28,028 research outputs found

    A Study On Protocol Stack In 6lowpan Model

    Get PDF
    Due to recent advances of heterogeneous network and the emergence of Internet of Things (IoT), wireless personal area networks including wireless sensor networks are assumed to be part of the huge heterogeneous network. This calls for a smooth integration between the higher network layer protocols Internet Protocol version 6 (IPv6) and the lower media access control (MAC) layer protocol IEEE 802.15.4. IEEE 802.15.4 is a standard that specifies the physical layer and MAC layer for Wireless Personal Area Network (WPAN). This standard is suited for Low-Rate Wireless Personal Area Networks (LR-WPANs), a constrained network of tiny, low power, low rate, small size memory with low computation and communication capabilities. However, IPv6 is forming the backbone of the desired heterogeneous network. Direct integration between IPv6 and IEEE 802.15.4 lower network layers is not possible. Hence, latest technology development is the transmission of IPv6 packets over Low-power Wireless Personal Area Networks (6LoWPAN). This has enforced some modification to the existing protocol stack and introduced the 6LoWPAN protocol stack. The 6LoWPAN protocol stack involves 802.15.4 physical (PHY) and Medium Access Control (MAC) layer, 6LoWPAN adaptation layer, network layer, transport layer and application layer with specific 6LoWPAN application. This review paper describes all layers in 6LoWPAN protocol stack including its routing protocols, namely the Route-over and Mesh-under. These routing schemes are applied in 6LoWPAN adaptation layer and network layer

    Energy efficient medium access control for wireless sensor networks

    Get PDF
    A wireless sensor network designates a system composed of numerous sensor nodes distributed over an area in order to collect information. The sensor nodes communicate wirelessly with each other in order to self-organize into a multi-hop network, collaborate in the sensing activity and forward the acquired information towards one or more users of the information. Applications of sensor networks are numerous, ranging from environmental monitoring, home and building automation to industrial control. Since sensor nodes are expected to be deployed in large numbers, they must be inexpensive. Communication between sensor nodes should be wireless in order to minimize the deployment cost. The lifetime of sensor nodes must be long for minimal maintenance cost. The most important consequence of the low cost and long lifetime requirements is the need for low power consumption. With today's technology, wireless communication hardware consumes so much power that it is not acceptable to keep the wireless communication interface constantly in operation. As a result, it is required to use a communication protocol with which sensor nodes are able to communicate keeping the communication interface turned-off most of the time. The subject of this dissertation is the design of medium access control protocols permitting to reach a very low power consumption when communicating at a low average throughput in multi-hop wireless sensor networks. In a first part, the performance of a scheduled protocol (time division multiple access, TDMA) is compared to the one of a contention protocol (non-persistent carrier sensing multiple access with preamble sampling, NP-CSMA-PS). The preamble sampling technique is a scheme that avoids constant listening to an idle medium. This thesis presents a low power contention protocol obtained through the combination of preamble sampling with non-persistent carrier sensing multiple access. The analysis of the strengths and weaknesses of TDMA and NP-CSMA-PS led us to propose a solution that exploits TDMA for the transport of frequent periodic data traffic and NP-CSMA-PS for the transport of sporadic signalling traffic required to setup the TDMA schedule. The second part of this thesis describes the WiseMAC protocol. This protocol is a further enhancement of CSMA with preamble sampling that proved to provide both a low power consumption in low traffic conditions and a high energy efficiency in high traffic conditions. It is shown that this protocol can provide either a power consumption or a latency several times lower that what is provided by previously proposed protocols. The WiseMAC protocol was initially designed for multi-hop wireless sensor networks. A comparison with power saving protocols designed specifically for the downlink of infrastructure wireless networks shows that it is also of interest in such cases. An implementation of the WiseMAC protocol has permitted to validate experimentally the proposed concepts and the presented analysis

    Power Saving MAC Protocols for WSNs and Optimization of S-MAC Protocol

    Get PDF
    Low power MAC protocols have received a lot of consideration in the last few years because of their influence on the lifetime of wireless sensor networks. Since, sensors typically operate on batteries, replacement of which is often difficult. A lot of work has been done to minimize the energy expenditure and prolong the sensor lifetime through energy efficient designs, across layers. Meanwhile, the sensor network should be able to maintain a certain throughput in order to fulfill the QoS requirements of the end user, and to ensure the constancy of the network. This paper introduces different types of MAC protocols used for WSNs and proposes S‐MAC, a Medium‐Access Control protocol designed for Wireless Sensor Networks. S‐MAC uses a few innovative techniques to reduce energy consumption and support self‐ configuration. A new protocol is suggested to improve the energy efficiency, latency and throughput of existing MAC protocol for WSNs. A modification of the protocol is then proposed to eliminate the need for some nodes to stay awake longer than the other nodes which improves the energy efficiency, latency and throughput and hence increases the life span of a wireless sensor networ

    Energy-efficient hybrid system for Wireless Body Area Network Applications

    Get PDF
    Wireless Body Area Networks (WBANs) consist of a number of miniaturized wearable or implanted sensor nodes that are employed to monitor vital parameters of a patient over long duration of time. These sensors capture physiological data and wirelessly transfer the collected data to a local base station in order to be further processed. Almost all of these body sensors are expected to have low data-rate and to run on a battery. Since recharging or replacing the battery is not a simple task specifically in the case of implanted devices such as pacemakers, extending the lifetime of sensor nodes in WBANs is one of the greatest challenges. To achieve this goal, WBAN systems employ low-power communication transceivers and low duty cycle Medium Access Control (MAC) protocols. Although, currently used MAC protocols are able to reduce the energy consumption of devices for transmission and reception, yet they are still unable to offer an ultimate energy self-sustaining solution for low-power MAC protocols. This paper proposes to utilize energy harvesting technologies in low-power MAC protocols. This novel approach can further reduce energy consumption of devices in WBAN systems

    Congestion and medium access control in 6LoWPAN WSN

    Get PDF
    In computer networks, congestion is a condition in which one or more egressinterfaces are offered more packets than are forwarded at any given instant [1]. In wireless sensor networks, congestion can cause a number of problems including packet loss, lower throughput and poor energy efficiency. These problems can potentially result in a reduced deployment lifetime and underperforming applications. Moreover, idle radio listening is a major source of energy consumption therefore low-power wireless devices must keep their radio transceivers off to maximise their battery lifetime. In order to minimise energy consumption and thus maximise the lifetime of wireless sensor networks, the research community has made significant efforts towards power saving medium access control protocols with Radio Duty Cycling. However, careful study of previous work reveals that radio duty cycle schemes are often neglected during the design and evaluation of congestion control algorithms. This thesis argues that the presence (or lack) of radio duty cycle can drastically influence the performance of congestion control mechanisms. To investigate if previous findings regarding congestion control are still applicable in IPv6 over low power wireless personal area and duty cycling networks; some of the most commonly used congestion detection algorithms are evaluated through simulations. The research aims to develop duty cycle aware congestion control schemes for IPv6 over low power wireless personal area networks. The proposed schemes must be able to maximise the networks goodput, while minimising packet loss, energy consumption and packet delay. Two congestion control schemes, namely DCCC6 (Duty Cycle-Aware Congestion Control for 6LoWPAN Networks) and CADC (Congestion Aware Duty Cycle MAC) are proposed to realise this claim. DCCC6 performs congestion detection based on a dynamic buffer. When congestion occurs, parent nodes will inform the nodes contributing to congestion and rates will be readjusted based on a new rate adaptation scheme aiming for local fairness. The child notification procedure is decided by DCCC6 and will be different when the network is duty cycling. When the network is duty cycling the child notification will be made through unicast frames. On the contrary broadcast frames will be used for congestion notification when the network is not duty cycling. Simulation and test-bed experiments have shown that DCCC6 achieved higher goodput and lower packet loss than previous works. Moreover, simulations show that DCCC6 maintained low energy consumption, with average delay times while it achieved a high degree of fairness. CADC, uses a new mechanism for duty cycle adaptation that reacts quickly to changing traffic loads and patterns. CADC is the first dynamic duty cycle pro- tocol implemented in Contiki Operating system (OS) as well as one of the first schemes designed based on the arbitrary traffic characteristics of IPv6 wireless sensor networks. Furthermore, CADC is designed as a stand alone medium access control scheme and thus it can easily be transfered to any wireless sensor network architecture. Additionally, CADC does not require any time synchronisation algorithms to operate at the nodes and does not use any additional packets for the exchange of information between the nodes (For example no overhead). In this research, 10000 simulation experiments and 700 test-bed experiments have been conducted for the evaluation of CADC. These experiments demonstrate that CADC can successfully adapt its cycle based on traffic patterns in every traffic scenario. Moreover, CADC consistently achieved the lowest energy consumption, very low packet delay times and packet loss, while its goodput performance was better than other dynamic duty cycle protocols and similar to the highest goodput observed among static duty cycle configurations

    Energy Consumption of Wireless Network Access Points

    Full text link
    2nd International Conference on Green Communications and Networking, GreeNets 2012; Gandia; Spain; 25 October 2012 through 26 October 2012The development of low cost technology based on IEEE 802.11 standard permits to build telecommunication networks at low cost, allowing providing Internet access in rural areas in developing countries. The lack of access to the electrical grid is a problem when the network is being developed in rural areas, so that wireless access points should operate using solar panels and batteries. Many cases can be found where the energy consumption becomes a key point in wireless network design. In this paper we present a comparative study of the energy consumption of several wireless network access points. We will compare the energy consumption of different brands and models, for several operation scenarios and operating modes. Obtained results allow us to achieve the objective of this article, that is, promote the development of wireless communication networks energetically efficient.Andrade Morelli, S.; Ruiz Sanchez, E.; Granell Romero, E.; Lloret, J. (2013). Energy Consumption of Wireless Network Access Points. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST. 113:81-91. doi:10.1007/978-3-642-37977-2_8S8191113Khoa Nguyen, K., Jaumard, B.: Routing Engine Architecture for Next Generation Routers: Evolutional Trends. Network Protocols and Algorithms 1(1), 62–85 (2009)IEEE Std 802.11: IEEE Standard for Information technology -Telecommunications and information exchange between systems -Local and metropolitan area networks - Specific requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Institute of Electrical and Electronics Engineers, New York, USA, pp.1–1184 (2007)Lloret, J., Garcia, M., Bri, D., Sendra, S.: A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification. Sensors 9(11), 8722–8747 (2009)Tapia, A., Maitland, C., Stone, M.: Making IT work for Municipalities: Building municipal wireless networks. Government Information Quarterly 23(3), 359–380 (2006)van Drunen, R., Koolhaas, J., Schuurmans, H., Vijn, M.: Building a Wireless Community Network in the Netherland. In: USENIX 2003 / Freenix Annual Technical Conference Proceedings, San Antonio, Texas, USA, June 9-14, pp. 219–230 (2003)Powell, A., Shade, L.R.: Going Wi-Fi in Canada: Municipal and Community Initiatives. Canadian Research Alliance for Community Innovation and Networking (2005)Sendra, S., Fernández, P.A., Quilez, M.A., Lloret, J.: Study and Performance of Interior Gateway IP routing Protocols. Network Protocols and Algorithms 2(4), 88–117 (2010)Galperin, H.: Wireless Networks and Rural Development: Opportunities for Latin America. Information Technologies and International Development 2(3), 47–56 (2005)Segal, M.: Improving lifetime of wireless sensor networks. Network Protocols and Algorithms 1(2), 48–60 (2009)Momani, A.A.E., Yassein, M.B., Darwish, O., Manaseer, S., Mardini, W.: Intelligent Paging Backoff Algorithm for IEEE 802.11 MAC Protocol. Network Protocols and Algorithms 4(2), 108–123 (2012)Mohsin, A.H., Bakar, K.A., Adekiigbe, A., Ghafoor, K.Z.: A Survey of Energy-aware Routing protocols in Mobile Ad-hoc Networks: Trends and Challenges. Network Protocols and Algorithms 4(2), 82–107 (2012)Feeney, L.M., Nilsson, M.: Investigating the Energy Consumption of a Wireless Network Interface in an Ad Hoc Networking Environment. In: Proceedings of the Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2001, Anchorage, Alaska, April 22-26, vol. 3, pp. 1548–1557. IEEE (2001)Barbancho, J., León, C., Molina, F.J., Barbancho, A.: Using artificial intelligence in routing schemes for wireless networks. Computer Communications 30(14-15), 2802–2811 (2007)Tao, C., Yang, Y., Honggang, Z., Haesik, K., Horneman, K.: Network energy saving technologies for green wireless access networks. IEEE Wireless Communications 18(5), 30–38 (2011)Sendra, S., Lloret, J., Garcia, M., Toledo, J.F.: Power saving and energy optimization techniques for Wireless Sensor Networks. Journal of Communications 6(6), 439–459 (2011

    Power Saving MAC Protocols for WSNs and Optimization of S-MAC Protocol

    Get PDF
    Low power MAC protocols have received a lot of consideration in the last few years because of their influence on the lifetime of wireless sensor networks. Since, sensors typically operate on batteries, replacement of which is often difficult. A lot of work has been done to minimize the energy expenditure and prolong the sensor lifetime through energy efficient designs, across layers. Meanwhile, the sensor network should be able to maintain a certain throughput in order to fulfill the QoS requirements of the end user, and to ensure the constancy of the network. This paper introduces different types of MAC protocols used for WSNs and proposes S‐MAC, a Medium‐Access Control protocol designed for Wireless Sensor Networks. S‐MAC uses a few innovative techniques to reduce energy consumption and support self‐ configuration. A new protocol is suggested to improve the energy efficiency, latency and throughput of existing MAC protocol for WSNs. A modification of the protocol is then proposed to eliminate the need for some nodes to stay awake longer than the other nodes which improves the energy efficiency, latency and throughput and hence increases the life span of a wireless sensor networ

    Has time come to switch from duty-cycled MAC protocols to wake-up radio for wireless sensor networks?

    Get PDF
    Duty-cycled Medium Access Control (MAC) protocols certainly improve the energy efficiency of wireless networks. However, most of these protocols still suffer from severe degrees of overhearing and idle listening. These two issues prevent optimum energy usage, a crucial aspect in energy-constrained wireless networks such as wireless sensor networks (WSNs). Wake-up radio (WuR) systems drastically reduce these problems by completely switching off the nodes' microcontroller unit (MCU) and main radio transceiver until a secondary, extremely low-power receiver is triggered by a particular wireless transmission, the so called wake-up call. Unfortunately, most WuR studies focus on theoretical platforms and/or custom-built simulators. Both these factors reduce the associated usefulness of the obtained results. In this paper, we model and simulate a real, recent, and promising WuR hardware platform developed by the authors. The simulation model uses time and energy consumption values obtained in the laboratory and does not rely on custom-built simulation engines, but rather on the OMNET++ simulator. The performance of the WuR platform is compared to four of the most well-known and widely employed MAC protocols for WSN under three real-world network deployments. The paper demonstrates how the use of our WuR platform presents numerous benefits in several areas, from energy efficiency and latency to packet delivery ratio and applicability, and provides the essential information for serious consideration of switching duty-cycled MAC-based networks to WuR.Peer ReviewedPostprint (author's final draft

    Energy-efficient MAC protocols for WBANs: Opportunities and challenges

    Get PDF
    Wireless body area networks (WBANs) are expected to play a significant role in smart healthcare systems. One of the most important attributes of WBANs is to increase network lifetime by introducing novel and low-power techniques on the energy-constrained sensor nodes. Medium access control (MAC) protocols play a significant role in determining the energy consumption in WBANs. Existing MAC protocols are unable to accommodate communication requirements in WBANs. There is a need to develop novel, scalable and reliable MAC protocols that must be able to address all these requirements in a reliable manner. In this special issue, we attracted high quality research and review papers on the recent advances in MAC protocols for WBANs
    • 

    corecore