithreaded benchmark suites on chip-multiprocessors. In Work-

load Characterization, 2008. IISWC 2008. IEEE International Symposium on,

pages 47–56, Sept 2008.

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec

benchmark suite: characterization and architectural implications. In Proceed-

ings of the 17th international conference on Parallel architectures and compi-

lation techniques, PACT ’08, pages 72–81, New York, NY, USA, 2008. ACM.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,

Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,

Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay

Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH

Comput. Archit. News, 39(2):1–7, August 2011.

122

[7] Simona Boboila and Peter Desnoyers. Write endurance in flash drives: Mea-

surements and analysis. In Proceedings of the 8th USENIX Conference on

File and Storage Technologies, FAST’10, pages 9–9, Berkeley, CA, USA, 2010.

USENIX Association.

[8] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly &

Associates Inc, 2005.

[9] Tien-Fu Chen and Jean-Loup Baer. Effective hardware-based data prefetching

for high-performance processors. IEEE Transactions on Computers, 44(5):609–

623, May 1995.

[10] E Choi and S Park. Device considerations for high density and highly reliable

3D NAND flash cell in near future. In IEEE International Electron Devices

Meeting (IEDM), pages 9.4.1 – 9.4.4, San Francisco, CA, Dec 2012.

[11] Fernando J. Corbató. A paging experiment with the multics system. Technical

report, DTIC Document, 1968.

[12] Peter J. Denning. Virtual memory. ACM Comput. Surv., 2(3):153–189,

September 1970.

[13] J DeVos, L Haspeslagha, M Demand, K Devriendt, D Wellekens, S Beckx, and

J Houdt. A scalable stacked gate NOR/NAND flash technology compatible

with high-k and metal gates for sub 45nm generations. In IEEE International

Conference on Integrated Circuit Design and Technology (ICICDT), pages 1–4,

2006.

[14] Gaurav Dhiman, Raid Ayoub, and Tajana Rosing. Pdram: A hybrid pram

and dram main memory system. In Proceedings of the 46th Annual Design

123

Automation Conference, DAC ’09, pages 664–469, New York, NY, USA, 2009.

ACM.

[15] K. Eshraghian, Kyoung-Rok Cho, O. Kavehei, Soon-Ku Kang, D. Abbott, and

Sung-Mo Steve Kang. Memristor mos content addressable memory (mcam):

Hybrid architecture for future high performance search engines. Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, 19(8):1407–1417,

Aug 2011.

[16] V.V. Fedorov, M. Abusultan, and S.P. Khatri. An area-efficient ternary cam

design using floating gate transistors. In Computer Design (ICCD), 2014 32nd

IEEE International Conference on, pages 55–60, Oct 2014.

[17] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Moham-

mad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anas-

tasia Ailamaki, and Babak Falsafi. Clearing the clouds: A study of emerging

scale-out workloads on modern hardware. In Proceedings of the Seventeenth In-

ternational Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS XVII, pages 37–48, New York, NY, USA,

2012. ACM.

[18] Alexandre P. Ferreira, Miao Zhou, Santiago Bock, Bruce Childers, Rami Mel-

hem, and Daniel Mossé. Increasing pcm main memory lifetime. In Proceed-

ings of the Conference on Design, Automation and Test in Europe, DATE ’10,

pages 914–919, 3001 Leuven, Belgium, Belgium, 2010. European Design and

Automation Association.

[19] R. F. Freitas and W. W. Wilcke. Storage-class memory: The next storage

system technology. IBM J. Res. Dev., 52(4):439–447, July 2008.

124

[20] B Gamache, Z Pfeffer, and S Khatri. A fast ternary CAM design for IP net-

working applications. In IEEE International Conference on Computer Com-

munications and Networks (ICCCN), pages 434–439, 2003.

[21] Hongliang Gao and Chris Wilkerson. A dueling segmented lru replacement al-

gorithm with adaptive bypassing. In JWAC 2010-1st JILP Worshop on Com-

puter Architecture Competitions: Cache Replacement Championship, 2010.

[22] Jayesh Gaur, Mainak Chaudhuri, and Sreenivas Subramoney. Bypass and

insertion algorithms for exclusive last-level caches. In Proceedings of the 38th

Annual International Symposium on Computer Architecture, ISCA ’11, pages

81–92, New York, NY, USA, 2011. ACM.

[23] M. Ghosh and H. H. S. Lee. Smart refresh: An enhanced memory controller

design for reducing energy in conventional and 3d die-stacked drams. In 40th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO

2007), pages 134–145, Dec 2007.

[24] James R. Goodman. Using cache memory to reduce processor-memory traf-

fic. In Proceedings of the 10th annual international symposium on Computer

architecture, ISCA ’83, pages 124–131, New York, NY, USA, 1983. ACM.

[25] Q Guo, X Guo, Y Bai, and E Ipek. A resistive TCAM accelerator for data-

intensive computing. In MICRO’11, pages 339–350, 2011.

[26] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comput.

Archit. News, 34(4):1–17, September 2006.

[27] Intel haswell. http://ark.intel.com/products/81061/

Intel-Xeon-Processor-E5-2699-v3-45M-Cache-2_30-GHz. 2014.

125

[28] International Technology Roadmap for Semiconductors (ITRS) Working

Group. International Technology Roadmap for Semiconductors (ITRS), 2009

Edition, 2009.

[29] Yasuo Ishii, Mary Inaba, Kei Hiraki, et al. Cache replacement policy using

map-based adaptive insertion. In JWAC 2010-1st JILP Worskhop on Computer

Architecture Competitions: Cache Replacement Championship, 2010.

[30] Aamer Jaleel, Eric Borch, Malini Bhandaru, Simon C. Steely Jr., and Joel

Emer. Achieving non-inclusive cache performance with inclusive caches: Tem-

poral locality aware (tla) cache management policies. In Proceedings of the

2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO ’43, pages 151–162, Washington, DC, USA, 2010. IEEE Computer

Society.

[31] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer. High

performance cache replacement using re-reference interval prediction (rrip). In

Proceedings of the 37th Annual International Symposium on Computer Archi-

tecture, ISCA ’10, pages 60–71, New York, NY, USA, 2010. ACM.

[32] Andhi Janapsatya, Aleksandar Ignjatović, Jorgen Peddersen, and Sri

Parameswaran. Dueling clock: Adaptive cache replacement policy based on

the clock algorithm. In Proceedings of the Conference on Design, Automa-

tion and Test in Europe, DATE ’10, pages 920–925, 3001 Leuven, Belgium,

Belgium, 2010. European Design and Automation Association.

[33] N. D. E. Jerger, E. L. Hill, and M. H. Lipasti. Friendly fire: understanding the

effects of multiprocessor prefetches. In 2006 IEEE International Symposium on

Performance Analysis of Systems and Software, pages 177–188, March 2006.

126

[34] Xiaowei Jiang, Asit Mishra, Li Zhao, Ravishankar Iyer, Zhen Fang, Sadagopan

Srinivasan, Srihari Makineni, Paul Brett, and Chita R. Das. Access: Smart

scheduling for asymmetric cache cmps. In High Performance Computer Archi-

tecture (HPCA), 2011 IEEE 17th International Symposium on, pages 527–538,

2011.

[35] Norman P. Jouppi. Cache write policies and performance. In Proceedings of

the 20th Annual International Symposium on Computer Architecture, ISCA

’93, pages 191–201, New York, NY, USA, 1993. ACM.

[36] Dawoon Jung, Yoon-Hee Chae, Heeseung Jo, Jin-Soo Kim, and Joonwon Lee.

A group-based wear-leveling algorithm for large-capacity flash memory storage

systems. In Proceedings of the 2007 International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems, CASES ’07, pages 160–164.

ACM, 2007.

[37] Samira Khan and Daniel A. Jiménez. Insertion policy selection using decision

tree analysis. In Computer Design (ICCD), 2010 IEEE International Confer-

ence on, pages 106–111, 2010.

[38] Samira Khan, Yingying Tian, and Daniel A. Jiménez. Sampling dead block

prediction for last-level caches. In Microarchitecture (MICRO), 2010 43rd An-

nual IEEE/ACM International Symposium on, pages 175–186, 2010.

[39] Samira Manabi Khan, Yingying Tian, and Daniel A. Jimenez. Sampling dead

block prediction for last-level caches. In Proceedings of the 2010 43rd Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO ’43, pages

175–186, Washington, DC, USA, 2010. IEEE Computer Society.

[40] M. Kobayashi, T. Murase, and A. Kuriyama. A Longest Prefix Match Search

Engine for Multi-Gigabit IP Processing. In Proc. IEEE ICC, volume 3, 2000.

127

[41] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting

phase change memory as a scalable dram alternative. In Proceedings of the

36th Annual International Symposium on Computer Architecture, ISCA ’09,

pages 2–13, New York, NY, USA, 2009. ACM.

[42] Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek,

Onur Mutlu, and Doug Burger. Phase-change technology and the future of

main memory. Micro, IEEE, 30(1):143–143, 2010.

[43] Chang Joo Lee, Onur Mutlu, Eiman Ebrahimi, Veynu Narasiman, and Yale N

Patt. Dram-aware last-level cache replacement. Technical Report TR-HPS-

2010-007, High Performance Systems Group, Department of Electrical and

Computer Engineering, The University of Texas at Austin, 2010.

[44] Chang Joo Lee, Onur Mutlu, Veynu Narasiman, Eiman Ebrahimi, and Yale N

Patt. Dram-aware last-level cache writeback: Reducing write-caused interfer-

ence in memory systems. Technical Report TR-HPS-2010-002, High Perfor-

mance Systems Group, Department of Electrical and Computer Engineering,

The University of Texas at Austin, 2010.

[45] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H. Noh, Sang Lyul Min,

Yookun Cho, and Chong Sang Kim. On the existence of a spectrum of policies

that subsumes the least recently used (lru) and least frequently used (lfu) poli-

cies. In Proceedings of the 1999 ACM SIGMETRICS international conference

on Measurement and modeling of computer systems, SIGMETRICS ’99, pages

134–143, New York, NY, USA, 1999. ACM.

[46] Hsien-Hsin S. Lee, Gary S. Tyson, and Matthew K. Farrens. Eager writeback

- a technique for improving bandwidth utilization. In Proceedings of the 33rd

128

annual ACM/IEEE international symposium on Microarchitecture, MICRO 33,

pages 11–21, New York, NY, USA, 2000. ACM.

[47] K-W. Lee, K-S. Kim, S.-W. Shin, S.-S. Lee adn J.-C. Om, G.-H. Bae, and J.-

H. Lee. Modeling of Vth shift in NAND flash-memory cell device considering

crosstalk and short-channel effects. IEEE Transactions on Electron Devices,

55(4):1020–1026, Apr 2008.

[48] Han-Lin Li, Chia-Lin Yang, and Hung-Wei Tseng. Energy-aware flash memory

management in virtual memory system. Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, 16(8):952–964, Aug 2008.

[49] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura. S-

parkbench: A comprehensive benchmarking suite for in memory data analytic

platform spark. In Proceedings of the 12th ACM International Conference on

Computing Frontiers, CF ’15, pages 53:1–53:8, New York, NY, USA, 2015.

ACM.

[50] M Lin, J Luo, and Y Ma. A low-power monolithically stacked 3D-TCAM. In

IEEE International Symposium on Circuits And Systems. IEEE, 2008.

[51] Linux Swap Prefetching. Con Kolivas, https://lwn.net/Articles/153353/.

[52] Fang Liu, Fei Guo, Yan Solihin, Seongbeom Kim, and Abdulaziz Eker. Charac-

terizing and modeling the behavior of context switch misses. In Proceedings of

the 17th International Conference on Parallel Architectures and Compilation

Techniques, PACT ’08, pages 91–101, New York, NY, USA, 2008. ACM.

[53] Fang Liu and Yan Solihin. Understanding the behavior and implications of

context switch misses. ACM Trans. Archit. Code Optim., 7(4):21:1–21:28, De-

cember 2010.

129

[54] Gabriel H Loh. Extending the effectiveness of 3d-stacked dram caches with

an adaptive multi-queue policy. In Microarchitecture, 2009. MICRO-42. 42nd

Annual IEEE/ACM International Symposium on, pages 201–212. IEEE, 2009.

[55] Gabriel H. Loh and Mark D. Hill. Supporting very large dram caches with

compound-access scheduling and missmap. Micro, IEEE, 32(3):70–78, 2012.

[56] Robert Love. Linux Kernel Development. Addison-Wesley Professional, 3rd

edition, 2010.

[57] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-

off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:

Building customized program analysis tools with dynamic instrumentation. In

Proceedings of the 2005 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI ’05, pages 190–200, New York, NY,

USA, 2005. ACM.

[58] Anthony J. McAuley and Paul Francis. Fast Routing Table Lookup Using

CAMs. Proc.IEEE INFOCOM, pages 1382–1391, March-April 1993.

[59] Jagan Singh Meena, Simon Min Sze, Umesh Chand, and Tseung-Yuen Tseng.

Overview of emerging nonvolatile memory technologies. Nanoscale research

letters, 9(1):1–33, 2014.

[60] Inc Meta-Software. HSPICE user’s manual. Campbell, CA.

[61] Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and Parthasarathy

Ranganathan. Enabling efficient and scalable hybrid memories using fine-

granularity dram cache management. IEEE Comput. Archit. Lett., 11(2):61–64,

July 2012.

130

[62] Pierre Michaud. The 3p and 4p cache replacement policies. In JWAC 2010-1st

JILP Worshop on Computer Architecture Competitions: Cache Replacement

Championship, 2010.

[63] Daniel Molka, Daniel Hackenberg, Robert Schone, and Matthias S. Muller.

Memory performance and cache coherency effects on an intel nehalem multi-

processor system. In Proceedings of the 2009 18th International Conference on

Parallel Architectures and Compilation Techniques, PACT ’09, pages 261–270,

Washington, DC, USA, 2009. IEEE Computer Society.

[64] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,

Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David

Stafford, Tony Tung, and Venkateshwaran Venkataramani. Scaling memcache

at facebook. In Proceedings of the 10th USENIX Conference on Networked

Systems Design and Implementation, nsdi’13, pages 385–398, Berkeley, CA,

USA, 2013. USENIX Association.

[65] K Pagiamtzis and A Sheikholeslami. Content-addressable memory (CAM)

circuits and architectures: a tutorial and survey. IEEE Journal of Solid-State

Circuits, 41(3):712–727, March 2006.

[66] B. Park, J Song, E Cho, S Hong, J Kim, Y Choi, Y Kim, S Lee, C Lee, D Kang,

D Lee, B Kim, Y Choi, W Lee, J Choi, K Suh, and T Jung. 32nm 3-bit 32gb

NAND flash memory with DPT (double patterning technology) process for

mass production. In IEEE Symposium on VLSI Technology, pages 125–126,

June 2010.

[67] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo Kim, and Joonwon

Lee. Cflru: A replacement algorithm for flash memory. In Proceedings of the

2006 International Conference on Compilers, Architecture and Synthesis for

131

Embedded Systems, CASES ’06, pages 234–241, New York, NY, USA, 2006.

ACM.

[68] T. B. Pei and C. Zukowski. VLSI Implementation of Routing Tables: Tries

and CAMs. Proc. IEEE INFOCOM, 2:515–524, 1991.

[69] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood,

and Brad Calder. Using simpoint for accurate and efficient simulation. In

Proceedings of the 2003 ACM SIGMETRICS international conference on Mea-

surement and modeling of computer systems, SIGMETRICS ’03, pages 318–

319, New York, NY, USA, 2003. ACM.

[70] PTM website. http://ptm.asu.edu/.

[71] Moinuddin K. Qureshi, Michele M. Franceschini, and Luis A. Lastras-Montano.

Improving read performance of phase change memories via write cancellation

and write pausing. In High Performance Computer Architecture (HPCA), 2010

IEEE 16th International Symposium on, pages 1–11, 2010.

[72] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and Joel

Emer. Adaptive insertion policies for high performance caching. In Proceedings

of the 34th Annual International Symposium on Computer Architecture, ISCA

’07, pages 381–391, New York, NY, USA, 2007. ACM.

[73] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi S-

rinivasan, Luis Lastras, and Bulent Abali. Enhancing lifetime and security

of pcm-based main memory with start-gap wear leveling. In Proceedings of

the 42Nd Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 42, pages 14–23, New York, NY, USA, 2009. ACM.

132

[74] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi S-

rinivasan, Luis Lastras, and Bulent Abali. Enhancing lifetime and security

of pcm-based main memory with start-gap wear leveling. In Proceedings of

the 42Nd Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 42, pages 14–23, New York, NY, USA, 2009. ACM.

[75] Moinuddin K. Qureshi and Gabriel H. Loh. Fundamental latency trade-off in

architecting dram caches: Outperforming impractical sram-tags with a simple

and practical design. In Proceedings of the 2012 45th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO ’12, pages 235–246,

Washington, DC, USA, 2012. IEEE Computer Society.

[76] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache partitioning:

A low-overhead, high-performance, runtime mechanism to partition shared

caches. In Proceedings of the 39th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, MICRO 39, pages 423–432, Washington, DC, USA,

2006. IEEE Computer Society.

[77] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. Scalable

high performance main memory system using phase-change memory technolo-

gy. In Proceedings of the 36th Annual International Symposium on Computer

Architecture, ISCA ’09, pages 24–33, New York, NY, USA, 2009. ACM.

[78] Moinuddin K. Qureshi, David Thompson, and Yale N. Patt. The v-way cache:

Demand based associativity via global replacement. In In Proceedings of the

32nd Annual International Symposium on Computer Architecture, pages 544–

555, 2004.

[79] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital Inte-

grated Circuits. Prentice Hall, 2nd edition, 2003.

133

[80] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. Page placement in

hybrid memory systems. In Proceedings of the International Conference on

Supercomputing, ICS ’11, pages 85–95, New York, NY, USA, 2011. ACM.

[81] Synopsys Raphael Interconnect Analysis Tool.

http://www.synopsys.com/Tools/TCAD/InterconnectSimulation/Pages/Raphael.aspx.

[82] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. Dramsim2: A cycle

accurate memory system simulator. IEEE Comput. Archit. Lett., 10(1):16–19,

January 2011.

[83] University of Oregon Route Views Project. http://www.routeviews.org.

[84] Daniel Sanchez and Christos Kozyrakis. Vantage: scalable and efficient fine-

grain cache partitioning. In Proceedings of the 38th annual international sym-

posium on Computer architecture, ISCA ’11, pages 57–68, New York, NY, USA,

2011. ACM.

[85] ScaleMP vSMP Foundation FLX. http://www.scalemp.com/media-hub/events/ismc/.

[86] Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S. Lee. Security refresh:

Prevent malicious wear-out and increase durability for phase-change memory

with dynamically randomized address mapping. In Proceedings of the 37th

Annual International Symposium on Computer Architecture, ISCA ’10, pages

383–394, New York, NY, USA, 2010. ACM.

[87] Devavrat Shah and Pankaj Gupta. Fast Updating Algorithms for TCAMs.

IEEE Micro, 21:36–47, Jan/Feb 2001.

[88] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris Wilk-

erson, Seth H. Pugsley, and Zeshan Chishti. Efficiently prefetching complex

134

address patterns. In Proceedings of the 48th International Symposium on Mi-

croarchitecture, MICRO-48, pages 141–152, New York, NY, USA, 2015. ACM.

[89] H Shim, S Lee, B Kim, N Lee, D Kim, H Kim, B Ahn, Y Hwang, H Lee,

J Kim, Y Lee, H Lee, J Lee, S Chang, J Yang, S Paark, S Aritome, S Lee,

K Ahn, G Bae, and Y Yang. Highly reliable 26nm 64Gb MLC E2NAND

(embedded-ECC and enhanced-efficiency) flash memory with MSP (memory

signal processing) controller. In IEEE Symposium on VLSI Technology, pages

216–217, June 2011.

[90] B. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le, R. Cargnoni, J. A.

Van Norstrand, B. J. Ronchetti, J. Stuecheli, J. Leenstra, G. L. Guthrie, D. Q.

Nguyen, B. Blaner, C. F. Marino, E. Retter, and P. Williams. Ibm pow-

er7 multicore server processor. IBM Journal of Research and Development,

55(3):1:1–1:29, 2011.

[91] Sivashankar and S. Ramasamy. Design and implementation of non-volatile

memory express. In Recent Trends in Information Technology (ICRTIT), 2014

International Conference on, pages 1–6, April 2014.

[92] Stephen Somogyi, Thomas F. Wenisch, Anastassia Ailamaki, Babak Falsafi,

and Andreas Moshovos. Spatial memory streaming. In Proceedings of the 33rd

Annual International Symposium on Computer Architecture, ISCA ’06, pages

252–263, Washington, DC, USA, 2006. IEEE Computer Society.

[93] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed prefetching:

Improving the performance and bandwidth-efficiency of hardware prefetchers.

In 2007 IEEE 13th International Symposium on High Performance Computer

Architecture, pages 63–74, Feb 2007.

135

[94] Jeffrey Stuecheli, Dimitris Kaseridis, David Daly, Hillery C. Hunter, and L-

izy K. John. The virtual write queue: Coordinating dram and last-level cache

policies. In Proceedings of the 37th Annual International Symposium on Com-

puter Architecture, ISCA ’10, pages 72–82, New York, NY, USA, 2010. ACM.

[95] Ranjith Subramanian, Yannis Smaragdakis, and Gabriel H. Loh. Adaptive

caches: Effective shaping of cache behavior to workloads. In Proceedings of

the 39th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 39, pages 385–396, Washington, DC, USA, 2006. IEEE Computer

Society.

[96] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared cache

memory. J. Supercomput., 28(1):7–26, April 2004.

[97] K. Takeuchi. Novel co-design of nand flash memory and nand flash controller

circuits for sub-30 nm low-power high-speed solid-state drives (ssd). Solid-State

Circuits, IEEE Journal of, 44(4):1227–1234, April 2009.

[98] Dominique Thiebaut and Harold S. Stone. Footprints in the cache. ACM

Trans. Comput. Syst., 5(4):305–329, October 1987.

[99] J Wade and C Sodini. A ternary content addressable search engine. IEEE

Journal of Solid-State Circuits, 24(4):1003–1013, Aug 1989.

[100] J Wakerly. Digital Design Principles and Practices. Prentice Hall, 1990.

[101] Zhe Wang, Samira M. Khan, and Daniel A. Jiménez. Improving writeback effi-

ciency with decoupled last-write prediction. In Computer Architecture (ISCA),

2012 39th Annual International Symposium on, pages 309–320, 2012.

[102] B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel. A yield-optimized latch-type

sram sense amplifier. In Solid-State Circuits Conference, 2003. ESSCIRC ’03.

136

Proceedings of the 29th European, pages 409–412, Sept 2003.

[103] Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, Ram Rajamony, and Yuan

Xie. Hybrid cache architecture with disparate memory technologies. In Proceed-

ings of the 36th Annual International Symposium on Computer Architecture,

ISCA ’09, pages 34–45, New York, NY, USA, 2009. ACM.

[104] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri, Manu

Awasthi, Zvika Guz, Anahita Shayesteh, and Vijay Balakrishnan. Performance

analysis of nvme ssds and their implication on real world databases. In Proceed-

ings of the 8th ACM International Systems and Storage Conference, page 6.

ACM, 2015.

[105] Wei Xu, Tong Zhang, and Yiran Chen. Design of spin-torque transfer mag-

netoresistive ram and cam/tcam with high sensing and search speed. Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on, 18(1):66–74,

Jan 2010.

[106] HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael A. Harding,

and Onur Mutlu. Row buffer locality aware caching policies for hybrid memo-

ries. In Computer Design (ICCD), 2012 IEEE 30th International Conference

on, pages 337–344, 2012.

[107] Ying Zheng, B. T. Davis, and M. Jordan. Performance evaluation of exclusive

cache hierarchies. In Proceedings of the 2004 IEEE International Symposium

on Performance Analysis of Systems and Software, ISPASS ’04, pages 89–96,

Washington, DC, USA, 2004. IEEE Computer Society.

[108] Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexandra Fedorova,

and Manuel Prieto. Survey of scheduling techniques for addressing shared re-

137

sources in multicore processors. ACM Comput. Surv., 45(1):4:1–4:28, December

2012.

138

