Long-Term Memory for Cognitive
Architectures

A Hardware Approach Using Resistive Devices

Peng Wang
B.E. (Hons.)

School of Electrical and Electronic Engineering

University of Adelaide

This thesis is submitted for the degree of
Doctor of Philosophy

THE UNIVERSITY

of ADELAIDE

November 2018

ii

Supervisors:

Dr. Braden Phillips
Prof. Michael Liebelt
Dr. Brian Ng

© 2018
Peng Wang

g7y THE UNIVERSITY
oADELAIDE

Declaration

I certify that this work contains no material which has been accepted for the award of any
other degree or diploma in my name in any university or other tertiary institution and, to the
best of my knowledge and belief, contains no material previously published or written by
another person, except where due reference has been made in the text. In addition, I certify
that no part of this work will, in the future, be used in a submission in my name for any other
degree or diploma in any university or other tertiary institution without the prior approval of
the University of Adelaide and where applicable, any partner institution responsible for the

joint award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being
made available for loan and photocopying, subject to the provisions of the Copyright Act
1968.

The author acknowledges that copyright of published works contained within this thesis
resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the
web, via the University’s digital research repository, the Library Search and also through web
search engines, unless permission has been granted by the University to restrict access for a

period of time.

I acknowledge the support I have received for my research through the provision of an

Australian Government Research Training Program Scholarship.

Acknowledgements

I would like to convey my deepest gratitude to my supervisors Braden Phillips, Brian Ng and
Michael Liebelt. I greatly benefited from Braden’s guidance and ‘cunning plans’ in research
and enjoyed his sense of humour as well as all the stories he shared. Brian Ng gave me useful
suggestions at the beginning of both my undergraduate and PhD study, and Michael Liebelt

was always supportive and willing to correct my papers throughout the years.

I acknowledge the contributions of Nate Derbinsky who generously helped me set up
the word sense disambiguation experiment. My thanks also extend to Francis Li, Jesse
Frost, Mostata Wasiuddin Numan and Yansong Gao for their four year’s mutual support,

complaining and insightful discussions in the school office.

I also would like to pass my thanks to the two anonymous examiners for their review and

suggestions.

The following fellow researchers have made my coffee break and lunch time enjoyable
and rewarding at the University of Adelaide: Nick Lawrence, Cheng Zhao, Chengjun Zou,
Wendy Suk Ling Lee. I am also grateful for many friends outside the university, who saved
me from my dull hotel life at the beginning of my study in Adelaide.

Finally, I owe the biggest thanks to the support of my Mum and Dad who believed that
my undergraduate study in Australia is the best investment in their lives. Their love and

guidance have always been with me in whatever I pursuit.

And to my beloved Jiamei. Thank you for all you have done.

Abstract

A cognitive agent capable of reliably performing complex tasks over a long time will acquire
a large store of knowledge. To interact with changing circumstances, the agent will need to
quickly search and retrieve knowledge relevant to its current context. Real time knowledge
search and cognitive processing like this is a challenge for conventional computers, which

are not optimised for such tasks.

This thesis describes a new content-addressable memory, based on resistive devices, that
can perform massively parallel knowledge search in the memory array. The fundamental
circuit block that supports this capability is a memory cell that closely couples comparison
logic with non-volatile storage. By using resistive devices instead of transistors in both the
comparison circuit and storage elements, this cell improves area density by over an order
of magnitude compared to state of the art CMOS implementations. The resulting memory
does not need power to maintain stored information, and is therefore well suited to cognitive

agents with large long-term memories.

The memory incorporates activation circuits, which bias the knowledge retrieval process
according to past memory access patterns. This is achieved by approximating the widely
used base-level activation function using resistive devices to store, maintain and compare
activation values. By distributing an instance of this circuit to every row in memory, the
activation for all memory objects can be updated in parallel. A test using the word sense
disambiguation task shows this circuit-based activation model only incurs a small loss in

accuracy compared to exact base-level calculations.

A variation of spreading activation can also be achieved in-memory. Memory objects are
encoded with high-dimensional vectors that create association between correlated representa-
tions. By storing these high-dimensional vectors in the new content-addressable memory,
activation can be spread to related objects during search operations. The new memory is
scalable, power and area efficient, and performs operations in parallel that are infeasible in

real-time for a sequential processor with a conventional memory hierarchy.

Table of Contents

List of Figures xiii
List of Tables xvii
Nomenclature Xix
1 Introduction 1
1.1 Cognitive Architectures 2
1.2 The Processor/Memory Split 2
1.3 ACognitive Memory e 5
1.4 Original Contributions 7
1.5 ThesisOutline e 8
2 Introduction to Memristive Long-Term CAMs 11
2.1 Long-Term MemoryinSoar 11
2.2 Limitations of Current Memory Systems 22
2.3 Content-Addressable Memory, . 24
2.4 Resistive Devices e e 29
2.5 Summary and Conclusion 36
3 Content-Addressable Memory Using Memristors 37

3.1 Related Work e 39

x | Table of Contents

3.2
3.3
3.4
3.5

Memory Cell
Memory Array Organisation and Operations
Memory Array: Experiments and Analysis

Summary and Conclusion L.

4 A2S-2RTCAM

4.1
4.2
4.3
4.4
4.5

A Review of Crossbar-Based RRAMs
A TCAM Using 1S-IRRRAMCells
Energy and Delay of Large CAMs
Higher-Level Improvements

Summary and Conclusiono

5 Activation Circuits

5.1
5.2
53
54
5.5

Related Work
Timestamp with Digital Memristors
Analog Activation Circuits
Simulations and Estimations L 0oL

Summary and Conclusion

6 Memristive Spreading Activation

6.1
6.2
6.3
6.4

Background
ANew Approach
Memory Building Blocks oo oo

Summary and Conclusion

7 Summary and Conclusion

7.1
7.2
7.3

Summary L e e
Conclusion e e e

Future Research

57
58
60
69
74
82

85
87
88
91
95
101

103
104
109
112
123

Table of Contents | xi

Publications 131
Appendix A: Details of The Word Sense Disambiguation Task 133
Appendix B: An Introduction to Hyperdimensional Computing 139

References 145

List of Figures

2.1
2.2
2.3
24

25
2.6
2.7

2.8
2.9
2.10
2.11
2.12

2.13

3.1

The Soar architecture [4] 12
A semantic tree network containing memory elements in Table 2.1 14
Soar’s processing cycle based on knowledge search 19

The performance gap between uniprocessor and DRAM main memory [8];
the performance gap is measured as the difference in the time between single

processor memory requests and the latency of a DRAM access 23
The flow of an associative search using RAM (a) and CAM (b) 24
A conceptual view of CAMs oo 25

CAM cell structure based on SRAM storage: (a) 10-transistor NOR cell; (b)
9-transistor NAND cell; shaded areas show the comparison circuits, hence
the pull-down paths created in a comparison operation; SRAM bitlines are

omitted for simplicity. 26
A memristor conceptual and physical structure 30

Memristor model schematics that produce results in corresponding equations 31

The progress of RRAM chip density inrecentyears 33
A small RRAM array composed of 1T-1Rcells 33
The basic schematic and truth table of IMP for realising memristive Boolean

logics e 34
The transition of a memristor’s states on conditions specified by pandg . . 35

The two tier memory system in cognitive architectures with the search block
intheshadedarea L. 38

xiv | List of Figures

3.2
3.3

34

3.5
3.6
3.7

3.8
3.9
3.10
3.11
3.12

4.1

4.2

43
4.4
4.5

4.6
4.7
4.8
4.9

Memory cell structureo 41

Two sensing schemes: (a) single-ended large signal sensing using a voltage
divider in the cell; (b) small signal sensing by directly connecting a column
ofcellstoabitline. L 43

Examples of match (a, b, ¢) and mismatch (d) situations in bit-comparison
operations, with discharging paths highlighted in the shaded areas 45

CAM matchline organisation with the referencerow 46
A characterised cell circuit illustrating the discharging path in search operations 47

An illustration of matchline sensing window and its timing with the Done

signalinasearchcycle oL 48
Hierarchical bitline illustration 50

Schematic of the hierarchical bitline network with access transistors of a cell 51

Search performance of A 64 x 128 array 52
Sensing window with different LRS-HRS pairs 53
A timing diagram for a single two-stage read operation 54
RRAM arrays that uses transistors as access devices in (a) and pure memristor-

based RRAM arraysin(c)and (d) 59

Equivalent circuits for characterising leakage current in the crossbar-based
RRAM array: (a) the equivalent circuit of single cell read; (b) the equivalent
circuit of multiple cells read in parallel; (c) the abstracted circuit model for

simulation 60
IS-1R I-V curves: left as measured in [82]; right as simulated for this design 61
CAM matchline organisation with a referencerow 62

The pull-down paths highlighted in shaded cells discharge matchline voltages

inasearch 64
An illustration of the timing in a read operation 65
Simulated waveforms ina searchcycle 67
Energy consumption of simulated 128-bit wide TCAM with various sizes . 68

Layout of routing tracks and memristors in the crossbar structure 69

List of Figures | xv

4.10
4.11
4.12

4.13

4.14

4.15

4.16

4.17

5.1
5.2

53
54
55
5.6

5.7
5.8
59

5.10

The equivalent circuit of a CAM cell (a) and a selectline unit (b) 71
An example TCAM in a bank arrangement which consists of four subbanks 73

An illustration of a three-stage pipeline each of which represents a CAM
SEEMENT e e e e e e e e e e e 75

An example of a selective precharge scheme pipelined in three stages; active

rows represent precharged matchlines, otherwise they remain inactive in search 77

An illustration of a memory with pipelined matchlines and hierarchical
selectlines; shaded areas are two examples of local segments which contain
a subset of matchlines of asegment. 78

A conceptual view of a CAM with pre-computation [38]; the shaded areas

indicate a match and the bold solid lines indicate a precharge activity 79

An example of the simplified comparison circuits of four cells along a

matchline; only one pull-down path is used for a search in each cell [38] . . 80

Simplified cells in a four-bit wide memory demonstrates search operations;
red ‘O’s and arrows illustrate the low resistance pull-down paths, and the

shaded area indicates an exact match 81

Block diagram of the semantic memory in cognitive architectures 86

Timestamp circuit using a circular buffer of registers. (|x|,, indicates x mod

w; a; j = 1 indicates memory object i was accessed at time interval j.) . . . 88
Timestamp circuitusing SRAMs 90
Timestamp circuit using memristors 91
Logic duplications (a) and shift operations(b) 91

Block diagrams of activation circuits for storing, updating and comparing

activation values L. oL 93
An activation cell (AC) for storing and maintaining a row’s activation value 94
A comparison cell (CC) for finding the most activerow 95

Comparison of BLA and memristor activation in the case of uniform memory

ACCESS '+ v v v e e e e e e e e s 96

Memristor-based activation values for four rows with different access patterns 96

xvi | List of Figures

5.11

5.12
5.13

6.1
6.2
6.3
6.4
6.5
6.6

6.7
6.8
6.9
6.10

6.11

Single row energy consumption (average) in activating, deactivating and read

OPErations v v i i e e e e e e 98
A rough area estimation of the activation circuits using lambda-based rules . 98
The setup of a querying process inthe WSDtask 99
An activation spreading example in a simple semantic network 105
A diagram of several animals, their phylogenetic ordering and habitats [142] 111

An example of object clustering according to activation after the first search 113

Procedures of retrieval operations in a biased long-term memory 114
The memory circuitblocks L oL 115
A memory with three CAM blocks; shift registers are used to shift out search

results from each memory block tothecounter 115
The datapath from a 10-bit buffer to activation search 116
A memristor crossbar memory for storing spreading activation 119
The binary counter and comparator tree 120
The iterative construction of a single comparator propagating results from

the MSBtothe LSB 120
Similarity up-counting that finds the maximum 122

The binomial distribution PDF for k = 10000 and p=0.5 140

List of Tables

2.1
2.2
2.3
24
2.5

3.1

3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5

5.1
5.2

A table of semantic memory elements
Tables indexing a simple semantic memory
General binary CAMencoding,
General TCAM encodings i

A Survey of metal-oxide memristive devices

A comparison of CMOS memory technologies with some key parameters in
three different memory types according the the report in [91] from 2010. . .

4T-2R cellencoding
Comparison of sensing margin with various memory widths
Energy performance using different memristor models

Energy performance of different memory sizes (fixed width: 128 bits)

TCAMdataencoding e
Matchline voltage sensing margin(mV)
Soar semantic memory data size (bits) inaTCAM
A breakdown of the estimation on energy and delay of asearch

Data encoding of simplified cells in binary CAMs with pre-computation . .

A 4-bit timestamp for calculating activation values

Results after updating 4 rows’ activations over a 1 second period; the ranking

is based on the proposed activationresults

xviii | List of Tables

5.3
54

6.1
6.2
6.3

Reproduced results of three bias mechanisms in WSD retrieval tasks 100
Performance comparison to three memory retrieval bias in [31] 100
An example of cognitivesearch oL 105
An example of a 12-bit majority-sum operation 108
A sample of memory objects and their representations 111

Nomenclature

Roman Symbols

A-E

memory objects

the base-level activation function

an approximation of the B

the total number of memory objects

the thickness of a memristor’s medal-oxide layer

a memristor

memory depth

a search cue

an inverted index list of memory objects containing o
resistance of a device

the resistance ratio between the LRS and HRS states
a selector

a transistor

memory width

a memristor’s state variable

a wildcard

an unknown value that could be 0, 1 or a wildcard

xx | Nomenclature

Greek Symbols

o — € augmentations of memory objects

& the free space permittivity

&y, the permittivity of tantalum oxide

A half the feature size of a manufacturing process
Superscripts

d the decay factor in B

Subscripts

access; the time when the memory element was accessed for the i-th time
cond conditionally applied voltage

current the current cycle

i,j subscript indexes

pd the propagation delay

read voltage read

ref areference matchline

reset voltage RESET

set voltage SET

sp a sensing point

th threshold

Other Symbols

pIMPgq p implies g

M = [x,y| the majority-sum function on inputs x and y
smem an interface to semantic memory in Soar

xS-yR a memory cell structure contains x number of selectors and y number of memristors

Nomenclature | xxi

xT-yR a memory cell structure contains x number of transistors and y number of memristors
Acronyms / Abbreviations

Al Artificial Intelligence

BE Bottom Electrode

BLA Base-Level Activation

CAM Content-Addressable Memory

CMOS Complementary Metal-Oxide-Semiconductor
DRAM Dynamic Random Access Memory
HRS High Resistance State

LRS Low Resistance State

LTI Long-Term Identifier

ML Matchline

PIM Processing in Memory

RC Resistor-Capacitor

RRAM Resistive Random Access Memory
SA Sense Amplifiers

SL Selectline

SRAM Static Random Access Memory

STT (Spin-Torque Transfer Devices

TCAM Ternary Content-Addressable Memory
TE Top Electrode

WL Wordline

WME Working Memory Element

WSD Word Sense Disambiguation

WTA Winner-Take-All

Chapter 1
Introduction

An Artificial Intelligence (Al) capable of general, human-like behaviours will require large
stores of knowledge. Like a human it will need to remember facts about its world, skills
and strategies that have proved effective, and experiential memories. If the Al is to be
self-contained, mobile and of a human scale then this memory will need to be compact,
dissipate only modest amounts of power, and persist over long time frames. To respond
in real-time to unexpected events in a changing environment the Al will need to be able
to quickly search its memories to retrieve knowledge relevant to its current circumstances.

Microelectronic memories to satisfy these requirements are the goal of this thesis.

Al is transforming our lives, but until very recently, there has been little interest in
designing microelectronic hardware specifically for Al In the last few years that has suddenly
changed and major industry players have begun to race to produce chips that better serve the
computational requirements of Al than general purpose computers. For example, the latest
1Phone includes a neural engine optimised for machine learning algorithms [1] and Google
has released details of the custom integrated circuits it uses in its data centres to accelerate

neural network computations [2].

Although both of the previous examples, Apple’s neural engine and Google’s tensor pro-
cessing unit, accelerate the numerical computations required for a neural network approach
to Al, a general human-like Al will also need to store and retrieve symbolic knowledge. At
present, Al agents such as the digital assistants Siri or Cortana, make use of the huge storage
and computational resources of distributed data centres to handle symbolic queries. How can

all this be miniaturised for a mobile, self-contained system?

2 | Introduction

1.1 Cognitive Architectures

Cognitive architectures are one of the important approaches towards symbolic processing
for AI. Important examples such as ACT-R and Soar demonstrate the potential of cognitive
architectures by successfully modelling psychological characteristics of humans [3, 4]. This
thesis uses examples from cognitive architectures (mainly Soar) to dictate memory system
requirements (see Chapter 2.1) and evaluate the performance of the new memory designs in

experiments.

Memories in Soar model human memory by providing information of past experience
stored in episodic memory, or general facts about the world in the semantic memory. Human
memory is more than just a mechanistic account of information storage and retrieval [5].
Likewise, long-term memory in cognitive systems is expected to quickly examine the avail-
able knowledge in a retrieval and apply the right knowledge according to the circumstances.
Currently Soar uses an optimised SQLite database to query the information from these
two memories. The performance of knowledge retrieval has been impeded by the software
implementation sitting on conventional computers [6]. A specialised hardware architecture
is needed to sustain the progress of Soar. Cognitive architectures are essentially knowledge
based; the capabilities of cognitive agents largely depend on these agents’ knowledge size
and their abilities to use these knowledge. Thus, one of the many problems that will be faced
in designing such a hardware architecture is the need to quickly and intelligently retrieve
information from a large knowledge store, much more quickly and intelligently than is likely

to be possible with conventional von Neumann computers.

1.2 The Processor/Memory Split

Maintaining the separation of fast processing logic and slow memories in von Neumann
computers has lead to what is known as the memory wall [7]. Programs in a von Neumann
computer need to continuously fetch and store data which results in significant data movement
across the memory hierarchy. Meanwhile, a large amount of power is lost on the memory
access path. The memory access path is normally a shared bus with limited bandwidth such
that a program’s data needs to queue to be sent to processors for any computations [8, chap.
2]. Thus, in spite of the large caches, multi-core processors, and out-of-order superscalar
pipelines in modern computers, long latency and limited bandwidth to main memory have

dominated performance for applications such as database and matrix computations [9].

1.2 The Processor/Memory Split | 3

Also, the execution path of the von Neumann architecture is inherently sequential and
hence cannot keep up with the computation requirements of new applications [8, chap. 2].
For instance, a typical smoothing operation on an image involves averaging neighbouring
pixel values. For four pixel neighbourhoods, an image with only one thousand by one
thousand pixels needs four million such operations. Traditional methods process the data
sequentially and often introduce address handling overhead and read latency due to the

location addressable nature of the memory.

To hide the long memory latency and sustain the performance, more prediction logic and
deeper cache hierarchies are deployed, but this approach is becoming increasingly expensive
and inefficient [10]. As the amount of data increases in new applications, memory locality
principles are becoming less effective because data access follows less regular patterns
[11, 10]. Thus, it is becoming more difficult for the prediction logic to place data at the right
memory place in the hierarchy. Deeper cache hierarchies lead to longer memory latency in
the worst case [9], and can therefore exacerbate the system performance in solving some
emerging data-intensive problems. A natural question thus arises from this discussion: would

it be beneficial to move computations closer to memory?

1.2.1 Examples of Processing in Memory

To address the inefficiency in von Neumann architectures, researchers in computer architec-
ture have tried to bridge the performance gap between processor and memory by bringing
computation closer to memory. A review of this topic recognised two categories of efforts:
(1) providing an intermediate interface (2) integrating logic circuits to the memory chip. The

second concept is also called processing in memory (PIM).

Examples of proposals at the intermediate layers (often memory controller) between pro-
cessor and memory include the logic-in-memory-computer [12], a high-speed interface buffer
between host processor and memory; Impulse [13], a smart controller offering prefetching
functions and improvements on cache and bus utilisations; Centaur [14], a memory con-
troller on the Power8 processor that is equipped with a 16 MiB cache to improve memory
throughput and latency performance.

A more ambitious effort has sought to move computation all the way into the memory.
The main benefit of this approach comes from taking advantage of the available bandwidth
when memory and logic are on the same chip. Examples from the literature include Terasys
[15], which has a single bit ALU that is able to perform specific operations on a row of the

local memory; IRAM [9, 16], which merged microprocessor and dynamic random access

4 | Introduction

memory on the same chip and achieved a significant improvement on bandwidth and latency.
HMC [17], anew memory structure enabled by recent progress in 3D stacking technologies,
addresses density issues with PIM chips by connecting logic and memory layers using new
interconnects.

Massively parallel processing may be considered extreme examples of the PIM approach.
A massively parallel machine can have thousands of processing nodes, each with local
memory. It is included in the review to show the potential of a distributed parallel architectures
with PIM characteristics. These machines usually provides inter-node communication
facilities in addition to memory and logic such that multiple processing nodes can be highly
connected to form large arrays [18]. Although massively parallel architectures are often
limited by the communication overhead in sending and recieving data [19, chap. 4], their
highly connected network of processors is more like a human brain than location-addressable
machines with centralised processors. We know very little about how the brain works, but it
is generally believed that the computation elements and memory elements in a brain must be
closely and densely integrated along all of its three dimensions. One way to approach this
is to devise a functional element to match the symbolic data and connections of a semantic
network, such that a collection of the highly connected elements in an integrated network
is able to perform a specific semantic processing task more efficiently. An important early
example of this approach was the Connection Machines designed by Thinking Machines
Corporation in Massachusetts in the 1980’s and early 90’s, which were based on the concept
of a brain-like thinking machine [20].

Let us come back to the image processing example to illustrate the potential of parallel
architectures with PIM capabilities. To match the data structure in image processing, it would
be best to put a processor at each pixel of the image so that calculation at the pixel level can
be computed locally. With processors allocated to each pixel, it is possible for the smoothing
task to reduce the number of sequential operations from four millions to just four, in which

all the pixels operate concurrently to share their own values to their four adjacent neighbours.

One common characteristic of all these prior mentioned architectures is their ability to
address data directly without much location address handling and with low memory access
latency. This is called content addressability [10] and can be achieved by distributing many

small, cheap, efficient computing elements within the memory.

1.3 A Cognitive Memory | 5§

1.3 A Cognitive Memory

Memories in cognitive architectures model human memory by providing information of past
experience or general facts about the world. It has been estimated that a cognitive memory
would acquire 96 GiB of data in a few days when performing in a simple knowledge domain
[6]. To expand applications, a main focus in the cognitive architecture community is to
provide cognitive agents with access to large knowledge stores [21-23]. We believe that to
model the human brain, advanced agents will persist for longer time and acquire a larger
amount of information to be able to work across multiple knowledge domains in a dynamic

environment.

At present, simple agents with limited long-term memory capacity (e.g. up to about
400 MiB) are able to search the memory with access times enabling real-time response.
This is not the case for agents with large long-term memories. As knowledge continues
to accumulate, the search time increases super-linearly [6]. Moreover, current software
implementations do not apply bias mechanisms to all memory items to prioritise potentially
useful information when multiple similar search results are found [5, 24]. Nor do they support
real-time priming mechanisms to bias knowledge to the current context [21]. However, these
bias mechanisms are essential to a cognitive agent’s ability to retrieve relevant information

from vast quantities of noisy data in a similar way as our brain does.

Recognising these needs, I hypothesise that parallelism at the data level enabled by
new PIM schemes offers a solution to search problems over large knowledge stores. Take
semantic memory for example. Semantic concepts are lists of records, and a search is carried
out by comparing a query against these records. Thus, the core operation of a search is the
bit-level comparison. Similar to the image processing example, it would be ideal if compact
comparison circuits could be distributed into every bit cell in the memory, such that once a
query word is broadcast to every memory word, all bit cells in memory will be compared
against query data locally at the same time. Theoretically, such a search will always be
able to finish within constant time. A natural implementation of this kind of memory is the
content-addressable memory (CAM).

The use of content-addressable memory speeds up the search process dramatically, and
the saved time could be used for more biology-inspired knowledge retrievals. Optimised
database implementations retrieve semantic information from a modest knowledge base
in the millisecond range, which is the typical time scale of human cognition. A goal of
this study is to propose hardware memories with in-memory parallel searches that can

achieve informational retrieval periodically in microseconds or even nanoseconds for the

6 | Introduction

same retrieval complexity. Bias mechanisms in the retrieval process need to reference results
generated from search operations to calculate data in memory biasing. Content-addressable

memory is able to supply these data earlier, which leaves more time to bias mechanisms.

It is also possible to integrate hardware-based memory bias mechanisms in or close to
memory. Cognitive memories model human memory by dynamically updating a record for
every memory concept after a memory access. For large knowledge stores containing millions
of concepts, the updating activities will involve a great deal of data shuttling through memory
hierarchies. By providing hardware support in the memory, the associate computations are
decoupled from the centralised processor, thus records of individual memory concepts can be
computed simultaneously at their residing locations. Both the CAM and the bias mechanisms
mentioned need a large number of computing elements integrated in memory. The trade-off
is: with more functions built in to the memory, it is difficult to densely pack a massive amount

of memory cells in a single chip with current CMOS technologies.

Emerging nanoscale resistive devices (e.g. memristors) show promising features in the
implementation of information computing and storage [25, 10]. This thesis thus, explores
the possibilities of merging the memristive computing elements with the memristive storage
elements into a homogeneous memory. For instance, the versatility of memristive devices
offer the chance to replace the bulky and power-hungry CAM bit cells, as well as the built-in
comparison circuits (refer to Chapter 4). Another interesting use of memristors is in the
design of analog circuits for the heuristic biasing mechanisms (refer to Chapter 3 and Chapter
6). Indeed, these functions does not have a strict requirement for data precision, and a
compact approximate implementation based on memristors will significantly benefit the
computation efficiency. Often, these new circuits only consist of a few memristors, and the
data stored in these memristors is able to persist for years without power, which is beneficial

to long-lived agents.

The aim of this research is to explore architectural techniques and circuit techniques
using emerging resistive devices, for supporting fast, efficient and intelligent knowledge
retrievals from large cognitive memories. A hardware memory like this will contribute to the

core component of many human memory inspired Al systems.

1.4 Original Contributions | 7

1.4 Original Contributions

This thesis describes a new hardware approach to the long-term memory in cognitive archi-
tectures, which performs memory search and cognitive processing operations using a flat

resistive content-addressable memory.

Such a memory needs to be optimised according to the processing requirements of
cognitive memories. I analysed the knowledge retrieval process in Soar’s long-term memory
running on conventional computers and identified key performance bottlenecks including the
memory search and bias mechanisms in large long-term memories. With the understanding
of these higher level requirements, I decided to approach the new cognitive memory using
content-addressable memories, which can perform in-memory parallel searches. To the best
of my knowledge, the idea of a hardware based content-addressable memory optimised for
long-term memory retrievals is new for cognitive architectures. The arguments to support

this approach can be found in Section 2.1 and Section 2.2.

However, content-addressable memories using CMOS technologies are prone to cell area
and power overheads. A list of existing improvements using emerging devices is reviewed in
Section 2.3 and Section 3.1. Memristive devices are particularly promising in this regard, and
hence I enhanced a memristive CAM cell using techniques drawn from CMOS technology,
as described in Section 3.2. The enhancements described in this thesis include: matchline
sense amplifiers for quick sampling and a reference matchline for supporting variation-aware
timing control (Section 3.3.2); and hierarchical bitline circuits for scalable and leakage-free
read operations (Section 3.3.3). The device level characteristics have a major impact on
search latency and sensing margins. I observed that memristors with a low resistive state and
a high internal resistance ratio will give a lower latency and a wider sensing margin (Section
3.3.1 and Section 3.4). This work was presented at the 16th IEEE International Conference
on Nanotechnology, with the title of “A Design and Evaluation of Content-addressable

Memory using Redox-based Memristive Devices” [26].

To further reduce the cell area overhead, I developed a new CAM cell based on recently
published selector-based resistive random access memories (RRAM) in Chapter 4 (Section
4.2). An in-depth analysis is given on how to use RRAM cells to build CAM cells that are
able to perform either binary or ternary CAM searches. The new cell has the potential to
achieve over an order of magnitude density improvement compared with the state of the art
CMOS CAM designs (refer to Section 4.2.5). To maintain the memory array area efficiency,
I proposed a new bit-serial read scheme that reuses matchlines and sense amplifiers in search

operations (Section 4.2.4). In a case study involving four million memory elements, the new

8 | Introduction

memory is estimated to retrieve the required information within several microseconds (refer
to Section 4.3).

Apart from storing and retrieving knowledge, long-term memories also perform cognitive
processing such as biasing the retrieval process using activation values. 1 investigated
dedicated activation circuits using memristors in Chapter 5. The digital version of the
activation circuits reduce the storage area of previously proposed CMOS design (Section
5.2). I then approached the activation circuit using analog memristors, which are able
to approximate some critical dynamics of activation functions when appropriate voltage
biases are applied (Section 5.3). These circuits, to the best of my knowledge, are the first
circuits proposed to support activation functions using memristors. A case study using
word sense disambiguation tasks suggests that this approach only has a small penalty in
reliability compared with other biasing models (refer to Section 5.4.2). However, this
approach computes activation values of every memory object in parallel. Also, it represents
a step towards a memory closely coupling computation and memory elements. This work
is presented in Electronics Letters, with the title of “Memristor-based activation circuit for

long-term memories in cognitive architectures” [27].

For Chapter 6, I proposed a memory model to support a variant of the spreading activation
scheme. Memory objects use the high-dimensional representation as suggested by [28] for a
holographic declarative memory. This memory model is entirely new and combines building
blocks developed in previous chapters (Section 6.2). To the best of my knowledge, it is
also the first memory model that introduces high-dimensional computing to the design
of spreading activation schemes. A key building block of the memory model is a circuit
that finds a list of candidate objects strongly correlated to the search cue. I proposed an
up-counting circuit that finds all objects within a threshold of the object with the strongest
correlations (Section 6.3.2). This is done without communicating between the memory

objects so the delay is independent of the depth of the memory.

1.5 Thesis Outline

This thesis begins with identifying long-term memory requirements in cognitive architectures.
To meet the requirements, I propose several memory circuits based on memristors, each of
which either enhances or implements a particular function of the new memory, leading to a
hardware-based memory optimised for storing and retrieving a large amount of long-term

knowledge.

1.5 Thesis Outline | 9

Chapter 2 reviews the limitations of the current software implementation of cognitive
long-term memories and motivates the development of a hardware-supported cognitive
memory that is scalable to a large knowledge base. The search for a memory with fast look-
up capabilities leads us to content-addressable memories whose quick search comes with a
large area and power overhead. The chapter reviews memristor features at the device level in
search of possible solutions for CAM’s overhead, and also more efficient implementations
for other memory functions such as base-level activation (BLA) and spreading activation
mechanisms. The understanding of the top-level architectural requirements, CAM circuit
characteristics and memristor’s device level behaviours leads to the development of new

circuits, techniques and ideas in the following chapters.

Chapter 3 focuses on the design of memristive content-addressable memory, which is the
core component of the proposed memory in the thesis. The reduction of the area and power
overhead of cells is the foremost objective of this new CAM. This chapter begins with review
of CAM improvements using emerging devices. It then proposes a new memory cell which
replaces the complementary storage bits using static random access memory (SRAM) with
two complementary memristors and keeps two access transistors in the cell for comparison
operations. Memory operations based on this new memory cell are explained, including
read, write and bit-comparison operations. A series of circuits are enhanced for memory
search at the array level. This includes: matchline sensing circuits, reference matchlines,
and hierarchical bitlines which are used to address the possible leakage current flowing into
inactive matchlines in a read operation. The impact of device level characteristics on search

performance is also discussed.

Chapter 4 continues to reduce the CAM cell overhead by building upon existing resistive
RAMs based on crossbar structures; a special encoding scheme groups two RAM cells into a
complementary CAM cell which is able to perform binary or ternary comparison operations.
The memory array uses the same peripheral circuits developed in Chapter 3 except for the
read circuit. To improve the memory array area efficiency, this chapter proposes a bit-serial
read scheme which reuses matchlines and sense amplifiers of search operations. Such a
read operation eliminates the need for extra sensing facilities along the highly capacitive
selectlines. The proposed CAM array is further developed to form large memory blocks that
are able to store four million memory items. This large memory is evaluated in a case study
for area and power estimations. The remainder of this chapter discusses and concludes the

applicability of existing circuit techniques for improving large CAM performance.

Chapter 5 introduces a memory bias mechanism based on a compact activation circuit,

which is used to predict the likelihood that a memory object will be accessed in the next

10 | Introduction

retrieval process. Faithful activation models tend to have computational issues in current
software implementations. The proposed activation circuit computes an approximated version
of the BLA model by exploiting analog behaviours of memristors; a single memristor is used
to store multiple values over time. In operation, the activation values can be dynamically
updated according to memory access patterns. A comparison circuit is used to find the
memory object with the highest activation value. A case study is conducted to verify the
effectiveness of this approximated version of BLA. The word sense disambiguation task
is used in the case study where I replace the agent’s default activation function with the
proposed version modelled in software. The significance of this approach is that the proposed
circuits support a parallel computation distributed in the long-term memory with a small

accuracy penalty.

Chapter 6 describes an activation spreading scheme to prime the memory to the cur-
rent context. The chapter begins with an introduction of high-dimensional computing and
spreading activations. High-dimensional representation provides useful tools to distinguish
or correlate different memory objects. The proposed scheme spreads activation according to
the correlation information between objects: a search cue, serving as the activation source,
spreads activation to correlated memory objects according to the correlation values generated
from the associative memory which is implemented using CAMs. The culmination of this
chapter is a memory design incorporating circuits discussed in previous chapters, providing a
possibility of closely coupling search, spreading, and bias functions with the content of the

memory.

Chapter 7 summarises the work and contributions presented in this thesis. It also provides

an outlook of possible future research improvements and directions.

Chapter 2

Introduction to Memristive Long-Term
CAMs

2.1 Long-Term Memory in The Soar Cognitive Architec-

ture

A cognitive architecture is a general computation structure that realises a set of basic operation
principles of cognition. Agents based on cognitive architectures are able to learn to perform
many different tasks when supplied with a baseline of knowledge. The state of art cognitive
architectures have demonstrated abilities to perform many human-like behaviours and are
seen as one of the most promising approaches in the race to develop artificial agents with
human-like intelligence [29, 30]. This thesis focuses on one of the most well-developed
and advanced cognitive architectures, Soar, to analyse its memory module requirements and
show the need for optimised hardware support as the scale and complexity of cognitive tasks

increase.

A top-level system diagram of Soar is shown in Figure 2.1. The cognitive architecture
consists of memories, such as episodic and semantic memories, and functional modules,
such as a module to realise episodic learning. Memory in a cognitive architecture is typically
arranged in two tiers: working memory and long-term memory [4]. Working memory serves
as Soar’s short-term knowledge and holds information that is directly relevant to the current
problem-solving situation. Working memory contains top-level entities called objects, which
are constructed from working memory elements (WMEs). WME:s are also referred to as

augmentations of an object. Objects are organised in a single, connected, directed graph, as

12 | Introduction to Memristive Long-Term CAMs

Simbolic Long-Term Memories

Procedural Semantic Episodic
|:||={>|:|
|:||={>|:|

— I

Reinforcement

Episodic
Learning

Learning

Chunking Semantic
Learning
Y Y

Simbolic Working Memory

2 p g
2 g8
o 2&
8 53
<< o
|—| —
| Perceptual ST™M Perceptual LTM |
Perception \(Mental ImageryH Action J
Body
Y

Figure 2.1 The Soar architecture [4]

illustrated in Figure 2.2; each WME contains a specific piece of information arranged as an
Identifier-Attribute-Value structure. The terminologies involved are shown as follows:

* Identifier (short-term Identifier): each object has a unique and permanent ID as a
letter-number pair.

« Attribute: the attribute in a WME is a symbolic constant!.
* Value: the value of a WME is a symbolic constant or an identifier.
* Symbolic Constants: are ASCII strings, integers or floating point values.

Working memory is in some ways analogical to cache in a conventional computer system,
where, when more information is required for processing the current task, the system will
issue a command to fetch the missing information from a lower level memory store such
as main memory or even storage disks. In cognitive architectures, contents in low level
memory stores only change slowly over time and are not accessed for every processing
cycle. These lower level memory stores are called long-term memory in Soar. Among all the

long-term memory modules in Soar, only semantic memory will be analysed in detail in this

ISpecial cases for Attribute, Value and Symbolic Constant are omitted for the sake of clarity in this general
treatment

2.1 Long-Term Memory in Soar | 13

thesis. Semantic memory was chosen because it is a good case study, representative of the

requirements of the other long term memories, but simple enough as a first step.

2.1.1 Semantic Memory

Soar’s semantic memory is a large knowledge repository for general facts about the agent’s
world. These facts can be either pre-loaded to a Soar agent from a knowledge base, or
gradually acquired by a Soar agent through its interactions with its environment. In either
case, semantic knowledge is independent from the context of when the observation was made
[24].

The knowledge representation in semantic memory is similar to that in working memory,
with a long-term Identifier-Attribute-Value structure. Such a data structure can also be
visualised as a table with fixed tags (fields) and some data words, as illustrated in Table 2.1.

New terminologies involved in semantic memory are as follows:

* Long-Term Identifier (LTI): semantic memory indexes its objects by assigning to
each object a permanent long-term identifier. To disambiguate from working memory

identifiers, these are often written as a letter-number pair prefaced by a @ symbol.

* Activation: each semantic memory object has an associated level of activation stored
as a number to bias the memory retrieval operation. The activation value serves as a
simple multi-match resolver that, when multiple objects match the search cue, resolves
the candidate with the highest activation value.

Table 2.1 A table of semantic memory elements

LTI Attribute Value Activation

@Al "Name" "Fruit"
@AI HTypeH llBlH
@Al HTypeH HC2IV

@B1 "Name" "Apple"
@B1 "Variety" "Fuji"
@B1 "Variety" "Gala"
@C2 "Name" "Pear"
@C2 "Variety" "Nashi"
@C2 "Variety" "Anjou"

—_ 0 LW DN DN = = e

14 | Introduction to Memristive Long-Term CAMs

Fruit

variety

Fuji Apple Gala Pear Nashi Anjou

Figure 2.2 A semantic tree network containing memory elements in Table 2.1

2.1.2 Storing and Retrieving Semantic Knowledge

Working memory objects can be stored to semantic memory and semantic memory objects
can be retrieved into working memory. Objects are stored and retrieved with only their
immediate augmentations, i.e., one layer deep down the working memory tree. A special
subtree in working memory, smem, serves as an interface to semantic memory. An agent
can store, load or search semantic memory by adding command objects into the smem tree.

Results from semantic memory also appear as objects in the smem tree.

Knowledge Store

An agent stores an object from working memory to semantic memory by adding a store
attribute and a value to the smem tree, which creates a smem-store-value WME. The value of
the WME is the identifier of the object to be saved to semantic memory, where all WMEs
with this identifier are encoded and stored. If the value of the smem-store-value WME is
already an LTI, semantic memory will replace and update the existing memory elements
associated to this LTT; short-term identifiers assigned to the value of the smem WME will be

converted to LTIs and stored as new objects in semantic memory.

2.1 Long-Term Memory in Soar | 15

Knowledge Retrieval

There are two types of knowledge retrievals from semantic memory: non-cue-based retrieval
and cue-based retrieval. Knowledge retrieval in both types is initiated by creating appropriate
commands in the smem tree and completed after the search operation is performed in semantic

memory.

Non-cue-based retrieval: the command specifies an LTI in the smem tree. The retrieval
performs a search for a semantic memory object with an LTI exactly matching the specified
LTI in the smem tree. The corresponding object is then loaded into working memory; all

augmentations of this object are created in working memory as new WMEs.

Cue-based retrieval: the command to semantic memory performs a search for an LTI
by including search cues composed of WME:s that describe augmentations of an object in
semantic memory. Different types of cue may be created by an agent when needed, and this

leads to different match requirements:
¢ A cue WME with a constant value denotes an exact match of attribute and value.

¢ A cue WME with an LTT as its value denotes an exact match of all three fields: LTI,
attribute and value.

¢ A cue WME with a short-term identifier as its value denotes an exact match of attribute,

but with any value.

Note that in non-cue-based retrieval, only the LTI field is searched for the exact match,
whereas in cue-based retrieval, only the attribute and value fields are involved in the search

depending on the pattern of search cues.

2.1.3 Capacity Requirements

How big a memory would be sufficient in cognitive systems? Soar currently uses an optimised
version of an SQLite database to store its semantic memory. The largest semantic store
reported for Soar is a 400 MiB database, which contains over 820000 structures for holding
212000 word senses in a word sense disambiguation (WSD) task. An estimation of cognitive
memory shows that a year of episodic memory is likely to accumulate as large as 42 TiB
data from the agent’s experience [6]. Although the required amount of knowledge to
achieve human-like intelligence still remains unknown, current research efforts on semantic

knowledge bases suggest that for more complex tasks that need human-level intelligence,

16 | Introduction to Memristive Long-Term CAMs

advanced agents will need a significantly larger knowledge base than the WordNet 3 lexicon
database in the WSD task or any of the existing structured semantic knoweldge bases.
These include ResearchCyc, currently containing over 7 million assertions (facts and rules);
Freebase, containing 23 million entries; NELL, holding 50 million candidate beliefs; and
IBM’s Watson, equipped with 32 servers, each with 256 GiB semantic memory.

Although there are no fixed requirements for memory capacity, the memory size is
expected to be significantly larger than the current semantic store and will scale up with the
increase of task complexity and the extension of applications. With this capacity requirement,
the designs of physical memory structure and memory functions need to consider scalability
issues; the memory cell circuits that grow with memory capacity need to have a footprint as
small as possible, and the computation, communication demand and power requirements of

memory functions also need to be scalable with memory size.

2.1.4 Timing Requirements

Searching a large memory to find objects that match a cue is time consuming. To formulate
the problem, consider a naive search mechanism that traverses through the semantic store,
comparing a search cue with each semantic memory object, returning the object that matches
all the constraints imposed by the search cue. Without a clever indexing scheme, the average
time cost of this approach increases linearly with the size of the memory and the complexity
of the search cue. Using a notation from [31], where E represents memory objects in
the semantic store, Q represents a search cue, and a represents the average number of
augmentations in a memory object, the worst case scenario is thus expressed as: a|E||Q|,
where the letter with vertical bars represents the number of item in the set. The number
of augmentations (constraints) in a search cue does not vary much and the largest cue
deliberately constructed in the prior Soar experiments contains ten augmentations. Based
on the capacity requirements analysed in the previous section, it is very likely that E will

dominate the delay of a retrieval process in semantic memory.

The current Soar implementation uses a specialised indexing method to optimise the speed
of a query to its semantic memory. Separate tables called inverted indexes, are created to
store lists of semantic memory objects, sorted by augmentations; intuitively, this index inverts
the forward index in which data are stored as a list of augmentations per object. Consider
a simple example of semantic memory, where the memory objects and augmentations are
denoted by letters A-E and Greek letters & — €. The indexing structure for data retrieval in

semantic memory is shown in Table 2.2.

2.1 Long-Term Memory in Soar | 17

Table 2.2 Tables indexing a simple semantic memory

Forward index table Inverted index table
A:a,B,€,0 o: [A, B, C|

B: o, € B: [A, E]

C:a,y v: [C, D]

D: 7,6 e: [A, B]

E: 3,0 0: [D, E]

To demonstrate a retrieval process from the simple semantic memory, a search cue is
constructed, which consists of two augmentations & and €. A successful retrieval needs
to fetch any semantic memory objects that contain these two augmentations. Using Q to
represent the query plan for this retrieval task, thus O[] and Q[€] refer to the object lists
[A, B, C] and [A, B], currently sorted in the alphabetical order. A retrieval algorithm will
successfully locate both objects A and B as candidates. The activation bias mechanism will
attach a numerical value to each object and use this activation value to sort each object list.
Thus, with activation value 1.23 and 1.01 for object B and A respectively, the Q[o] and Q[€]
lists will be sorted as [B(1.23), A(1.01)]. According to the search algorithm provided, the
object B will be retrieved unambiguously. The data structure behind this simplified algorithm
and indexed tables is a B+ tree for speeding up the search process.

Algorithm 1 The retrieval algorithm in the inverted table

1: procedure SEARCH((, €) > find a memory item that has & and €
2 idx <0

3 while idx < sizeof(Q]a]) do
4 pop O[at][idx]

5: if Q|allidx] € Q[e] then
6: return Success!
7 else

8 idx < idx+1

9 end if

10: end while

11: return Failure!

12: end procedure

By only examining the retrieval algorithm in Algorithm 1, factors that affect the query
time include the size of the candidate element list in Q, the complexity of the search cue.
Empirical data from the literature suggests that retrieval time tends to increase linearly with
the size of candidate elements in cases where no match for the cue is found. This agrees

with the observation above that in the worst case a search requires a scan through the entire

18 | Introduction to Memristive Long-Term CAMs

list. Furthermore, more complex search cues with larger numbers of augmentations lead
to more nested search loops, and hence take more time to resolve. In an experiment with
Soar running on a high-performance desktop computer, the time cost is about 0.19 ms for
single-augmentation cues, and is 0.5 ms for large cues with ten augmentations [31]. It is
difficult to predict the impact of the size of knowledge base on the size of the candidate

element list.

Using activation to bias memory retrievals comes at significant computational cost. For a
retrieval, activation values for all candidate objects need to be evaluated and sorted. Also,
activation values need to be updated after every operation. Existing optimisations focus on
limiting the scale of activation updating scheme, the size of the sorting list, or the passive
sorting operation which only operates when it is on demand by the query [5, 32]. The

requirements for activation mechanisms are covered in Section 2.1.5 on page 20.

The speed of a memory system is measured in latency and throughput of tokens moving
through the system. Ideally, memory access time (latency) is expected to be as small as
possible. In von Neumann computers, memory access time has been a limiting factor to the
overall computer performance, often referred to as the von Neumann bottleneck or memory
wall as discussed in Section 2.2. To examine the impact of long-term memory retrieval on
real-time performance of cognitive systems, it is worthwhile of looking at the operations in

Soar’s processing cycle and the available time budget for semantic knowledge retrieval.

Analogous to the instruction fetch and instruction execution processing cycle in the von
Neumann architecture, Soar’s processing cycle is called a decision cycle, and every decision
cycle, Soar chooses and applies one operator based on the current situation and the goal as
shown in Figure 2.3. At the end of the output phase of the decision cycle, semantic memory
starts processing the smem command structure and then updates the result structure with
results from the store and retrieval operation. Currently, multiple parallel retrievals are not
supported, and only one type of retrieval is allowed to issue each decision cycle. Multiple
store commands can be issued in parallel and are processed at the end of each decision cycle.
However, timing constraints are less a concern for storing semantic knowledge because
storing an object in semantic memory does not involve complex computations and it is

expected to take a constant time as memory size increases.

A Soar agent is called reactive if it is able to react appropriately to changes in its
environment in real-time. To remain reactive, the Soar convention is to maintain a decision
cycle time of less than 50 ms [4]. Hence, a natural question to ask is how much delay
budget is left for knowledge retrieval operation in semantic memory? The existing SQLite

realisation of Soar’s semantic memory was tested with a knowledge base containing 185000

2.1 Long-Term Memory in Soar | 19

Knowledge Operator Operator
Search Decision Application

Processing Cycle

Figure 2.3 Soar’s processing cycle based on knowledge search

word senses, which requries about 400 MiB of memory. The query time varied depending on
the bias mechanism. The maximum query times (latency) for this experiment are reported in
[22, 31], where host computers with 2.8 GHz Core 2 Extreme and 2.8 GHz Intel Core i7 were
used respectively. The results varied according to the activation scheme used. For simple
activation schemes, the query times were bounded by 0.9 ms; for more complex activation
schemes it was about 1.34 ms; for the full-fledged activation scheme, the time taken increased
to 13.25 ms, and this delay continues to grow with the size of the semantic memory. These

activations schemes are covered in Section 2.1.5.

Thus, the proposed long-term memory must meet the timing requirements by allowing a
real-time agent to

* make a complex decision in 50 ms,
* retrieve useful information using an effective biasing scheme, and

* retrieve an item from a semantic store containing tens of millions of items every
millisecond or better.

A Proposal for a Hardware Semantic Memory Module

From the perspective of throughput, I hypothesise that more parallelism can be introduced to
boost the number of retrieval outputs per unit time and hence improve the overall performance
of the system. From the architectural level, the semantic memory retrieval process can be
decoupled from the decision cycle, so that a real-time agent in a complex decision making
process is able to retrieve an item from a large semantic store in parallel with other processes
in its decision cycle. To be more specific, one may expect a hardware-based memory solution

that is able to perform activation updating, sorting, and data comparison in parallel with other

20 | Introduction to Memristive Long-Term CAMs

processes. For example, by the time a search generates a list of candidates in the retrieval

process, the activation values have already been computed in memory.

Down to a lower level, a search cue with multiple augmentations can be split and passed
to multiple forward indexed memory blocks; each augmentation is compared to the memory
store in parallel to avoid nested search loops, and a sum operation at the second stage
will determine if a match is found. Like the extra inverted tables required in database
implementation, this will inevitably lead to an increase of memory space. However, it allows
memory designers to trade space for speed or possibly energy savings as it is more pipelined
than the SQLite database version that requires sequential iterations through candidate lists in

the inverted table.

At the level of individual forward indexed memory blocks, massively parallel search can
be realised by using a distributed array processing scheme instead of the centralised one.
Such an array processing scheme is often referred to as content-addressable memory, where
many data match steps occur in parallel and in place. A more detailed discussion is in Section
2.3.

2.1.5 Activation Requirements

Advanced cognitive architectures, such as Soar and ACT-R include long-term memories in
which the retrieval of knowledge is biased by how recently or frequently that knowledge
has been accessed. This is achieved by maintaining an activation value for every object
in memory. When a memory search matches multiple objects, the one with the highest

activation is returned first.

Base-level activation (BLA) is an activation scheme based on human psychology studies
and it has been proved a successful part of the knowledge search process in ACT-R [33]. It
has also proved a more effective memory bias mechanism than simple alternative schemes
in Soar’s long-term memory experiments [34, 31]. For Base-level activation in Soar, the

activation B of an element in semantic memory is calculated as:

n

B=InY) 1 (2.1)
i

i = fcurrent — faccess_i

* d is a decay parameter.

2.1 Long-Term Memory in Soar | 21

* fcurrent 18 the current cycle measured in decision cycles since the agent began execution.

* faccess_i Tepresents the time (in decision cycles since execution) when the memory

element was accessed for the i-th time.

The temporal distance #; changes in every memory cycle (a decision cycle when memory
is accessed) hence the activation B for every memory elements changes every memory cycle.
This imposes a computation problem since even the long past access history ¢; is part of the
calculation. The number of times a memory element may be accessed during an agent’s

lifetime is unbounded, and this is a problem for scalability.

To summarise, base level activation presents a problem for Soar because of the unbounded
storage for storing every access history and the computation complexity of updating and

calculating a large number of activation values.

Currently Soar offers an option to use an approximation to BLA as defined in [33].
However, even this simplified scheme still “has severe performance detriment” according
to the Soar manual. A locally efficient updating scheme is also available in Soar [32]. It
is local because only a single object is updated per retrieval by assigning a value greater
than the previous largest activation value; efficiency is achieved by caching the largest
activation value to avoid searching the memory store. This optimisation turns away from the
faithful BLA model to a more efficient model as the activation value is mainly determined
by recency instead of a collective effect of frequency and recency as in the original BLA.
Chen et al. [35] observed that the computation of activation in cognitive systems is typically
performed serially outside of the database. Accordingly they proposed an in-database
computation scheme called SemMemDB that exploits the advantages of a unified database
framework combining computation and storage, as well as an existing query optimiser and
execution engine. Still, a significant amount of pre-computation and one-time computation is
required in SemMemDB. Although these optimisations have been confirmed to be effective
in some experiments, they are based on empirical studies of a small number of applications.
An alternative application-independent approach, preferably hardware based, is needed to

efficiently expand the application to more general uses.

This thesis approaches this problem using a hardware-based solution, with the aim to
realise an approximate version of BLA that efficiently achieves semantic memory retrieval
without significant deviation from the behaviour of a full implementation of base-level

activation. This requires the circuit to
* reduce the frequency with which activation values are updated to save power,

* limit the number of objects to be updated,

22 | Introduction to Memristive Long-Term CAMs

* reduce the storage required for calculating the activation, and

* use only simple arithmetic and thereby save power, area, and storage.

2.2 Limitations of Current Memory Systems

A memory designed for a specific application needs to consider the memory access patterns
and the nature of the data involved. As a long-term memory, semantic memory’s storage,
search, and biasing mechanisms present a particular set of requirements. This section
considers how well conventional computing memory systems satisfy the requirements of
a semantic memory. One important limitation of conventional memory systems is that
storage is physically separated from processing. This was covered in the discussion of
the von Neumann bottleneck in Chapter 1. This section covers other characteristics of
current memory systems that limit the performance of semantic memory. These include the
performance gap between processor and memory, the inability to provide a highly parallel

computing, and the volatile nature of RAM.

In the past three decades, the performance of processors has far outpaced memory
performance in terms of speed; processors have been able to make more memory requests
per second, or request more bytes of data per second, than the memory can provide. For
instance, the Intel Core 17 with a 3.2 GHz clock can generate a total peak bandwidth of
409.6 GiBs~!. In contrast, the peak bandwidth of contemporary DRAM:s is only about 6 %
of this bandwidth [8, chap. 2]. As shown in Figure 2.4, the access latency of DRAM has
improved by only a factor of 10 over the lest 30 years. Compare this with the memory request
time of a uniprocessor core, which has increased by a factor of 10,000 over the same period.
Recent multi-core processors have an even higher bandwidth requirements. Memory access
latency and bandwidth have been a performance bottleneck for many applications, and have
led to many designs that exploit exploiting locality principles using caches. Take database
systems for example. Patterson et al. [9] notes that traditional disk-based database systems
on average spend up to 75 % time in the memory hierarchy. Many recent improvements have
focused on the design of better caches, algorithmic improvements for better cache utilisation
and cache-aware data placement [36]. However, these cache dependent improvements have

diminishing returns due to cache’s scalability and power consumption issues [37].

Modern computers are able to execute programs out of order and execute multiple
instructions per clock cycles. However, the centralised processing nature determines that the

sequential execution path remains the same: programs in execution keep track of memory

2.2 Limitations of Current Memory Systems | 23

100 000 e e e e e e e s aa e s a e a e e e e e
10 000
[}
(8]
© 1000
£
1<)
"q:) 100
[a8
10 -
1 4 .
1980 1985 1990 1995 2000 2005 2010

Year

Figure 2.4 The performance gap between uniprocessor and DRAM main memory [8]; the performance
gap is measured as the difference in the time between single processor memory requests and the
latency of a DRAM access

locations, fetch operands, and store results. The parallelism they achieve is limited compared
to the requirements of semantic memory, in which a timely retrieval requires a parallel search
through memory. Each memory object, despite being connected in a semantic network, is
an independent memory entity that has the same possibility of matching a search cue. Also,
each object has an activation value that needs to be recomputed, updated and stored every
cycle [4]. In spreading activation, communications between memory objects also occur.
For a semantic memory containing millions of objects, it is very unlikely that a handful of
centralised processors will be able to manage this level of parallelism through the memory

access hierarchy.

Both static and dynamic RAMs are volatile memories that require power to maintain their
storage. SRAMs are mainly used in caches, and account for 25 % to 50 % of total power
consumption in mobile devices [8]. DRAM’s large size and capacitive nature also put much
stress on power budgets. An analysis of power consumption on smartphones shows that a
128 MiB DRAM can account for 10 % to 58 % of total power consumption depending on the
operating frequency and applications. Modern computers devote most of their transistors to
the memory system [18]. However, only a few memory locations are accessed at any given
time even when a processor is operating continuously. In other words, billions of transistors
are idle, and this results in a huge waste of power, as well as poor utilisation of hardware
resources. These statements are especially true when it comes to long-term memories in
cognitive systems. As the name suggests, these types of memories are expected to store

an enormous amount of knowledge for a long time. An ideal memory for this task would

24 | Introduction to Memristive Long-Term CAMs

retain information even without power. One possible solution that uses memristive devices

as storage elements is presented in Section 2.4.

2.3 Content-Addressable Memory

This section introduces content-addressable memory (CAM), which is a hardware look-up

table with built-in logic to quickly perform search operations [38].

Content-addressable memory is a specific implementation of a general class of memory
known as associative memory. In an associative memory, data is stored, retrieved or modified
based on the content itself instead of an arbitrary memory location. The concept of addressing
by content has been broadly applied to both software and hardware. The best known software
version is a hash table, where objects are located by addresses computed through a hash
function. CAM is a hardware version, based on random access memory (RAM) technology.
As illustrated in Figure 2.6 on page 25, CAM can be regarded as a table of stored data,
usually unsorted. A lookup operation compares a search key against every stored data and
returns the locations of any matching data. CAM provides a facility to compare a search cue
with every stored word simultaneously, and then to access the words that match the cue.

Processor Processor
@ @) @) @
Address Data Search Key Data
RAM CAM
(a) (b)

Figure 2.5 The flow of an associative search using RAM (a) and CAM (b)

To better understand the CAM search operation, it is helpful to compare it with the
location-addressable RAMs as shown in Figure 2.5(a). A case in point is an associative
search. For this discussion, let us assume both RAM and CAM can store the same number
of words of data and both can perform a memory operation within the same clock cycle
time. In a CAM system as illustrated in Figure 2.5(b), the search key is directly passed to
the CAM instead of a reference. The CAM does the low level bit comparison computation
and for small CAMs, a search takes only one clock cycle, irrespective of the number of data

words. The search time in CAM increases only slowly with table size due to electrical effects

2.3 Content-Addressable Memory | 25

such as increased capacitance in data lines. On the other hand, a program is responsible for
finding the result in location-addressable computers. Often, the search process is iterative and
successive; the algorithm relies on successive approximations, such as hierarchical hashing
or binary search, before hitting the best match in the search list in RAM. Each iteration will

read a new data word from RAM, which typically takes one, or more clock cycles.

To summarise a CAM’s search time is independent from the table size since a CAM
searches all stored data words simultaneously. This inherent nature of parallelism provides

larger throughput than its software counterparts and location addressable search engines.

2.3.1 CAM Basics

A CAM consists of an array of memory cells, a peripheral circuitry, and an encoder circuitry;
data words are stored in a mesh of memory cells, which is connected with horizontal match-
lines and vertical selectlines. The peripheral circuitry normally contains search key registers
and matchline sensing circuits. The encoder circuitry has traditionally been implemented as
a priority encoder network to generate the search result, i.e. a single address where the best
match located.

Cue
4 wbits et
Search data | Selectline
IIIIIIIIIIH’/4MatCh'me
Stored element O v
Stored element 1
g Matched location
o
2 | log,N bit
Stored element N-3] Btk
Stored element N-2
Stored element N-1

Figure 2.6 A conceptual view of CAMs

A CAM search operation is performed by driving the selectlines to a voltage level
according to the search cue. Each CAM cell realises a two-input XNOR/XOR circuit with
the stored bit and the search bit as the two inputs. Usually, both stored data and search data
are represented in a complementary form, as shown in Table 2.3.

Each CAM cell stores a pair of complementary bits using an SRAM storage cell as
shown in Figure 2.7. Within the same cell, extra circuits are also integrated for comparing the

connected search bit with the stored bit, as shown in shaded areas in Figure 2.7. Two common

26 | Introduction to Memristive Long-Term CAMs

Table 2.3 General binary CAM encoding

stored data search data
stored value

cell structures are 10-transistor NOR and 9-transistor NAND cells?[39, 38]. NOR cells retain
a high matchline voltage when stored data match the search data from selectlines; a mismatch
creates a pull-down path that discharges the matchline voltage to ground. A NAND cell in
bit-comparison operations turns on the matchline pass transistor in a match, and turns it off
when a mismatch occurs. The matchline voltage of multiple serially connected NAND cells

discharges to ground only when all cells match the search data.

SL: selectline ML: matchline WL: wordline
sL SU SL SL
> ’ 9 >
ML ITI ML
D_ i .
D D
T > —L_rﬂz}n_I
W'— —l_ —l— >
1 > WL
Y Ty Y Y
(a) (b)

Figure 2.7 CAM cell structure based on SRAM storage: (a) 10-transistor NOR cell; (b) 9-transistor
NAND cell; shaded areas show the comparison circuits, hence the pull-down paths created in a
comparison operation; SRAM bitlines are omitted for simplicity.

CAMs have been traditionally designed with binary storage cells for performing exact
data matching. Ternary content addressable memory (TCAM) is a special type of CAM that
offers wildcard operations by allowing the addition of a don’t care value X to both stored
data and search data, such that each cell has three possible values: 0, 1, or X. An X cell
causes a match in bit comparison, and the same applies to search data when a wildcard bit is
present, as shown in Table 2.4. The TCAM in this thesis is defined to allow both stored data
and search data to have wildcards [40]. The use of wildcards can be restricted to only stored

data or search data [38]. It should be noted however, the cross-coupled inverters in a SRAM

2Note that each inverter contains two transistors

2.3 Content-Addressable Memory | 27

Table 2.4 General TCAM encodings

stored data search data search result
value D D value Q O

0 0 1 match
0 01 1 1 0 mismatch

0 0 1 mismatch
I o 1 1 0 match
X 1 1 Z 7 7 match
Z 7 Z X 1 1 match

Z can be 0, 1 or a wildcard X.

cell can not support the special encoding of X, hence two SRAM storage cells are used when
representing wildcards in stored data. A TCAM that only allow the use of wildcards in the
search data is not common in the literature. Such a TCAM does not require extra SRAM
storage but only needs to modify the search logic driving the two selectlines which can be
used to encode the three states: 0, 1, and X. An extensive coverage of CAM and TCAM

operations can be found in [38].

The capability of specifying a wildcard in the search data is particularly relevant for
information retrieval tasks discussed in this thesis: cue-based retrievals pass incomplete
information to the memory which may be rendered as search data with wildcards for a partial
match against memory data. This will be covered in Chapter 3 and Chapter 4.

2.3.2 A Review of CAM Applications

CAMs are attractive in many application domains. One of their major uses is in network
routers, which are responsible for keeping track of incoming packets’ addresses and the
corresponding ports in a routing table with thousands of entries [41]. Another use for CAMs
is in packet classification (network intrusion detection or IP filtering). Network security
features often need to test incoming packets against a set of rules, which in return results
in long latency to perform many string matching operations. CAMs are used to accelerate
this process. Network intrusion detection systems enabled with CAMs are able to operate

securely without long latency [42].

CAMs are also used to build microarchitectural components in modern computers.
Palacharla et al. [43] and Buyuktosunoglu et al. [44] proposed issue queue designs using the
a RAM/CAM hybrid structure, where CAMs are used for determining the required operands

28 | Introduction to Memristive Long-Term CAMs

so that an appropriate instruction can be issued to fill up any &oles in the pipeline due to
prior-cycle issues. Translational look-aside buffers sometimes use CAMs to quickly map
virtual addresses to physical addresses in current computer architectures [45]. CAMs aligned
with SRAM cache-lines are used to accelerate database operations by storing a list of records
into the CAM and the corresponding record identifiers into the SRAM; the CAM under
search commands will quickly return the matching results, which determines the specific
record identifiers [40, 46]. Building on this, CAM provides a hardware-based quick search
solution in the field of data mining, where the core tasks often rely on the counting the

frequency of existing terms in datasets [47].

CAMs, especially TCAMs, have also been employed to reduce power in other systems
such as in the floating-point units inside GPUs, by replacing some of their operations using
CMOS logic for the TCAM realization [48]. For instance, resistive RAMs (RRAMs) are
used to store the result of common operations, and then consequently the re-execution of the
core is replaced by just a search and read inside the TCAMs, which potentially saves power
[49].

One example application in image processing is the Hough Transform computation,
which has high storage requirements and computing complexity. A CAM-based hardware
solution stores the Hough space parameters and performs quick search for voting scanning
lines [50, 51].

FPGAs make extensive use of multiple-input-single-output lookup tables for storing
arbitrary logic functions. CAM has been proposed as a space-saving alternative to current
RAM lookup tables, whose size increases exponentially with the input size of the logic
function [52]. For example, a Boolean equation with three variables requires eight entries in
the lookup table. For equations with a few terms, most of the entries are a waste of space.
Although CAM cells are about twice the size of SRAM cells, the exponential effect of the
input size on the number of entries may mean that the use of CAMs brings a significant area

improvement.

CAMs are also used in some machine learning approaches. Hyperdimensional computing
is a computation scheme used for semantic processing. A core component of this scheme is
the associative memory for finding the nearest-match data in the memory. CAM is a direct
hardware implementation of the required associative memory [53]. Another machine learning
technique, a Self Organizing Map (SOM) is an artificial neural network that provides a way of
representing multi-dimensional input data in a much lower dimensionality for data property
exploration and visualisation [54]. When an input vector is passed in the training process,

every node in the network needs to compare its weight with the input data, after which the

2.4 Resistive Devices | 29

algorithm locates the node (Best-Matching Unit) whose weight best matches the input vector.
This process is iterative and computationally intensive for large networks. CAMs’ capability

to find Hamming distance between two vectors is well suited to this task [55].

2.4 Memristors

In the past decade, a variety of resistive nanoscale data storage devices have been developed
[25, 56-58]. In [56], Strukov and his colleagues suggested their device exhibited the be-
haviour of the theorised fourth basic circuit element, the memristor. Although this claim has
been disputed [59], the term memristor will be used in this thesis as shorthand for any of the
diverse integrated circuit structures that can be made to change their resistance by passing a

current through them.

A range of resistive programmable devices at the nanoscale can be grouped into memris-
tive devices or memristors in short. Memristive devices are typically fabricated in the wire
stack of an integrated circuit using a thin film sandwiched between two metal terminals, as
shown in Figure 2.8. Conductive channels in the thin film can be formed or ruptured by ap-
plying an appropriate potential difference between the terminals. For metal-oxide memristive
devices, the middle layer contains a metal oxide region doped with ion vacancies and an
undoped region with normal metal oxide. By injecting current through the top electrode, the
charged dopants can be forced into or out of the interface region, resulting in resistive change
from one stable state to another state. Often, the change to the resistive state can persist
for years. In this design we have chosen to use metal-oxide memristors over phase-change
devices and spin-transfer torque devices because they have lower observed switching time
and energy than phase-change devices ([58, 60]) and wider resistance range than spin transfer
torque (STT) devices ([60, 61]).

This feature provides mechanisms amenable to writing and storing information. In writes,
for example, an appropriate positive voltage pulse Ve will switch the memristor from its
high resistance state (HRS) to its low resistance state (LRS) to store binary value ‘0’, whereas
a large enough negative voltage pulse Vieser Will reset the memristor to its HRS (i.e.,’1).
Being an emerging technology, no particular variety of memristor has yet become a widely
deployed industry standard. Variants have different parameters to meet different design

requirements.

30 | Introduction to Memristive Long-Term CAMs

i

Metalic Electrode

Metal-Oxide

Metalic Electrode

<«

2

— 50nm —

&

Pt (2 nm)

Ta (11 nm)

Pt (9 nm)

Ta (2 nm)

SiO2 (2 nm)

Si (2 nm)

cross-section

Figure 2.8 A memristor conceptual and physical structure

For the research presented in this thesis I chose to use bidirectional metal-oxide mem-

ristors [62, 63], because of their promising features and emerging popularity in published

research.
Table 2.5 A Survey of metal-oxide memristive devices

Strukov Guan Lee Ho Miao Torrezan Tsai
Year 2008 2008 2010 2010 2011 2011 2013
Feature size 10 nm N/A 30nm 9nm 25 nm 2 uym 5.5 nm
Material TiOx Cu/ZrOx TiOx WOx TaOx TaOx AlOx
Set voltage (V) 1 N/A N/A N/A <2 2 5.5
Reset voltage (V) -1 N/A 2 -2 -3.3 -3.5
Read voltage (V) N/A N/A 0.5 N/A N/A N/A N/A
Rurs () N/A 1E+8 M N/A 1E+5 N/A >10G
Rirs () N/A IE+2 0.67M >10M 1E+2 N/A 10M
Ratio (HRS/LRS) 380 1E+6 N/A N/A 1E+3 N/A 4E+3
Switch time (ns) 100 N/A 10 n N/A <2n ~100n 10n
Capacitance (F) N/A N/A N/A N/A N/A 0.12p N/A
Write endurance N/A N/A 1E+12 1E+8 1E+10 N/A N/A

A survey of memristive devices published in the literature is shown in Table 2.5. The

values in this table were used to derive plausable parameters for the memristor models used

for simulation in this thesis.

2.4 Resistive Devices | 31

2.4.1 Memristor Modelling

The availability of memristor models that accurately reproduce the behavioural results in
simulation is essential to memristor-based circuit designs. A simple memristor model that
closely relates to the theoretical memristor proposed by [64] was published in [56]. The

behaviours are determined by the following equations:

v(t) = RLRS? +RHRS(1_)¥) i(7)
dilr) _ Rurs,

) _ R

(1) = 1, 1)

where, v(¢) is the voltage bias applied across the memristor and i(z) is the corresponding
current; x is the state variable of the device, L is the thickness of the oxide region, and y, is
the dopant mobility.

In SPICE, a circuit macro can be constructed to reproduce results governed by the
above equations. A typical macro for this memristor model consists of current sources and
capacitors, as illustrated in Figure 2.9. Based on this, more elaborate variants that support two
directional state variable motion and confine the state variable in the range 0 < x(¢) < 1 are
reported in [65, 66]. Memristive effects that capture the non-linear changing rate of dx/dr are
included in the model in [67]. Models that closely correlate to fabrication data from specific
memristor devices are proposed in [68, 69], where only sinusoidal voltage is used. Device
researchers also find the hyperbolic sine function a convenient way to capture memristive
behaviours, and a generalised model optimised for repetitive pulse input is reported in [70]. I
used the model captured in Figure 2.9 for simulating various circuits proposed in this thesis,

as it is general enough to express its important behaviours.

Memristor capacitance is an important parameter that affects power and speed perfor-
mance of a circuit. It decreases significantly with the size of the memristor. According to
[58], memristor parasitic capacitance is modelled by

2
€0Erfiim Wmemristor

L

where,

32 | Introduction to Memristive Long-Term CAMs

TE state x
. v(t)
0= Roxit) + Rerlix(®) | Grm Gx ()= fiexnd(o
O ® =
iGx(t) = i(t) R°LN2“ —F(x(t)
" — —

Figure 2.9 Memristor model schematics that produce results in corresponding equations

* &y denotes free space permittivity;
* &, denotes the permittivity of tantalum oxide, which is assumed 30 in the literature;
* Wmemristor 18 the width of a cross-section on a crossbar;

* L is the thickness of the tantalum oxide layer.

For a half-pitch 50 nm x 50 nm cross-section with 7 nm tantalum oxide layer, the parasitic
capacitance is about 0.1 fF. This figure is becoming smaller as memristor’s feature size scales
down under 5nm [62]. Apart from capacitance, HRS, LRS, as well as the HRS:LRS
resistance ratio (Ryrs/Rrs) are key memristor parameters throughout all circuit designs in
the thesis.

2.4.2 Memristors as Memory Elements

Memristors’ primary advantage is their small footprint and the potential of building compact
circuits, which can be used for high density memories. RAM is a case in point, and so far,
it has been the most extensively studied application. Often, memristor-based RAMs are
referred to as resistive RAMs (RRAMs or ReRAMs). Many RRAMs have been proposed
in recent years in the literature and rapid progress has been made, as shown in Figure 2.10.
These include [57, 71-82]. Many reported RRAM chips are able to store millions of bits,
with two exceptions from Micron/Sony and Sandisk, which have a single chip capacity of
16 Gibit and 32 Gibit respectively.

Usually, RRAMs reuse the cell arrangement from conventional RAMs; a typical cell
has an access device and a storage element. Early approaches used nMOS transistors as the
access device, and such a RRAM cell is referred as the 1T-1R cell structure as shown in
Figure 2.11 [71, 73, 75-78].

2.4 Resistive Devices | 33

NAND Flash
100000 | Pprogress of RRAM subarray sizes
g Mib | © 1R e Sandisk &
£ 10000 - ! * 1S-1R Micron
2 4 Mib S
2 -
= 1000 512 Kib o
= 128 Kib o
o 16 Kib o
2 100 Time (year)
o .
o} Unity
<
10
© Sony & [Sheul1] [Changl2] *
o * Panasonic Crossbarinc &
Hynix &
0 T T T T T
2010 2011 2012 2013 2014 2015
Year

Figure 2.10 The progress of RRAM chip density in recent years

memory cell
memristor

\ 4

"

1

‘ CMOS sense/drive circuits ‘

CMOS decoder

2
s

Figure 2.11 A small RRAM array composed of 1T-1R cells

To further reduce the cell footprint, research effort has been made in engineering bi-
directional diode-like selector in special rectifying layers integrated with memristors, and
such a cell is called the 1S-1R cell structure [74, 83, 79, 82]. As two terminal devices,
memristors are suitable for nanowire crossbar architecture, in which an individual memristor
in an array is activated by applying appropriate signals to its corresponding horizontal and
vertical crosspoints. More details on memory operations and leakage current are covered in
the introduction section of Chapter 4. Many of these proposed RRAMs are based on similar

circuit principles. Generally, the claims differ in one of the following points:

* they used different resistive devices or different switching mechanisms; or

* they proposed different access devices such as transistors or special diodes integrated

with the memristor to suppress leakage current; or

34 | Introduction to Memristive Long-Term CAMs

* they used different memory arrangement at the array level and re-designed write and

read circuits to give a high throughput in write and read.

2.4.3 Memristors as Computing Elements

The success of transistors suggests that next generation devices are likely to be deployed in
both memory and computation. Although nanoscale memory is memristors’ main application
so far, it would be more interesting if the same memristor can serve as the basis for general
computation. In fact, memristors’ flexibility of being either analog or digital devices provide
rich behavioural dynamics for computational purposes, which are explored in a variety of

publications.

Analog designs often use a train of fine-tuned pulses to adjust a memristor’s internal
resistance to a specific value. Authors often claim density and non-volatility advantages over
the equivalent transistor implementation with the same precision. For instance, memristors
are promising for storing the large volume of long-term constants (e.g. synaptic weights) in
neuromorphic systems [84—86]. Such computing schemes update a memristor’s resistance
by conditionally supplying analog voltage signals from its pre-synaptic and post-synaptic
neurons. This may appear to be a variant of memristive memory, however, it is included in
this review because the updating process often needs similar voltage controls as in required
for computing with memristors. More details are provided in a similar analog design in
Chapter 3.

q' <€ pIMPg
Veond Vset input input output

p q p q q

0 0 1

0 1 1

Rx

L 1 0 0

1 1 1

Figure 2.12 The basic schematic and truth table of IMP for realising memristive Boolean logics

Digital Boolean logic circuits are algorithmically more flexible than their hard-wired
analog counterparts and are often preferred for general computations. Possibilities of realising
Boolean logic in memristor arrays have been demonstrated in many publications, often with
examples of some primitive logic blocks. Borghetti et al. [87] showed memristive Boolean

logic can be achieved via material implication (IMP); IMP is executed on two variables p

2.4 Resistive Devices | 35

and g, where p and g are encoded as memristive states. The operation pIMPgq is equivalent
to the Boolean logic g +— p+¢q . If ¢ is cleared to zero before every operation, then IMP
simply performs inversion and stores the result in the memristor g. The updated new value is
denoted as ¢’. Hence, g here serves as an intermediate node and can be duplicated for later
use. Figure 2.12 shows an IMP circuit setup of two memristors on a crossbar. V,,,,; and Vg,
are applied at the same time, where V,,,4 1s an appropriate voltage that drives the horizontal
common line to a specific voltage according to the state of p. Depending on the voltage of
the common line, hence the state of p, the state of ¢ will be conditionally programmed as

shown in the truth table.

There are two major limitations associated with this approach: one is that for the synthesis
of any multi-input Boolean functions, a lengthy sequence of voltage biasing operations is
required. Typically, a n-input logic function needs 2"~! 4+ 1 operation steps. Another
limitation is that multiple output operations on a common line as shown in Figure 2.12 are
impossible. This means that the sequential operations needed for computing a Boolean
function can not be performed in parallel [88]. Improvements have been made by either
inserting switches to divide the horizontal common line or adding a layer of CMOS logic
circuits into the memory array [88, 89], which has a negative impact on the density of an

array of memristors.

At the macroarchitectural level, a more complete in-memory computing scheme intro-
duced a controller block as an add-on to the standalone RRAM array [90]. The core operation
of in-memory logic computing in this proposal involved three instructions: (1) read operand
at address P and convert the resistive content to voltage signal p, (2) read operand at address
Q and convert the resistance to voltage signal ¢, (3) program or write the content at address
Z by applying p and q to its two terminals. At the programming stage, the logic operation
is a three input majority Boolean function, reformulated as majority(P,Q,Z), as shown in
Figure 2.13. A disadvantage of this computing scheme is the necessity to perform lengthy
sequences of memory read, write operations. For example, a two-input AND operation and
an XOR operation need 4 and 7 steps respectively.

F; (b, q)=(1,0)
P a pa
z 00 (o 0
01 10
11 11
|
q (p, g)=(0, 1)

Figure 2.13 The transition of a memristor’s states on conditions specified by p and ¢

36 | Introduction to Memristive Long-Term CAMs

2.5 Summary and Conclusion

This chapter introduced some background knowledge from three different research fields:

cognitive architectures, content-addressable memory, and memristors.

It began with a brief study of cognitive memory systems, which leads to the understanding
of the data structure of memory entities, the memory retrieval process, the associated biasing
mechanisms, and current database implementations. Published experiment results based
on the current implementation revealed that cognitive tasks are inherently memory-centric
and requires fast search engines for high performance information retrievals in real-time.
Particularly, the biasing mechanisms pose great computational challenges to complex tasks
that need high-fidelity retrievals. Hardware optimised for cognitive memory systems is

required to find relevant information in a large memory store.

The core component of this proposed hardware memory is a circuit block that has fast
lookup capabilities. The quest for these memory circuits led us to content-addressable
memories which are able to perform massively parallel search operations on all stored
memory items. However, the benefits come with a cost: the conventional bit-cell is bulky,
about twice as large as a static RAM cell, and it consumes much more power as will be

shown in Chapter 3.

The latter part of the chapter reviewed behaviours and demonstrated features of mem-
ristors at the device level. Many different memristors have been reported recently, and are
claimed to be suitable for high density, low power, non-volatile memory as well as digital
logic and analog behaviours. The capability of memristors to implement both memory and

logic functions is particularly interesting.

In this thesis I hypothesise that they could be used to reduce the CAM cell overhead, and
implement evaluation functions in the memory such that cognitive processing features in

long-term memory such as the biasing mechanisms can be realised in an efficient way.

To conclude, this chapter broadly reviewed some main concepts which are important
for understanding the objectives and motivations of the work presented in this thesis. The
current database implementation of long-term memories in cognitive architectures lack some
capabilities that are fundamental in dealing with complex tasks that need intelligent retrievals
from a large knowledge store. Content-addressable memories are examined as alternative
hardware solutions. Memristors are reviewed as the device level implementation technology

for realising future cognitive memories.

Chapter 3

Content-Addressable Memory Using
Memristors

The core component of an information storage and retrieval system is a fast search engine.
This chapter presents a content-addressable memory with high performance search capabili-
ties to support knowledge storage and retrieval in semantic memory. Unlike the hierarchical
memory system in modern computers, one can visualise it as a regular flat memory table

storing rows of memory objects or records.

A system view of the cognitive memory is shown in Figure 3.1. Recall that memory
systems for cognitive architectures typically have a two-tier organisation. Working memory
stores information into semantic memory. More importantly, working memory initiates
the retrieval process by applying top-down constraints to semantic memory. These cue
constraints, sent to CAM’s control registers, will serve as the search key for search operations.
Once the cue constraints are transferred to the controller, it initiates search operations through
the entire semantic memory. In a semantic memory containing an enormous number of
memory objects across different knowledge domains, it is very likely that a less discriminative
cue will match multiple objects in the memory. These match objects will activate the
associated rows in the activation circuits, which use an activation scheme to bias the retrieval
with the aim of returning the most relevant matching objects first. Activation circuits are the
theme of Chapter 5. The search result after the biasing activation circuits is loaded to the
retrieval outcome store. The same type of search operations are applicable to non-cue based
retrieval since these can be processed as a simplified version of the cue based retrieval. Thus

this chapter focuses on the search operations with search data specified by cue constraints.

38 | Content-Addressable Memory Using Memristors

Working Memory

Cue Constraints Retrieved Memory Object
(Controller D)
(: A f_lﬁ
@
|
\ J —
The Search Block Activation Circuits

(Content-Addressable Memory)
Semantic Memory

Figure 3.1 The two tier memory system in cognitive architectures with the search block in the shaded
area

In store operations, working memory passes memory objects into control buffers, which
are then used to store or update the memory content at an available location. Read operations
are similar to the final step in a retrieval process, where a specified memory object is loaded

to the outcome store for output.

The building blocks of a semantic memory are also shown in Figure 3.1. This chapter
contributes to the search block using a memristor-based CAM implementation. The design
uses a combination of new circuits and a series of existing techniques reimplemented using
memristors to achieve a fast search engine, with which cue constraints are searched against
all memory objects in parallel. Also, the memory is designed to be scalable. Scalability is
critical in keeping with the primary goal of this thesis: providing efficient hardware support

to large declarative memories.

The chapter is organised as follows: the remainder of this section provides a review of
related work on improving CAM cells. The remaining sections describe the design of a
memristive CAM that will form the basis of other experiments in the thesis. The new CAM
uses differential encoding with two memristors per cell, single ended large-signal voltage
signalling, and self-referencing timing signals. These design decisions are explained in the
following sections. Section 3.2 describes write, read and bit-comparison operations inside

memory cells. Building on top of memristive CAM cells for both CMOS and memristive

3.1 Related Work | 39

technologies, Section 3.3 moves to the higher level memory array organisation and the
operation of various control lines. After a complete view of the memory, the chapter provides
simulations with a memory array (Section 3.4) and discussions of the design based on
simulation results (Section 3.5).

3.1 Related Work

Memory cells are unit devices in any memory systems for storing binary values. Much
effort in the literature has been made to improve CAM cells at the circuit level. Hence
it is worth briefly mentioning the inefficiency of CAM cells here. A CAM cell has two
functions: storing a single bit and performing bit-comparison between the stored bit and the
corresponding search bit. The search performance of CAMs using CMOS technology comes
with a great price, as shown in Table 3.1. A typical CAM cell contains a six-transistor SRAM
to store two complementary binary values. In addition, four transistors are usually required
per cell to support the parallel search. A TCAM cell requires two SRAM storage bits to
represent a wildcard. A rule of thumb is that CAMs are about twice the size of SRAM. This
area overhead limits the maximum number of CAM cells that can be packed on a single chip
[38]. Search operations in CAMs involve all cells in the process, which leads to considerable
power consumption. This is another limiting factor for building large CAMs. The capacitive
control lines used for a search, including matchlines and selectlines connect to thousands of
bits, and are precharged and discharged almost in every search cycle. As a result, the area
and power overhead of CMOS CAMs have limited their applications to a small number of
timing critical applications with modest storage requirements [40].

Table 3.1 A comparison of CMOS memory technologies with some key parameters in three different
memory types according the the report in [91] from 2010.

Memory Capacity/chip (Mibit) ~ $/Mibit Access speed (ns) Watts/Mibit
DRAM 128 0.08 - 0.16 40 - 80 0.008-0.016
SRAM 9 55-78 3-5 0.17-0.33
TCAM 4.5 44.5 - 66.7 4-5 3.33-4.44

Related work on CAM design has sought to reduce the area and power overhead by using
more compact cell structures and new power efficient search schemes. This section reviews
a series of CAM cells proposed for area and power reduction. Details of power efficient
methods are included in Chapter 4.

40 | Content-Addressable Memory Using Memristors

Hanyu et al. [92] proposed a two-transistor (2T) CAM cell structure based on floating-
gate MOS technology. Despite the bit-serial search operation, the cell is able to store multiple
values by carefully tuning the input voltage and gate threshold voltage. Arsovski et al. [93]
proposed a TCAM cell structure that uses half-latches in places of the cross-coupled inverters.
In recent years, researchers working with unconventional technologies, including phase-
change devices and spin-torque transfer devices (STT) and memristive devices, have observed

behaviours that they claim will be useful for reducing CAM area and power overheads.

Area : the area of a CAM can be reduced by replacing the SRAM storage element in each
cell with an alternative storage device. Eshraghian et al. [39] used two memristors
as storage elements to reduce cell area by almost half. CAM cells can be made even
smaller by simplifying the comparison circuit: [94] proposed a similar 2T-2STT circuit,
with two STT devices added in series with the access transistors. A similar structure
that enhanced the sensing abilities using phase-change devices can be found in [40, 95].
An extreme example in area reduction is illustrated in [96], where each CAM cell
only contains a single memristor. Without the complementary data representation, this
compact scheme is only able to detect a mismatch when search data is ‘1’ and stored
data is ‘0’. However, it claims to be appropriate for special applications with dense
data representations.

Power : the claims of power reduction with emerging devices are usually based on the fact
that the energy required to switch a phase-change device, STT or memristor (measured
in J/bit) is less than or comparable with the energy required to switch a DRAM cell
[62]. Also, these three emerging devices does not need power to maintain stored
information hence zero stand-by energy consumption is achievable. This can lead to
substantial power savings in large memory systems. Recent study has demonstrated
extremely low-voltage operations in read mode [97], which significantly saves power

in memories built mainly for read purpose.

3.2 Memory Cell

The cell structure in this work is primarily based on the structure proposed in [94] where the
STT device with an undesirable low resistance ratio (<10) between the two states restricted
the number of cells that can be attached to a matchline hence the memory array size. Recent
advances in memristors provide an opportunity to revive the structure; memristors are used
to replace the STT devices to improve the memory width and sensing margin.

3.2 Memory Cell | 41

The four-transistor two-memristor (4T-2R) cell in this new CAM (Figure 3.2) uses
two memristors for storing a pair of complementary binary values, and four transistors for

performing comparisons and facilitating read operations.

selectline selectline
matchline
J bitline
+ T3 +
M M
T4
'—‘ T1 T2 }—‘
wordline
\ — \/

Figure 3.2 Memory cell structure

3.2.1 Write

Write operations use the memristor’s electrical properties where conductive channels in the
thin film can be formed (SET operation) or ruptured (RESET operation) by applying an
appropriate potential difference between the terminals. Conventionally, CAMs have a write
port with additional access transistors and wires for write operations, as previously shown in
Figure 2.7 on page 26. To avoid these facilities that unduly increase the cell footprint, it is
necessary to write multiple cells of a row in bulk. When a row is selected for write, signals
along selected columns turn on the connected nMOS transistors in the cell such that the
voltage across the in-series memristors is Ve (Or Vieser), Which is large enough to alter the
memristers’ states to LRS or HRS. However, as SET and RESET share a common matchline,

writing cells along a matchline is necessarily a two-step operation.

Two write sequences are adopted in the literature of CAM design. Take a row of four
cells for example. One way to write the row is to reset the specified columns to ‘1’ so that
a four bit row will have a pattern of ‘X1X1’, with ‘X’ representing unspecified columns,
which will be programmed in the second step to give the result of ‘0101°. Another way to
write a memory row is to reset (ERASE) all the cells along the row to ‘1’ such that the row

in example becomes ‘1111°. A second step sets the specified columns and produces the

42 | Content-Addressable Memory Using Memristors

required result ‘0101°. The advantage of this ERASE-before-SET process is that the ERASE

operation can be performed at the same time as waiting for the column signals.

The write operation in this new CAM adopts the ERASE-before-SET method, where ‘0’s

and ‘I’s are written into each row in the following sequence:

1. Erase the row — reset all to ‘1’ by driving matchline and wordline and activating all
selectlines to close the transistors in series with memristors, so that the voltage across

the selected memristors is approximately Vieget.

2. Set columns — store ‘0’s to specified columns by driving the matchline and wordline and
activating the specified selectlines to ensure the voltage across the selected memristors

is approximately Ve, which is of opposite polarity to Vieget.

3.2.2 Read

Normally, memory objects are stored once and read many times. This requires read operations
to be fast, reliable and power efficient. Small signal sensing schemes with differential sense
amplifiers are widely used in large RAMs [98]. With the advent of nanometer processes, it is
becoming difficult to bias transistors at low voltages, and often more engineering efforts are

required in the design of power efficient analog sense amplifiers [99].

The conventional small signal sense scheme (Figure 3.3 b.) in which bitlines are connected
directly to the cells, is not well suited to the designs considered in this thesis. In a memory
with a large number of rows connected directly to the bitline, a significant amount of current
will flow to the inactive matchlines from the activated matchline. Thus, a read operation on a
specified matchline will charge all the matchlines. This leads to unnecessary dynamic power
consumption. One may propose to swap the positions of the memristor and nMOS transistor
so that the nMOS can serve as an isolation transistor between bitline and inactive matchlines.
However, this change will result in pull-down paths through memristors to the ground.

There is a trend to favour large signal or single-ended sensing schemes in nanometre
processes to tolerate process variations and low power operations [100]. Single-ended sensing
schemes usually use full-swing signals compatible with logic-level operations. This makes

them suitable for building hierarchical sensing networks which are discussed in Section 3.3.3.

The design in this chapter uses a single-ended voltage sensing scheme for read operations,
as shown in Figure 3.2 on page 41. To read a row its matchline is driven high so that T3 is
closed, and the bitlines are precharged high. The memristor M and nMOS T1 form a voltage

3.2 Memory Cell | 43

divider. Depending on the memristor’s resistive state, the resultant voltage will either open

or close T4 to either leave the bitline high or pull it to ground.

Read ML, Read ML, ML, to MLy,

-
»

-

»
y

‘local

gbitline
Ron : R, 5 R,./N-1

NG e

nMOS-OFF Rmos-oFF to be sensed R.mos.orr/N-1

(a) (b)

Figure 3.3 Two sensing schemes: (a) single-ended large signal sensing using a voltage divider in the
cell; (b) small signal sensing by directly connecting a column of cells to a bitline

As modelled in Figure 3.3(a), a voltage sensing scheme is used for the read. R, represents
a memristor’s resistance in the LRS state and R,vos.orFr represents the equivalent resistance
of an nMOS transistor in its OFF state. These two resistors form a voltage divider that
converts memristor’s state to a valid voltage signal. Unlike the sensing signal in the small
sensing scheme, the single-ended sensing signal is gated by a transistor so that each cell only
sees a small amount of capacitance. The isolation provided by the transistor also prevents the

sensing current flowing into inactive matchlines.

Ideally, the voltage at the sensing point (V;p) is expected to be high for sensing memristor
LRS and otherwise a low V), for sensing HRS. Therefore to get a large sensing margin, it is
important to consider R,\os in this voltage divider. Here, I define the read sensing margin as
the difference of Vj, levels in sensing two memristor states. The maximum sensing margin

can be obtained when the following constraints are met:

RnMOS-OFF _ 0
Rurs
RiRs ~0

RyMOS-OFF

Assuming that the above equations are equal to the same value close to zero, they can be

reformulated as follows, with Ryrg represented as R X Ry gs,

Rumos-0oFr = v/ RLRs X RHRs (3.1)

44 | Content-Addressable Memory Using Memristors

This suggests that for a typical 45 nm process nMOS (width/length = 2/1, RyMos-OFF
= 1.6 GQ) and a baseline ratio R = 1000, Ry grs and Rygrs need to be S0 MQ and 50 GQ
respectively. However, the equation used is only useful for analysing static behaviours.
Dynamic behaviours need to be considered separately.

The high resistances of LRS and HRS introduce delays to the development of Vg,. The
first order RC delay suggests that it takes time fpq (fpa = RmemristorCsp In2) for Vg, to rise to
the valid voltage level. Cs, is the sensing point capacitance. Based on gate and diffusion
capacitance extracted from the 45 nm FreePDK model, the time taken to develop a valid Vy,
is approximately 10 ns for reading an LRS memristor (i.e. 50 MQ as calculated). This is

considerably slower than the read speed in RAMs.

One observation is that sensing an LRS memristor is faster than sensing an HRS memristor.
The sensing time of LRS memristors will set the overall sensing time frame for both LRS
and HRS because the V;, for HRS memristors does not have enough time to develop a valid
voltage and thus remains low throughout the sensing time. Therefore, it is safe to choose
a memristor with low LRS resistance to speed up the sensing operation. This observation
greatly relaxes the resistance constraint expressed in the equation 3.1. The selection of Ry rs
and Rygs is important in this new memory as it impacts sensing speed in read, matchline
sensing margin in search as well as energy performance which are discussed in more detail
in Section 3.3.1 and 3.4.2.

3.2.3 Bit-Comparison

CAMs’ parallel search comes from their capability to compare a pair of bits in each memory
cell. This bit-comparison function of each cell is implemented using a compact comparison
circuit which accepts input from the search data and the stored data in the cell. This section

describes a comparison circuit based on memristors and transistors.

This complementary arrangement of two memristors is a typical CAM cell structure that
creates a short path between matchline and ground whenever there is a ‘0-1" mismatch or ‘1-0’
mismatch situation as examples shown in Figure 3.4. Table 3.2 provides the complementary
encoding for the bit-comparison operation. Specifically, in the case that a selectline with
zero voltage level fails to create a short circuit through a storage memristor (i.e. fails to turn
on the transistor in series with the memristor), its complementary selectline will ensure the

presence of a short circuit path through the complementary memristor if there is a mismatch.

A CAM search operation is performed by setting the selectlines equal to the search cue.
Each CAM cell realises a logic equivalent to a two-input XNOR/XOR circuit with the stored

3.2 Memory Cell | 45

SL=0

LRS

SL=1

(a)

(c)

SL=0

LRS

(b)

HRS

(d)

Figure 3.4 Examples of match (a, b, ¢) and mismatch (d) situations in bit-comparison operations,
with discharging paths highlighted in the shaded areas

bit and the cue bit as the two inputs. The matchline-to-ground resistance, Ry .gND, varies
with the different input conditions. Consider, for example, the case where both the stored bit
and the cue bit are ‘1’ i.e. a match situation. Ry = Ryrs and Ry; = Ry rs. The selectline is
driven high to close nMOS N1, and the selectline is driven low to open nMOS N2. The result
will be Ryi-gNp =~ Rurs. However, in a mismatch situation, one of either the M-N1 or M-N2

paths will have a low resistance close to Ry rs, which will effectively pull the matchline

down.
Table 3.2 4T-2R cell encoding
Stored Data Search Cue Match
Logic (D, D) Logic (Q, Q) Status ML
K T
RE s
X . Lo Mach Vo

46 | Content-Addressable Memory Using Memristors

3.3 Memory Array Organisation and Operations

In many ways the new CAM is organised like a conventional CMOS CAM: memory cells
in an array arrangement are connected using various control lines as shown in Figure 3.5.
A global precharge control signal charges all matchlines to a high voltage to initialise the
search operation, or instead it changes a specified matchline for write and read operations.
Matchline sense amplifiers are used to discern match rows from mismatch rows. In addition
to the conventional memory array organisation, reference rows are adopted for the generation
of timing signals. Another difference is the bitline arrangement which is discussed in more
detail in 3.3.3.
ML, Reference matchline

ML: Matchlines

Timing control circuit
SL:: Selectlines g

C.cc ' CAM memory cell Eval | _Buffer 1 :
SA: Matchline sense amplifiers ML oo i ! ‘Done
Done: | atch enable signal e
Eval: gyaluation signal
SLW‘l ﬁw-1 SLw-Z jw-Z SLO S_LO ML
MLr refout
d SA Timing Done

[1 [1
{eoH HewH -+

. @
[1 [T SA Latch,
Q

foH Hel o He

Mh |SA Latch I:
1 | atch,

ol el o e

MLn-l

[1
—|Cn—1,w—1 |’ —|Cn-1,w-2 |’ ¢ n-1,0

i

Search data registers and selectline drivers

Figure 3.5 CAM matchline organisation with the reference row

3.3 Memory Array Organisation and Operations | 47

3.3.1 Search Operations

The search operation looks for rows that match a cue word by comparing the cue against

every row in the memory simultaneously. The following steps are performed:
Reset: search results are cleared for the new search
Precharge: matchlines are charged high

Evaluation: selectlines are set to the value of the cue

During the evaluation step, matchlines discharge at different rates according to the number
of bits that match in their rows. For rows where one or more bits do not match, the matchlines
are pulled low. Matchlines for rows that do match also discharge, but more slowly via
memristors in the high resistance state. An example to illustrate the exact match and one-bit
mismatch situations is shown in Figure 3.6 on page 47; transistors and selectlines are omitted
for simplicity, and LRS memristors with shaded areas are in series with turned-off transistors.
Say the four-bit search data is ‘1010’ and this is used to drive corresponding selectlines.
Recall that the complementary (HRS, LRS) represents ‘1’ in a storage cells and (LRS, HRS)
represents ‘0’. When searching against the search data, cells along matchline ML; will have
exact matches which produces four highly resistive pull-down paths between the matchline
and ground. For matchline ML, Cell;; does not match the search bit ‘1’ along the column
thus turns on a low resistance pull-down path to the ground.

HRS M- Precharge | Evaluation

LRS Ui~]

ML, S — — R V| out,
Reset —”i_ %@/411 i %&»mzl B | cells| 2 | cella| i

My — V| out,
Reset v | Celln | %@//pl lcels] | cela]

Figure 3.6 A characterised cell circuit illustrating the discharging path in search operations

The generation of correct results depends on precise control of the time at which the
matchlines are sampled: if the sampling fires too early, matchlines may not have developed
enough voltage difference to be differentiated; if it fires too late, all matchlines are discharged
to ground. A sensing window in search is defined as the the difference of discharging

48 | Content-Addressable Memory Using Memristors

delays during the evaluation stage between an exact match row and a one-bit mismatch row.
Sampling is triggered by the Done signal illustrated in Figure 3.5. It is critical the Done
signal arrives during the sensing window shown in Figure 3.7 so that a one-bit mismatch can
be discerned from an exact match. Rows with multiple mismatch cells will discharge much

more quickly and are not a concern.

iSensing Windowi

I

Done signal

Voltage

Time

Figure 3.7 An illustration of matchline sensing window and its timing with the Done signal in a
search cycle

Matchline Sensing Margin

The matchline sensing margin is defined as the voltage difference between a one-bit mismatch
and an exact match at the time at which the matchlines are sampled. As stated in [61], the

sensing margin is controlled by matchline to ground resistance (Ry-GND)-

Runatch Ryrs — Rirs
_mateh _ 4 —————(RLRrs + RaM0s-ON)
ROneMiss w

Where, Ryaich 1S the Ryvi-gnd of an exact-match. RopeMiss 18 the matchline resistance of
one mismatch bit. Ryrs is a memristor’s resistance in its HRS state and Ry rs is its resistance
in the LRS state. Ryvos-on 1s nMOS’s resistance in ON state. The W term represents the

number of bits attached to a matchline.

Based on this equation, it is observed that the matchline sensing margin is affected by the

following factors:

* memristors with large Ryrs /Ry rs, denoted as R, improve the sensing margin; and

* increasing the memory width, W, decreases the sensing margin.

3.3 Memory Array Organisation and Operations | 49

It should be noted that the closed nMOS resistance Rymos (about 5.4 kQ in the 45 nm
process) in series with the memristor sets the lower bound resistance of the pull-down
path, which can undermine the benefit of the large sensing margin brought by memristor’s
inherent resistance ratio. To be more specific, the non-zero Rios will be part of the effective
resistance ratio which is defined as R = Ryrs/(RLrs + Ramos)- Thus, the presence of this
closed nMOS resistance undermines the already precious resistance ratio R in real memory
operations. The impact of R is illustrated in Table 3.3, where memories based on memristors
with higher R show more tolerance to memory width scaling.

Table 3.3 Comparison of sensing margin with various memory widths

Width (bits)
LRS-HRS(Q2) R. 32 64 128 256
100-100K 18 0.17v 0.10V 0.05V <0.01V
IM-1G 1000 0.50vV 0.50V 049V 036V

Memristors provide a wide range of LRS-HRS pairs, including the possibility of large
R which are observed in a range of metal oxide memristors as reported in publications(up
to 1E6) [56, 101, 102]. Larger R allows CAM researchers to have better design trade-offs

between matchline width and sensing margin. These will be further evaluated in Section 3.4.

3.3.2 Reference Matchline

How does the memory know when it is the appropriate time to generate the Done signal? A
static method to achieve this is by characterising the electrical properties of the match and
mismatch rows so that the correct time can be determined by checking the difference of their
RC delays in discharging matchline voltages. However, the fabrication of nanoscale devices
introduces device variations which reduce the accountability of static circuit characterisations
[103].

In each CAM array, one extra row called reference matchline (ML) is added to minimize
the uncertainty of the arrival time of matchline output caused by device variations. This idea
is similar to the use of replica cells and bitlines in RAM column circuits to match the delay
of the access path in a read sensing operations so that the sense amplifiers know exactly when
to start sensing. Here, ML,.f contains the replica cells and is deliberately designed to have
one mismatch bit by flipping one bit from the search data. During matchline search, it sends
an enable signal (Done) to every row (matchline) within the memory array, with the purpose

of differentiating the exact-match from all mismatch rows.

50 | Content-Addressable Memory Using Memristors

3.3.3 Bitline Organisation and Operations

C. memory cell N: memroy depth Vad

LBLy: local bitline p:local block depth
GBL.:: global bitline —
CLK

Local Bitline Group 0

Local Bitline Group 1 Coc

Local Bitline Group 2 Cic LBLy,
Local Bitline Group N/n C...

Global Bitline Receiver LBL&,'/C,,Ic GBL

(a) (b)

Figure 3.8 Hierarchical bitline illustration

So far, matchlines and selectlines are introduced to serve in write and search operations.
One may consider reusing these control lines for read operations as well. Selectlines are
isolated from memristors by access transistors thus are unable to read the storage state out
of a cell. As briefly mentioned in [40], however, it is possible to sense a cell’s state via
the matchline by reusing the matchline sense amplifiers. This is essentially the same as a
search operation with the exception that only a single matchline and a single cell attached to
the matchline is involved. Since all cells in the row share the common matchline, the read
operation has to be bit-serial; a matchline with W cells needs to bit-serially cycle through all
selectlines to read the entire row into the outcome buffer. The design in this chapter looks for
a read scheme that can read out the cells of a row in parallel.

As analysed in Section 3.2, small signal sensing schemes directly connecting to the
memory cells will charge unselected matchlines and thus are not suitable for this memory
design. To address this problem and to build a deeper memory, I propose to use a hierarchical
approach with a large signal sensing scheme, in which memory rows are grouped into local
blocks as illustrated in Figure 3.8 [100]. Each local bitline can be functionally viewed as
an unfooted dynamic multiplexer comprised of access and drive transistors for each cell.
With additional access transistors, each cell only sees a small capacitance. The global bitline
network can be viewed as a network that collects data from the groups of local bitlines and

produces the final sensing result.

The local bitlines are charged to high voltage before reading. During a read operation,

the selected matchline will switch the access nMOS on. The local bitline will either be

3.3 Memory Array Organisation and Operations | 51

discharged or maintained depending on the state of their corresponding cell. To alleviate the
non-zero voltage noise from unselected matchlines, non-minimal nMOS length transistors
are used to ensure that unselected access nMOS will not be unexpectedly turned on, as shown
in Figure 3.9. For the 45 nm process with Vi, = 0.28 V and Vgq = 1 V, Vj, is arranged to be 1
V for sensing LRS memristors and 0V for sensing HRS memristors. The presence of a LRS
bit in read will discharge the local bitline to ground and pass the signal to the global circuit.

The global bitlines can be implemented as dynamic OR gates driven by local bitline outputs.

Vad Global bitline
m@(
Local bitline 0 Local bitline 1

Matchline n—1~{
e o o Non-minimal e o o

e e length nMOS

CAM cell CAM cell
sensing point sensing point

More local
bitlines

! Matchline 0 ~{

Figure 3.9 Schematic of the hierarchical bitline network with access transistors of a cell

3.3.4 A Summary of Design Decisions

In summary, the preceding sections have explained the design of a new memristive CAM in

which the memristors are incorporated into the wire stack of a 45 nm CMOS process.

It is found that memristors’ internal resistance and the memory width determine the
matchline sensing margin. With a fixed memristor resistive ratio and memory width, running
a resistance sweep will be able to find a pair of resistance that gives the best sensing margin
(see Section 3.4). A reference matchline is included in the CAM array to provide a self-
referenced timing signal which is able to discern the best match from mismatch rows. A
large swing single-ended voltage sensing scheme is used to address the issue of leakage
current in small sensing schemes. The single-ended sensing scheme is further developed to a
hierarchical bitline structure in which sensing results are collected from local bitlines and the
logic-level full voltage swing ensures a flexible digital implementation.

52 | Content-Addressable Memory Using Memristors

1.2[reset& i>evaluation
precharge : > sensing :
Lo - - g S — -
ost | W/l S S
S i ‘]]
= 06F | - A | L SN
9]] : sensing window :
e i
g |
s oar- - @SN
one mismatch
eI N (1I/AR | Rt exactmatch]
multiple mismatches ——
o & ‘ ‘
0 10 15 20
Times (ns)

Figure 3.10 Search performance of A 64 x 128 array
3.4 Memory Array: Experiments and Analysis

To gain an insight of circuit performance with different memristor parameters, the new CAM
has been simulated at different sizes in SPICE with memristor characteristics reported in
[57, 74, 102], and 45 nm transistor models from FreePDK [104]. Simulations to characterise
the 45 nm transistor models show the gate capacitance and diffusion capacitance per micron
are 0.74 fF and 1.23 fF. Each memristor is shunted with a 0.1 fF capacitor in simulations to
account for the memristor internal capacitance. As well as showing the performance of the
new CAM with different memristors, the simulations in this section provide an indication of

the new CAM array’s scalability and energy consumption.

3.4.1 Scalability of The New CAM Array

Search and read operations are affected by memory depth. Write operations work on a

specified row in a memory array and hence are not discussed here.

All the simulations of search operations reported here are arranged such that there is one
row with an exact match and one row with a one bit mismatch. All other rows use randomly
initialised data with an average number of 64 mismatches. Also, a baseline LRS-HRS of
1 MQ-1GQ is used. Figure 3.10 shows that the sensing window is over 10ns. This large
sensing window, compared to the reported 250 ps in the literature [105], is necessary; it
allows the memory to broadcast the refernce signal to more rows. A characterisation circuit

accounting for wire RC delay and load capacitance from each row indicates that 10 ns is

3.4 Memory Array: Experiments and Analysis | 53

sufficient for the reference timing signal Done to reach about 1000 rows with a unit drive

and four repeaters along the wire.

>0 ; ‘ | —— 10K-10M
R ; : - = ¢ 50K-50M
40t e - ===1100K-100M |
I N : : L4 500K-500M
m —— 1M-1G
*. e -k JM-2G
30| N
— N
<
~ *\\\+
£20] ;
[= I S e
= ‘ i S N B 1z
. \\+‘7ﬁ+§““-|"-
10 o : ’
0

32 40 48 56 64 72 80 88 96 104 112 120 128
Matchline Width (bits)

Figure 3.11 Sensing window with different LRS-HRS pairs

To find the LRS-HRS pair that gives the largest sensing window, a LRS-HRS sweep
was run. The results are shown in Figure 3.11. With constant R=1000, memristors with
LRS-HRS at 2M-2G provide the most tolerance to timing variations without significantly
compromising the sensing margin. The resistance ratio set in this experiment represents an
achievable value by physical memristors which is in the range of hundreds to 10°. To the
best of my knowledge, no physically fabricated memristors exactly match all these proposed
criteria on resistance: the resistance ratio and the resistance values. However, I use these as
an indication for memristors with the optimised performance in the remaining part of this
section.

To read a specified row, the memory array with 1024 rows is divided into 8 local blocks;
each local bitline in a local block is driven by 128 cells along the column. Results from local
blocks are collected using standard NAND gates. A total number of 8 NAND gates are used
to drive the global bitline in each column.

Parasitic capacitance from the 128 cells attached to local bitlines requires a 0.8 ns
precharge operation to obtain the valid voltage along the bitline. In the evaluation stage, the
specified matchline is activated for probing the state of the cell. In this setup, it takes about
1.7 ns for the sensing result to propagate to the global bitline.

54 | Content-Addressable Memory Using Memristors

<~— precharge —— <— evaluaton —

1.0 y
: I
I -
0.8 i input!to global bitline
. I
matchline .
— I
> 0.6 — 1 |
g ! -
I J ; local bitline I
5 04 . |
> I :
f) I
I -
0.2 I i
1 global ioitline
I -
0 ¥" L I S o I. L
0 0.5 1.0 15 2.0 2.5 3.0

Time (n's)

Figure 3.12 A timing diagram for a single two-stage read operation

3.4.2 Energy

The energy consumption in CAM systems is dominated by dynamic dissipation. Of a CAM’s
three operations, search is the most frequent and hence the focus of this discussion.

Memristor models with R > 1000 are examined in a 64 x 128 memory setup. It is shown
that matchlines, including memory cells, contribute approximately 60 % of the total energy
on average as shown in Table 3.4. Sensing circuits also account for a considerable portion
because of the leakage from partially on gates connected with matchlines and Done signal
lines. The parametrised memristor (2 MQ-2 G€) allows sensing circuits to sample the signal

from matchlines and Done signal lines at an earlier time, which reduces the leaked energy.

Table 3.4 Energy performance using different memristor models

No. Rows [57] [74] [102] 2MQ-2GQ
Sensing circuit(pJ) 254 239 249 1.98
Matchline(pJ) 6.31 572 4.52 4.67
Selectlines(pJ) 1.22 1.18 1.31 1.15

Experiments with different memory sizes show that the sensing circuit starts to consume
noticeably more energy when the memory size increases to 128, mainly due to the load
capacitance along Done signal lines. To address this issue, multiple reference rows are used
to provide local timing signals for subarrays. Experiments with the 256 x 128 memory show

3.5 Summary and Conclusion | 55

that the energy is cut by 22 % by having 4 reference rows, each assigned to a 64 x 128
subarray (see Table 3.5).

Energy consumed per bit generally decreases as the size of the memory increases. In the
simulation of the 256 x 128 memory array, the energy is as low as 0.73 fJ/bit/search, which
is significantly smaller than that reported for phase-change and STT based CAMs with the
same memory cell structure [61, 94].

Table 3.5 Energy performance of different memory sizes (fixed width: 128 bits)

No. Rows 32 64 128 256 256°
Sensing circuit(pJ) 0.81 198 521 1528 10.64
Matchlines & selectlines(pJ) 301 5.82 795 15.80 13.59

* A 256 x 128 memory with 4 reference rows

The simulations indicate that a 256 by 128 CAM block using memristors (2 MQ-2 GQ)
should operate reliably and power efficiently. It will provide 10 ns of sensing window and
a sensing margin of 0.36 V. For a deeper CAM, multiple 256 row blocks can be used in
parallel.

3.5 Summary and Conclusion

The chapter presented a memristor-based CAM that achieves high density by removing
all but two access transistors. It also examined the impact of memristor characteristics on

memory scalability and power performance.

The chapter began with a review of the evolution of CAM memory cells. There is an
ongoing effort in the research community to reduce the area overhead of CAM, which has
limited broader adoption of this technology. Area improvements have been made by replacing
the SRAM and by simplifying the bit-comparison circuit in the cell. There is a trend in
current publications to consider CAMs with resistive devices. These new resistive devices

are small, can be packed densely in the wire stack of a CMOS process, and are non-volatile.

Section 3.2 described a four-transistor two-memristor (4T-2R) memory cell that replaces
the complementary SRAM storage bits and as well as the comparison circuit. Unlike
conventional RAMs, the new memory needs to program multiple cells in bulk, and a two-step
write operation is required to program a row. A single-ended large signal sensing scheme
was adopted for the read operation, because small signal sensing schemes requiring direct

connections to memory cells have risks of charging unselected matchlines unintentionally.

56 | Content-Addressable Memory Using Memristors

Search operations and memory organisation were introduced in Section 3.3. Search
involves all memory rows for the purpose of parallel comparison. To detect a match, enough
time should present in the sensing window. For individual rows in the memory array, search
results depend on the bit-comparison results from the cells attached, which is ultimately
determined by the matchline to ground resistance in the evaluation stage in a search. This
finding leads to the exploration of device level characteristics for a better sensing margin and
power efficiency. The new CAM memory follows the basic structure of a conventional CAM
array with the exception of reference rows and hierarchical bitlines. Reference rows provide
a way to coordinate the sensing operation across a deep memory array by telling matchline
latches the exact time to start storing the sensed results from matchline sense amplifiers.
Hierarchical bitlines are introduced to collect the results from large-signal sensing method at

the cell level.

The impact of device parameters on memory performance and scalability was analysed
throughout Section 3.2 and 3.3. Key memristor parameters were examined in various
memory arrays with different sizes in Section 3.4. The experiments used simulation results
of sensing windows and sensing margins to explore the design space. The time available in
a sensing window during a search determines the maximum memory depth. A simulation
among memristors with a 1000 resistance ratio shows that it is possible to find the LRS-
HRS pair that gives the largest sensing window hence allowing the largest memory depth.
Meanwhile, sensing margins with different memristor parameters were explored to give a
wider matchline (i.e. 256 bits). Memristor capacitance and resistance have a direct impact on
energy performance. Besides the obvious benefit of small capacitance, appropriate LRS-HRS
pairs speed up the sensing operation, and thereby reduce energy consumption. The proposed
memristor parameters demonstrate a better energy performance compared to other memristor
models. This is achieved mainly by stopping the matchline sensing at an early stage and

employing multiple reference rows to minimise the arrival time of the timing signal.

This memristor based CAM achieved the objectives of improving memory area and energy
efficiency. In spite of the fact that memory cell area is still dominated by transistors, the
cell area overhead is improved by replacing both the storage SRAM cell and bit-comparison
circuits with a more compact memristor-transistor hybrid circuit. A slightly improved
search energy performance is demonstrated by tweaking device parameters and adopting
multiple reference rows. However, it is usually the high level optimisations that can make a
more significant difference in energy consumption. These optimisation techniques will be

introduced in Chapter 4.

Chapter 4

A 2S-2R TCAM

All of the hitherto proposed designs for resistive CAMs use access transistors in the bit
cells. In spite of the engineering effort to build compact MOS/memristor hybrid circuits, for
instance by hiding transistors under the memristor array layer [79], the presence of transistors
ultimately determines the cell area and contributes to a substantial portion of total energy
consumption in the CAM. This chapter presents a more compact CAM cell structure that
does not need transistors.

Memristors are passive devices, hence a memristor based memory core needs to have a
considerable amount of MOS based peripheral circuitry around it, including various drivers,
buffers and sensing circuits to either write data in or read data out of the core. This area
overhead to a certain extend negates the density advantage achieved at the cell level. An
example given in [106] shows a RRAM array whose area efficiency is lower than its MOS
counterpart even though its cell is five times smaller. An area-optimised memristive memory
core, or subarry in the term of RAMs, has to be large enough so that the area of MOS circuits

is not significant compared to the total saved area in the cells.

These considerations lead to two requirements for the CAM design: the CAM cell must
be compact to save area and it must be scalable to form a large memory array without bulky
MOS circuits built in. These requirements are in line with goals of RRAM designs. The
area efficiency issues of RRAMs were recently addressed in work by [79, 81, 82] in which
transistors were eliminated from the bit cells by using a 1S-1R structure in which each bit
cell contains one access selector in series with one resistive device. These are fabricated
as a sandwich of amorphous oxide material between two crossbar nanowires. The reported
subarrays in these RRAMs suggest that it will be possible to attain single memory arrays
of millions of bits using crossbars. The progress in crossbar-based RRAMs gives hope to

58 | A2S-2RTCAM

building large scale memristive CAMs. This section shows how the same 1S-1R memory
array can be used to build a ternary CAM (TCAM) by changing the data encoding and related
peripheral logic.

The chapter is organised as follows: the first section presents a review of related work on
RRAM operation and leakage current issues. Section 4.2 describes a new crossbar CAM.
It begins with cell level operations including write, read and bit-comparison operations.
Building on top of memristive CAM cells, the section 4.2.2 illustrates higher level memory
array organisations and CAM operations using various control lines. After a complete
overview of the memory, the section reports the results of simulations of a subarray and
discusses the search performance and the area overhead. Section 4.3 moves on to the analysis
of delay and energy issues in large CAMs. The remaining part of the chapter reviews and
discusses techniques applicable to the proposed resistive CAMs (Section 4.4).

4.1 A Review of Crossbar-Based RRAMs

The proposed CAM array is based on recent work with crossbar-based RRAMs. This section
continues the review of RRAM in Chapter 2 by introducing current leakage issues that have
been limiting the reliability of RRAM operations and the size of the RRAM array.

The 1T-1R (1 transistor, 1 resistor device) cell structure shown in Figure 4.1 resembles a
DRAM cell. When a cell is selected for read or write operations, there is no leakage current
flowing into or flowing out from unselected cells as their access transistors are turned off.
The presence of these access transistors means the 1T-1R cell cannot take full advantage of
the crossbar structure; it is a compromise that trades cell area for more power efficient read

and write operations in memory.

A pure memristor cell would be ideal for the crossbar arrangement in terms of cell area.
However, without access transistors, leakage current has limited the size of the RRAM array.
Large RRAMs can exhibit multiple leakage paths that result in errors in read operations.
Specifically, sneak-path current from neighbouring cells flows into the bitline to be read out,
and this noise makes it impossible for the sensing circuits to recover the stored information.
This is particularly problematic in pure memristor implementations, where no access devices
are used to isolate unselected cells from the selected one. An example leakage path is
illustrated in Figure 4.1(c).

The source of the sneak-path current from the neighbouring cells in a read operation
can be divided into three blocks as illustrated in red circles in Figure 4.2. This array

4.1 A Review of Crossbar-Based RRAMs | 59

memory cell
memristor selected
o Y] _wordline | ON
g i U R R &
g q q v, !
8 th1
I I SR I & * '
3 < [[_Vwritel ; v
s el g1,z 2
g) *) 2 J 2 < transistor OFF V i Viwite
' 1
selected H—E H_E H_‘% Vil v
bitline V] read
’CMOS sense/drive circuits ‘
(a) 1transistor/1resistor (1T-1R) (b) operational regions in I-V
leakage current half selected devijces
> 1> o ° - o . |
Vread %\ ‘% &‘ Vwrite/z % @ Z
] 3 "o > ‘e
o H<tg ¥V o 0
ol A
%\. v A half ——> %y
- o — 0 |
3@ o sele_cted - <?»
/ o %» &ap devices %\n ‘ |
0
floated v T - Vwrite/2 0 0
OT-1R cell
(c) read operation (d) write operation

Figure 4.1 RRAM arrays that uses transistors as access devices in (a) and pure memristor-based
RRAM arrays in (c) and (d)

characterisation was used in [107] to conclude that the ultimate limit for the crossbar size
is the HRS:LRS ratio R: in the worst case when the maximum crossbar size is reached,
the sensing current from a HRS cell is as large as the current from the LRS cell. With a
fixed R, the maximum achievable sensing margin is quickly diminished as the arrow grows

irrespective of reading a single cell or reading a row of cells in parallel.

For a large crossbar we require memristors with a large internal resistance ratio. As
shown in the memristor survey in Chapter 2, recent publications report memristors with R
in the range from hundreds to thousands. According to the analysis from [107] which used
the characterisation circuits in Figure 4.2, however, this improved ratio is only sufficient to

achieve a memory size of maximum 64 by 1024.

To overcome this limitation without changing the characteristic of the device, half-select
biasing schemes are used to suppress the leakage current via unselected cells (refer to Figure
4.1(d)). Typically, this access method biases the unselected wordline and bitline to half of the

60 | A2S-2RTCAM

‘other crosspoints ~ e-ii-e;
faccessed crosspoint e-ir-e;

Row T+
Vpu
Xo X3 X3 Xw-1
s $ N Yo
S Y1
Y2 &
¢ W
AAAAA ﬂ Vn-1
(a) (b) (c)

Figure 4.2 Equivalent circuits for characterising leakage current in the crossbar-based RRAM array:
(a) the equivalent circuit of single cell read; (b) the equivalent circuit of multiple cells read in parallel;
(c) the abstracted circuit model for simulation

operational voltage level. Depending on the internal non-linearity of the memristors used,
the current from a half-biased cell can be suppressed to a low level.

Non-linearity of the internal resistance is an important factor in all memory operations.
Multiple groups have reported that it is possible to engineer extra rectifying layers into
memristors, by which the desirable non-linearity can be achieved without significantly
increasing the device footprint [74, 83, 79, 82]. Using half-select biasing, the voltage across
the unselected cells can be kept less than the rectifying threshold and hence the leakage
incurred is negligible compared to the current in the accessed cell. The ratio between the
current in the selected cell and the unselected cells is called the selectivity. State of the art
rectifying memristors have been reported with a selectivity over 10° [82]. In a broad sense,

this can be viewed as an expression of the internal non-linearity of a 1S-1R cell.

The read and write operations using selectors and the half-bias access method in RRAMs

remain largely the same and will be covered in Section 4.2.3 on page 62.

4.2 A TCAM Using 1S-1R RRAM Cells

This section presents a new TCAM design using 1S-1R RRAM cells. The new TCAM is
based on cells fabricated and measured in [82]. To evaluate the TCAM, a simulation model

is used that approximates the reported behaviour of the cells.

4.2 A TCAM Using 1S-1R RRAM Cells | 61

4.2.1 Storage Elements

Figure 4.3 shows I-V curves for a 1S-1R storage element measured in [82] and the curves
from the simulation model used to generate results for this section. Note that the threshold
voltage of the access selector (Vi) can be changed according to the thickness of the layers in
its construction. The state of the element can be read by applying V;.,q and observing the
current. The high resistance state (I ~) 1s used to store a logic ‘1°, and the low resistance
state (I = I,,) for a logic ‘0’. The state can be changed to ‘0’ or ‘1’ by applying Vie; Or Vieget
respectively.

10"] 10"
32— ;
10° (_ r 106 \\ o]
- | . /
3 \ logy / 5 logs
$10° g 10°
= =
107 | 101 B
Isub] \ /
2 1 0 1 2 2 1 0 V.1 2
Vreset Vt Vreadvset Vread
Voltage (V) Voltage (V)

Figure 4.3 1S-1R I-V curves: left as measured in [82]; right as simulated for this design

4.2.2 Memory Organisation

The TCAM organisation is shown in Figure 4.4. The rows of nanowires in the crossbar form
the matchlines (MLs), and the columns of nanowires are the selectlines (SLs). A 1S-1R
storage element is placed at the junction of each matchline and selectline. Each bit of data
in the TCAM is stored as complementary bits on two 1S-1R elements to facilitate search
operations. This TCAM is hence composed of 2S-2R cells. The cell for the j-th bit of the
i-th word in the memory is connected to ML;, SL; and SL j- The memory operations write,
read and search can be realised by applying different voltage combinations to these lines. As
in the RRAM from [82], the TCAM uses a half-bias voltage scheme to suppress the sneak
current that can occur when multiple cells are connected in parallel. This requires the storage
elements to be constructed with Vi /2 < V.

62 | A2S-2RTCAM

ML, Reference matchline L L.
ML: Matchlines Timing control circuit

SL.: Selectlines

/ . 5 Eval ; L] : Done,
C TCAM bitcells 5MLW‘;§M WDO—D%DO—:

Latch enable signal

Done . DUttt ittt
Evgl: Evaluation signal A
st,, SL,, st, SL, LT

ML,

1

. 1

:

1

T

i

1 D ref,w-1! 1 C_rgf,_O, H b
1
MLy, oo)oooooo, ool il i SAout, Q

P ::

1

i

R R | Matchline : i

fini

C0,w1
I
|
Isense amps
|
]
ML, ; oot , Y PRI ! SAout, , Q,.
=] T] : ! SA - Latch i
: .E I : ;E I : |
1 : : :I
:. __________ Co-1w-11 4 IR P, Cn10! :
___ |
I
i| Search data registers and selectline drivers Peripheral circuits
I
1

Figure 4.4 CAM matchline organisation with a reference row

4.2.3 Write and Read Operations

Similar to the write operation in the 4T-2R CAM, this design adopts the erase-before-set
method, where ‘1’s and ‘0’s are written into each row in the two steps: erase (reset) the entire
row and then set specified elements to ‘0’ which is represented by LRS memristors. Unlike
the 4T-2R cell where access transistors provide isolation between cells from different rows,
cells on crossbar structures are vulnerable to leakage current. A variation of the half-select

write scheme is introduced for write operation.

To erase all elements along the i-th row to the HRS, the memory drives ML; to ground
and all selectlines are driven to Vieser. All unselected matchlines are set to Vi /2 so that
all unselected cells are half-selected. Note that the resulting voltage across the unselected
cells is less than the threshold voltage of the selectors, so a small current flows through the
unselected cells, irrespective of their stored state. To set the element at a specified position
(i,j) to LRS, the memory drives ML; to Vi and column j to ground. All other unselected

matchlines and selectlines are set to Vst /2.

4.2 A TCAM Using 1S-1R RRAM Cells | 63

To read out information, two modes are considered: (1) reading out all cells along a
wordline simultaneously; (2) reading out a single memory cell at time. The first read mode
increases the read throughput at the cost of more sense amplifiers and more instantaneous
power dissipation. The second read mode needs fewer sense amplifiers, but is slow when
an entire word needs to be read out bit-serially. For simplicity and a demonstration of read
throughput, this design firstly considers the first read mode. The bit-serial read operation
in the second read mode is introduced together with the search operation because of their

common operational requirements.

A word is read out by simultaneously sensing the contents of the cells along the row. To
read the i-th word, ML; is driven to Vieaqg Where Vi, < Viead < Viet. Each selectline is pulled
to ground via a resistor Ry, and all other unselected matchlines are biased to Vie/2 and then
left floating. The resistance of the storage elements on the i-th row can be detected by the
resulting selectline voltages. Note that because of the complementary data encoding, only
half the selectlines need to be observed. To maximise the area saved from this extremely
compact cell, this design turns away from the large signal sensing approach and adopts a
voltage-mode small signal sensing scheme. Internal sensing is used so that partial swing

signals are converted to a full swing signal for inter-block communication.

Seevinck et al. [108] formulated a set of delay models that have been widely adopted for
calculating delays in SRAM read operations. The voltage-mode delay in this design is given
by

tdelay _ Rwire X Cwire % <1 + 2(RB||RX))

2 Ryire
where Ry and Cyjre are total wire resistance and capacitance. Rp is the selectline load
resistance and R, is the resistor in the voltage divider. This equation has been used to estimate

the delay of a read operation.

4.2.4 Search Operation

The search operation looks for rows that match a cue word by comparing the cue against
every row in the memory simultaneously. A mismatch between the data stored in a cell and
the search cue creates a pull-down path that discharges the matchline. When a stored word
matches the search cue, the matchline retains its precharged high voltage. The encoding is
specified in Table 4.1.

64 | A2S-2RTCAM

Table 4.1 TCAM data encoding

Stored Data Search Cue Match
Logic (D,D) Logic (Q, Q) Status ML
0 (Vset / 2, 0) Match Vread

0 0, 1)

1 (0, Vset/2) Mismatch 0

| (1.0) 0 (Veet/2,0) Mismatch 0
’ 1 (O, Vset/z) MatCh Vread
X (1 1) O (Vset/z’ 0) MatCh Vread
’ 1 (0, Viet / 2) Match Viead

To perform the search, the matchlines are precharged to Vieyq and then left undriven. The
selectlines are set according to the cue as in Table 4.1. In each cell, one of the storage elements
will be biased by Vieaq > Vin and the other by Vieaq — Viet/2 < Vin. Similar behaviours of
matchlines are expected except that a small voltage drop is present across the selectors. If
the data does not match the cue, Vie,q Will be across the element in the low resistance state,
and the matchline will be pulled low, as shown in shaded cells in Figure 4.5. If the data does
match the cue V;.,q Will be across the element in the high resistance state, and the matchline

will discharge only slowly.

M~ HRS Precharge Evaluation
"W~ RS sty ST sk, 3L Slws Slya |

ML, V | Out,
vl |58 |5 [§-[8 [5

ML, ¢ ' ' voLou

TR L

= Gnd Vset/2 Vset/2 Gnd Gnd Vset/2
Figure 4.5 The pull-down paths highlighted in shaded cells discharge matchline voltages in a search

During the search operation, matchlines discharge at different rates according to the
number of bits that match in their rows. Similar to the memory proposed in Chapter 3,
reference rows (ML) are used to generate a Done timing signal which tells the sensing
circuits the correct sampling time. When the sensing window appears in the evaluation
stage of a search it is required that the Done signal arrives between one-bit mismatch and

exact-match rows to discern a one-bit mismatch.

4.2 A TCAM Using 1S-1R RRAM Cells | 65

A New Bit-Serial Read

With the reference row described above, it is possible to read a cell by searching along a
specified matchline. Recall that a search in a CAM is essentially achieved by measuring
discharging rates of each matchline involved. For example, a matchline with a one-bit
mismatch discharges faster than an exact-match row and thus triggers an output voltage
swing at an earlier time. It is interesting to observe that this is similar to the voltage-mode
sensing used in RAMs. The matchline and the sense amplifier used in a search can be reused
for reading a cell. Considering all cells share the same matchline, the read operation has to

be bit-serial.

Consider a simple example where the word to be read out is [0 1 O 1]. The search data
used to drive the selectlines is [1 1 1 1] so that each pair of complementary selectlines creates
a single pull-down path in a cell. Readers may find the encodings in Table 4.1 useful to figure
out the configurations in matchlines and selectlines. An extra reference row ML,.,q is needed
to provide the timing signal as shown in search operations. The reference row for a read is [0
0 0 0], which thus produces a mismatch signal at every bit in this case. To read the first cell,
the specified matchline is first charged high and all other matchlines and reference rows in
search are left floating after they have first been discharged to ground in the previous search
operation. In the evaluation stage, selectline SL; is set to ground to open the pull-down path
in the first cell. This produces a mismatch in both the specified matchline as well as the
reference row ML..,q Which then sends a delayed Done signal to the specified matchline to
sample the result as shown in Figure 4.6. This process is repeated four times to read out all

four bits along the matchline.

Sensing Window

Done\!

reada'l’

Matchline Voltage

N

Time

Figure 4.6 An illustration of the timing in a read operation

The time required to read out an entire word depends on the memory width (W). Both
the number of clock cycles required, and the clock period increase with W. The clock period

66 | A2S-2R TCAM

must increase because the capacitance of the matchline grows linearly with W. Overall the
time taken to read an entire word depends on W quadratically. Another reason to justify the
approach is the reuse of matchlines and sense amplifiers. This not only saves space, but also
eliminates sensing facilities and their associated capacitance from the selectlines. Note that

the selectlines are often more capacitive than the matchlines in deep memories.

4.2.5 Estimates and Simulation Results

SPICE simulations were performed to examine memory search operation and performance.
The memristor model from [67] was used for simulating the resistive storage element and
parameters from the 45 nm CMOS process from FreePDK [109] were used for transistors
and wire loads. The nanowire capacitance and resistance was estimated to be 2.8 pFecm ™!
and 355 Qum™! for regular copper wires with a line width of 15 nm. The selector is difficult
to model, but a bi-directional diode approximates the DC behaviours reported in [82] as
shown in Figure 4.3 on page 61. A test setup, consisting of a 129 x 128-bit array was used to
analyse the search functionality. The circuit array was simulated with 129 distinct pre-stored

patterns to cover a complete range of matching scenarios.

At the evaluation stage, multiple mismatches quickly discharge themselves to ground
because of the multiple pull-down paths. The reference row, designed with the same RC
characteristics as a regular row, is deliberately delayed to trigger the Done signal to stop
a one-bit mismatch row from proceeding to the output. A full search cycle completes in
about Sns, and a clear sensing window of 1 ns is present between the one-mismatch and

exact-match (see Figure 4.7).

A voltage differential of over 120 mV is observed between the match (Vipismaten) and

mismatch matchlines (Viaich) at the instant of the Done signal (see Table 4.2).

120 mV is sufficient for reliable detection with 40 mV typically being considered a lower
bound for reliable operations [40]. One concern with this non-threshold type memristor model
is the state degradation under a voltage bias in search mode. Considering a small voltage bias
(0.3 V) across memristors at the evaluation stage for 3 ns in search, the simulations indicate
that with the same setup the memristor’s resistance is reduced by 2.9 % after performing six

million bias operations in searches.

This chapter presented two read operations. A read cycle in the bit-serial read operation
is equivalent to a search cycle, which finishes within 5 ns. It takes about 640 ns to read out
the entire 128-bit word. In the parallel read operation, only one of two memristors in a cell

is probed. The cell current from an LRS memristor is about 32 yA. The wire loading and

4.2 A TCAM Using 1S-1R RRAM Cells | 67

CLK Precharge Evaluation

:Sensing Windowi

14----"-------- \ :
ML ¥ Reference :
Output \ One-mismatch !
signals i

1_. __

Match

Done
signal

0 1 2 3
Time (ns)

Figure 4.7 Simulated waveforms in a search cycle

Table 4.2 Matchline voltage sensing margin (mV)

No. of Mismatches |Vinismatch — Vinatch|
1 120
2 137
3 139
4 140

voltage divider resistance are configured to obtain a maximum selectline swing of about
300mV. A typical 1 um selectline has capacitance (Cyire) Of 2.8 fF and resistance Ryjre
of 355, and this length is sufficient for about 1024 memory rows. In simulation of a
10000-row deep and 4-bit wide memory array, the selectline delay of this voltage-mode
sensing is about 1.4 ns.

To evaluate the energy performance of the memory array, a memristor capacitance model
and measurements from [58] have been used. By extrapolating this according to the ITRS’s
5nm memristor feature size projection, the memristor capacitance is set to 0.1 fF. The

resultant capacitance of a 128-bit matchline is about 28 fF.

Simulation results for the energy per search cycle in a 128-bit wide TCAM are shown
in Figure 4.8. A 32 Kibit (256 x 128-bit) TCAM subarray consumes about 13.6 pJ. These
results include the energy consumed by the peripheral circuits including the selectline. Energy
consumed in peripheral circuits becomes dominant in larger arrays, and the calculation shows

a linear energy increase at the cell level. Note that the uncertainty of this preliminary

68 | A2S-2R TCAM

estimation is high because of the lack of well-tested electrical models for the nanowires,
memristors and selectors. Nonetheless the simulations are sufficient to indicate the trend of
the power consumption as the size of the memory is increased. This is shown in Figure 4.8.
The peripheral circuits include the selectline drivers, matchline latches and the timing control

circuit.
114 Energy per bit in a single search (fJ)
10— 1 @)
9 -: o
8 0.5 o
:Q_ 7 7 @)
> 6] . ©
& -
T 5 64 128 256 ©
IE 4 No. of rows o)
J @) -
3 o - - =
2 — o) -
i P e = = = Memory Cells
1 - o= . N
] - (@) Peripheral Circuits
0——0@.’.?....,....,....,....,....,....,....,
32 64 9% 128 160 192 224 256
No. of Rows

Figure 4.8 Energy consumption of simulated 128-bit wide TCAM with various sizes

Despite the tighter arrangements reported in the publications [110, 111], a 50 nm half-
pitch (wire width) is assumed hereafter for estimating the geometry of crossbar based
CAMs. Nanowires at the metal layer are orthogonally routed in the crossbar structure which
sandwiches the memristors at each crosspoint. Although the size of wires at the metal
layer can vary, for convenience reasons, this estimation assumes that the metal wires have

coincident edges with a memristor’s electrode and metal-oxide regions.

A conceptual view of the cell layout is illustrated in Figure 4.9. A track, defined to be
100 nm in this case, needs to have enough space to contain a wire and the spacing to the
next wire. By adopting the Lambda-based design rules, where A is half the thickness of
metal-oxide (its thickness is set to 5 nm), the wire width is 20 A and a track is 40 A. A CAM

cell occupying two vertical tracks and a horizontal track gives an area of 40 A x 80 A.

This conservative estimation gives a cell area of 0.02 um?, which shows significant
density advantage over the 4T-2R approach (0.41 um?) in Chapter 3. The area of peripheral
circuits per row is estimated to be 5.05 um?, based on which the memory density is estimated
to be over 10 Mibitmm >

compared to the 640 Kibitmm~> TCAM in the 28 nm process CMOS implementation [112].

; over an order of magnitude density improvement can be achieved

4.3 Energy and Delay of Large CAMs | 69

Substrate

Metal-Oxide

Substrate

——————— Q———————0——————-;———————O————————

Figure 4.9 Layout of routing tracks and memristors in the crossbar structure

The area improvements can be further enhanced by hiding peripheral circuits under the

crossbar array at a separate layer as demonstrated in [81, 80]

4.3 Energy and Delay of Large CAMs

To build a very large CAM it will be necessary to use an organisation like that used for large
RAMs in which the memory is broken into subarrays. Subarrays are arranged vertically and
horizontally to form arrays (multiple subarrays), subbanks (multiple arrays) and banks (an
array of subbanks).

In this section, energy consumption of different memory array components is estimated

based on SPICE simulation results of a 1024 x 128-bit test subarray. In the memory core,

70 | A2S-2R TCAM

1.e. the crossbar, energy dissipation along control lines (matchlines and selectlines) is
considered. Peripheral circuits, based on transistors, also consume a substantial amount of
power. To estimate the energy performance of large scale TCAMs, I used the model from
[113], which estimated power consumed by MOS based peripheral circuits including routing
and multi-match resolver blocks. The energy consumption of a specified memory size is
hence estimated by scaling SPICE measurements and adding up values from various memory
components.

4.3.1 Search Delay

Delay in a single monolithic memory subarray is mainly due to the time consumed in charging
and discharging matchlines and selectlines, as well as the delay in matchline sensing circuits.
Larger capacity memories have more complex organisations that introduce routing delays
between subarrays, arrays and banks. For the estimates presented here, it is assumed a chain
of 256-bit priority encoders is used to resolve multi-match situations. The delay of this chain
contributes to the total delay. The main delay components include:

1. matchline precharge, discharge delay;

2. matchline sensing circuits (sensing, reference signal...);

3. selectline precharge and discharge delay;

4. routing delay between banks and inside banks between arrays;
5. multi-match resolver (e.g. priority encoders) delay.

The array level delay measures of matchlines, selectlines and sensing circuits are obtained
from SPICE simulations. Delay arising from routing and encoding circuits are estimated
using the model from [113], where an H-tree bank routing organisation is employed. Given
a memory configuration, the total delay is estimated based on individual delays from a
collection of components.

Delay of Search Operations

Search speed in an array is mainly determined by three sequential search operations, specified
as the following:

4.3 Energy and Delay of Large CAMs | 71

Reset - The time taken to discharge all matchlines in parallel, although most of them are
already discharged low in the previous search operation. Meanwhile, the latched results

are cleared. The last delay is negligible, and it does not affect the critical path delay.

Precharge - The time taken to precharge matchline to a valid high voltage Vieaq (Viead > Vin)
and to charge selectlines to Vet /2.

Evaluation - The time taken to (1) discharge half of the selectlines to ground, (2) discharge
mismatched rows to ground, (3) charge the Done signal to a valid high voltage above

The equivalent circuits for characterising matchline and selectline RC delay are shown
in Figure 4.10. Diffusion capacitance from the precharge and discharge circuits are also
included in simulations. For a fixed 128-bit memory, both of the matchline precharge and
discharge delay take about 0.3 ns, which is a constant delay portion that can be obtained from

simulating small size memory arrays.

The Flight time along selectlines increases quadratically with the wire length and hence
the memory depth. The Elmore delay model reported in [114] (source to sink) is used to
approximate the flight time. Simulations show that for a memory array with 1024 rows, it
takes about 0.3 ns to charge or discharge the designated selectlines using a 2x unit-sized

inverter.

The Done global wire is highly capacitive due to the gate capacitance from D-latches
and the long wire load. The wire length increases significantly in the CMOS domain; each
D-latch with 6 A track pitch has a height of 1.8 um. Using a wire with resistance 0.8 Qum™!
and capacitance 0.1 fFum~!, the Elmore delay for the line of 1.85 mm in length (1024 rows)

is about 0.6 ns.

26 ohms ML SL Ruire = 10.65 Ohms

100nm

L1+

L1+

&

|07
2

—
e

n o
2

.2e-18F

——
——t

(a) (b)

Figure 4.10 The equivalent circuit of a CAM cell (a) and a selectline unit (b)

72 | A2S-2R TCAM

Table 4.3 Soar semantic memory data size (bits) in a TCAM

LTI Attribute Value

basic requirements 72 80 256
provided in estimation 128 128 128 x 2

4.3.2 A Case Study

The 1K x 128 TCAM array in the previous section can now be used to evaluate larger
memories. In this section, the TCAM array and existing sensing, buffering and routing
circuits are used in a case study to evaluate the performance of the proposed TCAM in a

cognitive task.

The case study will use a TCAM for the word sense disambiguation task (WSD), which
has been used in the literature as a benchmark to compare semantic memory systems [34, 31].
WSD involves searching a dataset for the correct meaning, or sense, of each word in a written
text. The WN-LEXICAL dataset in the Soar semantic memory format contains nearly 4
million memory elements (entries) and it is the largest semantic stores reported for Soar
[34]. Table 4.3 shows that the LTI column needs 72 bits of data, the Attribute column, with
maximum 10 characters in WSD tasks, needs 80 bits, and the Value column will occupy 256
bits (two arrays to accommodate long strings). The LTI and Attribute fields are assigned 128

bits so that three fields can be contained in four uniform 128-bit arrays.

Figure 4.11 shows a block diagram of the TCAM organisation used for this case study.
The software estimation model in [113] organises memory in terms of arrays, subbanks,
banks, the number of banks; it has a fixed memory structure which, when provided a specific
value to each component, calculates the breakdowns of total energy and delay of search

operations. To store the semantics data in the WSD task, the memory is arranged as:

Array: a 1024 x 128 monolithic array of memory cells whose performance is estimated
from the 256 x 128 subarray.

Subbank: 4 arrays cascaded with size 1024 x 512, hence matchline is divided into 4

segments
Bank: 4 subbanks organised in an H-tree routing structure
No. of Banks: 64 banks organised in the H-tree structure

In total, each bank contains 64K entries. A module with 64 banks thus can store up
to 4 million entries which is the capacity requirement for the WN-LEXICAL dataset. The

4.3 Energy and Delay of Large CAMs | 73

4 N
128bits _ | (* __4x128bits) 4)
256 w
rows 3

N 1/0
% k/’ Subbank,) Y Subbank,)
3 /
S / H-Tree
/
e) ()
/
/
/
/
/
/
/
/
/
Array Subbank, Subbank
. J Bank - 3 J

- J

Figure 4.11 An example TCAM in a bank arrangement which consists of four subbanks

estimation model does not include the registers that drive the selectlines. Nor does it include
the circuits that prepare the search data at the local registers in each memory array.

Search the Whole Memory

In a brute-force search operation, the search data is fed to search buffers of all memory blocks
and these memory blocks are activated and searched in parallel. Table 4.4 gives a summary
of the estimates of energy and delay in a search operation. The memory is able to finish
the search within 5.1 ns which consumes approximately 725 nJ. Two major components
in energy consumption are from the memory array peripheral circuits and various control
nanowires connecting with cells which accounts for 84.6 % of the total power. Priority
encoders consume about 112 nJ in total. The read operations spend over 99 % of their power
in H-tree routing. The search delay inside memory arrays accounts for about 43 % of the total
delay. Other delays on the critical path are mainly due to the priority encoder circuit and the
routing in subbanks and banks. Compared to reported TCAMs based on the 0.18 um process,
which are typically small in the range of a few Mibit to 80 Mibit [103] (760 mW Mibit~!)
and [112](420 mW Mibit™!), the proposed TCAM achieves 82 mW Mibit .

74 | A 2S-2R TCAM

Table 4.4 A breakdown of the estimation on energy and delay of a search

Energy:
components nJ %
matchlines 1535 21.1
in arrays selectlines 144.0 199
reference rows 0.2 <0.1

priority encoder 112.0 154

out of arrays peripheral circuits 315.8 43.6

total energy 725.5

Delay: ns

reset & precharge 0.6 11.7

1 arrays evaluation 1.6 314

priority encoder 1.3 25.5

outofarrays o ing 16 314

total delay 5.1

The estimation of the latency of a complete retrieval process also needs the latency of read
operations. | use the proposed bit-serial read scheme to derive the delay of read operation. A
read cycle in this scheme takes about the same time as a search. Priority encoders are not
required because only a single row is activated in read. Thus, reading a row in a memory
array with 128 bits takes about 486.4 ns. A memory element with 512 bits is allocated in four
memory arrays, which, if configured to read in parallel, will give the same delay as reading
a single memory array. Considering the memory object being retrieved has 10 memory

elements, a total of 4.9 us is required for a complete retrieval process.

4.4 Higher-Level Improvements

Although the resistive CAM does not need power to maintain stored information, it consumes
a considerable amount of energy when operating the parallel search; all matchlines are
precharged high to participate in the search and, except for the exact match row, all matchlines
are then discharged to ground at the end of a search cycle. More importantly, all transistor
based peripheral circuits are activated along with the control lines. The principle governing
dynamic power consumption suggests that the same amount of energy is distributed to every

matchline regardless of whether there is a match or a miss. A smarter way to distribute energy

4.4 Higher-Level Improvements | 75

would be a selective evaluation scheme in a memory search that only considers possible
candidates.

A series of techniques are proposed in the literature along these lines from cell level
circuits to architectural ideas. This section reviews some important power saving techniques
that adaptively activate parts of memory in a search, and discusses their applications to the
resistive crossbar CAM.

4.4.1 Pipelined Matchlines

Matchline segmentation is a common method to enable the selective precharge of matchlines.
With segmented matchline, all matchlines are precharged prior to a search. Matchlines
that are not pulled low during a search will still leak charge over time, and will need to
be fully precharged before the next search. This power dissipation can be reduced by only
precharging matchlines for segments that are candidate matches. This selective precharge
scheme is shown in Figure 4.12. It has been used in [115-118] as an effective technique for

reducing energy consumption of a search.

precharge
enable — ML
Output
ML
enable
128 . 128 . B

Figure 4.12 An illustration of a three-stage pipeline each of which represents a CAM segment

One implementation of the selective precharge scheme divides a matchline into individual
cells and each cell forms a segment, as demonstrated in [116, 117], such that a segment
is only activated when there is a match in the preceding cell. A mismatch cell will stop
discharging the subsequent matchlines. In search, the evaluation of an exact-match row
ripples through each cell along the row. One drawback of this approach is the delay from its
bit-by-bit sequential operation. More importantly, the evaluation needs extra circuits built
into the cell and along the matchline, which will significantly compromise the area benefits
of a crossbar structure.

76 | A2S-2R TCAM

In a more general selective precharge scheme, an implementation may divide matchlines
into any number of segments. Figure 4.12 shows a divided matchline in three 128-bit wide
segments. If storage elements are inserted to connect two adjacent segments, the evaluation
stage of a search can be pipelined along the matchline in three stages. This is a typical
approach that trades area efficiency for power reductions. Results from a 1024 x 144-bit array
in [89] show that a five-stage pipelined scheme saves 56 % of the total power consumption
[115]. It should be noted that the idea of pipelining matchlines alone does not show a radical
difference in terms of power consumption improvements compared to the selective precharge
scheme, but it enables the integration of hierarchical selectlines which is able to further

reduce the power consumption [38].

The matchline segmentation and selective precharge schemes are well suited to large
resistive CAMs because of these memories’ poor matchline sensing margins. As analysed in
Section 3.3.1 on page 48, matchline sensing margins drop as memory width increases. The
maximum width that can be achieved ultimately depends on the memristor’s resistance ratio.
In the experiments, matchlines with 128 or 256 cells can be reliably attained with acceptable
sensing margins which are in line with the results reported in the literature [40]. Despite
that the rule of area efficiency requires a matrix of CAM cells to be as large as possible, it is
difficult to build a standalone cell array with a width beyond a few hundred bits using current
memristors. In other words, large resistive CAM implementations have to divide long words
into multiple segments for reliable searches.

Recall that a long-term memory element is a tuple in the form of LTI-Attribute-Value.
If each matchline stores one memory element, a natural way to split the matchline would
be dividing it into three segments: LTI, Attribute and Value. These three segments then
correspond to the record fields in a database system. For generality, I assume a 128-bit
segment is wide enough to contain a record field. A memory containing 1000 memory
elements will thus be composed of three segments, each of which is 1000 rows deep and
128-bit wide. Each segment also needs a slightly modified matchline sense amplifier and a
flip-flop. The sense amplifier is modified to implement a selective precharge, as shown in
Figure 4.12. This is done by simply adding a two input NAND gate to accept enable signals
from the flip-flop in the preceding segment.

The activity of a typical matchline is shown in Figure 4.13 where three fields of a tuple
represent the three segments. The search starts from left to the right. All matchlines are
precharged in the first LTT segment to gauge the match potential of each row. Depending
on the search results, the subsequent segment of a row will be selectively precharged. In a

memory storing rows of random data, the possibility to survive the first segment search is 1

4.4 Higher-Level Improvements | 77

Active
Inactive = . .
LTI I Attribute I Value
MlLo : JI . .
Ml JI JI . .
ML . | . .
| |
: * . N
| |
° | L[] [] L] L[] 1 L[] L[]
| |
I 1 . .
[]
J J . .
° | |
| | . .
! !
i i
MLn-l : [n . N * M n
| |

Figure 4.13 An example of a selective precharge scheme pipelined in three stages; active rows
represent precharged matchlines, otherwise they remain inactive in search

in 2128, Long-term memory elements are not random data; elements in an object share the
same LTI, hence depending on the object size, several rows may survive the search in the
first segment and proceed to the second. The majority of rows will not pass the first segments

and their matchline will not consume power in the second and third segments.

However, the matchline segmentation with a selective precharge scheme in this new
CAM is not as effective as in CMOS CAM designs where the total search energy is reduced
by 56 % [115]. The pipelined matchline scheme saves 16 % of total energy consumption
in an experimental memory consisting three 64 by 128 segments. The main reason is that
energy consumed by transistor-based peripheral circuits accounts for almost half of the total
energy. As a result, a large amount of the saved power in inactive matchlines goes into the
extra peripheral circuits needed in each memory segment. Also, the first segment is always
active in every search regardless of producing a match or mismatch. The third factor is that
although the majority matchlines in the second and third segments are not active, half of the

selectlines in the two segments are still precharged.

To further improve the design, a few general suggestions are proposed: first, the segment
width should be customised accordingly to achieve the best power performance. For example,
the initial search in the first segment only needs a few bits to be highly discriminative; a
4-bit matchline in the first search in theory eliminates over 93 % matchlines in the second

search. In a memory design as shown above, the design of the first segment involves a careful

78 | A 2S-2R TCAM

Active ML
Inactive ML =« . .
Active GSL
Active LSL
Inactive LSL == = = = =
LTI Attribute Value
LsL 128 GSL I T128 GSL I Y128 GSL
MLo I . I g "
Ml Ll 1 1 .1 [L |
U
Ml r ‘
HEEE R
I I I I
L e r
L 4 4 4 A | |
I [11 I ! L
T T T r
B T T F b oF | L 1
L. I
AR NN
MLn 1] [[1 i [[

Figure 4.14 An illustration of a memory with pipelined matchlines and hierarchical selectlines;
shaded areas are two examples of local segments which contain a subset of matchlines of a segment.

selection of data that is unique to a stored memory element, which is similar to the design of
a good Hash function. However, a collision, which in this case is a multiple match in the first
segment, will not affect the search latency or results but only incur a small power penalty.
The specific design is a problem of its own and will not be covered in this thesis. Second, the
matchline selective precharge scheme can be extended to include selectlines.

A hierarchical selectline structure is introduced in [119] where the selectlines are divided
into multiple shorter local selectlines (LSL) in a way similar to the hierarchical bitline
arrangement in the 4T-2R memory described in Chapter 3. Global selectlines (GSL) broadcast
the search data into local selectline receivers which depend on enable signals from the
previous segment to relay the search data signal to local selectlines. The enable signal
from the previous segment is generated by collecting matchline outputs using a wired-OR
circuit. A typical example of matchline and selectline activities is provided in Figure 4.14
for illustration. Consider each local segment has 16 rows. As long as there is a match in the
previous local segment, the local selectlines in the subsequent local segment will be activated;

otherwise both the selectlines and matchlines will be deactivated in subsequent segments

4.4 Higher-Level Improvements | 79

as shown by the shaded areas in Figure 4.14. In the application of long-term memories,
only a few memory elements with the same LTI are able to survive the initial search in the
LTI memory block and most subsequent memory blocks are expected to remain inactive
in a memory search. A more detailed coverage of hierarchical selectlines is provided in
[119, 115]. The application of this technique to the new CAM is thus to avoid unnecessarily

charging selectlines in subsequent segments to further improve dynamic power consumption.

4.4.2 Pre-Computation

A binary CAM supported by pre-computation stores extra information in each word for use
in the search operation [38]. Typical data for this extra information is the Hamming weight
(the number of ‘1°s) of the rest of the data word. This extra information serves as the first
segment in the initial search as illustrated in Figure 4.15. When a search cue is passed to
the memory, the Hamming weight is counted and will be the search data in Segment 1; the
matchlines in Segment 2 are selectively precharged depending on this initial search results.

Segment 1 Segment 2
search data

[4 |[«—"1's counte}«—] 10111

A Y

0 00000 I
4 e 10111 o
3 11001 —
1 00100 E—
4 11101 I—

Figure 4.15 A conceptual view of a CAM with pre-computation [38]; the shaded areas indicate a
match and the bold solid lines indicate a precharge activity

CAMs make use of pre-computation to reduce power by selectively activating memory
blocks. Published results show that the energy consumed in the added peripheral circuits can
be amortised by the power saved in memory blocks [120]. It is interesting to observe that
rows precharged for search in Segment 2 have the same Hamming weight and this is used to
simplify the comparison circuits in the binary CAM cells. A mismatched row in the second
segment always has the same Hamming weight as the search cue. In a conventional CAM
cell of (D, D), the memory only needs to evaluate one of the pull-down paths in a cell as

illustrated in Figure 4.16. The same 1’s count ensures that a mismatch will always have a

80 | A2S-2RTCAM

pull-down path to ground. It should be noted that the cells in Segment 1 still need normal

comparison circuits because of the lack of this property.

Figure 4.16 An example of the simplified comparison circuits of four cells along a matchline; only
one pull-down path is used for a search in each cell [38]

The use of pre-computation is well suited to the resistive CAMs proposed in the thesis,
including 4T-2R CAM and the crossbar CAM using 1S-1R RRAM cells. I will consider the
latter as an example in this section. Recall that each of the crossbar CAM cell groups two
RRAM cells for storing a pair of complementary binary values. With the pre-computation
scheme, it is feasible to use just one RRAM cell for a search such that a comparison between
(0, Q) and (D, D) is now possible by just comparing Q and D. Now, the memory core is
identical to the arrays in RRAMs and half the size of the CAM proposed earlier in this chapter.
An encoding scheme without the complementary storage bit and selectlines is provided in
Table 4.5.

Table 4.5 Data encoding of simplified cells in binary CAMs with pre-computation

Stored Data Search Cue Match
Logic D Logic 0 Status ML
0 Vset/z MatCh ‘/read

0 0 1 Gnd Mismatch 0
| | 0 Viet/2 Mismatch 0

An example memory with four-bit words is illustrated in Figure 4.17. The search data is
[0 1 1 0], which assumes that the Hamming weight is two in the pre-computation. All six
possible combinations are stored in memory, each of which occupies four RRAM cells instead
of twelve in the previous CAMs proposed. The simulated circuit confirms the correctness as

analysed above.

The compelling part of this circuit simplification is the possibilities to reduce cell area
and improve the matchline sensing margin, which is a key factor in building wide CAM

arrays. The cell area reduction is obvious as shown in the transistor cell and the memristor

4.4 Higher-Level Improvements | 81

1M HRS "1 Precharge iEvaluation
MM~ RS ‘0" Sly SL, SL, Sl
ML, [V] Outy
Search data = —| VA out
1
__ pig M |
MLo 0011 | Reset —|
0101 =
ML ML, V] out,
ML, | — | 0110 |
Reset —I
MlLs 1001
Mla 1010 MLs | [V outy
1100 -
ML, E—’ Out,
i [§[H]85
MLs m Outs
Reset —| § E § §

Vset/2 Gnd Gnd Vset/2

Figure 4.17 Simplified cells in a four-bit wide memory demonstrates search operations; red ‘0’s and
arrows illustrate the low resistance pull-down paths, and the shaded area indicates an exact match

cell examples. The possible improvements on matchline sensing margin arise from the
conclusion in Section 3.4 that the sensing margin in search along each matchline depends
on the matchline to ground resistance between the exact match row and the one mismatch
row. The ratio in previous proposed CAMs is 1+ Rygs..rs/W when the both HRS and LRS
resistance is significantly larger than the selectline loading resistance. W is the memory
width. In this CAM with simplified cells, the matchline to ground resistance of the exact
match row doubles because the number of pull-down paths is reduced by half. Thus the
resistance ratio between a match row and a mismatch row increases to 1 +2Rggs..rs/W.
Depending on the device’s Ryps:rrs and the memory width configuration, this change could
lead to a boost in matchline sensing margins. For instance, for a memory width of 128 bits

and Rygs:rrs of 128, the sensing margin can theoretically have a 50 % increase.

82 | A2S-2RTCAM

4.5 Summary and Conclusion

This chapter proposes a compact resistive TCAM based on the crossbar structure. With two
RRAM 1S-1R cells representing a CAM cell with a pair of complementary bits, the same
search operations as a conventional CAM can be realised by properly controlling matchlines
and selectlines. It should be noted that the control over these memory lines is adopted from

the same half-biasing scheme used in suppressing leakage current in large RRAM arrays.

CAM operations on crossbar arrays including write, read and search are demonstrated.
Because of the commonalities shared by RRAMs and this CAM, write and read circuit
techniques in RRAMs can be reused. In addition to the voltage-mode sensing analysed, the
chapter shows that it is possible to read a row of data by searching a particular cue against this
row bit-serially. The main reason to justify this relatively slow read scheme is the elimination

of extra read sense amplifiers inside memory arrays.

A small memory array circuit was simulated in SPICE. The results show that as the array
becomes wider and deeper, the peripheral circuits begin to dominate total energy consumption.
However, the energy/bit/search is comparable to current volatile CMOS implementations. A
conservative area estimation using stick diagrams shows that the proposed CAM achieves
over an order of magnitude density improvement compared to the state of the art MOS
counterparts reported in the literature. Further implementations that hide peripheral circuits

under the crossbar layer promise even more compact memory arrays.

The results for small memory arrays were used to analyse larger memories. Key delay
components include search in memory subarrays, multi-match resolution delays and routing
delays. Energy estimates show that memory subarrays and their peripheral circuits consume
98 % of the total energy. For a CAM with four million long-term memory elements, the
proposed CAM consumes about 10 % of the energy of a conventional CMOS CAM but has
a slightly larger search latency. However, the latency of a memory retrieval is significantly
improved when compared with the current software approach; the estimation in the case
study shows that a retrieval of a modest size memory object is in the range of microseconds,

while the latency of a software based retrieval is in milliseconds.

The last section of this chapter focused on reviewing existing circuit techniques applicable
to the resistive CAMs proposed in this thesis. Two CAM techniques are shown to be
particularly suited to the resistive CAMs: matchline pipelining using selective precharge
schemes; and pre-computations before search. Matchline pipelining reduces the energy
per search by reducing the switching activity of circuit blocks. Mismatch rows can be

detected and disabled in an earlier stage thus saving energy consumptions. Pre-computation

4.5 Summary and Conclusion | 83

also reduces the energy per search. More importantly with crossbar resistive CAMs, using
pre-computation is possible to significantly simplify the cell circuit and save the total chip

area. The simplified cell circuit also promises to give a better matchline sensing margin.

Chapter 5
Activation Circuits

Chapter 3 and Chapter 4 explained how to build compact CAMs so that information can be
densely stored and quickly searched. Semantic memory is more than just an information
storage and retrieval system. Long-term memories in advanced cognitive architectures,
such as Soar and ACT-R, include biasing mechanisms mimicking the human memory recall
process; the retrieval of knowledge is biased by how recently or frequently that knowledge
has been accessed. This is achieved by maintaining an activation value for every object
in memory. When a memory search matches multiple objects, the one with the highest

activation is returned first.

State of the art software realisations of cognitive architectures use carefully optimised
databases for their long-term memory as well as the activation biasing schemes. As discussed
in Chapter 2, these become a serious constraint for real-time agents or agents that persist for
a long time. This chapter shows compact activation circuits can be distributed into CAMs to
support cognitive functions in memory. The memory system uses the resistive CAM from

Chapter 4 as the storage and search engine as shown in Figure 5.1.

Recall that a search cue passed to the semantic memory is compared against all rows of a
record table in CAM at the same time. When a cue only contains partial information about
a memory object, for instance, a value of an attribute of an augmentation, the search may
generate multiple match records. These will then be passed to the activation circuit to bias

the retrieval result, in a similar way to a multi-match resolver in a conventional CAM.

The activation circuit is different to a priority encoder resolver in two ways:

1. the activation circuit uses dynamically updated values and the updating scheme is
necessarily a two-step process. When a search cue is passed to the semantic memory,

86 | Activation Circuits

C Controller)
4 ' N —
Store
Update &
Compare
Activations
N\ J -/
Content-Addressable Memory Activation Circuits
Semantic Memory

Figure 5.1 Block diagram of the semantic memory in cognitive architectures

the memory first performs a memory search, possibly generating multiple candidates
which are biased by their activation values for output; then the activation values are

updated based on the outcome of the current search.

2. If the activation circuit generates an incorrect result, it is not a problem. The role of
the activation circuit is to order the search results. Sub-optimal ordering may have a
performance impact but will not affect the correctness of the system. The situation
is analogous to a data cache in a conventional computer system. Cache misses affect

system performance, but not correctness

The objective of the present work is to provide hardware support to enable real-time
agents with very large long-term memories. For activation blocks in the semantic memory, it
is necessary to use dedicated activation circuits to overcome the computational complexity
of activation updating in software implementations. One possibility is to build a centralised
digital activation processor that computes activation values of multi-match candidates in a
sequential manner. Alternatively, one might use a distributed approach, in which a small
circuit is associated with each object in memory to store and update its activation. The latter
approach is the theme of this chapter.

The remainder of this section reviews related work on a hardware supported activation
scheme which stores timestamps in a buffer for the calculation of each activation value.
Based on this scheme, an area optimised version of timestamp circuits using memristors
is proposed in Section 5.2. The latter part of the chapter considers the analog behaviours
of memristors and their application to building activation circuits. Section 5.3 describes a
compact circuit with a single analog memristor which is used to store, update and compare
the activation value for a memory object. The last section of this chapter provides results of

SPICE simulations and a case study.

5.1 Related Work | 87

5.1 Related Work

Recall from Section 2.1.5 on page 20 that base-level activation (BLA) is a commonly
used activation scheme that has proved effective for cognitive models [6]; however it is
computationally expensive to implement [33].

In an early, unpublished, attempt to support BLA in hardware, members of my research
team considered a digital approach using conventional CMOS circuits. Their resulting
timestamp circuit provides a useful introduction to BLA calculation and is the conceptual

starting point for the memristor circuits described later in this chapter.

The authors of the timestamp circuits reformulated the BLA equation Eq.5.1 by assuming
that semantic memory accesses occur uniformly in the time period of 7 and it would be
sufficient to approximate the activation value by only using the history of the last w memory
accesses. Consider the activation of a memory object at time ¢ = k7, where k is some random
number. a; is defined to be 1 if the object was accessed j+ 1 time periods ago, otherwise
aj = 0. The BLA equation (see Eq.2.1 on page 20) can be reformulated as:

w—1

acj (5.1)

B= 1n<T;d> +1n Y

Jj=0

where both ln(Ts_d) and c; are constants for a given value of d (c; = (j+ 1)~4). Thus,
for determining the object with the highest activation, it is sufficient to compare their values
of

. w—1
Bi=Y ajc (5.2)
j=0

Considering c; is a constant, only a; needs to be maintained as a w-bit timestamp value
(ay—1,-...,a1,ap) for each memory object. In hardware, a circular buffer is used to store the
timestamp for each object in memory, as shown in Figure 5.2. The authors further proposed

a more area efficient approach using SRAM for storing and updating timestamp values.

An illustration for testing the effectiveness of this reformulation (Eq.5.2) is shown in
Table 5.1, where a 4-bit timestamp is used and the decay factor d = 0.5. The constant c; is
precomputed for each time interval. As can be seen from the table, the most active rows are
those that have been accessed both frequently and recently (e.g. the row ranked first with (1,
1, 1, 1)). Rows accessed infrequently or less recently have lower values of activation. This

88 | Activation Circuits

1
E
I MPb Q
(N}
(N}
[N
II - 0o, jew-1],
accessed +
]
*.___ P
| | :r_,L_
E E i Y E E
I]
—DQ—‘ HD Q 44D Q- D Q
! |
]
! !
a1, wl,, 01, pdfrt - 91, b || o 91, ktwetl,
accessed +
]
1 1 oo |
AN 7o iy AN
1 E ! E il E ! E
: | : | |: | : |
|__ID Q:'_I |__ID Q:'_I |_:_ID Q:'_I |__ID Q:'_I
| : l : 1 : l : ||: l : 1 : 1 :
: |____J' | : |____J' | ::l____J' | : |____JI !
]]]]
o Ty 1| Tl iy el 0w,
accessed; =~¥|-—------ - o !
]
| I
r_,L_
E E ' E | E
]
D Q D QM 7ib Q- D Q
[!
b
|
an, x|, an, |x+1|w:"' an, Ix+j., an, Ix+w-11,
accessed ; . ¢

Figure 5.2 Timestamp circuit using a circular buffer of registers. (|x|,, indicates x mod w; a; ; = 1
indicates memory object i was accessed at time interval j.)

oversimplified 4-bit access history size is for illustration only, and a record of access history

over a wider window will provide a higher precision for resolving multi-match issues.

5.2 Timestamp with Digital Memristors

The semantic memory needs to store tens of millions of memory objects as analysed in
Chapter 2. Consider a 10-bit window of access history size for sufficiently maintaining an
activation value for each memory object as used in [34]. This leads to hundreds of millions
of bits dedicated to storing timestamps alone. Although memory is generally assumed cheap,

I propose to use the two-state digital memristors as an alternative storage solution to replace

5.2 Timestamp with Digital Memristors | 89

Table 5.1 A 4-bit timestamp for calculating activation values

Precomputed ¢; 1.0000 0.7071 0.5774 0.5000

Timestamp 0 1 2 3 B Rank
1 1 1 1 2.7845 1
1 1 1 0 2.2845 2
1 1 0 1 2.2071 3
1 0 1 1 2.0774 4
0 1 1 1 1.7845 5
1 1 0 0 1.7071 6
1 0 1 0 1.5774 7
1 0 0 1 1.5000 8
0 1 1 0 1.2845 9
0 1 0 1 1.2071 10
0 0 1 1 1.0774 11
1 0 0 0 1.0000 12
0 1 0 0 0.7071 13
0 0 1 0 0.5774 14
0 0 0 1 0.5000 15
0 0 0 0 0.0000 16

the hundreds of millions of bulky SRAMs (as shown in Figure 5.3) because of memristors’
inherent register capabilities. Moreover, the peripheral circuitry used for a crossbar memristor
array can be reused to achieve a w-bit circular buffer. In this way, the area overhead will
be significantly reduced, and little effort will be needed to re-design the peripheral circuity.
Based on the memristive bit cell, an alternative approach using memristive logic operations

1s investigated.

The idea of using a circular buffer for updating the timestamp is maintained. The counter
and decoder are replaced with a self-decoding ring counter. The memristor memory element
can be built in the junction of a crossbar structure, which is for area efficiency and consistency
with the semantic memory proposed in preceding chapters. Two phases are required to update
the timestamp. At the beginning of every cycle, a reset operation is performed to clear a; o = 0
for all i. The second phase sets a; o to 1 whenever the corresponding memory object has been

accessed in the previous memory cycle, i.e., access; = 1.

Specifically, all objects with accessed = 0 are reset to O in parallel in the reset phase;
this is done by applying an appropriate voltage bias across the memristors in the cell bits
selected by the ring counter as illustrated in Figure 5.4. At this phase, the memristor in the

row with the status accessed =1 is left unchanged since there is no voltage drop across it.

90 | Activation Circuits

w-bit ring counter w-bit ring counter

o
o
T o
- \;\'_
o
[N
[N
T e
- \E\'_
[N

Ao, o
e T EE T T o T EE T T
1 \v\ L I \v\ . I
T * T accessed, T * T
| 1 1 = | I 1=
1 [1 19 [| 19
T * T & accessed, T * — &
| | | 5 1 1 1 =
| | I ® | | a3
1 ----- 1~P-— -9 - -9 r-on accessed; ----- 1~ ®-——9--9--9--
| | |
| Vo | e
1 ' M - accessed, 1 * 1
(Y I A IO S (Y I A IO S
! SRAM ! SRAM
bitlines bitlines
set phase reset phase

Figure 5.3 Timestamp circuit using SRAMs

In the set phase, different voltage bias is applied across the memristor in the accessed row,
which sets its resistive state to represent ‘1’. Considering the fact that most objects are not
accessed in every cycle, the majority of cell bits have the status accessed; = 0. Thus, for the
sake of reducing leakage current, memristors with HRS represent the access status ‘0’, and
LRS represents ‘1°.

5.2.1 Timestamp with Memristive Logic

Up to this stage, memristors are only used as storage elements for storing the access history.
This section explains how the timestamp scheme can be realised using memristive logic

computing. The density benefit is the main reason for exploring this approach.

A straight-forward way to realise the timestamp updating scheme is to use shift registers
that shift the access history bit cells by one bit in every cycle. In fact, resistive devices have
inherent register-like latching properties that enable them to hold internal states when not
biased by high level voltages. Moreover, these stored resistive states are able to perform logic
computations. These properties lead to the memristive version of shift registers that are able

to update the timestamps of every memory object.

Recall from Section 2.4.3 on page 34 that pIMPgq is equivalent to the boolean logic
q < P+ ¢q. With logic duplication (from p to a another memristor y) as shown in Figure
5.5(a), it is possible to build the shift operation: S;1 | <= S; and Sp <= accessed;. The operation

5.3 Analog Activation Circuits | 91

VI'ESGt = 0 V Vnon—access = 1 V VSE(= 1 V Vaccess = 0 V

" b by L Ly

V non-access

T Tl |
1
|
1
1

5 <

[}
&
P

Vnon-access 1

Vnon-access Vnon-access

1
-—-@---@-—--<—

Vnon-accgsi ______ - I SO _*_ _____ ®- V non-access
1
Vaccess l V access
H
:
bitlines bitlines
set phase reset phase

Figure 5.4 Timestamp circuit using memristors

is bit-serial because the bit cells share the same wordline, and memristors lack the gating
ability that separates the cells when operated in parallel in this crossbar structure. As a result,
a w-bit timestamp needs w — 1 bit-serial logic duplications, which corresponds to 4(w — 1)

write operations.

p/”V'P\q‘q/”V'P\V‘ N N

p q y So S1 S2 S3
0] 1 0 0 So' St S
1 0 1 1 So' St LY

(a) (b)

Figure 5.5 Logic duplications (a) and shift operations (b)

A small RRAM with in-memory computing operations suitable for this scheme is de-
scribed in [121]. The shift operations are sequential, where n — 1 number of SET and RESET
operations need to be performed for completing n bits shift.

5.3 Analog Activation Circuits

So far in this thesis, memristors have been used solely in digital designs. CAMs used

memristors in memory cells for storing binary values, and the previous proposed timestamp

92 | Activation Circuits

circuits only used binary memristors to represent only ‘0’s and ‘1’s thus each timestamp needs
multiple memristors for storing the binary access patterns. However, the relation between
an ideal memristor’s resistance and charge that has passed through it imply that a properly
biased single memristor is able to provide analog values represented by its resistance.

The most popular applications of analog memristors are in neuromorphic learning where
memristors have been shown to be more area-efficient in analog implementations of synapses
models [85, 122, 123]. Typically, a memristor’s state changes in a synapse are used to record
a specific learning outcome, which is determined by the state of the pre-synaptic neuron,
the state of the post-synaptic neuron and the current state of the synaptic weight [122]. A
memristor is good fit for this role because the change of its resistance also depends on
three inputs: its current state and two voltages applied to its two terminals. Generally, local
CMOS-based neurons are used to supply a train of potentiating voltage pulses to program
the resistance of the synapse memristors. Voltage pulses with properly defined duration and

width are able to precisely modulate the memristor resistance.

Two observations of memristors and activation models suggest that memristors are
applicable to the design of an activation circuit. First of all, both memristor resistance
and activation values evolve over time as a function of the external input and the previous
state. For memristors, the bias voltage is the external input and the change of resistance
depends on the previous resistive state. The change of the activation of a memory object
also depends on the external access pattern and the previous activation value, although this
change is at a different rate to that observed in memristors. However, the second observation
of memristor models is that the non-linear relation between the the bias voltage and the
change rate of the resistance provides a tool to tweak the dynamics. It should be noted that
none of these observations support a faithful reformulation of the base-level activation model
using memristors, but it reinforces the idea that it is possible to support an effective activation

model approximated using memristors.

This section explores memristor analog behaviours in the design of an activation circuit
which consists of two blocks: an activation cell and a comparison cell as arranged in Figure
5.6. When an ambiguous cue is passed to the memory, the search generates two match
candidates: for example, Object; and Objecty.z. The memory then compares these two
objects’ activation values based on past access patterns. The winner of this comparison, say
Object,, will be successfully retrieved and its activation will be updated in the corresponding

activation cell.

An activation cell is attached to the end of each memory row. The activation cells store

and update activation values using input signals from the CAM search output, the activation

5.3 Analog Activation Circuits | 93

signal Act and the deactivation signal Deact. The activation values of a memory object is
stored in a single memristor with continuous resistive states. The updating scheme uses Act
and Deact to drive the memristor’s resistance lower or higher to approximate the updating
dynamics in BLA.

Apart from having activation storage and update functions, the memory also needs to
compare the activation values from match candidates and find the highest. A typical CMOS
approach would be to first convert the analog resistance values to digital signals, and then
find the highest value by employing a winner-take-all network. I will show in Chapter 6
Section 6.3.5 on page 119 that the CMOS winner-take-all network would not only occupy
significant chip area but also introduce a delay linearly proportional to the memory depth.
Considering that activation values of each memory object are stored as different resistance in
memristors, I use memristor resistance to build a voltage-mode read circuit for each row so

that the greatest activation can be discerned from the RC delay triggered by the read signal in

Figure 5.6.
Long-term Memory
Search Data | |Contro| | A_Ct_ Deact E@ Activation Comparison
[TTTIIIITT]] Cells(ac) Cells (cc)
Stored Objecto { ACo CCo
Stored Object1 {) AC1 G
: : : : L 5
Stored Ob/:ectN-s L/ —— ACn=3 | CCns Matched
Stored Ob].ECtN-Z {_J 1 [ACn2 | CCn-2 Location
Stored Objectn-1 L {ACN-1 CCn

Figure 5.6 Block diagrams of activation circuits for storing, updating and comparing activation values

The core of this activation circuit is a voltage-controlled analog memristor, which stores
the activation value for the row. Like the synaptic memristors, the resistance of each activation
memristor can be adjusted over a wide range of values by applying voltage pulses [67]. To
reduce power dissipation, memristor conductance is used to represent activation, with low
conductance corresponding to low activation. At any time most of the rows in memory will
be inactive, their activation memristors will have low conductance, and will dissipate little

power.
The activation cell is shown in Figure 5.7. It supports three operations:

Activate: a positive voltage pulse greater than the memristor positive threshold voltage Vrp

is applied to a row when it is accessed to significantly increase its activation value;

94 | Activation Circuits

Deactivate: a train of negative voltage pulses, which exceed the negative threshold voltage
Vrn, 1s applied constantly to all rows in parallel, to decrease all activation values over

time;

Read: a voltage pulse is applied for a short period to compare the activations and find the
most active row. Although larger than V7p, this pulse has negligible effect on the stored

activation values.

Vread Vact. Vieact

i mdl s

Y [

Figure 5.7 An activation cell (AC) for storing and maintaining a row’s activation value

The circuit used to find the row with the highest activation is shown in Figure 5.8. In
each row, the read voltage, V,..q, will grow monotonically at different rates according to the
conductance of the activation memristor. The first row to reach the input threshold of D-latch
will cause the corresponding mostActive flag to be latched and sent to the encoder circuit.
The disable flag will then be propagated to all rows to disable their latches. The characteristic
circuit of this RC model shares some commonalities with the CAM discharging model where
the determining factor is the total matchline to ground resistance instead of the resistance

representing activation values.

It is possible for two or more rows to tie and all be flagged as the most active. This is not
a serious problem as the activation value is a heuristic. Agents are designed to be tolerant
of multiple memory matches. Like a cache miss in a conventional memory hierarchy, an
erroneous activation value or comparison may incur a delay but will not cause the system to
fail. This also means that the circuit is tolerant of activation errors arising from memristor

variations.

5.4 Simulations and Estimations | 95

Vad g
1%}
>S5
9
. >
mostActive HI: I
o
e Q
b
je!
Activation Cell
— | disable
> Act CLK

o—Deact Vrea D Q E
°—Read Reset g
%
[J]
ES :I Reset c
(]
=
I R 1 2

Figure 5.8 A comparison cell (CC) for finding the most active row
5.4 Simulations and Estimations

The activation value of a row should be a function of how recently and how frequently
it has been accessed. Various activation functions have been used [34] but the base-level
activation function in ACT-R [33] has proved successful and will be used here as a baseline

for comparison.

SPICE simulations were performed using a memristor model extracted from a fabricated
device [67] and parameters for a 45 nm CMOS process with a supply voltage of 1V from
FreePDK [109]. Figure 5.9 shows the activation function for the memristor activation circuit
alongside theoretical BLA when a row is accessed every 100 ms. Deactivation pulses of
—1V for 0.1 ms are applied every 0.4ms. A 1.8V activation pulse is applied for 1.5 ms
whenever the row is accessed. The memristor-based activation approximately follows the
form of the BLA. Both increase significantly when a row is accessed and fall quickly just
afterwards. This reflects the recency of access. Both also show a long term increase reflecting
the frequency of access.

A circuit of 32 rows has also been simulated. Each activation row is directly hardwired
to a matchline output in the CAM, thus each search triggers a row access. Rows are accessed
periodically but at different pseudo-random rates between 8 and 33 Hz and for a different
random number of accesses from 1 to 10. The experiment assumes that the combinational
configuration of access frequency and access numbers in a fixed time frame will illustrate

the dynamics of memory activations based on different schemes. Figure 5.10 shows the

96 | Activation Circuits

N
IS
x

=
o

BLA

Memristor Activation

Activation Level
N
~
Activation Level with Memristor (S)

N

O i i i i
0 0.2 0.4 06 038 1 1.2 1.4
Time (s)

o

Figure 5.9 Comparison of BLA and memristor activation in the case of uniform memory access

activation values for 4 out of the 32 memory rows. The experiment results are gauged at
the time point of one second. The combination effects of frequency and recency makes the
row highlighted in red line the most activated row. The activation values for these 4 rows
are shown in Table 5.2 along with theoretical values for BLA. At = 1 s the memristor
activation function assigns row 2 a higher activation value than row 3; BLA gives row 3 a

higher activation than row 2.

Finish Line

(9]
T

N

w

[N

Activation Level (uS)
N

o

| | |
04 05 06 07 08 09 1
Time (Second)

o
o
[EEN
.
N
o
w

Figure 5.10 Memristor-based activation values for four rows with different access patterns

5.4 Simulations and Estimations | 97

Table 5.2 Results after updating 4 rows’ activations over a 1 second period; the ranking is based on
the proposed activation results

ranking period of a cycle (is) no. of access BLA proposed activation (uQ ")

1 124800 9 3.62 1.85
2 36800 10 24 1.17
3 82590 9 2.44 0.91
4 82590 7 2.1 0.33

5.4.1 Estimations

Energy consumption of the circuit can be estimated from simulations of a single activation
row. Each row dissipates energy when performing one of the three operations: activate,
deactivate or read. Figure 5.11 shows simulation results over the memristor’s resistive range
for a 45 nm process. Memristor states 0 and 1 represent two resistive boundaries: high
resistance and low resistance respectively. The activate operation has the highest energy
dissipation and a row tends to dissipate more energy as it becomes more active. In the
worst case, applying an activation pulse to a fully active row can dissipate up to 174.87 nJ.
However, most rows will be inactive as confirmed by the memory access patterns observed in
[6]. In the experiment reported in that publication, among 821492 long-term memory rows,
only 31280 rows were accessed, accounting for only 3.8 % of the total storage. Assuming
that those accessed rows were fully active throughout the program execution, the activation

circuit would consume 0.04J energy.

In simulation of the read operation, when a row is fully active, it triggers the mostActive
flag after 6.7 ns. In the worst case where all the rows are inactive, this takes about 80 ns. A
tie between the two most active rows occurs when the resistance difference between them is
less than 4 kQ.

A rough area estimation of each activation row is given using lambda-based design rules
and stick diagrams [124, chap. 1]. Without custom placement, the size of the latch will
determine the height of the row and it also occupies a large portion of the total length of
the row. Assuming 8A track pitch, an estimation by counting the number of routing tracks
is shown in Figure 5.12. The latch is based on two tristate inverters, one standard inverter
and a NOR gate, which occupies an area of 2244 x 56A in single-height cells. Without
including memristors, which would sit in the wire stack above the CMOS circuits, the row
has a 2244 x 56\ geometry. This corresponds to the area of approximately 200 cells of the
new CAM proposed in Chapter 4.

98 | Activation Circuits

180 -4
ot
160 - S . TREE o
....... 2 135
= - TR o o
S 10+ o +
tx>5 o 3
o 120+ ¥ .
& \ o 3
] 100 8 i 12.5 ;
g F 5
B 8 - + , 2
5] o
@© . (I
3 -
O 60F oF ©
) + ++ ' Activation 115 &
® 40F k O Deactivation
—E 4" O Read Operation 1
< 20
$ ------ (o XRRREY 'RERRRT SRERRY o SERRRRYo RERERY o IERRERto RERRRY < IRRRER'o RRRRRY)
O 1 1 1 1 05

0 0.2 0.4 0.6 0.8 1
Memristor State

Figure 5.11 Single row energy consumption (average) in activating, deactivating and read operations

Ressetable
Inverter I T — T I 56\
L 0 L] plateh 3

16A . 16N . 16A | 16N | 144Ax56A | 16\
224\

Figure 5.12 A rough area estimation of the activation circuits using lambda-based rules

5.4 Simulations and Estimations | 99

5.4.2 A Case Study

To evaluate the effectiveness of this circuit-based activation scheme, it is necessary to test
it in an appropriate benchmark task. Researchers in [34, 31] conducted experiments of
various memory bias models in a word sense disambiguation (WSD) task, which provides
a benchmark for evaluating different memory bias algorithms. This section uses the WSD
task and the same dataset for a fair comparison. Reported experiment results on BLA are

reproduced as a baseline.

WSD is an important and extensively studied research topic in the area of natural language
processing. A typical processing flow is to query an agent using an ambiguous word which
normally has a list of senses in a machine-readable dictionary; the agent accesses the
dictionary and retrieves the sense of the word that is most likely to be correct. For example,
the agent may be issued the text of a book about fishing, word by word. When it is given
an ambiguous word, such as “bank”, it should identify the most likely possible meaning
according to the context. In this case, the text is more likely to mean a river bank than a
financial institution. Spreading activation assists this task because words already encountered
in the text, such as “water” or “river”’, will boost the activation of the desired sense of the
ambiguous word. With respect to its application in cognitive systems, previous work uses
the ambiguous word as a search cue, and a machine-readable dictionary as the long-term
memory (LTM) as illustrated in Figure 5.13. In [34, 31], the test dataset is the SemCor
textual corpus, which provides sequences of words and the associated correct sense of each
word for verification [125]. The dataset stored in LTM is from WordNet, which is a lexical
database that contains all possible senses for each word in SemCor [126]. The agent with
a memory biased LTM retrieves a sense of the cue word and verifies its correctness with
the correct sense tagged in SemCor. It is expected that the desired object (the sense of a
word in this case) may not always be retrieved. Incorrect retrievals can spread activation
to appropriate word senses and, in turn, trigger further incorrect retrievals. To avoid this,
the query is read-only and the correct sense of each word is revealed to the agent after each
read [34]. The result of each bias model is an accuracy rate based on the number of correct

retrievals versus the total number of retrievals.

querying
Cue verifying LTM
(Semcor) |<+— (WordNet)

A\

Figure 5.13 The setup of a querying process in the WSD task

100 | Activation Circuits

Table 5.3 shows that the results reproduced for this experiment alongside the published
results. Although the randomness in Soar’s operator selection process leads to slightly
different results in each run, overall the accuracy rates are highly consistent. This shows that
the dataset and configuration is consistent with the published work.

Table 5.3 Reproduced results of three bias mechanisms in WSD retrieval tasks

Derbinsky and Laird [34] Reproduced
Run 1 Run 10 Run1l Run 10

Recency 72.34% 74.43% 72.48% 74.52%
Frequency 71.69% 76.53% 71.72% 76.55%
Naive 74.45% 78.47% 74.85% 78.63%

The memristor circuit model was used to replace the activation function in the the Soar
cognitive architecture kernel. In the circuit model implemented in C++, a memristor’s
conductance represents an activation value and all activation values are initiated with 0.2 uS.
This value is bounded in a range from 0.2 uS to 16.7 S. For every memory access, a retrieval
function retrieves all this memory element’s history (the number of access, timestamp
etc.) and converts it to characterized signals for updating memristor’s conductance. The
conductance is returned as a new activation. As the model does not store intermediate
activation values, each memory element’s new activation needs to be recomputed using the

full list of timestamps.

The results of experiments with different activation functions in [31] were reproduced
and extended to show the effect of the memristor activation function. As shown in Table 5.4,
the memristor activation circuit achieved good performance in a benchmark task that required
217171 memory retrievals. Using the memristor activation function, the first retrieved object
was the one being searched for 67.12 % of the time. This is not quite as good as base-level
activation, which returns the desired object first 74.45 % of the time. The memristor circuit’s

benefits come at a small but acceptable cost in performance.

Table 5.4 Performance comparison to three memory retrieval bias in [31]

Recency Frequency @ BLA The circuit model
Accuracy 7234% < T71.69% 7445 % 67.12 %

5.5 Summary and Conclusion | 101

5.5 Summary and Conclusion

This chapter has continued the design of long-term memory by exploring the possibilities of
a hardware-supported BLA-like memory bias model. The successful incorporation of such a
hardware block will avoid the sequential evaluation of computationally complex arithmetic

functions in current implementations.

Hardware designs dedicated to the activation bias mechanism have been missing in
the literature. Design alternatives for both CMOS and memristive approaches are yet to
be explored. This chapter concentrated on designing memristor-based circuits, that could
be attached to the rows of a CAM semantic memory block, to store, update and compare
activation values. Both digital and analog approaches were considered and investigated
using memristors’ digital and analog modes. The digital approach is mainly based on
unpublished work from my research group, which keeps a record of the access timestamp
for each memory object. One of the advantages of using memristors here is to replace the
bulky SRAM cell with a more compact memristor for storing timestamps. The required
shift operation can be directly implemented on the memristor arrays, although this leads to a
sequential manipulation of memristors.

The analog approach achieves good circuit density as a single memristor can be used
to encode the analog activation value for an object in memory. Much of the efficiency of
this analog design is achieved by approximating the critical dynamics of activation updating
activities. With a resistive activation value, it is also possible to use a simple voltage-mode
read operation to discern the greatest activation from a table of memory objects. It is not as
robust as the digital approach, but as a heuristic, incorrect activation values only incur a search
delay. For real-time agents, cognitive architectures such as Soar require long-term memory
search latency in the tens of milliseconds. The energy and latency results confirm memristor
memories with millions of rows arranged in banks are viable with power dissipation in the
order of Watts.

In the last section of the chapter, the effectiveness of this analog circuit was verified
using a word sense disambiguation case study. The circuit-based activation model was
reimplemented in software and used as the bias mechanism to decide the correct word sense
stored in LTM. The circuit model is not as reliable as other reproduced results from the
literature. However, the compromise in performance is small, and the proposed circuits

support a parallel computation distributed in the long-term memory.

Chapter 6
Memristive Spreading Activation

The use of distributed high-dimensional random vectors, or hypervectors in cognitive seman-
tic processing has been proposed in a variety of recent publications [127-130, 53, 131-133].
Kanerva [128] and Plate [127] proposed a computing architecture that lays the foundation of
a possible infrastructure for cognitive computing. Their hypothesised computer systemati-
cally supports a compositional representation of entities using hypervectors and performs
computations using a set of well-defined vector arithmetic operations. Their case studies
showed that hypervectors with associated operations can be used to efficiently implement
functionality that is otherwise computationally complex. This computing architecture has
been adopted in a variety of domains in cognitive computing. For instance, Jones and Me-
whort [130] used a similar approach to incorporate word meaning and sequence information
into a model lexicon. Gayler [129], Levy and Gayler [134], Osipov et al. [135], Kleyko et al.
[133] used hypervectors to construct their holographic neuron models for bio-inspired pattern
recognition tasks. Kelly et al. [28] proposed a declarative memory model for ACT-R where
memory items are constructed using distributed hypervectors for a recognition memory task.
More recently, the underling hardware for supporting such a computing architecture was
considered in [131, 132].

This chapter introduces the application of this high-dimensional computing (aka hy-
perdimensional computing) paradigm in cognitive memories by linking it with spreading
activation. A new spreading activation scheme is proposed by combining ideas from high-
dimensional computing, content-addressable memory (CAM) and activation. The goal of

this scheme is to spread activation from one memory item to semantically bound items.

The approach hinges on the availability of efficient hardware for ultra-wide hypervectors
and associated arithmetic operations. In the literature, each memory object is typically

104 | Memristive Spreading Activation

represented by a hypervector that is thousands of bits long. This increases the size of the
memory required. CMOS memory cells are already relatively large so that in published
examples of hyperdimensional classifiers the memories consume two-thirds of the total chip
area [132]. The high dimensionality (i.e. high word-length) of hypervectors means that any
vector arithmetic operations will expend more energy than typical word length operations,

especially in an associative memory search.

Search performance can be improved by using CAMs as the associative memory. The
CAMs proposed in Chapter 3 and Chapter 4 search all stored data words simultaneously and
provide the search outcomes in a bounded time. The use of CAMs has proved effective in
improving the latency of associative search using hypervectors [131]. Laiho et al. [131] and
Rahimi et al. [132] demonstrated that CAMs, with word data represented by hypervectors,
can be a key component in realising some human-like semantic processing behaviours. This
can be a blessing for many applications that rely on quick and intelligent information retrieval
from large memory stores. Recent research on resistive devices has shown possibilities of
reducing CAM area and power in various ways [136]. This chapter shows how memris-
tive CAMs can be used to efficiently store ultra-wide hypervectors and support semantic

processing based on activations.

6.1 Background

Recall that in cognitive architectures, memory activation is used to bias knowledge retrieval
so that objects that have been frequently or recently accessed are more likely to be retrieved
first. Consider a typical knowledge search process as shown in Table 6.1. The memory
objects are denoted by Latin letters A-E and their augmentations are represented by Greek
letters (ax-€). If a query is passed to the simple memory store, two search operations are used:
the first search selects candidate memory objects that satisfy the query constraints, and the
second one searches within the candidate list and sets the object with the highest activation

as the output.

A choice between different approaches of finding the best match memory object has
been implicitly made here: the best match object is only found among a list of strong-match
candidates, thus an object with a high activation does not guarantee that it will be selected
for output; it needs to show strong correlation with the search query in the first place. This
approach agrees with the biasing schemes used in both ACT-R and Soar’s knowledge retrieval
process [137].

6.1 Background | 105

Table 6.1 An example of cognitive search

Object store Apply query constraints: Biased by activation:

{a,e} B>C>D>A>E
A:{a,B,e,0} Match Fail
B: {a, ¢} Match Successful
C:{a,y} Mismatch Not participated
D: {y,0} Mismatch Not participated
E: {y,0} Mismatch Not participated

One can view the activation step as a bio-inspired multi-match resolver. However, the
activation step alone does not prime the memory objects semantically linked to the object
being retrieved. The retrieved object needs to broadcast its influence by spreading activation
to all related memory objects. A successful spreading activation scheme is expected to
“extract knowledge that is latent within the structure of an agent’s long-term memory” [138].
The general idea of spreading activation through a semantic network consisting of nodes
(memory objects) is that when the activation of a node is increased, then the activation of
connected nodes is also increased. Consider a semantic network of nodes Nj...N,, with links
L;j€{0,1}. L; j = 1 denotes the existence of a link from node »; to node N;. Each node N;
has an associated activation A;. Whenever the activation of a node N; changes such that it
is greater than a firing threshold—i.e. A; > F—then the activation of all connected nodes N;
with L; ; = 1 is adjusted according to A <— A; +§; where §; is the spreading activation N;

receives from source N;.

N1
N2 '
[\
N3
N7 High Activation

Ne Q/O

Low Activation

Figure 6.1 An activation spreading example in a simple semantic network

106 | Memristive Spreading Activation

Related Work on Spreading Activation

To reduce the cost of sequentially traversing a network to spread activation values, Douglass
and Myers [5] introduced a concurrent scheme for calculating activation values. This is
achieved by including a middle-ware framework, through which a multi-threaded program-
ming language called Erlang is able to maintain information of individual nodes concurrently.
It should be noted that the actual activation calculations are performed serially outside of the

database, hence significant communication overhead is expected.

SemMemDB [35] is an initiative that tries to take full advantage of the computational
power of databases by performing the activation calculations within databases. The authors
observed that the strength of association from node j to i is determined by edge numbers;
the association between nodes is network dependent and can be pre-computed and cached
in a separate table in the database. The pre-computation is computationally expensive, and
though it seems to be a one-time cost for a stable memory store, extra updating mechanisms

are needed for changing and evolving long-term memories.

A simplified algorithm from the Soar group [137] spreads activation in the direction of

edges and determines the activation value of a recipient based on three factors:

* the initial activation of the source;
* the fan effect - a parent node divides activation equally among all of its children nodes;

* the decay factor, p < 1, which exponentially decreases the activation value as activation

spreads to deeper nodes.

A simple semantic network is provided in Figure 6.1 to illustrate the flow of activation
values and the calculation at the recipient nodes. Ny, as the source node, has an initial source
activation of 1. The spread is limited to a depth of three and the decay factor is set to 0.9.
The resultant activations of recipient nodes are represented as the intensity of their shades.

The calculations of nodes N, N4 and N5 are:

1
SN2:1><§><0.9
SN4:SN2><1><0.9

1
Sns = Sya X 1 x0.94Sy3 X §X09

6.1 Background | 107

To prevent unbounded calculation of all linked nodes, the control parameters restricted
the spread to a predefined depth and number of nodes. To further reduce the computation
workload, a scheme called Candidate-Only Processing (also included in ACT-R) is used to
spread activation only when there is a small number of nodes that ambiguously match the
search cue. In other words, no spreading activation is computed when the cue is unambiguous.
Much like the idea of the pre-computation in [35], Jones et al. [137] reduced computation
workloads of activation by leveraging the observations made on the processing in long-term
memory. For instance, they observed in some applications that long-term memories change

only slowly, thus the trace of traversal can be cached for updating activation values.

The software approach often relies on a complex stack of software and hardware including
cache hierarchies, and sorted data structures, to achieve adequate search performance. A
case can be made for a simpler and more systematic approach that can efficiently maintain
activation values. This approach presented in the following sections turns away from software
algorithm optimisations and approaches the activation biased memory using a regular, flat,
specialised memory hardware that can scale to large memory stores in terms of response

latency and power consumption.

6.1.1 Hyperdimensional Arithmetic

Hypervectors are typically in the range of thousands of bits wide. For many applications,
this brings enough randomness for creating uncorrelated vectors. For instance, the represen-

tational space of 1000-dimensional binary vectors consists of 2090

patterns; a newly created
random hypervector will be nearly orthogonal to all other hypervectors that are already in

use.

Based on the easiness of creating random representations with hypervectors, Plate [127]
and Kanerva [53] formulated a set of vectors algebra operations to create unique hypervectors,
correlate multiple hypervectors into one distributed vector, and re-construct constituents
from a distributed vector. Potential applications of this hyperdimensional arithmetic have
been demonstrated in a series of cognitive semantic processing examples, which include
simulations of CMOS circuits to perform the hypervector operations in memory [139, 131].

Two hypervector arithmetic operations are used in this chapter: majority-sum (also called
bundling or thresholding in the literature) and permutation. Consider three unique hyper-
vectors a, B, and y. The majority-sum correlates these three hypervectors by performing
a majority operation, written as M = [0t + 3 + 7]. An illustration of this operations using

12-bit representations is shown in Table 6.2.

108 | Memristive Spreading Activation

Table 6.2 An example of a 12-bit majority-sum operation

Objects 12-bit hypervector representation

o 010101010101
B 00100100T1UO0O0 1
y 1 0111000°T1T1TQ00
M 00110100T1T1O01

An important property of this operation is that the sum vector M has the same dimension-
ality and is similar to all input hypervectors. Also, if a sum vector M contains multiple copies
of any component vector, the resultant sum vector is closer to this dominant component
vector. Without permutation, M is a bag of data, i.e., two sets of inputs with the same vectors
in different sequence will not be discerned. For instance, there will be no difference between
[a+ B +7]and [y+ B + a]. A permuting operation is needed before the sum operation to per-
mute each input hypervector according to their order in the sum operation. The representation
after permutation and sum will be [a + p(B) + p(p(y))], where p denotes the permutation.
One way to realise the permutation is using circular-shift operation, which creates unique
hypervectors dissimilar to the original ones. These two operations are essential for encoding
local database records to distributed hypervectors. For example, given a unique hypervector
for each letter d, o and g, the representation of the word dog can be constructed from the
hypervectors of these three compositional letters. In a hierarchical encoding process, the
representation of hotdog can be constructed from the representations of hot and dog. Thus
a compound vector of the complete record hotdog is-not dog can be constructed from its
three fields hotdog, is-not and dog. How close is the compound vector to the component
hotdog vector? The Hamming distance measures the number of bit positions in which they
differ. If a bit of the compound vector is a 1 and the same bit of hotdog is a 0, the same bit
in is-not and dog have to a 1 to constitute a majority, which happens with probability 0.25
in this case. The expected Hamming distance between any compound vector (M) and one of
its K number of components (A) is:

1 K-—1
50141 = 3= (1) /2"

K—1 X)) .) C e
where the ((K—1) /2) is the binomial coefficient. This equation indicates that as the
number of components K increases, more noise is added to the compound vector M and its

normalised Hamming distance with any component vector will approach 0.5, which makes

6.2 A New Approach | 109

it impossible to be discerned. This essentially refers to a capacity issue of hypervectors in
bundling. A recent detailed study clarified many aspects of capacity of hypervectors in [140].
The number of components K is set to be 3 in this chapter.

The use of hypervectors and their arithmetic in the realisation of a spreading activation
scheme is introduced in Section 6.2. An overview of hyperdimensional computing is provided

in Appendix B.

6.2 A New Approach

For the sake of clarity, let us just consider the process of updating the overall activation of a
memory object using the spreading activation term. Other components that may change the

overall activation, such as decay over time, can be incorporated using similar mechanisms.

The overall activation value for object i is A; <— A; 4 S;. The activation S; spreading from
source j to memory object 7, as defined in [141], is a product of the weight of the source and
the strength of association S ;; between the source and the object. Since a single search cue
is used as the activation source in each search, the equation is reformulated by assigning a
unit weight to each source. Thus, the amount of activation spread to a memory object is only
proportional to its association strength with the search cue. The association strength in this
case is measured by the level of similarity between the search cue vector and memory object
vectors. In the literature, Hamming distance is typically used as a measure of similarity
[132, 133]. To be consistent with the bit comparison operation in the proposed CAM cells,

the similarity of two vectors with dimension D in this thesis is defined as:

D—-1
Similarity; =) XNOR(Cuelk|, Object|i][k]) (6.1)
k=0

where k is the k-th bit of Cue. In the theoretical model implemented in ACT-R, the
strength of association between memory objects is set to

1 + Outedges
Sii=S—|In| ————— (6.2)
Edges j;

where § is a constant parameter, Qutedges ; and Edges ;; are the number of edges from

object j and the number of edges from object j to object i.

110 | Memristive Spreading Activation

The strength of association §;; in Eq.6.2 shows that the edges connecting the memory
object determine its association value with other objects, thus it is safe to say that Sj;
is network structure dependent. In fact, several publications take advantage of this to
reduce the computation cost by pre-computing these association values [35, 137]. In the
hyperdimensional spreading activation scheme, as objects’ hypervectors are hierarchically
encoded from each object’s compositional elements, the associations between objects are
predefined by the number of common elements they share. The search cue is the source
of the spreading activation but also can be viewed as an object. The amount of activation
spread to other memory objects is the association between the search cue and the stored
objects. As a result, the association S j; is computed in the associative search operation. If the
contents of memory changes, there is no need to re-compute ;. This is in contrast to the
pre-computation schemes in which the S;; must be updated to reflect changes in association

between memory objects.

To facilitate the spreading activation scheme, the majority-sum operation is used to
group similar elements to create correlated memory objects. With an associative memory,
the association information could be gathered during the search operation. Section 6.3.1

describes the circuit-level design of the associative memory.

An Illustration

To quickly illustrate the capabilities of this new memory model, this section considers a
recognition task using knowledge from a simple semantic store that contains a fragment
of knowledge about animals, as illustrated in Figure 6.2. The connection and description
between each memory object (each node in Figure 6.2) is consistent with the rules described
in [28].

A MATLAB program was used to simulate the hypervector processing. The genera-
tion of low level hypervectors involves converting string constants to specific hypervector
representations. To represent a higher level memory concept, conditional permutation and

majority-sum operations are applied to hypervectors of its compositional components.

Recall how the hotdog is-not dog example was constructed from letters to record
fields and then to a complete record represented by a compound vector. Following the same
encoding process, knowledge about the memory objects Dog and Dolphin is encoded in
two lists of symbolic constants in Table 6.3; through a hierarchical vector permutation and
bundling, the program generates the representation for memory objects, which are often

augmented by a list of augmentation items. It should be noted that each augmentation’s

6.2 A New Approach | 111

Animal

Invertebrate

Dog Dolphin Frog Jellyfish Bee

Figure 6.2 A diagram of several animals, their phylogenetic ordering and habitats [142]

internal representations are permuted to differentiate the sequence. At the level of memory

objects, the representation is a collection of augmentation items, thus no augmentation is
permuted before the majority-sum.

Table 6.3 A sample of memory objects and their representations

Object Name Augmentation 1 Augmentation 2

Dog Is Mammal Habitat Land
Dolphin Is Mammal Habitat Water

Hypervector Representations:

Dog [HDog + [Hls + p(HMammal)] + [HHabitat + p(HLand)H
DOlphil’l [HDolphin + [HIS + 14 (HMammal)] + [HHabitat + p (HWater)]]

After the encoding process, the semantic memory holds a table of hypervectors, each
representing a memory object. The query command to the semantic memory includes cues
composed of partial information that describes augmentations of an object in semantic
memory. The cue goes through the same encoding process as the one describe above, except
that the missing field (denoted as ‘?’) is represented by a random hypervector Hrpy (could
also be an empty hypervector). For instance, the query Q: ? : Is Mammal : Habitat

Water, interpreted in natural language as: “what is the mammal that lives in water ?”, is

112 | Memristive Spreading Activation

represented as the hypervector Hcye 1 Which is:

[Hrpm + [His + p(Hyammal)| + [Habitat + P(Hwater)]|

The activation updating activities in a search operation was investigated by firstly passing
Hcye 1 to the associative memory.

The retrieval process is a two-phase operation. The memory first searches the query
hypervector, counts the number of hit events after each search, and retrieves the candidates
with the highest activation. Then, the number of hit events are used to update and spread the
activation.

Memory objects are assigned zero activation values to start the experiment. For the
first query Hcye,1, the nearest-match candidate, Dolphin was successfully retrieved, with a
distance of 8 standard deviations from the mean value (1024-dimensional space with dense
binary codes). As shown in Figure 6.3, the activation from the query is spread to all correlated
hypervectors. For instance, water-living animals are all recipients of the spreading activation
and will be updated accordingly. The second query, ? : Is Invertebrate, denoted as
Hcye 2, asks for an animal that belongs to Invertebrate. This less constrained query vector can
ambiguously match both Jellyfish and Bee. However, only the water-living Jellyfish is
retrieved because it received spreading activation from the previously retrieved water-living
animal, which updates it activation to a higher level before the second retrieval. An important
design decision is made by assigning one standard deviation tolerance (23 bits) to include all
strongly correlated objects in the candidate list, such as Dog,Dolphin, Frog and Jellyfish

as shown in Figure 6.3. The retrieval process is then biased by the activation values.

6.3 Memory Building Blocks

This section describes a circuit that searches a memory and returns information biased
by previous similarity-based activation values. The whole circuit block is partitioned into
multiple stages with an associative memory for storing memory objects, counters for storing
similarity information, and an activation memory for storing the activation spread from the
previous search. The associative memory and the activation memory use memristive storage
elements and the remaining blocks uses conventional CMOS logic. The spreading activation
scheme requires two search operations as suggested by the example shown earlier in Table
6.1 on page 105. The first search is a CAM search. The second search is the step that biases
the result to the most activated object among all match candidates.

6.3 Memory Building Blocks | 113

1 & Bee IUPEETE

. Jellyfishe

1 ' Frog®

- Dolphin
-lg | ‘\\ D . I,'
Lo} i
_D -
o + Mammal

. ¢ Invertebrate
i ¢ Vertebrate

. ¢ Animal

0 10 20 30 40 50 60 70 80 90 100 113
Activation

Figure 6.3 An example of object clustering according to activation after the first search

As illustrated in Figure 6.4 a biased knowledge search involves three stages. At the
first stage, a bit-serial search operation in the memristive CAM generates similarity values
which are then stored in the binary counted buffers after the CAM. At the second stage,
these similarity values are examined and a list of candidate memory objects are selected.
One of the simplest ways to select these candidates is by assigning a threshold value such
that a list of candidate rows with similarity values higher than a threshold are selected for
the subsequent bias operations. A discussion on the candidate selection circuit is provided
in 6.3.2 on page 116. Candidate rows that survive the threshold operation will activate a
subset of the rows in the activation block, which is used to find the highest activation as a
single candidate for final output. This block contains a 10-bit wide activation memory and
a winner-take-all (WTA) circuit; the activation memory stores the history of past activation
values of every memory object, and when candidates are passed to the activation memory the
WTA circuit will find the most activated memory object among all candidates. A comparator
tree network is one of the possible implementations of a WTA circuit as shown in Figure 6.5
and this chapter proposes alternative WTA implementations in Section 6.3.6 on page 122.
After a successful retrieval the similarity values generated in the current search are used to
update the activation memory in the activation block so that it biases the result of the next

search.

The initial memory search must be handled differently before the activation search
because the activation block does not have prior similarity information at the time. Thus

the memory disables the 10-bit activation memory of each memory object by initialising all

114 | Memristive Spreading Activation

A cue| ! |

Compare the cue Find a list of match
with stored data candidates

Update activations

Y 1]
Find the most
activated candidate

for output

Search Bias Update

Count and store
similarity values

Figure 6.4 Procedures of retrieval operations in a biased long-term memory

bits to ‘1’s; effectively, the memory finds the nearest-match row only based on the current
similarity value in the initial search. The current similarity values are then used to overwrite

the initialisation activation values for biasing subsequent searches.

The remainder of this section describes the constituent circuit blocks of this biased

retrieval in the long-term memory.

6.3.1 Content-Addressable Memory

CAMs are natural implementation options for hyperdimensional computing, which needs an
associative memory to quickly generate association information such as Hamming distance
or similarity values for each stored memory object. This section introduces the challenges
to building long wordlines in memristive CAMs. The basic idea is to join multiple CAM
blocks into a large CAM array for storing long vectors. To serve this purpose, inter-block

connection circuits are proposed.

CAM blocks reported in Chapter 4 have a typical memory width of 256 bits, which is far
less than the ultra-wide wordline requirement. Despite the potential for minor improvements,
practical values of memristor resistive ratio suggest that a standalone CAM block with a
memory width of thousands of bits is impractical. An ultra-wide wordline/matchline needs
to be divided into multiple segments, in a similar way to the matchline segmentation and
pipelining covered in Chapter 4. The communication between the segmented blocks is
different. The idea of matchline segmentation is to use a relay chain to reduce unnecessary

matchline charging activities at an early stage. The arrangement of CAM blocks in this chap-

6.3 Memory Building Blocks | 115

— Control logic |
T | |
AR
[Buffer, 5——1> 7] —
Buffer, I— —
Cues = Activation WTA
—] @_ Memory | | Winner
Buffer,. >T| —
\ >T
Associative Buffer Candidate
Search Generator

Figure 6.5 The memory circuit blocks

ter is intended for ultra-wide hypervectors where there are no sequential inter-dependencies
between blocks; each row in a block sends the binary search output to a global bus which is
responsible for aggregating the search results along a memory row. More importantly, the
bit-serial search can be performed simultaneously in all blocks with the help of some storage

bits and logic circuits.

Search or Shift
) . 2 - A

1]
ML

DaQ

1]
ML

Da T

o
i=}
J21UNn0)

v [] ’ -
na =
! M U L |

S

(LA 4

Figure 6.6 A memory with three CAM blocks; shift registers are used to shift out search results from
each memory block to the counter

A CMOS circuit is used to accumulate the similarity values from the CAM blocks as
illustrated in Figure 6.6. The circuit uses a flip-flop in each CAM block to hold the search
result. At the end of each search cycle, search results of individual blocks are stored in
parallel and thereafter shifted serially to the counter. For a memory block with a 256-bit
wordline, a hypervector of thousands of bits (1000 to 10000) needs 4 to 40 storage bits and

116 | Memristive Spreading Activation

hence 4 to 40 cycles of shift operation. Despite the availability of search results at each
memory block after a parallel search, the delay of both the shift circuit and the CAM scales
linearly with the number of CAM blocks in both circuits because the results are sent bit by
bit to the counter.

In a pipelined structure, it is desirable for the CAM blocks to start a new search cycle as
soon as the search on the previous bit is finished, so that the subsequent circuits can operate at
the same time. Otherwise, CAM blocks have to wait and only start the next bit-serial search
when all search results are sent to the counter. Thus, to avoid the sequential operation delay,
results from CAM blocks need to be processed simultaneously with the search operation in
each block. Such a design requires search results to be stored in parallel immediately after
a search, which requires extra storage elements to temporarily hold the information before
proceeding to the counter. In this regard, the inter-block connection using shift-registers is
well suited because each flip-flop at the local CAM block serves as the result buffer. After
passing the search result to the buffer, the internal storage in the matchline sensing circuit is

free for storing new search results.

6.3.2 Similarity Buffer

A pipelined structure needs a buffer to store the in-flight similarity value generated at each row
of the associative memory. Related work reported in [131, 132, 139] used binary counters to
store similarity values and a comparator tree circuit to find the nearest-match row/vector. The
binary counter is an intuitive solution that only uses log(D) bits for counting and storing D-bit
hypervectors. This buffer is used to update the activation block as shown in Figure 6.7, where

a 10-bit counter is used to store similarity values generated from 1024-bit hypervectors.

Activate

10-bit Counter }) - Activation memory
MSB,

E . —- Precharge

Figure 6.7 The datapath from a 10-bit buffer to activation search

6.3 Memory Building Blocks | 117

6.3.3 A Candidate Generation Circuit

Unlike the reported applications that require a single winner object after the search, the
memory at this stage needs to identify a list of strong-match candidates to proceed to the
activation search operations. Thus, it is unnecessary to detect the best match at this point;
instead, a circuit that is able to filter out the unrelated data and find a list of strong-correlated

candidates is needed.

Such a circuit is a generalisation of the WTA circuit that generates multiple selections
(outputs). The design of such a circuit that is able to not only find the row with the greatest
similarity value but also keep indexes of k similar candidates is a problem of its own. These
are often referred to as k-WTA circuits and serve as building blocks in sorting networks and
competitive learning networks in the literature [143—-149]. This type of WTA circuit is not the
focus of this chapter and this section will illustrate some simple alternatives to demonstrate
the proposed spreading activation scheme. The following is a list of options sorted in the

order of delay:
1. Finding the k rows with the highest similarity values

2. Finding all rows that are within some threshold of the row with the highest similarity

values
3. Finding all candidate rows with similarity greater than some threshold

Finding all candidate rows with similarity greater than some threshold is easier than
finding the k rows with the highest similarity values. The former can be done without
communicating between the rows and so the delay is independent of the depth of the memory.
At this stage, the spreading activation scheme adopts the simple threshold method in this

section.

An extremely simple method to find all candidate rows with similarity greater than
some threshold similarity values is illustrated in Figure 6.7. The threshold operation simply
evaluates the most significant bit of the counter; effectively, any similarity value beyond 512
will proceed to the next stage. To interface with the crossbar based activation memory, which
has one-bit serial input, the binary counter needs to have a decoding circuit such as a ring

counter to send the log(D)-bit result serially.

118 | Memristive Spreading Activation

6.3.4 Activation Representations

The representation of spreading activation values determines the updating scheme and the
interfacing circuits. Similar considerations were made in the activation circuit design in
Chapter 5. This section discusses the analog and the digital approaches of storing spreading

activation values.

A Discussion of the Analog Circuit

Chapter 5 described a memristor-based activation circuit for maintaining and updating
activation values of memory objects; a memristor stores an activation value using its internal
conductance, and this value is updated by applying a train of pulses across the device. Based
on this circuit, I considered two options for the analog design of spreading activation circuits:
(1) for a simplified version of activation scheme where the total value is a simple sum of
BLA activation and spreading activation, it is straight-forward to just combine these two type
of activation values into one analog memristor representation by reusing the same circuit.
(2) alternatively, spreading activations can occupy a separate circuit cell similar to the BLA
activation circuit; these two circuits are separately updated, and in the readout operation, they
must be serially connected so that the sum of their conductance can be sampled. However,
neither of these proposals suits the storage needs of this application. A D-dimensional
hypervector needs D distinct resistive states to represent the whole range of similarity values

which will require complex tuning and read circuits.

The Digital Circuit

The digital version of the spreading activation memory resembles the structure of a memristor
based RAM that records the results from the associative search operation for later processing.
The match pattern of each row in the associative memory is serially shifted to the activation
array (log(D) wide), where a column of data is written in parallel as shown in Figure 6.8.

The circuit uses a similar readout operation to that found in RAM. A readout operation
in RAM will access a limited number of rows, however, this memory needs to give all the
activation information to the subsequent WTA circuit. Thus, using a typical RAM read
operation would incur a delay which is dependent on the memory depth. It is desirable to
read a column of data simultaneously so that the delay only increases with the memory width,
which tends to be a constant number for a specific application. The shift registers with a
one-hot bit pattern on the top of the array is for instructing the column-wise read operation.

6.3 Memory Building Blocks | 119

With a current sensing scheme, sense amplifiers can be arranged at the end of wordlines for
sensing the differential of currents along wordlines. Pass-transistors can be used to multiplex

the write and read modes (not shown).

> log(D)-bit register

[y
[y
[y
[y

5
\
a,, (
0,j |
s D D P P
Similarity,, . \IA Jr' :
I I I g
Similarity, | I/ : # : s
I I (]
Similarity,; Ly _ _ S G S - —9-F-©
I I I
T 1 | | |
Similarity, ,; — T » ;
b __l__1__12
! SRAM
Bitlines

Figure 6.8 A memristor crossbar memory for storing spreading activation

6.3.5 The Winner-Take-All Circuit

The second search needs a WTA circuit to find the highest activation. Unlike the previous
threshold circuits that generate multiple candidates, this type of circuit looks for a single

winner.

As shown in Figure 6.9, a comparator tree is a straight implementation option. I adopt a
CMOS WTA design proposed in [150] where the results propagate from the most significant
bit (MSB) to the least significant bit (LSB). This is a simple means to provide the higher
order bits of results to higher nodes of the tree by which the total propagation delay is reduced
within the tree. As shown in Figure 6.10, each comparator is implemented using a two input
magnitude comparator connected with a multiplexor. It accepts quantity inputs like a; and b;
and will generate outputs with g; and /; (for greater than, and less than), which indicate the

magnitude relation between a; and b;. A winner input is selected for output represented by y;.

For an associative memory with a depth of N, the number of comparators required is
N — 1. As shown in Figure 6.10, each node in the comparator tree consists of a comparator

circuit and a multiplexer selecting the larger input propagating to the higher nodes of the tree.

120 | Memristive Spreading Activation

The overall delay in the worst case, where results must propagate from MSB to the LSB, is
the number of stages in a tree of comparator (log(N)) times the worst propagation delay of a

log(D) bit comparator for D-bit hypervectors.

The Comparator (CP) Tree
log(N) Levels

Activation, :
Activation, :

Activation,
Activations

Winner

ActivationN_2§
Activationy.i: B

Vo Voo 7 Yo
|
9., 91 oo .| L g AN 9
IL. MmsB n-1 In—Z | lr L - _ l71 N LSB /0
\) o

Figure 6.10 The iterative construction of a single comparator propagating results from the MSB to
the LSB

6.3.6 Evaluation

In this section the simulation and estimation methodology used in Chapter 4 is used to

evaluate the performance of the new spreading activation system.

A memory with 1024-bit hypervectors stored in 256-bit wide CAM needs four such
CAM blocks. A bit-serial search cycle takes about 5ns. The four CAM blocks working
concurrently take 256 cycles to perform a search, and 4 cycles are required to shift the results

into the counters. This in total introduces a delay of 1.28 ps.

The WTA circuit is another main contributor to the total delay. Consider a memory with
depth N and memory width D. In the worst case, each node in the tree has to compare each
bit before generating the output. If each bit takes m units of time, the worst case propagation

delay of the tree structure is mlog(D) -log(N). The mlog(D) term is about 1 ns according to

6.3 Memory Building Blocks | 121

the experimental data in [151] for 10-bit width comparators. The log(N) term decides how
many such clock cycles are required to finish the comparison. A memory with one million

objects takes about 20 ns to resolve the row with the highest similarity value.

The estimations made here are based on the cell and array layout estimation in Chapter
4 Section 4.2.5 on page 66. A 1024-bit wide CAM needs four memory blocks aligned to
construct the matchline. Interconnection logic between memory blocks use CMOS circuits
underneath the crossbar structure. Thus the storage of each hypervector occupies an area of
40 A x 80000 A, which is 100 nm high by 200 um wide in 45 nm technology; a memristive
ternary CAM cell is about 0.02 um?.

The state of the art MOS transistor CAM implementation in [112] based on the 28 nm
process node realises ternary search using a 16 transistor bit cell with a cell area of 1.62 um?.

As comparison, a memristive ternary CAM cell is about 0.02 um?.

The language recognition task reported in [132] is a suitable case for illustrating the
area improvements. It used a similar encoding scheme and memory structure for building
a classifier that recognises 21 European languages. The training generates 21 language
hypervectors that are stored in an associative memory for similarity search. With a memory
width of 10000, this associative memory hosts 210000 bit cells. Memory width (i.e. the
hypervector dimensionality) is an application dependent parameter, and it is found that the
memory circuit area increases linearly with memory width, which reveals two facts about

this memory:

* the amount of area occupied by the peripheral circuits, such as counters, comparators,
and encoders, mainly depends on the number of rows in the memory (i.e. memory

depth); they remain unchanged when a different memory width is chosen,

* the memory core (i.e. the array of bit cells) often dominates peripheral circuits in terms

of area when long hypervectors are used in an associative memory.

Indeed, in [132, 131] the chip area occupied by the associative memory accounts for
one third of the total area, which illustrates that hyperdimensional computing is memory-
centric. I argue that the crossbar based CAM can significantly reduce this memory area.
Specifically, the physical width of the memory can be shrunk from 21.8 mm to 2 mm for the
same number of bits (10000) in an ideal implementation. In practical implementations, it
is unrealistic to build a complete matchline that connects to thousands of bit cells. Some
CMOS storage elements will be required to connect segmented matchlines and this reduces
the area efficiency of the memory core in both conventional and crossbar implementations.

The vertical direction has limited potential for area reduction since only 21 hypervectors

122 | Memristive Spreading Activation

are stored hence 21 memory rows are considered in this case. Nevertheless, the overall area
reduction is dramatic and the memory will be able to exploit the saved space by having more
sophisticated interconnects and peripheral circuits.

A Discussion of WTA Circuits

The WTA circuit in the proposed activation hardware occupies a significant area. Moreover,
its delay is dependent on the memory depth. This section discusses possible improvements
of existing WTA circuits and then proposes a counting circuit enhanced for the generation of

the candidate list needed in the proposed spreading activation scheme.

One of the common WTA implementations, the comparator tree circuit, has been im-
proved over the years. Since its basic building block resembles an adder circuit, but without
the generation of sum bits, many circuit techniques that have been devised for high speed
ALU circuits can be applied, such as the look-ahead architecture for improving the propaga-
tion delay in [151].

Acti%ton

0

}log(D) l
N

(Wired-NOR

(=]

~
Activaton,
Hlog(D)
(Wired-NOR

HO-Pa4IM

S) g

A4
Activatony_
}log(D)
(Wired-NOR

I

Figure 6.11 Similarity up-counting that finds the maximum

An alternative WTA implementation is the distance down-counting circuit used in [55],
where, to find the minimal distance the counted distance values are decremented in every cycle
until one or more counts reach zero. Recall that Hamming distance is just the complementary
value of similarity as defined here. Thus I will discuss the possibility of applying a similarity
up-counting version of the method here. This up-counting scheme increments the similarity
value by one in each cycle until a buffer overflow is detected. The first step of this detection

circuit is a wired-NOR gate shown in Figure 6.11, which connects to every bit of the updated

6.4 Summary and Conclusion | 123

similarity values. This arrangement requires rows of similarity values to be accessed at the
same time. Thus the array structure in a crossbar cannot be used and CMOS counters are
assumed here. The number of clock cycles needed to reach a buffer overflow is equal to
the Hamming distance value. In theory, the dimension D decides the upper bound which
leads to sequential delays for applications using long hypervectors. In this application,
candidates involved in the search of the highest activation row have high similarity values.
Thus the average number of cycles required is expected to be less than the mean value of the
dimensionality of hypervectors.

6.4 Summary and Conclusion

This chapter described a long-term memory biased by a special spreading activation mecha-
nism that combines ideas from associative memories, memory activation and high-dimensional
computing. Circuits developed in previous chapters, such as CAMs and activation circuits,

served as the building block of this associative memory and bias mechanism.

Spreading activation and high-dimensional computing are newly introduced concepts
in the thesis. The chapter began with a brief review of some basic algorithms that spread
activation throughout the semantic network. Existing software implementations of these
algorithms are discussed which all rely on databases and centralised computations. The
distributed representation with long hypervectors provides a useful alternative, which can be
used to group correlated objects or distinguish unrelated objects.

The heart of high-dimensional computing is an associative memory that generates simi-
larity information from which association between different memory objects can be derived.
The strength of the association between the searched object and any other objects deter-
mines the amount of activation that will be spread to the object. A main difference of this
scheme compared to existing algorithms is that the activation spreads to objects that have
similar compositional components whereas existing algorithms spread activation according
to objects’ connections in the semantic network.

The spreading process is done in a memory search, which is a two-phase operation. The
memory first searches the query hypervector, counts the number of hit events after each
bit-serial search, and detects the candidates within some threshold of the highest activation
row. Then, the number of hit events are used to update and spread the activation. A naive
recognition task was conducted to illustrate a memory biased by this spreading activation

scheme where previous searches were able to bias the following searches and a simple

124 | Memristive Spreading Activation

priming effect was thus demonstrated. However, the biasing model using hypervectors is
primitive so far and there are a few limitations. First of all, the memory object represented in
hypervectors cannot be recalled or reconstructed which limits the applications to recognition
tasks. Secondly, it lacks the base activation values and the temporal decay effect. Thirdly, the
high-dimensional representation of a memory object with many memory items may lose its

correlation with other objects or memory items so that it would not be recognised in a search.

Nevertheless, this activation spreading scheme represents an initiative of a hardware-
based memory model that integrates the spreading mechanism with the search operation. Like
the parallel search operation, the memory is able to spread activation to all correlated memory
objects simultaneously by exploiting available search results. The preliminary results in
this chapter suggest the marriage of high-dimensional computing, spreading activation and

CAMs provides promising features to implement cognitive long-term memories.

Chapter 7
Summary and Conclusion

The foremost objective of this research has been to design a hardware-based cognitive long-
term memory that scales to a large knowledge base but can still be quickly and efficiently
searched. This thesis has described a new memory where search and associated cognitive
processing are performed using a flat memory structure addressed by content. To support the
required operations, a number of new circuit ideas for memory cells and peripheral functions

have been described.

The memory structure developed addresses some of the limitations of conventional
memory systems when used for cognitive processing. A capable cognitive agent will need a
large knowledge base. In conventional technology this would need to use a slow storage class
technology such as disks supported by a hierarchy of fast memory caches. The separation
between the fast processing logic units and the slow memory system would lead to significant
data movement across the memory hierarchy and subsequently more power consumption and
operation latency. Cognitive processing often involves access to a large number of memory
objects at the same time, which requires massive parallelism at the data level. Von Neumann
computers with centralised processing logic, essentially operating in a sequential data fetch,
process and store order, are not optimised for the needs of cognitive computations.

The changing nature of computation requires new computing schemes that decouple
simple computing resources from centralised processing logic to better fit the characteristics
of the data. Many advantages of the new memory, compared to the conventional hierarchical
memory, come from closely coupling simple processing units with memory storage elements.
Such an arrangement is necessary if the memory is expected to compare a search cue against
all memory objects simultaneously, instead of iteratively traversing all possible locations
for the best match. The same principle can be applied to cognitive processing: dedicated

126 | Summary and Conclusion

computation circuits can be distributed to each memory object for maintaining and updating
activations in parallel. This in-memory or near-memory processing arrangement eliminates
the need to shuffle data between computing units and the memory for memory search or

cognitive processing.

The memory achieves its parallel search capabilities using content addressing. Its search
power comes from the distributed comparison circuit inside each memory cell which, when
passed a binary search cue, is able to compare this against the stored data and generate parity
information as the comparison outcome. If search data is broadcast to all rows of the memory
table, all the memory cells and all memory rows representing memory entities are searched
simultaneously. Thus a memory search now is bounded to a constant time. The price to
pay is the complexity of the memory cells which must now include both storage elements
and comparison circuits. Traditional CMOS implementations of CAMs often occupy a huge

amount of chip area and consume an unacceptable amount of power.

Many alternatives to CMOS CAMs have been proposed in the literature using emerging
devices. This thesis shows that memristors are well suited to the design of a more efficient
CAM. Memristors have multiple resistive states and hence are natural storage elements. The
change of their resistive states also makes them suitable for implementing computing circuits.
The thesis shows that the marriage of memristors and CAMs brings the possibilities of new
memory cell design. Memristors have a small footprint and can be packed densely on top of
CMOS layers. The compactness and resistive characteristics of memristors overcome the
area penalty in conventional memory cells by replacing the static RAM storage elements
and simplifying the comparison circuit. Another motivation is the power saving potential
of memristors which, when used as storage elements, do not need power to maintain their
internal states. It should be noted that the passive nature of memristors determines that they

still need some CMOS drivers in the periphery circuits.

7.1 Summary

Two new memory cell designs have been proposed to gradually reduce the cell footprint.
The basic cell interface of a CMOS CAM cell has been preserved thus control lines such as
matchlines and selectlines remain unchanged. The 4T-2R cell described in Chapter 3 builds
upon the 2T-2R cell structure often seen in cells using phase-change devices and adds two
transistors to address problems of current leakage in read operations. A hierarchical bitline
structure is used to collect read results from local memory blocks. Unlike conventional

RAMs, the new memory needs to program multiple cells in bulk, and a two-step write

7.1 Summary | 127

operation is required to program a word along the row. With a suitable encoding of memory
cells and search data, the memory is able to include a compact comparison circuit in the
memory cells which reduces TCAM cell area from conventional twelve transistors to four
transistors. Simulations presented in Chapter 3 show that the resistance parameters of
memristors determine the selectivity of cells and hence ultimately determine the size of
a memory array that can be involved in a read operation. In search, the resistance ratio
has a major impact on the number of cells that can be attached to a single matchline.
Also, memristors with a low resistance result in lower search latency because of the higher
discharging rate in the mismatch cells. The matchline sensing circuit developed in this thesis
adopts a self-referenced technique, which provides the timing signal to trigger the sampling
process in the sense amplifiers. More importantly, this self-referenced technique has the

potential to address the device variation issues associated with memristors.

A more compact CAM is described in Chapter 4 where every two cells of a crossbar
resistive RAM are grouped to form a CAM memory cell. By reusing the basic structure of
RAMs including bitlines and wordlines, an appropriate voltage bias scheme is able to turn
the RAM into a CAM with half the original RAM cell density. The same parallel search
capabilities are attained with the assistance of the peripheral circuits from the 4T-2R CAM.
Despite the overhead of the CMOS peripheral circuits, estimates show the new CAM achieves
over an order of magnitude density improvement compared to the state of the art CMOS
counterparts. Estimates of delay and energy consumption were conducted on a CAM storing
the entire content of the semantic memory for a word sense disambiguation experiment.
The proposed TCAM consumes only a fraction of the energy of its CMOS counterparts
but operates at a lower search speed. Nonetheless, estimates show that the retrieval of a
modest size memory object with ten augmentations is in the range of microseconds, which is
a significant improvement over the millisecond latency of a database implementation. The
saved time would allow a cognitive agent to make a decision more quickly, or to use the
extra time to make a more carefully considered decision. Many existing CAM techniques are
generally applicable to the memristor-based CAMs proposed in this thesis for improvements
in energy consumptions. Among them, selective precharge using matchline segmentation
and pre-computation have been proved particularly useful for CAMs with interconnected
matchlines. The selective precharge scheme ensures mismatched rows are detected and
disabled in an earlier stage thus saving energy consumptions. Pre-computation when used
in resistive CAMs is more than a low-power design option; it can be used to simplify the
cell circuit thus saving the total chip area. The simplified cell circuit also leads to a better

matchline sensing margin, which is one of the bottlenecks for CAMs with a larger width.

128 | Summary and Conclusion

Hardware support for memory activation and its spreading scheme have been considered.
Both digital and analog memristors are capable of storing and updating activation values.
Similar to the memristive CAMs, these circuits are CMOS and memristor hybrids. The
digital approach is more flexible and more faithful to human cognitive models, but will
also need a more expensive winner-take-all circuit to find the most activated object. The
analog version achieves much of its efficiency through hard-wiring the updating dynamics
of activation. A word sense disambiguation task was conducted to verify the effectiveness
of this analog activation. The circuit model is not as reliable as other reproduced results
from the literature. However, the compromise in performance is small, and the proposed
circuit supports a parallel computation distributed among the long-term memory objects.
Both the digital and analog activation scheme represent promising efforts towards in-memory

cognitive processing.

Activation needs to be spread to prime the memory objects relevant to the agent’s
current context. A new spreading activation scheme for a distributed cognitive memory
was presented in Chapter 6. The memory combines building blocks from high-dimensional
computing, activation and associative memories. The scheme is essentially memory centric
and all required operations are carried out in or around associative memories, which are
implemented as CAMs. The activation from a search cue is spread to correlated memory
objects according to the similarity values generated from CAMs. A series of new circuits
have been proposed to aggregate results from segmented CAMs and assist the generation
of search candidates. The significance of the hardware-based memory model is that all
information required for the spread activation is generated along with the CAM search, thus

the memory is able to spread activation to all correlated memory objects simultaneously.

7.2 Conclusion

To conclude, this research proposes a new hardware approach to implement long-term
memories using new resistive devices. The new memories are designed to meet the needs of
an emerging generation of powerful cognitive agents. They are non-volatile, high capacity,
low power, and can be efficiently searched. The new memory also supports contextual
priming using spreading activation. The significance of this research is that the use of a
flat content-addressable memory provides parallel search capabilities and eliminates the
von Neumann bottleneck issues by keeping low level computations within memory. At
the same time, distributed hardware blocks supporting cognitive processes such as memory

activation scale to large knowledge bases and overcome the limitations of sequential software

7.3 Future Research | 129

implementations. At the device level, it is found that the characteristics of practical memristor
devices are approaching a point at which they will be useful for large capacity and compact
CAMs. Memristor on to off resistance ratio is a critical parameter that determines the search
sensing margin and the memory array width. The application of high-dimensional computing
not only provides tolerance to memristor variations at the device level but also introduces the

possibility of a new hardware accelerated spreading activation scheme.

Looking into the future of computing, it is a fact that dedicated circuit-based accelerators
and optimised hardware architectures will better match the needs of emerging applications,
especially in the domain of Al. Cognitive memories play an important role in cognitive
architectures, and hardware building blocks proposed in this thesis provide an important step
towards a more capable cognitive memory that promises to benefit the overall performance

of future cognitive agents.

7.3 Future Research

One of the ultimate goals of memory design is to have a brain-like memory. The presented
memory in this thesis shows some characteristics observed in biological memories such
as parallel search and signs of holding on to a piece of information for the current task.
However, the proposed memory is flat and two dimensional while biological memories
process information in three dimensions (3D). To achieve the complexity of such memories,
a three-dimensional cognitive memory is highly desired to efficiently accommodate more
highly connected memory entities, providing the needed infrastructure for brain-inspired
cognitive processing. Memristors were born for 3D architectures because of their highly
stackable feature. A 3D CAM with either a CMOS/memristor hybrid or a homogeneous

memristive structure would be an interesting research topic.

The memory model proposed in Chapter 6 is still primitive and leaves much space for
future improvements. At the circuit level, the delay of the WTA circuit is dependent on the
memory depth and the footprint of the comparator tree increases with the number of memory
rows. However, WTA-like mechanisms that filter out memory objects with weak correlations
to the context are indispensable parts of the memory model and other applications mentioned
in Chapter 6. A future research topic would be a design of such a circuit that can be gracefully
scaled to large memories.

High-dimensional computing provides a rich set of vector algebra tools to process

semantic information. Among them, only bundling and permutation are used in this thesis to

130 | Summary and Conclusion

create random and correlated memory objects. The association between semantically linked
objects depends on their common compositional elements instead of their interconnections on
the semantic network. One direction of future work might be associating objects according

to their connections so that activations are spread via links on the semantic tree network.

Publications

P Wang, BJ Phillips and MJ Liebelt,
“Memristor-Based Activation Circuit for Long-Term Memories in Cognitive Architectures”,
Electronics Letters, Volume 51, Number 21, October 2015.

Peng Wang and Braden Phillips,

“Design and Evaluation of Content-Addressable Memory Using Redox Memristive Devices”,
16th International Conference on Nanotechnology,

Sendai, Japan, August 2016.

A: Details of The Word Sense
Disambiguation Task

The word sense disambiguation experiment used in this thesis was based on that described in
[31], for which the source code is available at https://soar.eecs.umich.edu.

Overall, this simulation runs for 20 hours on a Mac (2.3 GHz Intel Core i5, under OS X
Version 10.9). With a history size equal to 10, which is the default in Soar [22], an accuracy
rate of 67.12 % is obtained.

Two functions in Soar’s smem::act module (version 9.3.1) were modified for this experi-

ment. The code is provided in Listing 1 and Listing 2.

#include "Memristor.h"

inline double smem_1lti_calc_base(agent #my_agent, smem_lti_id 1ti, <«
int64_t time_now, uint64_t n = 0, uint64_t access_1 = 0){
double sum = 0.0;

if (n==0)f
my_agent —>smem_stmts—>1ti_access_get—>bind_int(1, 1ti);

my_agent —>smem_stmts—>1ti_access_get—>execute();

n = my_agent—>smem_stmts—>1ti_access_get—>column_int(0);

access_1 = my_agent—>smem_stmts—>1ti_access_get—>column_int(2 ¢«

);

my_agent —>smem_stmts—>1ti_access_get—>reinitialize();

// get all history
my_agent —>smem_stmts—>history_get—>bind_int(1, 1ti);

https://soar.eecs.umich.edu

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

134 | A: Details of The Word Sense Disambiguation Task

my_agent —>smem_stmts—>history_get —>execute();

uint64_t available_history = n;

//initialise memristor

Memristor activation;

float act_voltage=1.8;

float deact_voltage=—1;

double act_pulse_width=1.5e-3;

double deact_pulse_width=100e—6;

uint64_t idx;

uint64_t period;

for (uint64_t i=0; i<available_history; i++)({
activation.update(act_voltage,act_pulse_width);

if (1 == available_history—1){

period = time_now — my_agent—>smem_stmts—>history_get-—>¢>

column_int(available_history—1);

}

else {

period = (my_agent—>smem_stmts—>history_get—>column_int<

(i+1) — my_agent—>smem_stmts—>history_get—>¢

column_int(i));

for (uint64_t j=0; j < period; j++){

activation.update(deact_voltage,deact_pulse_width);

my_agent —>smem_stmts—>history_get—>reinitialize();

return sum = l/activation.getResistance();

Listing 1 Memristor-Based Activation Implemented Using the Soar Core Code

/
% Memristor.h

%

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

135

%/

#ifndef MEMRISTOR H
#define MEMRISTOR H

class Memristor{

public:

Memristor () ;

double getState() const;

double getResistance() const;

void update(float Vs, double time);

private:

int sgn(double var); //internal
double sgn2(double var); // internal
double trunc(); // truncate
double stateRate();

void stateCalc(double time); // calculate
void resCalc(double time); // calculate
float Vs;

)i
#endif

/

*

*

*

w/

double state;
double resistance;
float alpha;
float beta;
float gamma;
int delta;
int wmax;

int wmin;
float lambda;
float etal;
float eta2;

Implementation of Memristor

by peng wang Oct 17th, 2014

function
function

function

the state
the resistance

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

88

89

90

136 | A: Details of The Word Sense Disambiguation Task

#include "Memristor.h"
#include <math.h>

Memristor::Memristor () {

alpha=0.5e—6; // Initialze all

beta=0.5;

gamma=4e —06;

delta=2;

wmax=1;

wmin=0;

lambda=4.5;

etal1=0.004;

eta2=4;

// Initialize
resistance

state=0;

resistance=5e6;

int Memristor::sgn(double var){

if (var>0) return 1;

else if(var<0) return -—1;

else return O;

double Memristor::sgn2(double var){

return (sgn(var)+1)/2;

double Memristor::trunc(){

double temp_1=sgn2(Vs)xsgn2(wmax—state);
double temp_2=sgn2(—Vs)*sgn2(state—wmin);
return temp_1l+temp_2;

parameters

state and <«

double Memristor::stateRate () { // the state change <

rate

double temp_1l=trunc();
double temp_2=sinh(eta2xVs);

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

| 137

return lambdaxetalstemp_lxtemp_2;

void Memristor::stateCalc(double time){ // calculate the state
state+=stateRate () *time;

void Memristor::resCalc(double time){ // calculate the <«
resistance
stateCalc(time);
double current =(1—state)*alphax(l—exp(—beta*Vs))+statexgammaxsinh (<

deltaxVs);

resistance=Vs/current;

double Memristor::getState() const{

return state;

double Memristor::getResistance() const({

return resistance;

void Memristor::update(float V, double time) {

Vs=V;

resCalc(time);

Listing 2 A memristor behaviour model in C++

B: An Introduction to Hyperdimensional
Computing

Distributed representation with high-dimensional random vectors has been used in [127,
53] to realise cognitive semantic processing. Researchers have demonstrated that high-
dimensional representation can offer robustness and randomness that can be a blessing for
several types of semantic processing such as understanding things by analogy, learning to
infer. Interestingly, because the high-dimensional representation distributes information over
all the components, the integrity of the information decrease in relation to the number of
error bits irrespective of their positions. This is often referred to as holographic or holistic
representation. An associative memory is a core component in such systems to clean up the
noisy item by looking up the real item in the memory store, which is normally a content-
addressable memory. Simple semantic processing operations have been demonstrated in
[131] using transistor-based CAMs.

All the above characteristics appear to offer a good opportunity for realising long-term

semantic memory with memristors because:

* Hypervectors are ultra-wide words with many redundant bits, for which emerging

resistive devices have a benefit over transistors because of their small footprint;

* CAM is a core component of high-dimensional computing, and improvements with

memristive CAM have been demonstrated; and

* Exclusive-OR multiplication between hypervectors is the key arithmetic operation for
hyperdimensional computing and semantic processing. It is also particularly costly
in terms of hardware; however a parallel exclusive-OR operation can be embedded

within a CAM and this holds the promise to speed up this critical computation.

140 | B: An Introduction to Hyperdimensional Computing

Background

For example, consider the set of 10000 dimensional binary vectors. The representational
space consists of 210900 patterns called points of the hyper-dimensional space (hyperspace).
Each new hypervector (points) is drawn randomly from the hyperspace, and because of its
high dimensionality, the new hypervector will be nearly orthogonal to all other hypervectors
that are already in use. Denote the number of 1s in a hypervector as k, its density. The
probability of selecting a random vector of length d with density k, where the probability of
a 1 in any position is p, is described by the binomial distribution:

d
Poinomial (k,d, p) = (k) pE(1—pyi*

An illustration of the binomial probability is shown in Figure 1. The ease of creating
new approximately orthogonal vectors is a major reason for using the hyper-dimensional

representation.

X 107?

Probability
N
|

O T I T I T I T I T I T I T I T I T I T I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Dimensionality (bits)

Figure 1 The binomial distribution PDF for k = 10000 and p = 0.5

The basic entities in hyper-dimensional representation are represented by random vectors

stored in the item memory. This is an associative memory that retrieves the memory item

| 141

most closely matching a noisy search term. The hardware implementation of this memory

can be content-addressable memory (CAM) with nearest-neighbour search capabilities.

When creating a hypervector, we need to consider that a hypervector needs to show
similarity to related hypervectors, yet it needs to be distinctive from unrelated hypervectors
so that it is able to be successfully retrieved after a search operation. Vector addition is
used for correlating related hypervectors and exclusive-OR (XOR) for mapping (binding) a
hypervector to an uncorrelated pattern.

For example, consider representing memory elements in Soar using these operations.
Memory elements have three fields: ID, Attributes and Values. For each of these fields we
choose a random vector: X for ID field, Y for Attributes, and Z for Values. The same values

X, Y and Z are used to represent all elements in the memory.

Now consider a particular memory element. The contents of its ID field can be represented
by a random hypervector A. Similarly the contents of its Attributes and Values fields can be

represented by random hypervectors B and C.

The field ID with its content A is represented by X € A. Overall the memory element can

be represented as:
H=X®A+YDOB+ZDC

The vector H is referred to as a holistic representation of the memory element because it
is made of the bit patterns of its fields and their contents. Being a sum, H is similar to each
of the three pairs; the pairs being XOR products, hide the identity of their elements so that
H is dissimilar to each of X, Y, Z, A, B, C. Also, information in memory element spans the

entire vector in holistic representation.

However, the contents of the fields are not lost and can be recovered by unbinding. For
example, to find A, the ID field of the hypervector H with B and C stored in the Attributes
and Values fields, we consider XOR(H ,X).

XGH=X®(X®A+YSB+Z&C)
—XOXOA+XOYDB+XBZBC
—A+RI1+R2

where A is stored in memory, and R1 and R2 are random noise and dissimilar to any items
in the memory. Recall the equation for calculating the expected Hamming distance between

142 | B: An Introduction to Hyperdimensional Computing

any compound vector and its coponent vectors. In this case, the normalised distance between
A+ R1+R2 and A 1s 0.25, which is significantly close in the hyperspace. The resultant
compound vector A + R1 + R2 thus can be used as a search query for fetching the real value
of A from the CAM where rows of hypervectors are stored.

An Example: What is the Dollar of U.K.?

If we have memory elements with two fields: country (X) and currency (Y), Australia (A)
with dollar (D) as currency will be represented as: Hy = X $A+Y & D. UK (U) with Pound
(P) as monetary unitis : Hy =X U +Y G P.

An associative search: what is the currency of Australia is corresponding to unbinding Y
and Hy, which gives a result that recovers D with some random noise R1.

YOHy, =YD (XDA+Y DBD)
=RI1+D

What if we ask a silly question: what is the Dollar of U.K.? The result is some random

vector and the correct result would not be found.

D®Hy=D®(XoU+YDP)
=R2+R3

The language computers use is very literal; Human language tend to be more figurative,
and Humans with some basic knowledge of Australian and UK money system can answer
the question: Dollar of UK by saying: it is actually Pound.

However, if we provide the holistic system some context, the system would be able the
give the correct answer without explicitly recovering the field ¥ (Monetary) of Hy (UK). The
semantic searching is performed by: (D & Hy) & Hy, which can be interpreted as: what in
UK corresponds to the dollar in Australia?

| 143

Representing Substitution

The brain has the ability to understand things by analogy. In computing terms, it means
substituting a particular value in a field of a record (memory element). For a holistic record,
substitution operation on a specific field can be done with XOR multiplication.

Say value A is assigned to field X, represented by the X © A binding. To substitute A
with B, we need to restore the field by unbinding with A: (X $A)®A = X. Then D is
assigned to X: X @ D. The binding can be written as ((X ®A) ®A) @ D, which equals to
(X ®A) @ (A® D). Thus substituting value A with value D can be achieved by binding
(A @ D) to the previously filler-field bound pair X @ A.

References

[1] Tom Simonite. Apple’s ‘Neural Engine’ Infuses the Iphone
with Al Smarts, 2017. URL https://www.wired.com/story/
apples-neural-engine-infuses-the-iphone-with-ai-smarts/.

[2] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
datacenter performance analysis of a tensor processing unit. In Proceedings of the

44th Annual International Symposium on Computer Architecture, pages 1-12. ACM,
2017.

[3] John R Anderson. Act: A simple theory of complex cognition. American Psychologist,
51(4):355, 1996.

[4] John E Laird. The Soar Cognitive Architecture. The MIT Press, 2012.

[5] Scott Douglass and Christopher W Myers. Concurrent knowledge activation calcula-
tion in large declarative memories. Technical report, AIR FORCE RESEARCH LAB
MESA AZ HUMAN EFFECTIVENESS DIRECTORATE, 2010.

[6] John E Laird, Nate Derbinsky, and Jonathan Voigt. Performance evaluation of declara-
tive memory systems in soar. Ann Arbor, 1001:48109-2121, 2011.

[7] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications of the
obvious. SIGARCH Comput. Archit. News, 23(1):20-24, March 1995. ISSN 0163-
5964.

[8] John L Hennessy and David A Patterson. Computer architecture: a quantitative
approach. Elsevier, 2011.

[9] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Kee-
ton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A case for intelli-
gent ram. /EEE micro, 17(2):34-44, 1997.

[10] R. Nair. Evolution of memory architecture. Proceedings of the IEEE, 103(8):1331—
1345, Aug 2015.

[11] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Al-
isafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki,
and Babak Falsafi. Clearing the clouds: A study of emerging scale-out workloads on
modern hardware. SIGPLAN Not., 47(4):37-48, March 2012. ISSN 0362-1340.

https://www.wired.com/story/apples-neural-engine-infuses-the-iphone-with-ai-smarts/
https://www.wired.com/story/apples-neural-engine-infuses-the-iphone-with-ai-smarts/

146 | References

[12]

[13]

[23]

[24]

[25]

Harold S Stone. A logic-in-memory computer. /EEE Transactions on Computers, 100
(1):73-78, 1970.

J. Carter, W. Hsieh, L. Stoller, M. Swanson, Lixin Zhang, E. Brunvand, A. Davis,
Chen-Chi Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama. Impulse:
building a smarter memory controller. In Proceedings Fifth International Symposium
on High-Performance Computer Architecture, pages 70—79, Jan 1999.

Joshua Friedrich, Hung Le, William Starke, Jeff Stuechli, Balaram Sinharoy, Eric J
Fluhr, Daniel Dreps, Victor Zyuban, Gregory Still, Christopher Gonzalez, et al. The
power8 tm processor: Designed for big data, analytics, and cloud environments. In IC
Design & Technology (ICICDT), 2014 IEEE International Conference on, pages 1-4.
IEEE, 2014.

Maya Gokhale, Bill Holmes, and Ken lobst. Processing in memory: The terasys
massively parallel pim array. Computer, 28(4):23-31, 1995.

Christoforos E Kozyrakis, Stylianos Perissakis, David Patterson, Thomas Anderson,
Krste Asanovic, Neal Cardwell, Richard Fromm, Jason Golbus, Benjamin Gribstad,
Kimberly Keeton, et al. Scalable processors in the billion-transistor era: Iram. Com-
puter, 30(9):75-78, 1997.

Joe Jeddeloh and Brent Keeth. Hybrid memory cube new dram architecture increases
density and performance. In VLSI Technology (VLSIT), 2012 Symposium on, pages
87-88. IEEE, 2012.

Peter M Kogge. Execube-a new architecture for scaleable mpps. In Parallel Processing,
1994. Vol. 1. ICPP 1994. International Conference on, volume 1, pages 77-84. IEEE,
1994.

Donald G Bailey. Design for embedded image processing on FPGAs. John Wiley &
Sons, 2011.

W Daniel Hillis. The connection machine. MIT press, 1989.

Scott Douglass, Jerry Ball, and Stuart Rodgers. Large declarative memories in act-r.
Technical report, AIR FORCE RESEARCH LAB MESA AZ HUMAN EFFECTIVE-
NESS DIRECTORATE, 2009.

Nate Derbinsky, John E. Laird, and Ann Arbor Mi. Towards efficiently supporting
large symbolic declarative memories. In In Proceedings of the 10th International
Conference on Cognitive Modeling (ICCM, pages 49-54, 2010.

Dario Salvucci. Endowing a cognitive architecture with world knowledge. In Proceed-
ings of the Cognitive Science Society, volume 36, 2014.

JE Laird and CB Congdon. The soar user’s manual version 9.4. 0. Computer Science
and Engineering Department, University of Michigan, 2014.

J.J. Yang and R. S. Williams. Memristive devices in computing system: Promises
and challenges. ACM J. Emerg. Technol. Comput. Syst, 9(2), 2013.

References | 147

[26] Peng Wang and Braden Phillips. Design and evaluation of content addressable memory
using redox memristive devices. In Nanotechnology (IEEE-NANO), 2016 IEEE 16th
International Conference on, pages 533-536. IEEE, 2016.

[27] P Wang, BJ Phillips, and MJ Liebelt. Memristor-based activation circuit for long-term
memories in cognitive architectures. Electronics Letters, 51(21):1639—-1641, 2015.

[28] Matthew A Kelly, K Kwock, and Robert L. West. Holographic declarative memory
and the fan effect: A test case for a new memory module for act-r. In Proceedings for
the 2015 International Conference on Cognitive Modeling (ICCM), pages 148—153,
2015.

[29] Pat Langley. The cognitive systems paradigm. Advances in Cognitive Systems, 1:3-13,
2012.

[30] Kiristinn Thorisson and Helgi Helgasson. Cognitive architectures and autonomy: A
comparative review. Journal of Artificial General Intelligence, 3(2):1-30, 2012.

[31] Nate Derbinsky and John E Laird. A functional analysis of historical memory retrieval
bias in the word sense disambiguation task. Ann Arbor, 1001:48109-2121, 2011.

[32] Nate Derbinsky and John E Laird. Computationally efficient forgetting via base-
level activation. In Proceedings of the 11th International Conference on Cognitive
Modeling, pages 109-110, 2012.

[33] A Petrov. Computationally efficient approximation of the base-level learning equation
in ACT-R. In Proceedings of the 7th International Conference on Cognitive Modeling,
Trieste, Italy, 2006.

[34] Nate Derbinsky and John E Laird. A preliminary functional analysis of memory in
the word sense disambiguation task. In Proc. 2nd Symposium on Human Memory for
Artificial Agents, 2011.

[35] Yang Chen, Milenko Petrovic, and Micah Clark. Semmemdb: In-database knowledge
activation. In Flairs conference, 2014.

[36] Peter A Boncz, Martin L Kersten, and Stefan Manegold. Breaking the memory wall
in monetdb. Communications of the ACM, 51(12):77-85, 2008.

[37] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam, and
Doug Burger. Dark silicon and the end of multicore scaling. In ACM SIGARCH
Computer Architecture News, volume 39, pages 365-376. ACM, 2011.

[38] Kostas Pagiamtzis and Ali Sheikholeslami. Content-addressable memory (cam)
circuits and architectures: A tutorial and survey. Solid-State Circuits, IEEE Journal of,
41(3):712-7217, 2006.

[39] Kamran Eshraghian, Kyoung-Rok Cho, Omid Kavehei, Soon-Ku Kang, Derek Abbott,
and Sung-Mo Steve Kang. Memristor MOS content addressable memory (MCAM):
Hybrid architecture for future high performance search engines. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 19(8):1407-1417, 2011.

148 | References

[40] Engin Ipek, Qing Guo, Xiaochen Guo, and Yuxin Bai. Resistive memories in as-
sociative computing. In Emerging Memory Technologies, pages 201-229. Springer,
2014.

[41] Anthony J McAuley and Paul Francis. Fast routing table lookup using cams. In
INFOCOM’93. Proceedings. Twelfth Annual Joint Conference of the IEEE Computer
and Communications Societies. Networking: Foundation for the Future, IEEE, pages
1382-1391. IEEE, 1993.

[42] Maya Gokhale, Dave Dubois, Andy Dubois, Mike Boorman, Steve Poole, and Vic
Hogsett. Granidt: Towards gigabit rate network intrusion detection technology. Field-
Programmable Logic and Applications: Reconfigurable Computing Is Going Main-
stream, pages 47-61, 2002.

[43] Subbarao Palacharla, Norman P Jouppi, and James E Smith. Complexity-effective
superscalar processors, volume 25. ACM, 1997.

[44] Alper Buyuktosunoglu, Stanley Schuster, David Brooks, Pradip Bose, Peter Cook, and
David Albonesi. An adaptive issue queue for reduced power at high performance. In

International Workshop on Power-Aware Computer Systems, pages 25-39. Springer,
2000.

[45] Thomas W Barr, Alan L Cox, and Scott Rixner. Translation caching: skip, don’t walk
(the page table). In ACM SIGARCH Computer Architecture News, volume 38, pages
48-59. ACM, 2010.

[46] Nagender Bandi, Sam Schnieder, Divyakant Agrawal, and Amr El Abbadi. Hardware
acceleration of database operations using content-addressable memories. In DaMoN,
2005.

[47] William Webber, Alistair Moffat, and Justin Zobel. A similarity measure for indefinite
rankings. ACM Transactions on Information Systems (TOIS), 28(4):20, 2010.

[48] A.Rahimi, L. Benini, and R. K. Gupta. Temporal memoization for energy-efficient tim-
ing error recovery in gpgpus. In 2014 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1-6, March 2014. doi: 10.7873/DATE.2014.113.

[49] A. Rahimi, A. Ghofrani, M. A. Lastras-Montano, K. Cheng, L. Benini, and R. K.
Gupta. Energy-efficient gpgpu architectures via collaborative compilation and mem-
ristive memory-based computing. In 2014 51st ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1-6, June 2014.

[50] Mahmoud Meribout, Takeshi Ogura, and Mamoru Nakanishi. On using the cam
concept for parametric curve extraction. IEEE Transactions on Image Processing, 9
(12):2126-2130, 2000.

[51] Mamoru Nakanishi and Takeshi Ogura. Real-time cam-based hough transform algo-
rithm and its performance evaluation. Machine Vision and Applications, 12(2):59-68,
2000.

References | 149

[52] Somnath Paul and Swarup Bhunia. Reconfigurable computing using content address-
able memory for improved performance and resource usage. In Proceedings of the
45th annual Design Automation Conference, pages 786—791. ACM, 2008.

[53] Pentti Kanerva. Hyperdimensional computing: An introduction to computing in dis-
tributed representation with high-dimensional random vectors. Cognitive Computation,
1(2):139-159, 2009.

[54] Teuvo Kohonen. The self-organizing map. Neurocomputing, 21(1):1-6, 1998.

[55] S. Riiping, M. Porrmann, and U. Riickert. Som accelerator system. Neurocomputing,
21(1):31-50, 1998.

[56] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams. The
missing memristor found. nature, 453(7191):80-83, 2008.

[57] J. Lee, Jungho Shin, Daeseok Lee, W. Lee, S. Jung, M. Jo, J. Park, K. P. Biju, S. Kim,
S. Park, and H. Hwang. Diode-less nano-scale zrox/hfox rram device with excellent

switching uniformity and reliability for high-density cross-point memory applications.
In 2010 International Electron Devices Meeting, pages 19.5.1-19.5.4, Dec 2010.

[58] Antonio C Torrezan, John Paul Strachan, Gilberto Medeiros-Ribeiro, and R Stanley

Williams. Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology,
22(48):485203, 2011.

[59] Dalibor Biolek, Zdenék Biolek, Viera Biolkova, and Zdenék Kolka. Some fingerprints
of ideal memristors. In Circuits and Systems (ISCAS), 2013 IEEE International
Symposium on, pages 201-204. IEEE, 2013.

[60] ITRS. International technology roadmap for semiconductors 2013 edition emerging
research devices. Roadmap report, ITRS, 2011.

[61] Qing Guo, Xiaochen Guo, Yuxin Bai, and Engin Ipek. A resistive tcam accelerator for
data-intensive computing. In Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 339-350. ACM, 2011.

[62] ITRS. International technology roadmap for semiconductors 2013 edition emerging
research devices. Roadmap report, ITRS, 2013.

[63] J Joshua Yang, Dmitri B Strukov, and Duncan R Stewart. Memristive devices for
computing. Nature nanotechnology, 8(1):13-24, 2013.

[64] Leon Chua. Memristor-the missing circuit element. IEEE Transactions on circuit
theory, 18(5):507-519, 1971.

[65] S.J. Wolf Y. N. Joglekar. The elusive memristor: properties of basic electrical circuits.
European Journal of Physics, 30(4):661-675, 2009.

[66] Zdenck Biolek, Dalibor Biolek, and Viera Biolkova. Spice model of memristor with
nonlinear dopant drift. Radio engineering, 18(2):210 — 214, 2009. ISSN 12102512.

150 | References

[67]

[68]

[71]

Ting Chang, Sung-Hyun Jo, Kuk-Hwan Kim, Patrick Sheridan, Siddharth Gaba, and
Wei Lu. Synaptic behaviors and modeling of a metal oxide memristive device. Applied
physics A, 102(4):857-863, 2011.

Robinson E. Pino, James W. Bohl, Nathan McDonald, Bryant Wysocki, Peter Roz-
wood, Kristy A. Campbell, Antonio Oblea, and Achyut Timilsina. Compact method
for modeling and simulation of memristor devices: Ion conductor chalcogenide-based
memristor devices. In Proceedings of the 2010 IEEE/ACM International Symposium
on Nanoscale Architectures, NANOARCH 10, pages 14, Piscataway, NJ, USA,
2010. IEEE Press.

H. Abdalla and M. D. Pickett. Spice modeling of memristors. In 2011 IEEE In-
ternational Symposium of Circuits and Systems (ISCAS), pages 1832-1835, May
2011.

Chris Yakopcic, Tarek M Taha, Guru Subramanyam, and Robinson E Pino. Gen-
eralized memristive device spice model and its application in circuit design. /IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(8):
1201-1214, 2013.

Christophe J Chevallier, Chang Hua Siau, Seow Fong Lim, Sri Rama Namala, Misako
Matsuoka, Bruce L Bateman, and Darrell Rinerson. A 0.13 pum 64mb multi-layered
conductive metal-oxide memory. In Solid-State Circuits Conference Digest of Techni-
cal Papers (ISSCC), 2010 IEEE International, pages 260-261. IEEE, 2010.

Eike Linn, Roland Rosezin, Carsten Kugeler, and Rainer Waser. Complementary
resistive switches for passive nanocrossbar memories. Nat Mater, 9(5):403—406, 2010.

Shyh-Shyuan Sheu, Meng-Fan Chang, Ku-Feng Lin, Che-Wei Wu, Yu-Sheng Chen,
Pi-Feng Chiu, Chia-Chen Kuo, Yih-Shan Yang, Pei-Chia Chiang, Wen-Pin Lin, et al. A
4mb embedded slc resistive-ram macro with 7.2 ns read-write random-access time and
160ns mlc-access capability. In Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2011 IEEE International, pages 200-202. IEEE, 2011.

Y. B. Kim, S. R. Lee, D. Lee, C. B. Lee, M. Chang, J. H. Hur, M. J. Lee, G. S. Park,
C. J. Kim, U. I. Chung, I. K. Yoo, and K. Kim. Bi-layered rram with unlimited
endurance and extremely uniform switching. In 2011 Symposium on VLSI Technology
- Digest of Technical Papers, pages 52-53, June 2011.

Kuk-Hwan Kim, Siddharth Gaba, Dana Wheeler, Jose M. Cruz-Albrecht, Tahir
Hussain, Narayan Srinivasa, and Wei Lu. A functional hybrid memristor crossbar-
array/cmos system for data storage and neuromorphic applications. Nano Letters, 12
(1):389-395, 2012.

Wataru Otsuka, Koji Miyata, Makoto Kitagawa, Keiichi Tsutsui, Tomohito Tsushima,
Hiroshi Yoshihara, Tomohiro Namise, Yasuhiro Terao, and Kentaro Ogata. A 4mb
conductive-bridge resistive memory with 2.3 gb/s read-throughput and 216mb/s
program-throughput. In Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2011 IEEE International, pages 210-211. IEEE, 2011.

References | 151

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

Hyung Dong Lee, SG Kim, K Cho, H Hwang, H Choi, J Lee, SH Lee, HJ Lee, J Suh,
S-O Chung, et al. Integration of 4f2 selector-less crossbar array 2mb reram based on

transition metal oxides for high density memory applications. In VLSI Technology
(VLSIT), 2012 Symposium on, pages 151-152. IEEE, 2012.

Meng-Fan Chang, Che-Wei Wu, Chia-Cheng Kuo, Shin-Jang Shen, Ku-Feng Lin,
Shu-Meng Yang, Ya-Chin King, Chorng-Jung Lin, and Yu-Der Chih. A 0.5 v 4mb
logic-process compatible embedded resistive ram (reram) in 65nm cmos using low-
voltage current-mode sensing scheme with 45ns random read time. In Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International,
pages 434-436. IEEE, 2012.

Akifumi Kawahara, Ryotaro Azuma, Yuuichirou Ikeda, Ken Kawai, Yoshikazu Katoh,
Yukio Hayakawa, Kiyotaka Tsuji, Shinichi Yoneda, Atsushi Himeno, Kazuhiko Shi-
makawa, et al. An 8 mb multi-layered cross-point reram macro with 443 mb/s write
throughput. IEEE Journal of Solid-State Circuits, 48(1):178-185, 2013.

R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui, J. Javanifard,
K. Tedrow, T. Tsushima, Y. Shibahara, and G. Hush. 19.7 a 16gb reram with 200mb/s
write and 1gb/s read in 27nm technology. In 2014 IEEFE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), pages 338-339, Feb 2014.

Tz-yi Liu, Tian Hong Yan, Roy Scheuerlein, Yingchang Chen, Jeffrey KoonYee Lee,
Gopinath Balakrishnan, Gordon Yee, Henry Zhang, Alex Yap, Jingwen Ouyang, et al.
A 130.7-mm? 2-layer 32-gb reram memory device in 24-nm technology. IEEE Journal
of Solid-State Circuits, 49(1):140-153, 2014.

Sung Hyun Jo, Tanmay Kumar, Sundar Narayanan, and Hagop Nazarian. Cross-
point resistive RAM based on field-assisted superlinear threshold selector. /IEEE
Transactions on Electron Devices, 62(11):3477-3481, 2015.

J. Joshua Yang, M.-X. Zhang, Matthew D. Pickett, Feng Miao, John Paul Strachan,
Wen-Di Li, Wei Yi, Douglas A. A. Ohlberg, Byung Joon Choi, Wei Wu, Janice H.
Nickel, Gilberto Medeiros-Ribeiro, and R. Stanley Williams. Engineering nonlinearity

into memristors for passive crossbar applications. Applied Physics Letters, 100(11):
113501, 2012.

Greg S Snider. Spike-timing-dependent learning in memristive nanodevices. In
Nanoscale Architectures, 2008. NANOARCH 2008. IEEE International Symposium
on, pages 85-92. IEEE, 2008.

Sung Hyun Jo, Ting Chang, Idongesit Ebong, Bhavitavya B. Bhadviya, Pinaki
Mazumder, and Wei Lu. Nanoscale memristor device as synapse in neuromorphic
systems. Nano Letters, O(proofing):null, 2010.

Stefano Ambrogio, Pritish Narayanan, Hsinyu Tsai, Robert M Shelby, Irem Boybat,
Carmelo Nolfo, Severin Sidler, Massimo Giordano, Martina Bodini, Nathan CP

Farinha, et al. Equivalent-accuracy accelerated neural-network training using analogue
memory. Nature, 558(7708):60, 2018.

152 | References

[87]

[88]

[89]

[98]

Julien Borghetti, Gregory S Snider, Philip J Kuekes, J Joshua Yang, Duncan R Stewart,
and R Stanley Williams. ‘memristive’switches enable ‘stateful’logic operations via
material implication. Nature, 464(7290):873-876, 2010.

Eero Lehtonen, Jussi H Poikonen, and Mika Laiho. Applications and limitations of
memristive implication logic. In Cellular Nanoscale Networks and Their Applications
(CNNA), 2012 13th International Workshop on, pages 1-6. IEEE, 2012.

Kyosun Kim, Sangho Shin, and Sung-Mo Kang. Stateful logic pipeline architecture.
In Circuits and Systems (ISCAS), 2011 IEEE International Symposium on, pages
2497-2500. IEEE, 2011.

Pierre-Emmanuel Gaillardon, Luca Amara, Anne Siemon, Eike Linn, Rainer Waser,
Anupam Chattopadhyay, and Giovanni De Micheli. The programmable logic-in-
memory (plim) computer. In Proceedings of the 2016 Conference on Design, Automa-
tion & Test in Europe, DATE ’16, pages 427-432, San Jose, CA, USA, 2016. EDA
Consortium.

Ashish Goel and Pankaj Gupta. Small subset queries and bloom filters using ternary
associative memories, with applications. ACM SIGMETRICS Performance Evaluation
Review, 38(1):143-154, 2010.

Takahiro Hanyu, Naoki Kanagawa, and Michitaka Kameyama. Non-volatile one-
transistor-cell multiple-valued cam with a digit-parallel-access scheme and its applica-
tions. Computers & electrical engineering, 23(6):407-414, 1997.

Igor Arsovski, Trevis Chandler, and Ali Sheikholeslami. A ternary content-addressable
memory (tcam) based on 4t static storage and including a current-race sensing scheme.
IEEE Journal of Solid-State Circuits, 38(1):155-158, 2003.

Shoun Matsunaga, Kimiyuki Hiyama, Atsushi Matsumoto, Shoji Ikeda, Haruhiro
Hasegawa, Katsuya Miura, Jun Hayakawa, Tetsuo Endoh, Hideo Ohno, and Takahiro
Hanyu. Standby-power-free compact ternary content-addressable memory cell chip
using magnetic tunnel junction devices. Applied Physics Express, 2(2):023004, 2009.

Jing Li, Robert K Montoye, Masatoshi Ishii, and Leland Chang. 1 Mb 0.41 um?
2T-2R Cell Nonvolatile TCAM With Two-Bit Encoding and Clocked Self-Referenced
Sensing. IEEE Journal of Solid-State Circuits, 49(4):896-907, 2014.

Eero Lehtonen, Jussi H Poikonen, Mika Laiho, and Pentti Kanerva. Large-scale
memristive associative memories. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 22(3):562-574, 2014.

Meng-Fan Chang, Jui-Jen Wu, Tun-Fei Chien, Yen-Chen Liu, Ting-Chin Yang, Wen-
Chao Shen, Ya-Chin King, Chorng-Jung Lin, Ku-Feng Lin, Yu-Der Chih, et al.
19.4 embedded 1mb reram in 28nm cmos with 0.27-to-1v read using swing-sample-
and-couple sense amplifier and self-boost-write-termination scheme. In Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International,
pages 332-333. IEEE, 2014.

Neil HE Weste and David Harris. CMOS VLSI design: a circuits and systems perspec-
tive. Pearson Education, 2011.

References | 153

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Eric S Fetzer, David Dahle, Casey Little, and Kevin Safford. The parity protected,
multithreaded register files on the 90-nm itanium microprocessor. /IEEE Journal of
Solid-State Circuits, 41(1):246-255, 2006.

Benjamin Stolt, Yonatan Mittlefehldt, Sanjay Dubey, Gaurav Mittal, Mike Lee, Joshua
Friedrich, and Eric Fluhr. Design and implementation of the power6 microprocessor.
IEEE Journal of Solid-State Circuits, 43(1):21-28, 2008.

Cheng-Lin Tsai, Feng Xiong, Eric Pop, and Moonsub Shim. Resistive random access
memory enabled by carbon nanotube crossbar electrodes. Acs Nano, 7(6):5360-5366,
2013.

Weihua Guan, Shibing Long, Qi Liu, Ming Liu, and Wei Wang. Nonpolar nonvolatile
resistive switching in cu doped. Electron Device Letters, IEEE, 29(5):434-437, 2008.

Igor Arsovski, Travis Hebig, Daniel Dobson, and Reid Wistort. A 32 nm 0.58-
fj/bit/search 1-ghz ternary content addressable memory compiler using silicon-aware
early-predict late-correct sensing with embedded deep-trench capacitor noise mitiga-
tion. Solid-State Circuits, IEEE Journal of, 48(4):932-939, 2013.

James E Stine, Jun Chen, Ivan Castellanos, Gopal Sundararajan, Mohammad Qayam,
Praveen Kumar, Justin Remington, and Sohum Sohoni. FreePDK v2. 0: Transitioning
VLSI education towards nanometer variation-aware designs. In Microelectronic
Systems Education, 2009. MSE’09. IEEE International Conference on, pages 100-103.
IEEE, 20009.

Abbas Rahimi, Amirali Ghofrani, Kwang-Ting Cheng, Luca Benini, and Rajesh K
Gupta. Approximate associative memristive memory for energy-efficient gpus. In Pro-
ceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition,
pages 1497-1502. EDA Consortium, 2015.

Cong Xu, Xiangyu Dong, Norman P Jouppi, and Yuan Xie. Design implications of
memristor-based rram cross-point structures. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2011, pages 1-6. IEEE, 2011.

A. Flocke and T. G. Noll. Fundamental analysis of resistive nano-crossbars for the use
in hybrid nano/cmos-memory. In ESSCIRC 2007 - 33rd European Solid-State Circuits
Conference, pages 328-331, Sept 2007.

Evert Seevinck, Petrus J van Beers, and Hans Ontrop. Current-mode techniques for
high-speed vlsi circuits with application to current sense amplifier for cmos sram’s.
IEEE Journal of Solid-State Circuits, 26(4):525-536, 1991.

James E Stine, Ivan Castellanos, Michael Wood, and Fred Love. FreePDK: An
Open-Source Variation-Aware Design Kit. In IEEE International Conference on
Microelectronic Systems Education, pages 173—-174, 2007.

Cong Xu, Pai-Yu Chen, Dimin Niu, Yang Zheng, Shimeng Yu, and Yuan Xie. Archi-
tecting 3d vertical resistive memory for next-generation storage systems. In Proceed-
ings of the 2014 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD ’14, pages 55-62, Piscataway, NJ, USA, 2014. IEEE Press.

154 | References

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

A. Ghofrani, M. A. Lastras-Montano, and K. T. Cheng. Toward large-scale access-
transistor-free memristive crossbars. In The 20th Asia and South Pacific Design
Automation Conference, pages 563-568, Jan 2015.

Koji Nii, Teruhiko Amano, Naoya Watanabe, Minoru Yamawaki, Kenji Yoshinaga,
Mihoko Wada, and Isamu Hayashi. 13.6 A 28nm 400MHz 4-parallel 1.6 Gsearch/s
80Mb ternary CAM. In Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2014 IEEE International, pages 240-241. IEEE, 2014.

Banit Agrawal and Timothy Sherwood. Ternary cam power and delay model: Exten-
sions and uses. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
16(5):554-564, 2008.

William C Elmore. The transient response of damped linear networks with particular
regard to wideband amplifiers. Journal of applied physics, 19(1):55-63, 1948.

Kostas Pagiamtzis and Ali Sheikholeslami. A low-power content-addressable memory
(cam) using pipelined hierarchical search scheme. IEEE Journal of Solid-State Circuits,
39(9):1512-1519, 2004.

Aristides Efthymiou and Jim D Garside. An adaptive serial-parallel cam architecture
for low-power cache blocks. In Proceedings of the 2002 international symposium on
Low power electronics and design, pages 136—-141. ACM, 2002.

Charles A Zukowski and Shao-Y1 Wang. Use of selective precharge for low-power
content-addressable memories. In Circuits and Systems, 1997. ISCAS’97., Proceedings
of 1997 IEEE International Symposium on, volume 3, pages 1788-1791. IEEE, 1997.

Mohsen Imani, Abbas Rahimi, Pietro Mercati, and Tajana Simunic Rosing. Multi-
stage tunable approximate search in resistive associative memory. IEEE Transactions
on Multi-Scale Computing Systems, (1):17-29, 2018.

Kostas Pagiamtzis and Ali Sheikholeslami. Pipelined match-lines and hierarchical
search-lines for low-power content-addressable memories. In Custom Integrated
Circuits Conference, 2003. Proceedings of the IEEE 2003, pages 383—-386. IEEE,
2003.

Chi-Sheng Lin, Jui-Chuan Chang, and Bin-Da Liu. A low-power precomputation-
based fully parallel content-addressable memory. IEEE Journal of Solid-State Circuits,
38(4):654-662, 2003.

Haitong Li, Kai-Shin Li, Chang-Hsien Lin, Juo-Luen Hsu, Wen-Cheng Chiu, Min-
Cheng Chen, Tsung-Ta Wu, Joon Sohn, S Burc Eryilmaz, Jia-Min Shieh, et al. Four-
layer 3d vertical rram integrated with finfet as a versatile computing unit for brain-
inspired cognitive information processing. In VLSI Technology, 2016 IEEE Symposium
on, pages 1-2. IEEE, 2016.

Greg Snider. Instar and outstar learning with memristive nanodevices. Nanotechnology,
22(1):015201, 2010.

References | 155

[123]

[124]

[125]
[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

Yuriy V Pershin and Massimiliano Di Ventra. Experimental demonstration of asso-
ciative memory with memristive neural networks. Neural Networks, 23(7):881-886,
2010.

Weste Neil HE et al. Cmos Visi Design: A Circuits And Systems Perspective, 4/E.
Addison-Wesley, 2011.

Rada Mihalcea. Semcor semantically tagged corpus. 11 1998.

George A Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39-41, 1995.

Tony A Plate. Holographic reduced representation: Distributed representation for
cognitive structures. 2003.

Pentti Kanerva. Binary spatter-coding of ordered k-tuples. In International Conference
on Artificial Neural Networks, pages 869—-873. Springer, 1996.

Ross W Gayler. Vector symbolic architectures answer jackendoff’s challenges for
cognitive neuroscience. arXiv preprint cs/0412059, 2004.

Michael N Jones and Douglas JK Mewhort. Representing word meaning and order
information in a composite holographic lexicon. Psychological review, 114(1):1, 2007.

Mika Laiho, Jonne K Poikonen, Eero Lehtonen, Mikko Pinkiilé, Jussi H Poikonen,
and Pentti Kanerva. A 512x 512-cell associative cam/willshaw memory with vector
arithmetic. In Circuits and Systems (ISCAS), 2015 IEEE International Symposium on,
pages 1350-1353. IEEE, 2015.

Abbas Rahimi, Sohum Datta, Denis Kleyko, Edward Paxon Frady, Bruno Olshausen,
Pentti Kanerva, and Jan M Rabaey. High-dimensional computing as a nanoscalable
paradigm. [EEE Transactions on Circuits and Systems 1: Regular Papers, 2017.

Denis Kleyko, Evgeny Osipov, Alexander Senior, Asad I Khan, and Yasar Ahmet
Sekerciogglu. Holographic graph neuron: A bioinspired architecture for pattern
processing. IEEE transactions on neural networks and learning systems, 28(6):
1250-1262, 2017.

Simon D Levy and Ross Gayler. Vector symbolic architectures: A new building
material for artificial general intelligence. In Proceedings of the 2008 Conference on
Artificial General Intelligence 2008: Proceedings of the First AGI Conference, pages
414-418. 10S Press, 2008.

Evgeny Osipov, Asad I Khan, and Anang Amin. Holographic graph neuron. In
Computer and Information Sciences (ICCOINS), 2014 International Conference on,
pages 1-6. IEEE, 2014.

Tony F Wu, Haitong Li, Ping-Chen Huang, Abbas Rahimi, Jan M Rabaey, H-S Philip
Wong, Max M Shulaker, and Subhasish Mitra. Brain-inspired computing exploiting
carbon nanotube fets and resistive ram: Hyperdimensional computing case study. In
Solid-State Circuits Conference-(ISSCC), 2018 IEEE International, pages 492—494.
IEEE, 2018.

156 | References

[137] Steven J Jones, Arthur R Wandzel, and John E Laird. Efficient computation of
spreading activation using lazy evaluation. Ann Arbor, 1001:48109-2121, 2016.

[138] John R Anderson. A spreading activation theory of memory. Journal of verbal
learning and verbal behavior, 22(3):261-295, 1983.

[139] Mohsen Imani, Abbas Rahimi, Deqian Kong, Tajana Rosing, and Jan M Rabaey.
Exploring hyperdimensional associative memory. In High Performance Computer
Architecture (HPCA), 2017 IEEFE International Symposium on, pages 445-456. IEEE,
2017.

[140] E Paxon Frady, Denis Kleyko, and Friedrich T Sommer. A theory of sequence
indexing and working memory in recurrent neural networks. Neural computation, 30
(6):1449-1513, 2018.

[141] Dan Bothell. Act-r 6.0 reference manual. Working Draft, 2004.

[142] Dominic Widdows and Dominic Widdows. Geometry and meaning, volume 773.
CSLI publications Stanford, 2004.

[143] Kiichi Urahama and Takeshi Nagao. k-winners-take-all circuit with o (n) complexity.
IEEE Transactions on Neural Networks, 6(3):776-778, 1995.

[144] Jui-Cheng Yen, Jiun-In Guo, and Hun-Chen Chen. A new k-winners-take-all neural
network and its array architecture. IEEE Transactions on Neural networks, 9(5):
901-912, 1998.

[145] Barbaros Sekerkiran and Ugur Cilingiroglu. A cmos k-winners-take-all circuit with o
(n) complexity. IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, 46(1):1-5, 1999.

[146] Bruce D Calvert and Corneliu A Marinov. Another k-winners-take-all analog neural
network. IEEE Transactions on Neural Networks, 11(4):829-838, 2000.

[147] Corneliu A Marinov and Bruce D Calvert. Performance analysis for a k-winners-take-
all analog neural network: basic theory. IEEE Transactions on Neural Networks, 14
(4):766-780, 2003.

[148] Pavlo V Tymoshchuk. A discrete-time dynamic k-winners-take-all neural circuit.
Neurocomputing, 72(13):3191-3202, 2009.

[149] Jun Wang. Analysis and design of a k-winners-take-all model with a single state
variable and the heaviside step activation function. IEEE Transactions on Neural
Networks, 21(9):1496-1506, 2010.

[150] Makoto Ogawa, Kiyoto Ito, and Tadashi Shibata. @A general-purpose vector-
quantization processor employing two-dimensional bit-propagating winner-take-all.
In VLSI Circuits Digest of Technical Papers, 2002. Symposium on, pages 244-247.
IEEE, 2002.

[151] David C Hendry. Comparator trees for winner-take-all circuits. Neurocomputing, 62:
389-403, 2004.

	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Cognitive Architectures
	1.2 The Processor/Memory Split
	1.3 A Cognitive Memory
	1.4 Original Contributions
	1.5 Thesis Outline

	2 Introduction to Memristive Long-Term CAMs
	2.1 Long-Term Memory in Soar
	2.2 Limitations of Current Memory Systems
	2.3 Content-Addressable Memory
	2.4 Resistive Devices
	2.5 Summary and Conclusion

	3 Content-Addressable Memory Using Memristors
	3.1 Related Work
	3.2 Memory Cell
	3.3 Memory Array Organisation and Operations
	3.4 Memory Array: Experiments and Analysis
	3.5 Summary and Conclusion

	4 A 2S-2R TCAM
	4.1 A Review of Crossbar-Based RRAMs
	4.2 A TCAM Using 1S-1R RRAM Cells
	4.3 Energy and Delay of Large CAMs
	4.4 Higher-Level Improvements
	4.5 Summary and Conclusion

	5 Activation Circuits
	5.1 Related Work
	5.2 Timestamp with Digital Memristors
	5.3 Analog Activation Circuits
	5.4 Simulations and Estimations
	5.5 Summary and Conclusion

	6 Memristive Spreading Activation
	6.1 Background
	6.2 A New Approach
	6.3 Memory Building Blocks
	6.4 Summary and Conclusion

	7 Summary and Conclusion
	7.1 Summary
	7.2 Conclusion
	7.3 Future Research

	Publications
	Appendix A: Details of The Word Sense Disambiguation Task
	Appendix B: An Introduction to Hyperdimensional Computing
	References

